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ABSTRACT

Brain Magnetic Resonance Imaging (MRI) plays a central role in studying neuro-
logical development, aging, and diseases. One key application is Brain Age Pre-
diction (BAP), which estimates an individual’s biological brain age from MRI
data. Effective BAP models require large, diverse, and age-balanced datasets,
whereas existing 3D MRI datasets are demographically skewed, limiting fairness
and generalizability. Acquiring new data is costly and ethically constrained, moti-
vating generative data augmentation. Current generative methods are often based
on latent diffusion models, which operate in learned low dimensional latent spaces
to address the memory demands of volumetric MRI data. However, these methods
are typically slow at inference, may introduce artifacts due to latent compression,
and are rarely conditioned on age, thereby affecting the BAP performance. In this
work, we propose FlowLet, a conditional generative framework that synthesizes
age-conditioned 3D MRIs by leveraging flow matching within an invertible 3D
wavelet domain, helping to avoid reconstruction artifacts and reducing computa-
tional demands. Experiments show that FlowLet generates high-fidelity volumes
with few sampling steps. Training BAP models with data generated by FlowLet
improves performance for underrepresented age groups, and region-based analysis
confirms preservation of anatomical structures.

1 INTRODUCTION

Brain MRI provides a non-invasive and high-resolution view of brain structure, playing a pivotal
role in understanding neurological development, aging, and disease. An important application lever-
aging MRI data is Brain Age Prediction (BAP), which estimates an individual’s biological brain age
as a biomarker of cognitive decline and neurological disorders, thus supporting early diagnosis and
treatment planning Cole et al. (2017); Baecker et al. (2021). Reliable BAP models require large,
diverse, and age-balanced datasets that cover the full human lifespan. However, existing publicly
available 3D MRI datasets often suffer from significant demographic imbalances, with overrepre-
sentation of certain age groups (e.g., young adults) and underrepresentation of others (e.g., children
and older adults) Bashyam et al. (2020), while large-scale datasets Sudlow et al. (2015) typically re-
quire paid access. These imbalances reduce the generalizability of the models and introduce clinical
biases, limiting the applicability of BAP in real-world epidemiological and clinical settings Dins-
dale et al. (2021). Collecting new MRI data to address these gaps is expensive, time-consuming, and
raises ethical considerations related to patient privacy and exposure. Consequently, synthetic data
augmentation through generative modeling has emerged as a promising strategy to enrich datasets
and improve model robustness Chintapalli et al. (2024). Despite progress, critical challenges remain.
For instance, Diffusion Models and autoencoding architectures struggle with the high dimensional-
ity of volumetric MRI data, leading to inefficiencies and limited anatomical accuracy Dhariwal &
Nichol (2021). To reduce computational demands, many models rely on latent space compression,
which can introduce artifacts Müller-Franzes et al. (2023). Furthermore, insufficient conditioning
mechanisms limit the preservation of fine-grained anatomical features related to age, essential for
BAP. The scarcity of openly accessible implementations further restricts practical use. These techni-
cal limitations reduce the realism of the generated volumes and hinder their effectiveness in clinical
tasks that require precise control over anatomical conditions.

In this work, we introduce FlowLet, a framework for generating conditional 3D brain MRIs that are
not only anatomically consistent but also reflect the morphological characteristics of a given target
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age. The core challenge lies in overcoming the generative modeling trilemma Xiao et al. (2022),
where improvements in sample quality, diversity, and fast sampling are inherently competing objec-
tives, so that enhancing one often comes at the expense of the others. FlowLet aims to mitigate this
trilemma by integrating Flow Matching (FM) within an invertible wavelet domain. This approach is
key: by combining the wavelet with a conditional architecture, FlowLet preserves fine anatomical
details and supports diversity in age-specific synthesis, without the artifacts of learned compression,
while FM allows sample generation in fewer steps, offering a faster alternative to previous methods.

Furthermore, we validate FlowLet on three neuroimaging datasets, demonstrating that the synthetic
brain volumes it generates are effective in clinically relevant applications, such as BAP, particularly
benefiting underrepresented age groups. To support our findings, we integrate a region-based evalua-
tion protocol, providing further anatomical assessment beyond global metrics. To facilitate adoption
and reproducibility, we provide the open-source implementation. Our main contributions are:

1. We introduce FlowLet, a FM model leveraging wavelets for anatomically accurate, multi-
scale synthesis;

2. We propose an Age-Conditioned Architecture, with feature-wise and spatial conditioning
for fine-grained control of age effects;

3. We assess FlowLet beyond standard metrics by integrating a region-based evaluation pro-
tocol, to capture anatomical coherence and demonstrate its utility in BAP.

2 RELATED WORK

Augmentation Despite an increase in general-purpose data availability, 3D neuroimaging remains
constrained by small cohorts and high-dimensional voxel data, limiting population diversity and
statistical reliability Button et al. (2013). Deep learning models, which require large and diverse
datasets to generalize well, are particularly affected. Data augmentation is thus essential for im-
proving model robustness by artificially expanding training sets. Traditional methods such as adding
noise, cropping, flipping or elastic transform, preserve labels but limit variability and, more impor-
tantly, they raise the risk of introducing distorted anatomical structures or amplify biases Wu & Suk
(2017); Shorten & Khoshgoftaar (2019). These risks are especially pronounced in medical imaging,
where anatomical fidelity is critical and validation often relies on expert assessment. Moreover, class
imbalance remains a persistent challenge: oversampling strategies, though common, scale poorly in
high-dimensional spaces and may fail to capture minority class variation Nguyen et al. (2011); Bla-
gus & Lusa (2013). These limitations require specialised methods, i.e., synthetic data generation.

Generative Models for 3D Synthesis Early models like GANs generate sharp samples but of-
ten suffer from instability and mode collapse Salimans et al. (2016), while VAEs enable efficient
sampling at the cost of blurry reconstructions Kingma & Welling (2014). More recently, Denoising
Diffusion Models Ho et al. (2020) have achieved state-of-the-art results across all domains, includ-
ing medical imaging Wyatt et al. (2022); Pinaya et al. (2022); Wu et al. (2023); Durrer et al. (2023),
by learning to reverse a gradual noising process. However, their iterative nature, which numerically
solves Stochastic Differential Equations, requires hundreds to thousands of steps Song et al. (2021a);
Davtyan et al. (2023), posing a major bottleneck for high-resolution 3D data. Advances that operate
in discrete or compressed latent spaces, such as VQ-VAEs van den Oord et al. (2017) and Latent
Diffusion Models (LDMs) Rombach et al. (2022), improve sampling efficiency and global recon-
struction fidelity, though often at the cost of increased artifacts or added computational overhead.

Flow Matching (FM) Lipman et al. (2023); Albergo & Vanden-Eijnden (2023); Liu et al. (2023);
Neklyudov et al. (2023) mitigates this inefficiency by learning a continuous-time velocity field to
transport samples from a simple prior to the data distribution via an Ordinary Differential Equation
(ODE). By encouraging straighter trajectories Lee et al. (2023), FM reduces the number of required
inference steps, making it convenient for fast, high-resolution volumetric synthesis.

Wavelet Diffusion Models (WDMs) WDMs offer a learning-free alternative to LDMs for dimen-
sionality reduction in Diffusion Models Phung et al. (2023); Friedrich et al. (2024); Zhang et al.
(2025). WDMs use a fixed wavelet transform to decompose images into frequency components, ap-
plying diffusion directly within this wavelet domain. By removing the computational overhead of
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Figure 1: (a) Training in the wavelet domain decomposes the MRI into one low-frequency (LLL,
black background) and seven high-frequency subbands. A conditional U-Net learns to predict ve-
locity fields between noise and data. (b) Inference uses ODE integration followed by IDWT.

learned compression, WDMs significantly reduce memory requirements while retaining the advan-
tages of working in a compressed, multi-resolution representation. However, the application of FM
in the wavelet domain remains limited.

3 PROPOSED METHOD

FlowLet integrates FM with an invertible 3D Haar wavelet transform for efficient, anatomically co-
herent synthesis. A conditional network predicts velocity fields directly in the wavelet domain across
multiple frequency subbands, enabling fast and accurate generation of age-specific brain volumes.

Preliminaries To achieve tractable learning while maintaining anatomical fidelity, the orthonor-
mal Haar Discrete Wavelet Transform (DWT) Mallat (1999) is adopted. This nearly lossless, invert-
ible transform decomposes 3D volumes into frequency components, reducing dimensionality while
preserving structural detail Bullmore et al. (2004).

Given a 3D volume x ∈ RD×H×W , where D, H , and W denote the depth (sagittal slices), height
(coronal), and width (axial), respectively, the Haar DWT applies 1D low-pass (l = 1√

2
[1 1]) and

high-pass (h = 1√
2
[−1 1]) filters sequentially along each axis. This produces 8 frequency subbands,

denoted as LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH, where each letter indicates the type of
filter (Low or High) applied along the corresponding axis. The resulting subbands are concatenated
into a tensor: xw = W(x) ∈ R8×D

2 ×H
2 ×W

2 , where W is the forward DWT. The transform is
perfectly invertible via the inverse DWT, such that W−1(xw) = x. Due to the orthonormality of
the Haar basis, ensured by Parseval’s theorem for orthonormal wavelets Mallat (1989); Daubechies
(1992), energy preservation and perfect reconstruction are guaranteed across subbands.

FlowLet Framework FlowLet builds upon the wavelet representation by explicitly modeling gen-
eration in the multi-scale frequency domain. As shown in Figure 1 (left), the transformed 3D MRI
volume is factorized into a low-frequency approximation subband (LLL) and seven high-frequency
detail subbands (LLH, LHL, ..., HHH). The LLL subband captures the dominant anatomical struc-
ture, while the remaining components isolate fine-grained, spatially localized details. As the sig-
nal energy is predominantly concentrated in the LLL subband and total energy is preserved across
subbands by Parseval’s theorem, interpolation trajectories in this coarse subspace are inherently
smoother, supporting stable learning dynamics and reconstruction Lipman et al. (2023). At the same
time, neural networks can specialize across subbands, enhancing stability and convergence in gen-
erative frameworks Ho et al. (2020); Vahdat et al. (2021). This frequency-based factorization also
reduces global variability and overfitting by promoting spatial locality Mallat (1999), while sig-
nificantly decreasing memory usage (8x reduction) compared to operating on full-resolution voxel
volumes by drastically reducing the size of the feature maps processed by FlowLet.
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3.1 FLOW MATCHING FORMULATIONS

The framework supports multiple flow matching formulations to enable flexible and adaptable mod-
eling, all operating in the wavelet domain, where samples xt, noise x0, data x1, and velocity fields v
(the instantaneous time-derivative ∂txt along the path) belong to R8×D

2 ×H
2 ×W

2 . The data sample x1

is the wavelet transform W(xvoxel
1 ) of an original sample xvoxel

1 ∼ pdata, and noise x0 is standard
Gaussian in wavelet space. FlowLet supports a modular family of FM strategies that define differ-
ent continuous-time interpolation paths xt from noise to data in the wavelet domain. Each variant
specifies a target velocity field vtarget(xt, t). The model learns a parameterized velocity network
vθ(xt, t, c), conditioned on signal c, by minimizing the MSE loss:

LFM = Ext,t,vtarget

[
∥vθ(xt, t, c)− vtarget(xt, t)∥2

]
. (1)

The learned velocity field governs a deterministic ODE on t ∈ [0, 1], solved via Euler integration.

The selected formulations, chosen for their foundational role in the FM literature and their pro-
gressively increasing trajectory curvature, are ordered to reflect differences in the geometry of the
interpolation path, an aspect known to influence the expressiveness and stability of the learned ve-
locity field Lee et al. (2023). This setup enables a systematic evaluation of how curvature impacts
training stability and synthesis quality. An overview of the implemented FM variants is provided.

Rectified Flow Matching (RFM) RFM Liu et al. (2023) performs linear interpolation between a
Gaussian noise sample and a data sample in the wavelet domain:

xt = (1− t)x0 + tx1, vtarget = x1 − x0. (2)

The target velocity field is constant along the straight line path, resulting in zero path curvature,
which promotes stable training and yields low-variance gradient estimates.

Conditional Flow Matching (CFM) CFM Lipman et al. (2023); Albergo & Vanden-Eijnden
(2023) constructs a linear path between a data sample x1 and a sampled noise x0 in wavelet space
for each training instance. The target velocity field is then defined as the instantaneous direction
from xt to x1, scaled by the remaining time:

xt = (1− t)x0 + tx1, vtarget =
x1 − xt

1− t+ ϵ
, (3)

where a small ϵ > 0 is added to prevent divergence as t → 1. While the underlying path is a straight
line, the target velocity field is explicitly dependent on the current state xt and time t, making it
more dynamic than the constant velocity of RFM. This introduces non-zero curvature and increases
sensitivity as t approaches 1.

Variance-Preserving Diffusion Matching (VP) Inspired by DDPM Song et al. (2021a), VP de-
fines a nonlinear interpolation from data to noise governed by a linear variance schedule β(t) =
βmin + t(βmax − βmin), t ∈ [0, 1]. Signal and noise scaling coefficients are:

ᾱ(t) = exp

(
−1

2

∫ t

0

β(s) ds

)
, σ(t) =

√
1− ᾱ(t)2. (4)

The forward noising process generates intermediate samples xt via interpolation between a data
sample x1 and standard Gaussian noise ξ ∼ N (0, I), while the corresponding target velocity field
vtarget(xt, t), governing the reverse-time dynamics, is defined by the gradient (score) of the marginal
distribution ∇xt

log pt(xt):

xt = ᾱ(t)x1 + σ(t) ξ, vtarget(xt, t) = −1

2
β(t)xt − β(t)∇xt log pt(xt). (5)

This nonlinear velocity field leads to curved reverse trajectories characteristic of diffusion models.
A small positive constant is typically added to denominators during training for numerical stability.

Trigonometric Flow Trigonometric Nichol & Dhariwal (2021) uses a circular interpolation on the
unit half-circle in wavelet space:

xt = cos
(π
2
t
)
x0 + sin

(π
2
t
)
x1, vtarget =

π

2

[
− sin

(π
2
t
)
x0 + cos

(π
2
t
)
x1

]
. (6)

This formulation maintains constant norm ∥xt∥ and has constant curvature π2

4 , introducing smooth
curved trajectories with stable, non-straight, velocity fields.
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3.2 CONDITIONAL U-NET ARCHITECTURE

FlowLet employs a conditional 3D U-Net, vθ, designed to predict the velocity field within the 8-
channel wavelet domain, as illustrated in Figure 1 (a). The model input consists of interpolated
wavelet coefficients xt ∈ R8×D

2 ×H
2 ×W

2 , a timestep t, and a condition vector c; the output is the
predicted velocity field vpred in the same wavelet domain, which is integrated via Euler ODE and
mapped back to the volume domain through the IDWT. The timestep t is embedded through sinu-
soidal positional encoding Vaswani et al. (2017) followed by an MLP with SiLU activations. Each
conditioning variable is separately projected and summed to form a unified context vector econd.
The U-Net backbone follows encoder, bottleneck, and decoder stages with skip connections to en-
able hierarchical feature extraction for 3D data. The primary building blocks are residual blocks
(ResBlocks) incorporating normalization and SiLU activations.

Conditioning is incorporated depth-wise throughout the entire network using Feature-wise Linear
Modulation (FiLM) Perez et al. (2018), allowing adaptive adjustment of activation scale and bias at
every layer. Time and condition embeddings produce scale and shift parameters applied to normal-
ized feature maps as hmod = Norm(h) · (1 + γtime + γcond) + (btime + bcond) where h represents
intermediate features at each layer within the wavelet feature space. At lower spatial resolutions,
where features capture more semantic information, Spatial Conditioning modules inspired by trans-
former architectures Rombach et al. (2022) are employed. These blocks first apply self-attention to
model global spatial dependencies, followed by cross-attention where spatial features query the con-
dition embedding econd via hattn = Attention(Q,K, V ), where Q = WQh, K = WKecond, and
V = WV econd enabling spatially-aware conditioning that refines anatomical detail based on auxil-
iary information. The output layer applies normalization, activation, and a convolution to produce
velocity fields matching the input format in the wavelet domain. More details in Appendix A.6.

Sampling, illustrated in Figure 1 (b), is performed by solving an ODE in the wavelet domain, start-
ing from Gaussian noise x0 ∼ N (0, I). The wavelet coefficients are iteratively updated using the
learned velocity field vpred. After integration, the final MRI is reconstructed by applying the IDWT.

4 EXPERIMENTAL SETUP

Datasets The training dataset combines three publicly available sources, focusing exclusively
on cognitively normal subjects. This integration was motivated by the strong age imbalance in
OpenBHB1, which despite comprising 3,984 MRI scans, it overrepresents younger individuals (pri-
marily aged 10–20) and sparsely includes older adults. The addition of ADNI2 and OASIS-33 con-
tributed with 769 and 1,314 scans, respectively, from individuals aged 60–91 and 42–95. All MRIs
were preprocessed using a standardized pipeline: bias field correction, skull stripping, spatial and
intensity normalization, and resampling to a common 91×109×91 resolution to facilitate BAP.

Baselines For comparison, five state-of-the-art generative models are evaluated: the unconditional
Wavelet Diffusion Model (WDM) operating in the 3D Haar wavelet domain Friedrich et al. (2024),
the unconditional Medical Diffusion (MD) DDPM on a VQ-GAN backbone Khader et al. (2022),
the conditional MONAI Latent Diffusion Model (MLDM) Pinaya et al. (2022) and MOTFM Yaz-
dani et al. (2025), a recent framework based on FM. Since the latter is unconditional, we additionally
introduce an age-conditioned variant (MOTFMa) to ensure a fair comparison on our BAP task. To
achieve this, we integrate our implemented conditioning mechanism directly into the MOTFM archi-
tecture: the scalar age is mapped into a 512-dimensional embedding and subsequently injected into
the UNet using cross-attention for age guidance. While other age-conditional models exist Litrico
et al.; Pombo et al. (2023), they address the distinct task of aging a specific real subject MRI rather
than synthesis from noise. They are thus not directly comparable and are excluded as baselines.

Implementation Details FlowLet is implemented in PyTorch, using the AdamW optimizer with
cosine annealing and mixed precision. For more memory-efficient attention, xformers4 is option-

1https://baobablab.github.io/bhb/dataset
2https://adni.loni.usc.edu/
3https://sites.wustl.edu/oasisbrains/
4https://github.com/facebookresearch/xformers
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Table 1: Overall mean values for synthetic sample quality. Bold and underlined indicate the best and
second-best models per metric. The ∗marks results not significantly different from FlowLet-RFM 10
steps, based on pairwise Wilcoxon rank-sum tests with Bonferroni correction (α = 0.05). Metrics
are computed over 100 random bootstrap resamples of the full generated sets. Standard deviations
(≤ 10−3) are omitted for conciseness.

(a) Ours (10 steps) vs. baselines

Method Steps FID ↓ MMD ↓ MS-SSIM ↓

O
ur

s

RFM 10 0.2981 0.0119 0.9508
CFM 10 0.3098 0.0124 0.9707
VP 10 0.3079 0.0123 0.9706
Trigon. 10 0.2854 0.0114 0.9660

B
as

el
in

es

WDM 1000 0.3073 0.0123 0.9456
MD 1000 0.3843 0.0153 0.9595
MLDM 1000 0.3590 0.0144 0.9538
MOTFM 10 0.3696 0.0147 0.9676
MOTFMa 10 0.3747 0.0145 0.9528

1 2 5 10 200
Number of sampling steps

0.2880
0.2960
0.3040
0.3120
0.3200
0.3280
0.3360
0.3440
0.3520

FI
D

RFM
CFM
VP
Trigonometric

Figure 2: FID vs. steps for FlowLet variants.
The shaded bands indicate standard deviation.

(b) Ablations of Ours (steps + conditioning)

Method Steps FID ↓ MMD ↓ MS-SSIM ↓

RFM

1 0.3334 0.0133 0.9886
2 0.3232 0.0129 0.9838
5 0.3130 0.0125 0.9746

200 0.2978∗ 0.0119∗ 0.9487

CFM

1 0.3361 0.0134 0.9899
2 0.3258 0.0130 0.9858
5 0.3146 0.0126 0.9771

200 0.3044 0.0122 0.9508∗

VP

1 0.3341 0.0133 0.9898
2 0.3234 0.0129 0.9858
5 0.3132 0.0125 0.9771

200 0.3004 0.0120 0.9513∗

Trigon.

1 0.3292 0.0131 0.9211
2 0.2974∗ 0.0119∗ 0.9521
5 0.2859 0.0114 0.9680

200 0.3527 0.0141 0.9557

FiLM 10 0.3252 0.0130 0.9861
Spatial 10 0.3234 0.0129 0.9846
Uncond. 10 0.3181 0.0127 0.9803

ally available. All experiments were run on an NVIDIA A6000 GPU (48 GB VRAM); notably, while
baseline models required this large memory capacity, FlowLet can be trained in 24 GB, enhancing
accessibility. To compare different flow formulations (RFM, CFM, VP, and Trigonometric), all vari-
ants were implemented and trained under identical architecture, hyperparameters, and optimization
settings. All external baselines were likewise trained from scratch on the same dataset, using the
provided default hyperparameters except for input channels and padding to match our volumes.
Complete training details and hyperparameters are provided in A.7.

4.1 EVALUATION METRICS

As introduced earlier, generative models must balance the trilemma of producing high-quality sam-
ples, maintaining diversity and enabling efficient sampling. The evaluation pipeline is designed to
reflect and investigate this balance. This is complemented with BAP to assess clinical utility, and a
region-based analysis that quantifies anatomical fidelity.

Image Fidelity and Diversity Image quality and distributional similarity were evaluated using the
Fréchet Inception Distance (FID) Heusel et al. (2017) and Gaussian kernel based Maximum Mean
Discrepancy (MMD) Gretton et al. (2012), computed on features extracted from a ResNet-50 pre-
trained on medical images Chen et al. (2019), following established practices for 3D medical image
evaluation Friedrich et al. (2024). Lower FID and MMD indicate closer alignment to the real data
distribution. The Intra-set analysis assesses the diversity of samples, calculating the average pair-
wise Multi-Scale Structural Similarity Index (MS-SSIM) Wang (2003), where lower values denote
higher diversity. Pairwise comparisons were performed using two-sided Wilcoxon rank-sum tests
with Bonferroni correction (α = 0.05) to confirm statistical significance.

Region-Based Anatomical Plausibility Global similarity metrics, while useful for assessing over-
all image quality, can overlook fine-grained anatomical defects critical in clinical contexts. To com-

6
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Real Ours WDM MD MLDM MOTFM MOTFMa

Figure 3: Visual assessment of image fidelity and realism for different 3D brain MRI synthesis
models. Each column displays standard Axial, Coronal, and Sagittal views for the real reference
scan (Subject of 72 years old) and specified generative method (Ours is RFM 10 steps).

plement the global analysis, a region-based evaluation was performed to produce a more detailed
assessment of anatomical fidelity. This involves computing three summary metrics by averaging re-
sults across the 95 cortical and sub-cortical regions of interest (ROIs), each represented by a voxel
set Vr, extracted by FastSurfer5. The three region-based metrics are defined as follows:

iMAE =
1

|R|
∑
r∈R

 1

|Vr|
∑

v∈Vr

|Rv − Sv|

 , KL =
1

|R|
∑
r∈R

DKL(Pr∥P̂r), DICE =
1

|R|
∑
r∈R

2|Ar ∩ Br|
|Ar| + |Br|

. (7)

Intensity Mean Absolute Error (iMAE) quantifies local intensity realism by measuring the average
absolute voxel-wise difference between real (R) and synthetic (S) samples within each ROI. Simi-
larly, the overall Kullback-Leibler (KL) divergence evaluates the similarity of intensity distributions
by averaging the normalized histograms of real (Pr) and synthetic (P̂r) samples across regions.
Finally, the overall Dice Similarity Coefficient (DICE) assesses morphological consistency as the
average spatial overlap between real (Ar) and synthetic (Br) segmentation masks for each ROI.

Brain Age Prediction (BAP) The clinical usefulness and functional fidelity of the synthetic data
were evaluated by determining their impact on BAP. This task is relevant as it targets the underrepre-
sented population (aged 44 and older), who are more susceptible to cognitive decline. Establishing a
normative trajectory of healthy aging is therefore crucial, requiring the BAP task to be performed ex-
clusively on cognitively normal (CN) subjects. Following the implementation described in De Bonis
et al. (2024), 3D convolutional models were trained using synthetic data generated by each method
and their performance evaluated on a real, held-out test set. BAP requires age labels to guide training
and evaluation. Each generative model produced 3,000 synthetic samples, which were used to train a
separate instance of a 3D BAP network. For conditional models, samples were generated across the
full training age range 5.9 − 95.5 years. To ensure a fair evaluation, ages were randomly assigned
to unconditioned samples according to the age distribution of the training set. The predictor was
evaluated on a held-out set of real subjects aged 44 and older. Prediction accuracy was measured
using Absolute Error, where lower scores indicate more accurate estimation of chronological age.

4.2 QUALITATIVE EVALUATION

Figure 3 shows representative samples generated by each model. The FlowLet-generated volume ex-
hibits anatomically coherent structures with well-preserved cortical folding, clearly segmented cere-
bellum, and identifiable subcortical regions such as the hippocampus and basal ganglia. In contrast,
baselines display varying degrees of anatomical degradation, including blurring, over-smoothing in

5https://deep-mi.org/research/fastsurfer/
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Table 2: Downstream evaluations: (a) Brain Age Prediction (BAP); (b) Region-Based.

(a) BAP for the Age ≥ 44 years group. Lower
AE = better accuracy. Ours: 10-step samples.

Model Train AE ↓ Test AE ↓
Real Data 1.15± 1.02 4.91± 3.92

O
ur

s

RFM 1.46± 0.59 4.01± 3.38
CFM 1.39± 0.59 4.06± 3.37
VP 1.02± 0.49 4.68± 3.78
Trigon. 1.09± 0.48 4.27± 3.33

A
bl

at
. FiLM 0.57± 0.51 6.40± 4.70

Spatial 0.87± 0.54 5.05± 3.84
Uncond. 0.67± 0.64 5.65± 3.74

B
as

el
in

es

WDM 1.63± 1.36 6.36± 5.22
MD 2.54± 2.78 7.62± 6.40
MLDM 0.98± 0.47 5.30± 3.86
MOTFM 2.10± 2.82 10.88± 9.58
MOTFMa 0.85± 0.53 4.90± 3.57

(b) Segmentation quality: lower is better for iMAE/KLD,
higher for DICE.

Model iMAE ↓ KLD ↓ DICE ↑

O
ur

s

RFM 37.68± 10.22 0.855± 0.599 0.420± 0.169
CFM 42.93± 11.19 1.395± 1.058 0.424± 0.171
VP 37.61± 10.20 0.865± 0.615 0.423± 0.171
Trigon. 43.35± 12.06 1.614± 1.277 0.379± 0.172

B
as

el
in

es

WDM 47.52± 9.45 1.088± 0.781 0.368± 0.160
MD 38.44± 10.44 0.863± 0.593 0.294± 0.156
MLDM 46.93± 11.62 1.040± 0.645 0.331± 0.154
MOTFM 41.67± 11.12 0.915± 0.620 0.409± 0.163
MOTFMa 42.93± 11.18 1.394± 1.058 0.391± 0.162

cortical areas or loss of details in posterior fossa structures. These observations suggest that FlowLet
better preserves complex anatomical features while minimizing common generative artifacts.

4.3 QUANTITATIVE EVALUATION

Image Fidelity and Diversity Models were first evaluated on metrics quantifying statistical simi-
larity between generated and real data distributions. As shown in Table 1a, all conditional FlowLet
variants, evaluated with only 10 ODE steps, achieve highly competitive FID and MMD scores, sur-
passing the conditional MLDM, unconditional MD baselines and both MOTFM variants. Notably,
Trigonometric attains the lowest FID and MMD among all tested models, suggesting that its circular
interpolation path produces samples whose global feature statistics most closely match those of the
real data. RFM and VP also perform on par with or better than the more computationally intensive
WDM baseline. Moreover, all FlowLet variants preserve competitive MS-SSIM values, indicating
that gains in fidelity are not achieved at the expense of diversity or by collapsing to a limited set of
modes. The full age-stratified results and additional step ablations are provided in Appendix Table 7.

Brain Age Prediction (BAP) Next, the clinical relevance of the synthetic data is assessed through
BAP, which provides a direct measure of the efficacy of age conditioning. The results shown in Ta-
ble 2a provide several critical insights. First, they underscore the necessity of explicit conditioning
for age-related tasks: Unconditional (Uncond.) models like WDM and MD perform poorly, demon-
strating their inability to generate data with sufficient age-relevant anatomical variance for this task.
Second, the FlowLet framework, particularly the RFM and CFM variants, demonstrates the best
performance, achieving the lowest test MAE scores. This not only surpasses all unconditional mod-
els but also shows a substantial improvement over the strong conditional MLDM baseline. Third,
the comparison between MOTFM and our conditioned MOTFMa variant validates our conditioning
approach independently. Applying our conditioning mechanism to MOTFMa yields a significant
performance improvement over the original MOTFM. An important finding is that both RFM and
CFM-augmented training resulted in a lower test error than the BAP model trained on real data alone,
indicating that FlowLet’s synthetic samples can effectively mitigate data imbalances and enhance the
generalization of downstream models. Finally, this functional evaluation helps to resolve the ambi-
guity from global fidelity metrics. While Trigonometric (Trigon.) achieved a highly competitive FID
score, its performance on the BAP task is worse than RFM and CFM. This discrepancy suggests that
while its outputs may align well in a global feature space, it may lack the fine-grained anatomical
fidelity that is critical for this task. This finding, which is further corroborated by the region-based
analysis in the following section, highlights that global distribution metrics do not always reflect the
full spectrum of anatomical plausibility required for real applications.
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Region-Based Anatomical Plausibility To complement the global and functional metrics, local
anatomical plausibility was assessed through a region-based analysis, with ROI metrics reported
in Table 2b. The results from this fine-grained analysis show superior anatomical fidelity of the
FlowLet framework, particularly for the RFM and VP variants which consistently achieve the low-
est (best) iMAE and KLD scores, indicating superior local intensity and structural realism within
segmented anatomical regions. They also show the highest (best) DICE scores, confirming stronger
morphological consistency compared to all baselines. For instance, while the MD baseline performs
competitively in intensity metrics, its significantly lower DICE score (0.294) reveals a deficiency in
capturing accurate structural shapes. These findings align with the BAP task: despite a good FID,
Trigonometric underperforms on regional metrics, confirming that global similarity does not im-
ply local anatomical realism. RFM strong regional fidelity explains its superior downstream perfor-
mance, highlighting the need for fine-grained and task-based evaluations in medical image synthesis.

4.4 ABLATION STUDIES

Ablations were conducted on: wavelet basis, inference steps, and conditioning mechanism. Full
results with age-stratified metrics and statistical validation are provided in the Appendix.

Wavelet Selection The choice of an appropriate wavelet basis is critical. The evaluation comprised
several families, namely Haar, Daubechies (db4), Symlets (sym4), Coiflets (coif2), and Biorthogonal
(bior3.3), by measuring round-trip reconstruction error (DWT followed by IDWT) on the complete
training set. Haar achieved the lowest reconstruction error, with a mean MAE of 6.08×10−8, despite
its simplicity. The errors from the other wavelets were consistently larger, showing a degradation of
at least an order of magnitude, and tended to be more spatially diffuse compared to the localized
errors observed with Haar. Given its superior reconstruction fidelity and computational efficiency,
attributable to its simple filters, Haar was adopted as default.

Step Count and Efficiency The trade-off between the number of ODE steps and generation qual-
ity has been analyzed. As shown in Figure 2, FID generally improves with more steps, but obtains
marginal gains beyond 10 steps at the cost of inference time, with Trigonometric exhibiting insta-
bility at higher step counts. The trade-off is also reflected in the sampling times: FlowLet requires
approximately 0.16s for 1 step, 0.31s for 2 steps, 0.78s for 5 steps, and 1.57s for 10 steps, scaling up
to 51 seconds for 200 steps. MOTFM variants achieve similar efficiency, requiring 2s for 10 steps. In
contrast, baseline methods like MLDM and MD take about 12s for 1000 steps, while WDM is con-
siderably slower, requiring around 70s for the same number of steps. Performance on the BAP task
confirms that 10 steps offer an optimal balance between computational cost and functional accuracy.

Effect of Conditioning Mechanisms FlowLet modulates age through two mechanisms: FiLM
and Spatial Conditioning. Removing either mechanism degrades FID and MMD (Table 1b); the
unconditional model still achieves competitive global scores, possibly due to global metrics being
influenced by dominant patterns in the age distribution, rather than age-specific anatomical variation.
Downstream evaluation exposes these differences. The full model achieves a test MAE of 4.01 years,
outperforming all ablated variants. Using only Spatial Conditioning increases the error to 5.05, while
FiLM alone further degrades it to 6.40. The unconditional model performs similarly poorly (5.65).
These results confirm their combination to generate anatomically faithful, age-relevant samples.

5 CONCLUSION

FlowLet integrates flow matching in the wavelet domain with age conditioning to efficiently generate
anatomically faithful 3D brain MRIs, outperforming state-of-the-art baselines in fidelity, diversity,
generation speed, and brain-age prediction. Among the tested variants, RFM offers the best trade-off
between quality and efficiency. Nevertheless, limitations persist. Even when supported by region-
based analysis, quantitative metrics are insufficient for clinical validation; expert clinical evaluation
is essential for diagnostic relevance. Although this work focused on age, the architecture can ex-
tend to multiple conditioning variables. Future work will include disease status or cognitive scores,
applying FlowLet to other 3D imaging modalities, and incorporating structured expert assessment,
along with ongoing bias and generalizability audits. These developments aim to advance scalable
clinically meaningful MRI synthesis and support access to high-quality neuroimaging tools.
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A APPENDIX

Overview This section complements the main text by providing technical derivations, implemen-
tation details, and extended experimental analysis. It is intended to support transparency, repro-
ducibility, and deeper understanding of the FlowLet framework. Specifically, it includes:

• Flow Matching Implementation: Direct code-level implementation details for all flow
matching variants used in FlowLet. A formal derivation is included for the conditional
velocity field in the Variance-Preserving formulation;

• Data and Preprocessing: Dataset composition, preprocessing steps, and age-
normalization strategies used to construct the training and evaluation protocols;

• Conditioning Mechanisms: Implementation details about the dual-mechanism condition-
ing strategy and embeddings;

• Training and Architecture: Complete training configuration, model architecture details,
and computational resource requirements, to facilitate reproducibility;

• Qualitative Synthesis: Step-wise visualizations of generated brain MRIs under different
flow matching formulations, illustrating the evolution of anatomical features with varying
ODE step counts;

• Age-Stratified Evaluation: Additional quantitative metrics computed across discrete age
bins, highlighting performance variation across age groups;

• Step-wise Ablation of Downstream Task Evaluation: Analysis of brain age prediction
performance when training with FlowLet-generated samples across varying step counts;

• Anatomical Plausibility Evaluation: A detailed discussion of region-wise evaluation re-
sults, including intensity realism, distributional alignment, and morphological consistency,
is provided, supplemented with segmentation comparisons between synthetic and real sam-
ples;

• Wavelet Basis Analysis: Comparison of five wavelet families based on voxel-wise recon-
struction accuracy and visual artifacts, justifying the selection of the Haar basis.

A.1 FLOW MATCHING IMPLEMENTATIONS

This subsection clarifies the implementation of the flow matching formulations. In all cases, the
training objective is to minimize the MSE loss between a predicted velocity field vθ and a target
velocity field vtarget. For each training step, a time value t is sampled uniformly from [0, 1]. The data
sample x1 corresponds to the variable x1 wavelet in the code, and the noise sample x0 ∼ N (0, I)
is represented by variables named x0 wavelet.

Rectified Flow Matching (RFM) The implementation directly translates the linear interpolation
path and constant velocity from the paper. The path xt = (1− t)x0+ tx1 is computed as xt = (1
- t broadcast) * x0 wavelet + t broadcast * x1 wavelet. The target velocity
vtarget = x1 − x0 corresponds to the variable v target = x1 wavelet - x0 wavelet.

Conditional Flow Matching (CFM) The state-dependent target velocity vtarget =
x1−xt

1−t+ϵ is im-
plemented as v target = (x1 wavelet - xt) / (1 - t broadcast + 1e-8). The
term xt is computed via the same linear interpolation as in RFM, and a small ϵ = 10−8 is used for
numerical stability.

Trigonometric Flow The circular interpolation path xt = cos(π2 t)x0 + sin(π2 t)x1 is
implemented as xt = torch.cos(angle) * x0 wavelet + torch.sin(angle) *
x1 wavelet, where angle represents π

2 t. The corresponding velocity field vtarget is computed
as its time derivative: v target = -torch.sin(angle) * (pi/2) * x0 wavelet +
torch.cos(angle) * (pi/2) * x1 wavelet.
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A.2 VARIANCE-PRESERVING (VP) DIFFUSION MATCHING

This section presents the explanation of the VP Diffusion Matching implementation, establishing the
connection between the high-level SDE formulation from the main text and the exact conditional
velocity field used for training, as implemented in the codebase. The derivation summarises and
follows rigorous treatments found in the literature, particularly Song et al. (2021b); Lipman et al.
(2023); Tong et al. (2023); Gagneux et al. (2025).

Core Definitions and Time Conventions The VP formulation is defined over a continuous data-
to-noise time interval t ∈ [0, 1], where t = 0 corresponds to clean data and t = 1 to pure noise. The
process is governed by a linear variance schedule β(t):

β(t) = βmin + t(βmax − βmin), (8)

where our implementation uses the standard hyperparameters βmin = 0.1 and βmax = 20.0 Song
et al. (2021a). From this schedule, we define the signal and noise scaling coefficients, ᾱ(t) and σ(t),
as follows:

ᾱ(t) = exp

(
−1

2

∫ t

0

β(s) ds

)
, and σ(t) =

√
1− ᾱ(t)2. (9)

A noised sample xt is generated from a real sample x1 via the interpolation xt = ᾱ(t)x1 + σ(t)ξ,
where ξ ∼ N (0, I).

Crucially, FlowLet training loop samples a time tflow ∈ [0, 1] along the generative noise-to-data path.
This is mapped to the theoretical data-to-noise time via the relation t = 1− tflow. All formulas below
use the theoretical time t.

From Stochastic SDE to Deterministic ODE The main paper describes the generative process
using the drift of the reverse-time stochastic differential equation (SDE), a formulation common in
the score-based literature Song et al. (2021a):

vSDE(xt, t) = −1

2
β(t)xt − β(t)∇xt

log pt(xt). (10)

This drift governs a generative process that includes a stochastic noise term. However, flow matching
models learn to solve the corresponding deterministic probability flow Ordinary Differential Equa-
tion (ODE). As established by Song et al. (2021a), the velocity field of the ODE is related to, but
distinct from, the SDE drift:

vODE(xt, t) = −1

2
β(t)xt −

1

2
β(t)∇xt log pt(xt). (11)

Note the additional factor of 1
2 on the score term (∇ log pt). The U-Net of FlowLet is trained to

approximate this deterministic velocity field, vODE.

Deriving the computable target velocity Directly using Eq. 11 for training is intractable because
the true score, ∇xt log pt(xt), is unknown. In the conditional flow matching framework, we cir-
cumvent this by computing the velocity conditioned on the target data sample x1. This is achieved
by substituting the intractable score with the analytical conditional score, ∇xt

log pt(xt|x1), whose
closed form is given by Tweedie’s formula Efron (2011):

∇xt log pt(xt|x1) = −xt − ᾱ(t)x1

σ(t)2
. (12)

Substituting this into our ODE velocity field (Eq. 11) gives the final, computable target velocity
that our network learns to predict. This connection is rigorously established in recent flow matching
literature Lipman et al. (2023); Tong et al. (2023); Gagneux et al. (2025):

vtarget(xt, t | x1) = −1

2
β(t)xt −

1

2
β(t)

(
−xt − ᾱ(t)x1

σ(t)2

)
= −1

2
β(t)

(
xt −

xt − ᾱ(t)x1

1− ᾱ(t)2

)
= −1

2
β(t)

ᾱ(t)2xt − ᾱ(t)x1

1− ᾱ(t)2
. (13)
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Figure 4: Combined age distribution of the training dataset after integration of OpenBHB, ADNI,
and OASIS-3.

Equivalence to the code implementation The target velocity in Eq. 13 is mathematically equiva-
lent to our implementation, which adopts a numerically stable reformulation of the same expression.
We recall that ᾱ(t) = e−

1
2T (t) and ᾱ(t)2 = e−T (t). Additionally, in the generative training loop, the

time variable is reversed as tflow = 1 − t. Finally, Eq. 13 takes the following form, as implemented
in FlowLet.

vtarget(xt, t | x1) = −1

2
β(1− t)

e−T (1−t)xt − e−
1
2
T (1−t)x1

1− e−T (1−t)
. (14)

All the implemented formulations are available in /flowlet/models/flow matching.py.

A.3 DATASET COMPOSITION AND PREPROCESSING

The training set was constructed by integrating T1-weighted MRI scans from three large-scale, pub-
licly available datasets: OpenBHB6, ADNI7, and OASIS-38. All scans were filtered to include only
cognitively normal individuals and were selected to ensure non-overlapping cohorts. The inclusion
of ADNI and OASIS-3 supplements OpenBHB by improving age coverage and mitigating demo-
graphic imbalance, particularly within the 60 – 95 age range. This expanded dataset supports the
development and evaluation of the Brain Age Prediction (BAP) model. Below are reported relevant
details for each dataset included in the experiments.

OpenBHB The Open Big Healthy Brains (OpenBHB) aggregates 3,984 T1-weighted MRIs from
healthy subjects across 10 publicly available datasets (e.g., IXI, ABIDE I/II, GSP, CoRR) spanning
62 imaging sites in North America, Europe, and Asia Dufumier et al. (2022). The data covers a wide
age range but is heavily skewed toward young adults and adolescents. The mean age is 24.92±14.29
years, with the majority of samples falling around 20 years. OpenBHB provides a predefined split
into training and validation subsets, created via stratified sampling based on age, sex, and site. In the
experiments, the validation subset was used exclusively for testing.

ADNI The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudinal multi-center
study aimed at tracking cognitive decline via neuroimaging biomarkers. From ADNI-1, ADNI-2,

6https://baobablab.github.io/bhb/dataset
7https://adni.loni.usc.edu/
8https://sites.wustl.edu/oasisbrains/
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and ADNI-3, we selected 769 T1-weighted scans from cognitively normal individuals aged between
60-91 years (mean: 76.97±4.99). Only one scan per subject was retained to avoid repeated measures,
and individuals with any cognitive impairment were excluded.

OASIS-3 The Open Access Series of Imaging Studies (OASIS-3) is a longitudinal neuroimaging
dataset that includes clinical and cognitive assessments across the adult lifespan. From this dataset,
1,314 T1-weighted MRI scans were initially identified. After filtering for cognitively normal individ-
uals, 1,041 scans were retained, covering subjects aged between 42–95 years (mean: 71.10± 8.93).

A.4 PREPROCESSING PIPELINE

All T1-weighted MRI volumes were processed using a standardized pipeline to ensure consistency
across datasets and eliminate confounding artifacts. In particular, skull-stripping (e.g., extracting
the brain from surrounding non-brain structures) plays a critical role in preventing the model from
exploiting non-brain features (e.g., neck, scalp, or skull) that may correlate with age but are irrelevant
to brain morphology. Such artifacts can lead to a Clever Hans effect Wallis & Buvat (2022), where
predictions rely on spurious details rather than genuine anatomical variation. By isolating brain
tissue, the model is forced to focus on age-relevant neuroanatomical patterns only. The following
preprocessing steps were applied uniformly using tools from ANTs Tustison et al. (2021) and FSL:

• Bias Field Correction: Applied N4ITK correction Tustison et al. (2010) using ANTs9 to
remove smooth, low-frequency intensity variations that commonly affect MRI scans.

• Spatial Normalization: Affine registration to the MNI152 template Fonov et al. (2009)
using FSL10 FLIRT Jenkinson et al. (2002).

• Skull Stripping: Brain extraction performed using FSL’s BET Smith (2002) on the regis-
tered images.

• Resampling: Volumes were resampled to an isotropic resolution of 91 × 109 × 91 using
ANTs. This resolution was selected for compatibility with the downstream BAP model.

• Intensity Normalization: Z-score normalization (zero mean, unit variance) of voxel inten-
sities in the final volume.

Scans that failed automated preprocessing were excluded from the final dataset. A complete list
of the retained samples, along with associated metadata, is provided in the codebase. No additional
manual curation was performed. The full implementation is provided in the MRI preprocessing
folder of the codebase.

A.5 AGE DISTRIBUTION

Figure 4 shows the age distribution of subjects in the final training set, stratified by dataset.
OpenBHB contributes the majority of samples, with a pronounced peak in children and early adult-
hood (approximately 10–30 years), resulting in a highly imbalanced distribution. The inclusion of
OASIS-3 and ADNI mitigates this skew by substantially enriching the representation of older adults
(ages 60–90), leading to a more balanced coverage across the adult lifespan. The broader age cover-
age is necessary for training models that generalize across brain aging.

The test sets used for generative evaluation were drawn from a 20% split of the training distribution
and therefore follow a similar age profile. In contrast, the BAP evaluation was conducted on the sep-
arate, independent OpenBHB test set, which follows the same distribution as the original OpenBHB
cohort.

A.6 CONDITIONAL SYNTHESIS ARCHITECTURE

A central goal of this work is not merely to generate realistic 3D brain MRIs, but to synthesize
them according to specific, clinically-relevant attributes. Effectively infusing a single scalar value,
such as age, into a high-dimensional generative process that defines complex anatomical structures

9https://github.com/ANTsX/ANTsPy (0.5.4)
10https://fsl.fmrib.ox.ac.uk/ (6.0.7.13)
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Table 3: Training Hyperparameters for FlowLet Models.

Parameter Value

Optimizer & Scheduler
Optimizer AdamW
Learning Rate 3e-6
Weight Decay 1e-5
Adam β1, β2 0.9, 0.999
LR Scheduler CosineAnnealingLR
Scheduler eta min 1e-7

Training
Epochs 200
Batch Size 8
Gradient Clipping Norm 1.0

Model & Architecture
U-Net Base Channels 128
U-Net Channel Multipliers (1, 2, 4, 8)
U-Net Attention Resolutions (4, 8)
U-Net Attention Heads 8
Condition Embedding Dim 512
xformers Attention Enabled
Mixed Precision Enabled

requires a dedicated conditioning strategy. Our model, employs a dual-mechanism approach that
combines pervasive, depth-wise feature modulation with targeted, spatially-aware attention. This
section details the conditioning pipeline.

The unified condition embedding (econd) Each conditioning information is first transformed into
a unified, high-dimensional embedding vector, econd, which serves as the single source of condi-
tional context for the entire U-Net. This process ensures that diverse types of conditions (e.g., con-
tinuous values like age, categorical labels like sex) are mapped to a common, learnable latent space.
The creation of econd involves three key steps:

1. Normalization: Raw conditioning variables are first normalized to a consistent numeri-
cal range. For continuous variables like age, this is achieved by scaling the value to the
range [0, 1] based on the minimum and maximum values observed across the entire train-
ing dataset;

2. Projection: The normalized scalar is then projected into a high-dimensional feature space.
Each condition learns a rich, non-linear mapping by being processed by its own dedicated
two-layer MLP with SiLU activation, transforming the 1-dimensional normalized input into
a 512-dimensional vector;

3. Fusion: Multiple conditions are combined by element-wise summation of their projected
vectors, yielding econd.

This unified embedding econd is then injected into the U-Net architecture using the two distinct
mechanisms detailed below: FiLM for depth-wise modulation and cross-attention for spatial modu-
lation.

Depth-wise Conditioning via FiLM To ensure the conditioning information influences feature
computation at every level of the network, we employ Feature-wise Linear Modulation (FiLM) Perez
et al. (2018) within every residual block of the U-Net. FiLM applies an affine transformation to in-
termediate feature maps, allowing the network to dynamically adjust the scale and bias of activations
on a per-instance basis. In our model, both the flow matching timestep embedding (etime) and the
condition embedding (econd) generate independent scale (γ) and bias (b) parameters. These trans-
formations are applied sequentially to the normalized feature maps hnorm = Norm(h) within each

18
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RFM
1 steps 2 steps 5 steps 10 steps 200 steps

CFM
1 steps 2 steps 5 steps 10 steps 200 steps

Trigonometric
1 steps 2 steps 5 steps 10 steps 200 steps

VP
1 steps 2 steps 5 steps 10 steps 200 steps

Figure 5: Qualitative comparison of FlowLet flow matching formulation across different ODE step
counts. Each column shows axial, coronal, and sagittal views for a given method and step count. All
samples share the same noise seed and age condition, yielding anatomically consistent outputs with
similar structural compartments across flow formulations.

residual block:

h′ = hnorm · (1 + γtime) + btime (15)

hmod = h′ · (1 + γcond) + bcond (16)

The first transformation (15) allows the network to adjust features based on the current noise level
in the generative trajectory. The second transformation (16) then refines these features based on the
specific condition (e.g., age). By integrating FiLM into every residual block, the conditional signal
is made pervasively available, influencing both low-level texture and high-level structural features
as they are formed throughout the network’s encoder and decoder paths.

Spatial conditioning via Cross-Attention While FiLM provides a powerful global modulation
for each feature channel, it applies the same transformation across all spatial locations within that
channel. To enable more localized, spatially-aware conditioning, we incorporate Spatial Condition-
ing modules inspired by transformer architectures Rombach et al. (2022) at the deeper, lower-
resolution layers of the U-Net. These layers are chosen because their feature maps encode more
abstract, semantic information where spatial context is critical.

Each Spatial Conditioning block first performs self-attention on the input feature map (h) to capture
long-range spatial dependencies. This is immediately followed by a cross-attention mechanism. In
this stage, the self-attended spatial features act as the query (Q), while the unified condition embed-
ding econd provides the context for both the key (K) and value (V ):

hattn = Attention(Q,K, V ), where Q = WQh, K = WKecond, and V = WV econd (17)
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This mechanism is crucial for refining regional anatomical details, such as ventricular enlargement
or cortical thinning, that are strongly correlated with age as presented in BAP and Region-Based
results.

A.7 TRAINING HYPERPARAMETERS

All models were trained using PyTorch11 on a system running Ubuntu 24.04, equipped with a single
NVIDIA A6000 GPU (48GB). Reproducibility was ensured across the entire codebase by enforcing
deterministic behavior across PyTorch, NumPy, and CuDNN. The training procedure was standard-
ized across all Flow Matching formulations and baselines to ensure fair comparison.

Data Preparation and Loading The dataset was constructed from a centralized metadata file
containing all MRI NIfTI file paths and associated subject metadata (e.g., age). Only subjects labeled
as “Cognitively Normal” (CN) were retained. From this filtered dataset (N = 5,794), a deterministic
80% – 20% split was applied using a fixed random seed, resulting in 4,635 training and 1,159
validation subjects, ensuring no overlap across tasks. This split was used consistently across all
training runs. The minimum and maximum age values were computed over the full dataset and used
to normalize the age condition to the [0, 1] range across all samples.

The preprocessing pipeline for generative modeling was applied to each 3D MRI volume and con-
sisted of the following steps:

1. Load the NIfTI volume and normalize intensities by clipping to the 0.5th and 99.5th per-
centiles, then scaling to the range [−1, 1].

2. Pad the volume to the required input size of 112× 112× 112 using replication padding.

3. For training samples, apply minimal, non-invasive data augmentation using the MONAI12

library, including random 3D rotations, intensity scaling, and Gaussian noise. These aug-
mentations are designed to preserve anatomical structures while increasing data variance.
No augmentations were applied to the validation set.

4. Apply a 3D Haar DWT, implemented using the PyWavelets13 library, to convert the single-
channel input into an 8-channel tensor representing approximation and detail subbands.
This tensor is directly used as input to the U-Net.

Training Dynamics The model was trained for 200 epochs using the AdamW optimizer with an
initial learning rate of 3 × 10−6, decayed via cosine annealing to a minimum of 1 × 10−7. Auto-
matic mixed precision (AMP) training was enabled, using a GradScaler to ensure numerical stabil-
ity. Memory-efficient attention layers from the xformers14 library were used to reduce memory
consumption. Gradients were clipped to a maximum L2 norm of 1.0. The model was trained using
MSE loss between the predicted and target velocity fields in the wavelet domain.

Final model selection was based on the lowest validation MSE over the complete training epochs.

The full implementation is provided in the FlowLet CODE folder of the codebase.

A.8 ADDITIONAL QUALITATIVE ASSESSMENT OF FLOW VARIANTS

To assess the generative behavior of different flow matching formulations, synthetic brain MRIs were
generated using FlowLet with RFM, CFM, VP, and Trigonometric flows. For each method, volumes
were sampled using 1, 2, 5, 10, and 200 ODE solver steps, with a fixed random seed and constant
age condition (normalized age value 0.5 ∈ [0, 1], corresponding to 51 years). This controlled setup
isolates the effect of the flow formulation and integration efficiency on the resulting images. Figure 5
displays representative axial, coronal, and sagittal mid-slices for qualitative comparison. At high step
counts (e.g., 200 steps), all methods converge toward anatomically plausible structures, confirming
consistency in the asymptotic regime. In contrast, notable differences arise in low-step regimes:

11version 2.6.0
12https://monai.io/ (1.4.0)
13https://pywavelets.readthedocs.io/ (1.8.0)
14https://github.com/facebookresearch/xformers (0.0.29.post3)
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Figure 6: FID vs. number of steps for FlowLet variants calculated on overall (5.9-95 years) and by
age range. The shaded bands indicate standard deviation.

RFM, CFM, and VP produce stable and coherent volumes with as few as 2–5 steps, while the
Trigonometric flow shows instability and structural artifacts. These results illustrate the trade-off
between integration curvature and sampling stability, emphasizing the advantages of lower-curvature
flows for efficient and anatomically faithful synthesis.

The sample generation process with FlowLet is implemented in
scripts/generate linear.py.

A.9 ADDITIONAL QUANTITATIVE ASSESSMENT ACROSS AGE GROUPS

To enable a finer-grained analysis of model performance, the quantitative evaluations were extended
beyond the overall training age range (5.9–95.5 years) by computing metrics within discrete age
subdivisions. This stratification facilitates a more detailed comparison of generative behavior across
the trajectory of brain aging.

Rationale for MS-SSIM Evaluation Three complementary metrics are reported for every model:
FID, MMD, and MS-SSIM.

While the Multi-Scale Structural Similarity Index (MS-SSIM) is traditionally employed to assess
perceptual similarity between a generated image and a reference target, it is also commonly adopted
in 3D brain MRI synthesis as an intra-set metric, measuring structural similarity among generated
samples Pinaya et al. (2022); Friedrich et al. (2024).

In this setting, MS-SSIM serves as a proxy for sample diversity:

• High intra-set MS-SSIM values (close to 1) suggest low variability among generated sam-
ples, which may indicate mode collapse.

• Low intra-set MS-SSIM values (closer to 0) can reflect excessive variation, potentially
corresponding to anatomically implausible or noisy outputs.
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Table 4: Brain Age Prediction Performance for the Age ≥ 44 years group on the merged dataset.
Lower values indicate better prediction accuracy. Results are reported as Absolute Error (AE) and
Standard Deviation.

Model Steps Train AE ↓ Test AE ↓
Real Training Data 1.15± 1.02 4.91± 3.92

Ours RFM

1 step 1.32± 0.91 4.81± 4.43
2 steps 1.03± 0.61 4.74± 3.85
5 steps 1.42± 0.46 4.23± 3.52
10 steps 1.46± 0.59 4.01± 3.38
200 steps 1.83± 0.40 4.80± 3.91

A good generative model should produce anatomically coherent samples while preserving mean-
ingful variability across subjects. However, MS-SSIM should not be interpreted against an absolute
threshold. Rather, it is best used as a relative measure for comparison under consistent evaluation
conditions.

Notably, the value of intra-set MS-SSIM can be influenced by the conditioning range used during
generation. For example, generating samples within a narrow age interval is likely to result in higher
similarity scores due to reduced anatomical variability, whereas broader age ranges may lead to
lower MS-SSIM values as natural inter-subject differences increase.

To explore this phenomenon empirically, intra-set MS-SSIM scores were computed within three
non-overlapping age bins: 15–30, 40–55, and 65–80 years. This metric was computed using all pair-
wise comparisons among 200 generated samples per configuration. Age conditions were uniformly
sampled within each bin to ensure consistency.

The evaluation procedure is implemented in Evaluation FID MMD MSSSIM.py.

Benchmark Results Table 7 (overall, 15–30, 40–55 and 65–80 age groups) reports the complete
quantitative results. Cells marked with a dash (”–”) under the unconditional (Uncond.) baselines
(RFM-Uncond., WDM, MOTFM and MD) indicate that age-stratified metrics could not be com-
puted, as these models lack explicit age conditioning and therefore cannot be evaluated within the
defined age range.

The performance trend observed in the overall evaluation is consistently reflected across all age
groups. Among the evaluated age ranges, the 65–80 group achieves the best performance in terms
of both FID and intra-set MS-SSIM, indicating that FlowLet produces high-fidelity and diverse
samples precisely in the demographic segment where data augmentation is most needed. This group
exhibits the lowest MS-SSIM values across all age bins, suggesting increased anatomical variability
in later adulthood, potentially reflecting diverse neuroanatomical aging trajectories Bethlehem et al.
(2022). In contrast, higher MS-SSIM scores observed in younger age groups likely reflect more
homogeneous structural patterns.

These findings underscore the importance of contextualizing intra-set MS-SSIM values with respect
to the demographic characteristics of the generated data. All comparisons are reported within age-
matched intervals to ensure fair and meaningful evaluation of generative diversity.

FID vs. Sampling Steps Figure 6 plots the FID as a function of ODE steps for all FlowLet variants,
stratified by age group. All curves exhibit a consistent monotonic improvement with increasing
step counts, in agreement with trends observed in the aggregate metrics. A performance plateau
is observed between 10 and 200 steps, supporting the selection of 10 steps as an optimal balance
between sampling efficiency and image fidelity across age groups. Notably, the Trigonometric flow,
despite achieving competitive FID scores at low step counts, shows greater variability and degraded
performance in high-step regimes.
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Table 5: Training Hyperparameters for the BAP Model.

Parameter Value

Optimizer & Scheduler
Optimizer SGD
Initial Learning Rate 0.01
LR Scheduler CosineAnnealingWarmRestarts
Scheduler T 0 17
Scheduler T mult 2
Scheduler eta min 1e-5

Training
Epochs 100
Batch Size 16
Loss Function L1 Loss (MAE)

Model & Architecture
Model Architecture DenseNet-121
Input Channels 1
Output Classes 1 (Age)

Data Preprocessing
Normalization Method Min-Max Scaling
Scaling Min Value 5th Percentile (of training set)
Scaling Max Value 95th Percentile (of training set)

A.10 ADDITIONAL BAP TRAINING DETAILS

Following the methodology described in De Bonis et al. (2024), a 3D DenseNet-121 architecture
was employed for BAP, configured for regression with a linear output layer to estimate chronolog-
ical age from structural T1-weighted MRI volumes. Input samples were normalized to the [0, 1]
intensity range using the 5th and 95th percentile values computed from the training set to avoid
test-set leakage.

The model was trained using Stochastic Gradient Descent with a cosine annealing warm restarts
scheduler. The performance was evaluated on the independent test set of OpenBHB. The analysis
was restricted to subjects aged 44 years and older, the demographically underrepresented group in
the training distribution. The full set of hyperparameters used for training is provided in Table 5.

For the steps ablation, FlowLet with the RFM formulation was used to generate 3,000 synthetic
brain MRIs per setting, varying the number of ODE solver steps (1, 2, 5, 10, 200). Conditioning
was applied linearly across the full age span of the training set (5.9–95.5 years) to ensure broad age
coverage. A separate BAP model was trained on each of these synthetic-augmented datasets, using
the same architecture and training protocol. For direct comparison of the utility and effectiveness of
the synthetic samples, a reference model was trained exclusively on the full real training set.

The implementation of the BAP training pipeline is available in the BAP trainer folder of the
codebase.

BAP vs. Sampling Steps As shown in Table 4, all RFM-augmented datasets outperformed the
real-only reference baseline. Notably, even the 1-step configuration led to better test performance,
highlighting the clinical utility of FlowLet-generated samples even under extreme sampling con-
straints. The best performance was achieved at 10 steps, demonstrating an effective trade-off be-
tween sampling efficiency and anatomical fidelity. Increasing the step count to 200 did not result in
further gains, suggesting that FlowLet-RFM reaches peak downstream utility with minimal infer-
ence cost.
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FlowLet

Real Sample RFM CFM VP Trigonometric WDM MD MLDM MOTFM MOTFMa

Figure 7: Qualitative comparison of FastSurfer segmentations of synthetic data from different mod-
els. The leftmost column displays the segmentation from a real 72-year-old subject, while each
subsequent column shows axial, coronal, and sagittal views relative to a synthetic sample of the
same age generated by a specific model. FlowLet samples are generated at 10 steps.

A.11 ADDITIONAL REGION-BASED ANATOMICAL EVALUATION

FastSurfer15 is a deep-learning pipeline for automatic segmentation and parcellation of the brain
from structural MRIs. It was leveraged to further evaluate the anatomical plausibility of the synthetic
data generated by FlowLet. This analysis included baseline models (WDM, MD, MLDM, MOTFM,
MOTFMa) and all FlowLet variants (RFM, CFM, VP, Trigonometric), with the latter configured
for 10-step generation. Each model generated 500 synthetic brain samples linearly spanning the full
age range of the training set using the same seed for consistency, ensuring comparable anatomical
content across FlowLet variants despite differences in flow formulation. These samples were then
segmented into 95 anatomical classes using FastSurfer. A reference set of 500 real samples was
similarly processed for comparison.

Region-Wise Metric Definitions The anatomical quality of the generated samples was evaluated
through a region-wise comparison between each synthetic brain volume and an age-matched real
reference. For each pair, brain segmentations were obtained using FastSurfer, and three summary
metrics were computed across anatomically defined regions to assess local realism and consistency:

• Overall intensity Mean Absolute Error (iMAE);

• Overall Kullback-Leibler Divergence (KL);

• Overall Dice Similarity Coefficient (DICE).

These metrics were designed to assess the overall anatomical quality of the generated brain volumes
using field-specific criteria. Dice ranges from 0 (no overlap) to 1 (perfect overlap), while lower
values of iMAE and KL indicate better intensity and distributional alignment.

In particular, the iMAE and KL require a voxel-wise comparison between each synthetic volume
(S) and a corresponding real reference (R) for each ROI (r ∈ R). However, due to natural anatom-
ical variability, the ROI segmentations from synthetic and real volumes may not perfectly overlap,
meaning the two versions of a given ROI may contain different voxel sets. To handle this, we define
the comparison set for each ROI as the union of the voxel sets from both the synthetic and real seg-
mentations. This ensures that all relevant voxels are included in the comparison. Each metric is then
computed over this unified set and averaged across all regions (R), providing a robust summary of
the anatomical plausibility of the synthetic volume relative to the real one.

The evaluation procedure is implemented in the ROI Evaluation folder of the codebase.

Qualitative Assessment Figure 7 shows representative segmentations of 72-year-old samples gen-
erated by different methods and compared to a real sample of the same age. For the unconditional

15https://deep-mi.org/research/fastsurfer/ (v2.4.2)
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Figure 8: The leftmost column shows a real MRI volume in three views (axial, coronal, sagittal).
Subsequent columns display the absolute reconstruction error for the same sample after a round-trip
transform using different wavelet bases. The reported MAE values were computed over the entire
set of voxel intensities in the 3D volume for this single instance. The color scale is adjusted to
emphasize the narrow dynamic range of errors and facilitate visual comparison.

baselines (MOTFM, MD and WDM), the sample was selected randomly. All FlowLet-generated
samples show similar segmentations. However, FlowLet-Trigonometric led to a more jagged seg-
mentation than the others, as shown in the sagittal view. Moreover, the figure suggests that the
baselines struggled in generating the occipital lobe and the cerebellum, as evidenced by segmenta-
tion outputs with more gaps and fewer anatomical details compared to the reference. Conversely,
FlowLet-based segmentations show detailed regions for the occipital lobe and the cerebellum, sug-
gesting a better representational capability of the FlowLet family for these regions.

A.12 ABLATION ON WAVELET BASIS

Five wavelet families were compared, Haar, Daubechies-4 (db4), Symlet-4 (sym4), Coiflet-2 (coif2),
and Biorthogonal 3.3 (bior3.3), to assess their suitability for 3D MRI volume reconstruction. The
analysis focused on filter structure, computational efficiency, reconstruction accuracy, and the pres-
ence of voxel-domain artifacts. Detailed properties, including filter definitions and theoretical foun-
dations, are available in Mallat (1989); Daubechies (1992). Table 6 reports quantitative reconstruc-
tion errors, and Figure 8 visualizes error distributions for a representative sample.

Haar (db1) The Haar wavelet (Daubechies-1) is the simplest wavelet, defined by a step-function
basis. It is discontinuous and uses a length-2 filter, providing the shortest support and highest com-
putational efficiency. Haar achieved the lowest reconstruction error (mean MAE: 6.08 × 10−8),
with minimal boundary artifacts and numerically exact reconstruction. Although its constant basis
functions can cause blockiness under compression, no such artifacts were observed under lossless
reconstruction.

Daubechies (db4) Daubechies-4 is an orthonormal wavelet with 4 vanishing moments and an 8-
tap filter. Its smoother basis functions improve energy compaction and reduce blockiness compared
to Haar. However, its longer support can introduce ringing near sharp transitions. In the experiments,
db4 showed reconstruction errors roughly an order of magnitude higher than Haar (MAE ∼10−7),
likely due to boundary effects.
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Table 6: Mean Absolute Error (MAE) and Standard Deviation (Std) computed over the entire train-
ing set (N = 5,794) for each wavelet. The error reflects voxel-wise intensity differences between
original and reconstructed volumes.

Wavelet Type MAE ± Std ↓

Haar 6.08× 10−8 ± 1.60× 10−8

Daubechies (db4) 1.03× 10−7 ± 2.30× 10−8

Symlet (sym4) 1.11× 10−7 ± 2.81× 10−8

Coiflet (coif2) 9.98× 10−8 ± 2.24× 10−8

Biorthogonal (bior3.3) 1.32× 10−7 ± 3.70× 10−8

Symlets (sym4) Sym4 is a near-symmetric variant of db4, preserving orthonormality and using an
8-tap filter. Its symmetry helps reduce phase distortion and shift sensitivity. Like db4, its reconstruc-
tion errors remained in the 10−7 range and were primarily localized in background voids.

Coiflets (coif2) Coiflet-2 uses a 12-tap, near-symmetric filter with vanishing moments in both
wavelet and scaling functions. It enables smooth intensity transitions at higher computational cost
and boundary sensitivity. It achieved the second-lowest reconstruction error (MAE ∼10−8), though
some oscillatory artifacts appeared near high-contrast edges.

Biorthogonal (bior3.3) Bior3.3 employs separate analysis and synthesis filters with three vanish-
ing moments each and an 8-tap symmetric analysis filter. This biorthogonal design ensures linear
phase and supports shift-invariant, edge-aligned reconstruction. The MAE was on par with other
8-tap wavelets (∼10−7), with mild structured artifacts near edges, likely due to non-orthogonality.

Qualitative Reconstruction Analysis Figure 8 presents the absolute voxel-wise reconstruction
error for a representative MRI volume. This qualitative view highlights spatial error patterns fol-
lowing a single round-trip transform. Haar shows minimal, localized error within the brain, while
the other bases introduce structured artifacts in background voids, reflecting longer filter supports
or non-orthogonal behavior. These visual differences are consistent with the quantitative findings in
Table 6.

Among all evaluated wavelets, Haar consistently achieved the best trade-off between reconstruction
fidelity, computational cost, and artifact suppression, especially in low-signal regions, supporting its
choice as the default basis for FlowLet.
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Table 7: Synthetic sample quality metrics across different age groups. Bold and underlined values
are best and second-best models. The ∗ marks results not significantly different from FlowLet-RFM
at 10 steps (p > 0.05). The metrics are computed over 100 bootstrap resamples. Values reported as
”–” indicate configurations where age-specific metrics could not be computed, such as unconditional
models lacking explicit age control.

Method Type Steps Overall Age 15–30
FID ↓ MMD ↓ MS-SSIM ↓ FID ↓ MMD ↓ MS-SSIM ↓

Ours RFM

1 0.3334 ± 0.0018 0.0133 ± 0.0001 0.9886 ± 0.0102 0.3525 ± 0.0033 0.0142 ± 0.0001 0.9981 ± 0.0002
2 0.3232 ± 0.0018 0.0129 ± 0.0001 0.9838 ± 0.0112 0.3425 ± 0.0031 0.0138 ± 0.0001 0.9942 ± 0.0004
5 0.3130 ± 0.0022 0.0125 ± 0.0001 0.9746 ± 0.0121 0.3333 ± 0.0033 0.0134 ± 0.0001 0.9863 ± 0.0008

10 0.2981 ± 0.0017 0.0119 ± 0.0001 0.9508 ± 0.0195 0.3223 ± 0.0030 0.0130 ± 0.0001 0.9698 ± 0.0043
200 0.2978∗± 0.0020 0.0119∗± 0.0001 0.9487 ± 0.0206 0.3218∗± 0.0031 0.0130∗± 0.0001 0.9687 ± 0.0047

Ours CFM

1 0.3361 ± 0.0021 0.0134 ± 0.0001 0.9899 ± 0.0093 0.3556 ± 0.0030 0.0143 ± 0.0001 0.9978 ± 0.0005
2 0.3258 ± 0.0019 0.0130 ± 0.0001 0.9858 ± 0.0104 0.3464 ± 0.0027 0.0139 ± 0.0001 0.9945 ± 0.0006
5 0.3146 ± 0.0020 0.0126 ± 0.0001 0.9771 ± 0.0111 0.3363 ± 0.0027 0.0135 ± 0.0001 0.9870 ± 0.0009

10 0.3098 ± 0.0019 0.0124 ± 0.0001 0.9707 ± 0.0117 0.3321 ± 0.0027 0.0134 ± 0.0001 0.9815 ± 0.0014
200 0.3044 ± 0.0021 0.0122 ± 0.0001 0.9508∗± 0.0182 0.3281 ± 0.0034 0.0132 ± 0.0001 0.9675 ± 0.0055

Ours VP

1 0.3341 ± 0.0021 0.0133 ± 0.0001 0.9898 ± 0.0092 0.3533 ± 0.0030 0.0142 ± 0.0001 0.9979 ± 0.0003
2 0.3234 ± 0.0018 0.0129 ± 0.0001 0.9858 ± 0.0101 0.3445 ± 0.0029 0.0138 ± 0.0001 0.9948 ± 0.0004
5 0.3132 ± 0.0019 0.0125 ± 0.0001 0.9771 ± 0.0109 0.3349 ± 0.0032 0.0135 ± 0.0001 0.9871 ± 0.0008

10 0.3079 ± 0.0018 0.0123 ± 0.0001 0.9706 ± 0.0115 0.3301 ± 0.0026 0.0133 ± 0.0001 0.9817 ± 0.0013
200 0.3004 ± 0.0019 0.0120 ± 0.0001 0.9513∗± 0.0183 0.3248 ± 0.0032 0.0131 ± 0.0001 0.9685∗± 0.0057

Ours Trigon.

1 0.3292 ± 0.0020 0.0131 ± 0.0001 0.9211 ± 0.0084 0.3486 ± 0.0033 0.0140 ± 0.0001 0.9292 ± 0.0004
2 0.2974∗± 0.0017 0.0119∗± 0.0001 0.9521 ± 0.0112 0.3176 ± 0.0029 0.0128 ± 0.0001 0.9624 ± 0.0004
5 0.2859 ± 0.0019 0.0114 ± 0.0001 0.9680 ± 0.0130 0.3086 ± 0.0030 0.0124 ± 0.0001 0.9799 ± 0.0008

10 0.2854 ± 0.0016 0.0114 ± 0.0001 0.9660 ± 0.0119 0.3084 ± 0.0029 0.0124 ± 0.0001 0.9775 ± 0.0011
200 0.3527 ± 0.0027 0.0141 ± 0.0001 0.9557 ± 0.0165 0.3824 ± 0.0038 0.0154 ± 0.0002 0.9723∗± 0.0039

FiLM 10 0.3252 ± 0.0020 0.0130 ± 0.0001 0.9861 ± 0.0008 0.3469 ± 0.0029 0.0139 ± 0.0001 0.9862 ± 0.0007
Ours Spatial 10 0.3234 ± 0.0017 0.0129 ± 0.0001 0.9846 ± 0.0022 0.3489 ± 0.0030 0.0140 ± 0.0001 0.9849 ± 0.0011

Uncond. 10 0.3181 ± 0.0021 0.0127 ± 0.0001 0.9803 ± 0.0014 0.3384 ± 0.0011 0.0136 ± 0.0000 –

WDM Uncond. 1000 0.3073 ± 0.0018 0.0123 ± 0.0001 0.9456 ± 0.0248 0.3284 ± 0.0013 0.0132 ± 0.0001 –
MD Uncond. 1000 0.3843 ± 0.0026 0.0153 ± 0.0001 0.9595 ± 0.0289 0.4072 ± 0.0024 0.0163 ± 0.0001 –
MLDM Cond. 1000 0.3590 ± 0.0021 0.0144 ± 0.0001 0.9538 ± 0.0259 0.3733 ± 0.0032 0.0150 ± 0.0001 0.9784 ± 0.0024
MOTFM Uncond. 10 0.3692 ± 0.0024 0.0147 ± 0.0001 0.9677 ± 0.0105 0.3926 ± 0.0021 0.0158 ± 0.0001 –
MOTFMa Cond. 10 0.3747 ± 0.0027 0.0150 ± 0.0001 0.9529 ± 0.0203 0.3539 ± 0.0033 0.0142 ± 0.0001 0.9775 ± 0.0028

Method Type Steps Age 40–55 Age 65–80
FID ↓ MMD ↓ MS-SSIM ↓ FID ↓ MMD ↓ MS-SSIM ↓

Ours RFM

1 0.3511 ± 0.0045 0.0140 ± 0.0002 0.9966 ± 0.0018 0.2955 ± 0.0043 0.0118 ± 0.0002 0.9958 ± 0.0019
2 0.3409 ± 0.0043 0.0136 ± 0.0002 0.9927 ± 0.0020 0.2844 ± 0.0045 0.0113 ± 0.0002 0.9911 ± 0.0026
5 0.3303 ± 0.0041 0.0132 ± 0.0002 0.9838 ± 0.0031 0.2743 ± 0.0043 0.0109 ± 0.0002 0.9812 ± 0.0037

10 0.3169 ± 0.0042 0.0127 ± 0.0002 0.9580 ± 0.0129 0.2578 ± 0.0040 0.0103 ± 0.0002 0.9465 ± 0.0145
200 0.3160∗± 0.0044 0.0127∗± 0.0002 0.9560∗± 0.0138 0.2560∗± 0.0041 0.0102∗± 0.0002 0.9433 ± 0.0155

Ours CFM

1 0.3547 ± 0.0039 0.0142 ± 0.0002 0.9973 ± 0.0009 0.2971 ± 0.0042 0.0118 ± 0.0002 0.9956 ± 0.0021
2 0.3445 ± 0.0043 0.0138 ± 0.0002 0.9940 ± 0.0010 0.2851 ± 0.0046 0.0114 ± 0.0002 0.9915 ± 0.0027
5 0.3335 ± 0.0044 0.0133 ± 0.0002 0.9858 ± 0.0018 0.2741 ± 0.0036 0.0109 ± 0.0002 0.9827 ± 0.0033

10 0.3283 ± 0.0038 0.0131 ± 0.0002 0.9793 ± 0.0030 0.2692 ± 0.0035 0.0107 ± 0.0001 0.9754 ± 0.0043
200 0.3226 ± 0.0041 0.0129 ± 0.0002 0.9579∗± 0.0114 0.2631 ± 0.0038 0.0105 ± 0.0002 0.9474∗± 0.0149

Ours VP

1 0.3524 ± 0.0044 0.0141 ± 0.0002 0.9969 ± 0.0017 0.2953 ± 0.0038 0.0118 ± 0.0002 0.9959 ± 0.0019
2 0.3416 ± 0.0037 0.0137 ± 0.0002 0.9937 ± 0.0020 0.2842 ± 0.0040 0.0113 ± 0.0002 0.9919 ± 0.0024
5 0.3320 ± 0.0041 0.0133 ± 0.0002 0.9854 ± 0.0028 0.2731 ± 0.0037 0.0109 ± 0.0002 0.9829 ± 0.0031

10 0.3258 ± 0.0037 0.0130 ± 0.0002 0.9788 ± 0.0041 0.2685 ± 0.0041 0.0107 ± 0.0002 0.9752 ± 0.0041
200 0.3184∗± 0.0040 0.0127∗± 0.0002 0.9584∗± 0.0134 0.2596∗± 0.0036 0.0104∗± 0.0001 0.9472∗± 0.0151

Ours Trigon.

1 0.3484 ± 0.0041 0.0139 ± 0.0002 0.9281 ± 0.0011 0.2910 ± 0.0041 0.0116 ± 0.0002 0.9239 ± 0.0011
2 0.3168∗± 0.0041 0.0127∗± 0.0002 0.9611∗± 0.0015 0.2599∗± 0.0039 0.0104∗± 0.0002 0.9584 ± 0.0016
5 0.3062 ± 0.0036 0.0123 ± 0.0002 0.9789 ± 0.0023 0.2473 ± 0.0042 0.0099 ± 0.0002 0.9756 ± 0.0023

10 0.3042 ± 0.0041 0.0122 ± 0.0002 0.9758 ± 0.0028 0.2451 ± 0.0036 0.0098 ± 0.0001 0.9715 ± 0.0031
200 0.3731 ± 0.0049 0.0149 ± 0.0002 0.9629∗± 0.0115 0.3046 ± 0.0049 0.0122 ± 0.0002 0.9506∗± 0.0131

FiLM 10 0.3455 ± 0.0040 0.0138 ± 0.0002 0.9860 ± 0.0009 0.2855 ± 0.0049 0.0114 ± 0.0002 0.9862 ± 0.0008
Ours Spatial 10 0.3450 ± 0.0042 0.0138 ± 0.0002 0.9861 ± 0.0008 0.2809 ± 0.0039 0.0112 ± 0.0002 0.9874 ± 0.0007

Uncond. 10 0.3383 ± 0.0026 0.0135 ± 0.0001 – 0.2787 ± 0.0017 0.0111 ± 0.0001 –

WDM Uncond. 1000 0.3277 ± 0.0020 0.0131 ± 0.0001 – 0.2694 ± 0.0017 0.0108 ± 0.0001 –
MD Uncond. 1000 0.4074 ± 0.0038 0.0163 ± 0.0002 – 0.3426 ± 0.0024 0.0137 ± 0.0001 –
MLDM Cond. 1000 0.3681 ± 0.0043 0.0147 ± 0.0002 0.9776 ± 0.0034 0.3311 ± 0.0054 0.0132 ± 0.0002 0.9478 ± 0.0242
MOTFM Uncond. 10 0.3914 ± 0.0027 0.0157 ± 0.0001 – 0.3269 ± 0.0021 0.0131 ± 0.0001 –
MOTFMa Cond. 10 0.4001 ± 0.0048 0.0160 ± 0.0002 0.9697 ± 0.0068 0.3685 ± 0.0049 0.0147 ± 0.0002 0.9630 ± 0.0101
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