
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOLVING PDES VIA LEARNABLE QUADRATURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial differential Equations (PDEs) are an essential tool across science and en-
gineering. Recent work has shown how contemporary developments in machine
learning models can directly help in improving methods for solution discovery of
PDEs. This line of work falls under the umbrella of Physics-Informed Machine
Learning. A key step in solving a PDE is to determine a set of points in the do-
main where the current iterate of the PDE’s solution will be evaluated. The most
prevalent strategy here is to use Monte Carlo sampling, but it is widely known
to be sub-optimal in lower dimensions. We leverage recent advances in asymp-
totic expansions of quadrature nodes and weights (for weight functions belonging
to the modified Gauss-Jacobi family) together with suitable adjustments for pa-
rameterization towards a data-driven framework for learnable quadrature rules. A
direct benefit is a performance improvement in solving PDEs via neural networks,
relative to existing alternatives, on a set of problems commonly studied in the lit-
erature. Beyond finding a standard solution for an instance of a single PDE, our
construction enables learning rules to predict solutions for a given family of PDEs
via a simple use of hyper-networks, a broadly useful capability.

1 INTRODUCTION

Differential equations are an indispensable tool across science, providing a framework for mod-
eling/analyzing diverse physical dynamics. Most real-world settings lead to differential equations
where analytical solutions are not possible, but research over decades has led to a mature set of
numerical methods which can provide an approximate solution in many cases (Ames, 2014; Tre-
fethen & Bau, 2022). Advances in our understanding of deep neural networks as universal function
approximators has led to nice results that span both these topics (Chen et al., 2018; Kidger, 2022).
Specifically, a growing body of work in the last five years or so has identified novel architectures,
by marrying differential equation solvers with deep learning and these formulations offer surprising
new capabilities. For example, one now has access to completely data-driven approaches (Li et al.,
2020b;a; Kovachki et al., 2021) which use observational data to estimate the operator for a PDE.
For small-sample sizes, we have means of obtaining new class of differential equation solvers that
exploit neural networks to encode physical laws (Raissi et al., 2019; Kharazmi et al., 2019).

Roughly speaking, the aforementioned line of work (Karniadakis et al., 2021), discussed in more
detail later in §7 can be broadly classified under three main threads: (a) PDE solvers based on
neural networks (PINNs) (Raissi et al., 2019); (b) PDE discovery (e.g., symbolic regression) (Holt
et al., 2023; d’Ascoli et al., 2023) and (c) operator learning (e.g., Fourier Neural Operator). Li et al.
(2020b). This classification is loosely based on the amount of data or physics used to solve/inform
the forward/inverse problem, (Boullé & Townsend, 2023). Our paper falls under the first category,
where we wish to solve a set (or family) of PDEs which share the same differential operator but
vary in other ways. Here, we seek to identify how a learning mechanism can deliver efficiency gains
solely based on the shared structure and knowledge of physics; without the use of any labeled data.

PDEs and Quadrature Consider the following second-order PDE,
∂2u

∂x2
+

∂2u

∂y2
= log(x) sin(y) + f(x, y)y3 (1)

One way to find a solution u is to integrate both sides with a test function v(x, y) resulting in an
integral equation as follows:∫ ∫ (

∂2u

∂x2
+

∂2u

∂y2

)
v(x, y)dxdy =

∫ ∫ (
log(x) sin(y) + f(x, y)y3) v(x, y)dxdy (2)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Such a reformulation enables the use of numerical methods which build-up sums that converge
to the integral’s true value. This has the added benefit of easing regularity conditions on u and
solve the original problem in a weighted sense. A quadrature method (Golub & Welsch, 1969) will
choose evaluation points (nodes) and corresponding weights to minimize the approximation error.
The evaluation points may be constant step/uniform or adaptive: implying either fixed or adaptive
quadrature rules for estimating the integral.

Challenges in computing an integral. In many applications from fluid dynamics (turbulent flow)
(Kutz, 2017) to radiation treatment planning (fluence calculation at tissue interfaces) (Lou et al.,
2021; Beckham et al., 2002) to materials science (fracture mechanics) (Aliabadi & Rooke, 1991;
Rice & Tracey, 1973), the associated data involves irregular behavior including singularities. In
continuous monitoring devices, sensors may malfunction. The most rudimentary form of uniformly
splitting the domain of integration into equal sub-domains, in many cases, is insufficient owing to
the singularity associated with the integrand. Further, even a sophisticated scheme of partitioning,
runs into difficulties in the multi-dimensional case. A common solution is to use some variant of
Monte Carlo sampling. In higher dimensions, we have no choice but to sample at large and expect
the estimated solution to converge to the true solution, given enough runtime. In lower dimensions,
Monte Carlo sampling is sub-optimal (Rivera et al., 2022) and several strategies to improve the
speed and accuracy of the integral computation are known, the prominent ones being some variant
of adaptive quadrature scheme, essentially choosing an adaptive grid dependent on the integrand.

Figure 1: Relevance of learnable quadratures.
Given a fixed number of quadrature points, one
can setup an optimization problem to update a
learnable module based on how good/bad the nu-
merical approximation of the integral is.

Main Idea. In this paper, we propose a learn-
able quadrature scheme utilizing a rich theory
based on orthogonal polynomials and asymp-
totic expansions. Consider solving a PDE ei-
ther in its strong form or weak form. In ei-
ther case, the end goal is to either (a) deter-
mine which points in the domain to evaluate the
function on (this is the strong form) or (b) de-
termine which test functions to use (for eval-
uation of the weak form). We can tie these
choices to the roots of orthogonal polynomials
w.r.t. the modified Gauss-Jacobi weight func-
tions. Next, we leverage recent advances in
asymptotic expansions of quadrature nodes and
weights from (Opsomer & Huybrechs, 2023) to
achieve a scheme to compute these efficiently.

Contributions: We start with a given PDE and propose a method to learn its solution. The learn-
ing is achieved via two separate learnable components. First is the actual solution function for the
PDE which is parameterized using a neural network. The second is a parameterized weight func-
tion which in turn induces a family of orthogonal polynomials. Our parameterization of the weight
function together with asymptotic expansions when implemented carefully on modern GPUs, can
take advantage of parallel compute to generate a very large number (millions) of quadrature nodes
and weights in constant time. This provides an alternative to Monte Carlo sampling of points for
low-dimensional problems. We deploy our formulation to solve several commonly used PDEs and
achieve better performance that existing adaptive and non-adaptive sampling schemes. Our param-
eterization of weight function enables learning a quadrature predictor for a family of PDEs (with
shared structure), a very useful capability.

2 PRELIMINARIES

We briefly review some important concepts that will be useful throughout.

Orthogonal Polynomials. Consider a sequence of real-valued polynomials p0(x), p1(x), p2(x)
where each pn(x) is a polynomial of degree n. These are orthogonal (Olver et al., 2020) with
respect to a continuous and non-negative weight function w(x) defined in the interval (a, b) if

⟨pm, pn⟩w =

∫ b

a

pm(x)pn(x)w(x)dx =

{
0 if m ̸= n,

hn if m = n
(3)

where hn is a normalization constant. In fact, if hn = 1 for all n, then the family is orthonormal.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Modified Gauss-Jacobi Weight functions. We use weight functions from the modified Gauss-
Jacobi family Opsomer & Huybrechs (2023) to induce our family of orthogonal polynomial (3).
These weight functions have the form:

w(x) = (1− x)α(1 + x)βh(x); x ∈ [−1, 1] (4)

where α, β > −1. h(x) is the modifier over the standard Gauss-Jacobi weight function: w(x) =
(1−x)α(1+x)β . The only restriction on h(x) is that it should be a strictly positive analytic function.

Cauchy Residue Theorem. The Cauchy Residue Theorem (Stein & Shakarchi, 2010) is a powerful
tool to compute line integrals of analytic functions over closed curves. Let f be a function that is
holomorphic on a simply connected open subset of the complex plane, except possibly at a finite set
of points a1, · · · , an(called poles) and γ be a positively oriented simple closed curve, then we have:∮

γ

f(z)dz = 2πi

n∑
k=1

Res(f, ak); Res(f, ak) =
1

2πi

∮
γk

f(z)dz (5)

where the quantity Res(f, ak) is referred to as the complex residue of the pole ak. γk is a positively
oriented simple closed curve around the pole ak not including other singularities. While this is the
general formula, we will see later that in our specific case, we will only deal with simple poles.
Then, the formula for the residue simplifies (Stein & Shakarchi, 2010),

Res(f, ak) = lim
z→ak

(z − ak)f(z) (6)

3 STRONG AND WEAK FORMS

We will use u to denote the solution function for a given PDE. Since, u is parameterized/learned,
it is commonly called the trial function. L denotes the differential operator acting on u. We will
mostly deal with non-homogeneous problems and use the function f to denote the non-homogeneity.
Furthermore, g, g1, . . . will be used to denote functions corresponding to the initial and/or boundary
conditions as needed for the PDE at hand. As is standard, we will use Ω to denote the domain of
definition of the PDE and ∂Ω to denote its boundary.

In its most generic form, an operator L operating on a function u, with a non-homogeneous term f
along with boundary and/or initial conditions is

Lu = f, in Ω; u = g, in ∂Ω (7)

We used Dirichlet boundary conditions above but these could be specified in terms of derivatives
along the normal direction, i.e., Neumann boundary conditions or both. The number of boundary
and/or initial conditions needed to completely determine a solution depends on the dimensionality
of the PDE in general.

Solving PDEs. We examine the canonical form of second order elliptic PDE, the Poisson’s equation
(in 2 dimensions) as a running example. In 2D-Poisson’s equation, the operator L is the Laplace
operator, ∇2. For u : Ω → R, where Ω ⊂ R2 is the domain of interest this is given by:

−∇2u(x, y) = f(x, y), (x, y) ∈ Ω; u(x, y) = 0, (x, y) ∈ ∂Ω (8)

where f is called the forcing function. In the homogeneous case where f = 0, this becomes the
well-known Laplace equation. We will consider Ω to be the square domain [−1, 1]× [−1, 1], along
with its natural boundary as ∂Ω.

Before presenting our approach, we briefly summarize two approaches to solving the PDE above:
via the strong and weak form of the PDE respectively. This will help emphasize how certain choices
(such as quadrature rule and collocation points) will be key to our parameterization and thereby,
learning.

Strong Form. A generic PDE shown in (7) is in its strong form. Our example in (8) is also in the
strong form with a specific choice for the operator. Solving the PDE in its strong form is equivalent
to asking that the equations in (8) are satisfied exactly at several points along the domain Ω and
boundary ∂Ω. This can be done by sampling a large number of points distributed uniformly (Monte

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Carlo). For simple problems, this approach suffices. But with the inclusion of the non-homogeneous
component, a uniform sampling approach can result in poor approximation of the solution, and has
been studied extensively (Rivera et al., 2022).

Weak Form. While the strong form enforces point-wise exactness, we may only want the property
to hold in a “weighted” sense for the entire function. This yields the weak form, which involves
integration with a test function. For the 2D-Poisson equation, using a test function v(x, y) and
integrating over the domain, we have∫ ∫

Ω

−∇2u v dxdy =

∫ ∫
Ω

f v dxdy (9)

Solving the PDE in its weak form moves the previous choice of points to a choice of test functions.
The idea is to use a family of test functions based on the problem at hand and different methods
emerge from these choices. These methods are called Galerkin methods. One common strategy at
this point is to use integration by parts and make use of the boundary conditions to gradually reduce
the order of derivatives from the solution u over to the test function v, making them symmetric
and at the same time easing regularity requirements over the desired solution u. If one decides that
the test functions in the weak form are Dirac-delta functions, then the Galerkin method reduces to
collocation and the weak form becomes the strong form involving differential equations, which then
need to be satisfied at the collocation points. In our discussion of the strong form, we will refer to
the choice of collocation points interchangeably with the choice of test functions.
Remark 3.1 (Minimum Principle:). A third route for solving PDEs is the minimization of an energy
associated with the PDE. This method is often referred to as the Rayleigh-Ritz method. But the
Galerkin method is general and does not require the problem to be symmetric.

4 HOW TO LEARN QUADRATURE RULES?

The above discussion helps underscore the importance of choice of test functions in the weak form
or the choice of collocation points for solving the PDE in its strong form. It is natural to ask: can
the underlying physics play a role in informing these choices? This section describes such a model
by leveraging the rich theory of orthogonal polynomials.

Learning the weight function: We consider weight functions to be continuous and positive func-
tions defined in some interval I. Each such weight function w(x) induces a family of orthogonal
polynomial (OP) given by (3). Our goal of learning the weight function corresponding to a set of
OP is to enable a learnable (or adaptive) quadrature. In order for the method to be practical, we want
to compute these efficiently. Our method exploits asymptotic expansions of quadrature nodes for
efficiency which are most complete for modified Gauss-Jacobi type weight function. Hence we con-
sider the modified Gauss-Jacobi form (4) and parameterize the modifier h(x) in (4) using a neural
network with parameters θ. This keeps the construction simple but offers other interesting benefits
we will see shortly. So, our learnable weight function has the form:

wθ(x) = (1− x)α(1 + x)βhθ(x); x ∈ I (10)

In (10), α and β can also be parameterized/learnt but in our experiments, we find that only learning
hθ(x) suffices. Next, we will see how this learnable weight function nicely ties to the choice of test
functions for the weak form and the collocation points in the strong form.
Remark 4.1. We will consider the interval of the weight function I to be the same as Ω, the domain
of the PDE. Extensions to higher dimensions can simply be done considering each dimension as
independent and stacking the sampled values, this approach is sufficient as we demonstrate in our
experiments. More efficient extensions can involve the use of tensor-product or sparse grids (Garcke
et al., 2006). The dimensionality of wθ will be implicitly determined by the PDE.

Relation to Solving PDEs in Weak Form: For the weak form, consider a weighted integral using
our weight function wθ as the test function v, on both sides of (9),∫ ∫

Ω

−∇2uwθdxdy =

∫ ∫
Ω

fwθdxdy (11)

To solve the PDE, we must compute both sides of the integral efficiently/accurately, specially for
weight functions that make maximize deviation from the equality. Therefore, our choice of weight
functions crucially helps this computation, as we will describe subsequently.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Use of Orthogonal Polynomial & Quadrature Rule: Consider a one-dimensional integral. It is
well-known that a n-point Gaussian quadrature rule can be constructed to yield a very good ap-
proximation to the integral of a 2n−1 degree polynomial, multiplied with the corresponding weight
function. For example, if we use the standard (non-modified) Gauss-Jacobi weight function:

w(x) = (1− x)α(1 + x)β ; x ∈ [−1, 1] (12)

where α, β > −1. Then, the n-th order approximation to the integral is given by:∫ 1

−1

f(x)(1− x)α(1 + x)βdx ≈
n∑

i=1

wif(xi) (13)

where xi denotes the i-th node and wi the corresponding weight of the n point Gauss-Jacobi quadra-
ture. Here, f(x) is a smooth function on [−1, 1]. The nodes xi are in fact the roots of the n-th degree
Jacobi polynomial, which form a family of orthogonal polynomials w.r.t. the weight function in
(12). We see that our learnable weight function not only provides us a data-dependent choice of test
functions associated with the weak form but also induces a learnable quadrature rule to compute
the integral associated with the weak form of the PDE!

Relation to Solving PDEs in Strong Form: Recall that solving a PDE in its strong form means
enforcing the relationship at several collocation points along the domain. A popular method in this
category is orthogonal collocation (Young, 2019) where the collocation points used are roots of
orthogonal polynomials. Thus, with our choice of learnable weight function, wθ (which induces a
family of orthogonal polynomial by definition (3)) also provides a data-dependent method to sample
collocation points to solve a PDE in its strong form!
Remark 4.2 (Standard quadrature?). For a family of orthogonal polynomials, the nodes/weights are
obtained from a table lookup and is fully data independent. On their own, standard quadratures
cannot be conveniently utilized for solving a family of related PDEs via neural networks.

5 LEARNING QUADRATURE RULES EFFICIENTLY

Numerically solving PDEs can be involved (Sewell, 2005), depending on the granularity of dis-
cretization used in the algorithm. For the strong form, this means efficiently identifying the colloca-
tion points and then evaluating the PDE at these points. For the weak form, the compute requirement
stems from numerically approximating the integral via a quadrature rule. The above discussion laid
out a mechanism to learn the weight function. It is not obvious yet whether this can be done effi-
ciently. With our learnable weight functions, (a) in the strong form (7),(8), this means finding the
roots of corresponding orthogonal polynomial which will serve as the collocation points. (b) In
the weak form, in using our learnable weight function as the test function, we must determine the
quadrature rule and evaluate the integral in the weak form (11) efficiently. Determining the quadra-
ture rule means finding the roots of an orthogonal polynomial and the corresponding quadrature
weights. To do this, we exploit recent advances in asymptotic expansions of orthogonal polynomi-
als and their roots.

5.1 INSTANTIATING ASYMPTOTIC EXPANSIONS

There is a mature literature for fast computation of quadrature nodes and weights correspond-
ing to weight functions of orthogonal polynomials (Townsend, 2015). Over the last few years,
this race is dominated by asymptotic expansions (Bogaert, 2014; Townsend et al., 2016). Very
recently, (Opsomer & Huybrechs, 2023), proposed asymptotic expansions for generalized (i.e.,
modified) versions of canonical weight functions including Gauss-Jacobi and Gauss-Hermite type.

Figure 2: Four different re-
gions of the complex plane
for asymptotic expansions.

Division of the Complex Plane. We briefly present asymptotic
expansions of nodes (roots of orthogonal polynomial) and weights
of quadrature rule for the modified Jacobi-type weight function (4)
based on (Opsomer & Huybrechs, 2023; Opsomer, 2018). The de-
tails are not crucial, but useful to appreciate our choice of param-
eterizations. The reader can check Appendix A and Opsomer &
Huybrechs (2023) for more details on the expansions. The deriva-
tion of asymptotic expansions starts by dividing the complex plane
into four regions, and each region has a different expansion, see Fig.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2. These regions are: the lens covering a bulk of the interval (−1, 1), the two regions on both end-
points referred to as left and right disks and everything else is the outer region. Let Γ be a shorthand
notation for the term (2n+ α+ β + 1) and n refers to the polynomial degree.

Left endpoint. The truncated asymptotic expansions of nodes (xk) and weights (wk) for hard edge
near left endpoint, x = −1 are:

xk ∼ −1 +
2j2β,k

(Γ + d0)2
+

−2j2β,k
3(Γ + d0)4

[j2β,k − 3α2 − β2 + 1] + . . . ;
wk

w(xk)
∼ 8

J2
β−1(jβ,k)[Γ− d0]2

+ . . .

(14)

wherew(xk) is the value of the weight function at node xk, and c0 and d0 are expansion coefficients,
described shortly. The expansion uses both (a) the zeros of Bessel functions of order β denoted as
jβ,k (k-th zero) and the Bessel function of order (β − 1) denoted by Jβ−1.

Right endpoint. For the right end-point, we interchange α and β and use h(−x) instead of h(x)

Bulk region. For expansions in the bulk region, we need to find the leading order term, tk by solving:

π
4k + 2α+ 3

4k + 2α+ 2β + 2
= arccos(tk) +

√
1− t2k
Γ

1

2πi

∮
γ

log(h(ξ))dξ√
ξ2 − 1(ξ − tk)

(15)

Using tk, the truncated asymptotic expansions of nodes and relative weights in the bulk region are

xk ∼ tk +
2α2 − 2β2 + (2α2 + 2β2 − 1)tk

2[Γ + τ0]2
+ . . . ;

wk

w(xk)
∼

π
√

1− t2k
Γ

[
2− 2τ1(1− t2k)− 2τ0tk

Γ
] + . . .

(16)

where τ0, τ1 are also expansion coefficients.

Summary. In (14)–(16), the values of α, β correspond to the one used in the modified Gauss-Jacobi
weight function (4). The value of n determines the degree of the orthogonal polynomial pn(x) from
the family (3) whose roots we want to compute. Finally, given n, k ∈ {1, 2, . . . , n} corresponds
to the k-th root of polynomial pn(x), which is guaranteed to exist and be unique in the interval of
definition.

Expansion Coefficients. In our description above, we used several coefficients: c0, d0 and τ0, and
τ1. While more details are in Appendix A, a synopsis is that the coefficients ck, dk stem from series
expansion of the modulation function h(x) in (4) (or the parameterized version in (10)) around
z = ±1. The coefficients τi are the series coefficients resulting from the expansion of the contour
integral in (15) around the leading order tk of the k-th root of the orthogonal polynomial. The above
formulas involve computation of contour integrals, root finding, and series expansions. Computing
all these terms exactly within a learnable module will be challenging. We will next perform some
simplifications so that the model is amenable to learning.

5.2 SIMPLIFICATIONS, ASSUMPTIONS AND IMPLEMENTATION

We now list several assumptions or simplifications needed for an efficient instantiation of the ideas
so far. We also present several implementation details.

Simple Poles. In order to find the leading order of the k-th root, tk, we need to solve a contour
integral in (15). We leverage the fact that the roots from the bulk region of interest are real and lie in
(−1, 1). Further, we assume that the integrand of the contour integral only has simple poles around
tk so we compute the residue using (6) leading to:

lim
z→tk

(ξ − tk)
log(h(ξ))√

1− ξ2(ξ − tk)
=

log(h(tk))√
1− t2k

(17)

Assuming real roots and simple poles, the Cauchy Residue Theorem (5), simplifies (15) as

π
4k + 2α+ 3

4k + 2α+ 2β + 2
= arccos(tk) +

log(h(tk))

Γ
(18)

Root finding and Implicit Function Theorem. While we avoided computing the contour integral,
we need to solve (18) for tk. A solution is available via root finding. We observe that since tk

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

corresponds to the leading order of the root of an orthogonal polynomial, it must exist in (−1, 1).
Thus, we can use bisection method to find tk via root finding of the function:

F (tk) = π
4k + 2α+ 3

4k + 2α+ 2β + 2
− arccos(tk)−

log(h(tk))

Γ
(19)

To perform gradient-based updates, we use automatic implicit differentiation from (Blondel et al.,
2022), which uses auto-diff of F (tk) and the implicit function theorem to automatically differentiate
through the bisection method.

How to parameterize? We parameterize the solution function u as a Multi-Layer Perceptron
(MLP). In order to compute the nodes and weights, we need to compute h(x) and the coefficients
c0, d0, d1, τ0, τ1, etc. We use a simple MLP for the modulating function h as well as to predict the
expansion coefficients for the bulk and edge regions of the nodes and weights.

Benefits of simplifications/parameterization. The simplifications above offer multiple benefits.
First, we avoid computing contour integrals within a differentiable learning framework. Second, we
are able to compute all nodes and weights in parallel thereby making the process very efficient even
for a very large number (millions) of nodes. It is worth noting that the exact procedure to compute
the nodes (beyond the leading order term) as outlined in Section 4.2 of (Opsomer & Huybrechs,
2023) has a linear time complexity due to the several re-substitutions involved to find the coeffi-
cients. Empirically, we verify that the distribution of nodes and weights from the simplifications
and parameterization choices does not harm the distribution of quadrature which converges to the
expected distribution resembling the roots of polynomial belonging to an orthogonal family.

Figure 3: Interlaced red and blue dots on x
axis correspond to the roots of polynomial
pn+1(x) (degree n+ 1) and pn(x) (degree
n) respectively.

Interlacing of roots of orthogonal polynomial. A
naive application of quadrature nodes and weights for
the orthogonal polynomial induced by the learnable
weight function is insufficient in several cases. This is
because with a high degree polynomial (and so, a large
number of nodes), within a few epochs, jointly train-
ing the solution and quadrature functions, the nodes
and weights can overfit to the points being sampled. Interestingly, this can be solved via a very
useful property of the family of orthogonal polynomials (OP), namely interlacing of roots. Given
the roots of an OP of degree n + 1, the roots of the OP of degree n that belong to the same family
are interlaced within the roots of pn+1 as shown in Fig. 3. Thus, by utilizing quadrature nodes and
weights stemming from varying degree of OP (all of whom correspond to the same weight function
being learned), we introduce the desired stochasticity to prevent over-fitting.

Implementation Details: To ensure that our learned weight function is positive, we use softplus
activation on the last layer of the network for hθ(x). Further, we found that log in (19) can
lead to vanishing gradients, which is fixed by adding a small amount of noise (order of e−6).

Algorithm 1 Training for a single PDE
1: Input: PDE parameter µ; #epoch: T , Learn-

able models uθ, wϕ; PDE Loss L incorpo-
rating PDE operator L, inhomogeneous term,
initial/boundary condition; regularizer lw.

2: for i = 1 to i = T do
3: Sample, noise: ζ ∼ N (0, 1)
4: Get wϕ from ϕ(ζ) or ϕ(µ)
5: Use §5 to get quadrature nodes {xl}
6: Use solution function uθ on {xl}
7: Loss:l = L(uθ(xl)) + lw(wϕ)
8: Update uθ and wϕ based on l
9: end for

10: Output: Learned models θ and ϕ

To avoid invalid quadrature rules due to numer-
ical issues in extreme cases, we used two ad-
ditional loss components beyond the standard
domain and boundary loss terms which are de-
scribed in the algorithm block below. The loss
for enforcing well-behavedness of the learned
weight function is given by

lw =

(
n∑

i=1

wi −
∫ 1

−1

wθ(x)dx

)2

+ (

n∑
i=1

wi − 2)2

(20)

where the first term in (20) enforces the nec-
essary condition that the sum of quadrature
weights is equal to the integral of the weight
function over the domain of definition. The sec-
ond term in (20) discourages the quadrature weights from becoming too small. Apart from the above
mentioned regularization, we use the standard loss function used in PINN literature (Karniadakis
et al., 2021; Cai et al., 2021). Our overall procedure has two trainable components: one is the learn-
able quadrature module (LearnQuad) and the other is the learnable solution function for the given
PDE. These can be trained jointly using the loss described above either to simultaneously decrease it

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

or in a min-max fashion where the quadrature module tries to provide hard to approximate function
points in the domain. Empirically, we do not find a large difference in this specific choice of opti-
mization. We provide pseudo-code for training PINN using LearnQuad in Algorithm 1. Our code
will be made publicly available.

6 EXPERIMENTAL EVALUATIONS

We demonstrate the effectiveness of our proposed framework involving the learnable quadrature
module (LearnQuad) in solving PDEs next. First we compare the empirical performance of the data
adaptive quadrature scheme in solving single PDEs. Thereafter, we describe how the use of hyper-
networks can enable LearnQuad to efficiently solve a family of PDEs in a data-drive approach.

6.1 SOLVING PDES USING LEARNQUAD

Setup: We compare the performance of LearnQuad in solving several well known PDEs. We
benchmark the performance of our proposed data adaptive quadrature scheme against several other
adaptive and non-adaptive algorithms (Wu et al., 2023; Lu et al., 2021; Daw et al., 2023). Additional
experimental details including the explicit form of the PDEs, hyper-parameter details used in the
experiment are included in Appendix B.1. We used the exact same number of points to train the
solution model in all methods for a given PDE. Additionally, the solution model in each case had
the exact same number of parameters to ensure a fair comparison.

Result: We report the L2 relative error (41) as the performance metric following two different
experimental settings from Daw et al. (2023) and Wu et al. (2023) over 8 different PDEs in Table
1 and Table 2 respectively. In all but one scenario, LearnQuad is able to achieve the best solution
function. As can be seen from the numerical results in Table 1 and 2, the L2 relative error for models
trained using LearnQuad are better by an order in most cases and also have very little variance
(results reported are an average over five runs). We must note that the Diffusion equation used had
a very smooth solution and so, almost all methods perform equally well, even with a small number
of points. The performance of LearnQuad improves as the number of evaluation points increases, as
presented in Table 4; additionally, we observe that LearnQuad can achieve similar performance to
other adaptive methods with a much smaller number of points in many cases. All methods have a
comparable runtime and memory consumption.

Summary: As an adaptive method, LearnQuad is highly effective in solving PDEs, leading to
performance boost in all cases. The findings reaffirm the usefulness of adaptive methods over non-
adaptive ones specifically when the solution function is not well-behaved. LearnQuad can be used
as drop in replacement for any sampling strategy as a data-driven approach in solving PDEs.
Remark 6.1. We use LearnQuad in solving a 100 dimensional PDE, a Poisson equation with a very
smooth solution (details in Appendix B.2 following Yu et al. (2018)) and achieve a relative L2 error
of 0.085 which is similar to using naive Monte Carlo in this setting with relative L2 error of 0.09.
This illustrates the viability of LearnQuad for high dimensional PDEs. Since the solution is smooth
in this particular case, there is no substantial benefit in using a data-driven adaptive method.
Remark 6.2. We include additional results on solving PDEs via LearnQuad in their strong form,
weak form and also using the energy method in Appendix B.3. These demonstrate that LearnQuad
is a versatile adaptive scheme which can be used to solve PDEs in multiple reformulations.
PDE Convection (β = 30) Convection (β = 50) Allen Cahn

Epochs. 100k 300k 150k 300k 200k

PINN (fixed) 107.5 ± 10.9% 107.5 ± 10.7% 108.5 ± 6.38% 108.7 ± 6.59% 69.4 ± 4.02%
PINN (dynamic) 2.81 ± 1.45% 1.35 ± 0.59% 24.2 ± 23.2% 56.9 ± 9.08% 0.77 ± 0.06%
Curr Reg (Krishnapriyan et al. (2021)) 63.2 ± 9.89% 2.65 ± 1.44% 48.9 ± 7.44% 31.5 ± 16.6% –
CPINN (fixed) (Wang et al. (2022)) 138.8 ± 11.0% 138.8 ± 11.0% 106.5 ± 10.5% 106.5 ± 10.5% 48.7 ± 19.6%
CPINN (dynamic) (Wang et al. (2022)) 52.2 ± 43.6% 23.8 ± 45.1% 79.0 ± 5.11% 73.2 ± 3.6% 1.5 ± 0.75%
RAR-G (Lu et al. (2021)) 10.5 ± 5.67% 2.66 ± 1.41% 65.7 ± 1.77% 43.1 ± 28.9% 25.1 ± 23.2%
RAD (Nabian et al. (2021)) 3.35 ± 2.02% 1.85 ± 1.90% 66.0 ± 1.55% 64.1 ± 11.9% 0.78 ± 0.05%
RAR-D (Wu et al. (2023)) 67.1 ± 4.28% 32.0 ± 25.8% 82.9 ± 5.96% 75.3 ± 9.58% 51.6 ± 0.41%
L∞ 66.6 ± 2.35% 41.2 ± 27.9% 76.6 ± 1.04% 75.8 ± 1.01% 1.65 ± 1.36%
R3 (Daw et al. (2023)) 1.51 ± 0.26% 0.78 ± 0.18% 1.98 ± 0.72% 2.28 ± 0.76% 0.83 ± 0.15%
Causal R3 (Daw et al. (2023)) 2.12 ± 0.67% 0.75 ± 0.12% 5.99 ± 5.25% 2.28 ± 0.76% 0.71 ± 0.007%
LearnQuad 0.78 ± 0.002% 0.68 ± 0.02% 0.79 ± 0.02% 0.76 ± 0.01% 0.87 ± 0.01%

Table 1: L2 relative error over benchmark PDEs with using 1000 collocation points. LearnQuad
achieves best accuracy in 4 out of 5 settings.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PDE Diffusion Burgers’ Allen-Cahn Wave
No. of points 30 2000 1000 2000

N
on

-a
da

pt
iv

e Grid 0.004 ± 0.001 0.12 ± 0.04 0.88 ± 0.06 0.42 ± 0.09
Random 0.005 ± 0.002 0.13 ± 0.03 0.32 ± 0.14 0.48 ± 0.07
LHS 0.003 ± 0.002 0.18 ± 0.15 0.32 ± 0.04 0.61 ± 0.13
Halton 0.002 ± 0.0006 0.06 ± 0.02 0.18 ± 0.05 0.46 ± 0.06
Hammersley 0.001 ± 0.0007 0.07 ± 0.05 0.17 ± 0.05 0.31 ± 0.09
Sobol 0.002 ± 0.002 0.08 ± 0.03 0.20 ± 0.10 0.49 ± 0.09

A
da

pt
iv

e

Random-R 0.12 ± 0.06 1.69 ± 1.67 0.55 ± 0.34 0.72 ± 0.90
RAR-G (Lu et al. (2021)) 0.0009 ± 0.0008 0.12 ± 0.04 0.53 ± 0.19 0.81 ± 0.11
RAD (Nabian et al. (2021)) 0.0019 ± 0.00097 0.02 ± 0.00 0.08 ± 0.06 0.09 ± 0.04
RAR-D (Wu et al. (2023)) 0.004 ± 0.0041 0.03 ± 0.01 0.09 ± 0.03 0.29 ± 0.04
LearnQuad 0.0005 ± 0.0001 0.003 ± 0.002 0.03 ± 0.008 0.005 ± 0.0006

Table 2: L2 relative error (mean ± standard deviation) of the trained solution function obtained
while using different adaptive and non-adaptive methods. The lowest error for each problem is
denoted in boldface. Model trained via LearnQuad achieves the lowest L2 relative error in all case.

Figure 4: PDEs from family of wave equation: (left) numerical solution, (center) solution predicted
using LearnQuad and (right) relative error between them.

6.2 SOLVING A FAMILY OF PDES VIA LEARNQUAD

Setup: Given the effectiveness of LearnQuad in solving a given PDE, we now utilize our frame-
work to tackle a harder problem. We consider a family of PDEs, where our end goal is to solve a
PDE given a particular choice of forcing function and/or PDE hyper-parameters and initial and/or
boundary conditions. Based on (7), a family of PDEs corresponding to differential operator L refers
to the set of triplets, {(fi, gi, ui)}Ni=1, where each i-th PDE satisfies:

Lui = fi, in Ω; ui = gi, in ∂Ω (21)

We only assume access to fi, gi’s and L. We note that fi denotes the forcing function and/or PDE
hyper-parameter and gi denotes the initial and/or boundary condition corresponding to the i-th PDE
which is governed by operator L. As an example, if f has the following parametric form:

fκ(x) = −(a(πθ)2 sin(πθx) + b(πψ)2 cos(πψx)) (22)

where κ = {a, b, θ, ϕ} ∼ p; we can sample κ ∼ p to obtain fi’s (similarly for gi’s) and then learn
to solve for PDEs corresponding to L.

Our full training pipeline is shown in Fig. 5. We use two hyper-networks with learnable parame-
ter(s) θ and ϕ which provide parameters of the weight function wκ(x) and solution function uκ(x)
respectively based on the input κ ∼ p. This weight function is then used to generate a suitable
quadrature {xl}κ for the PDE corresponding to κ. These are then used to evaluate the Luκ(x) and
fκ(x) and minimize the loss based on the strong form in (21). The pseudo-code for using Learn-
Quad in solving a family of PDE is given in the Appendix B.4. We demonstrate the effectiveness of
LearnQuad in this setting via several different PDEs: Laplace, Advection, Burger’s, Wave and Heat
equation. Experimental details for each case is included in Appendix B.4.

Result: The above scheme incorporating LearnQuad to train on a family of PDEs
achieves excellent generalization performance and is faster to converge than one using Monte
Carlo sampling. We report the absolute relative error compared to the numerical solu-
tion obtained using the same number of domain points used for LearnQuad in Table 3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

PDE Wave Advection Heat Burgers’
I.C./B.C. Eqn.63 Eqn.64 Eqn.67 Eqn.68 Eqn.58 Eqn.59 Eqn.73 Eqn.74

Test Error 9.9e-6 3.3e-5 1.9e-5 7.9e-5 2.1e-4 3.5e-4 2.8e-4 3.3e-4

Table 3: Absolute Relative error on the test set on four different PDEs. For each PDE we present re-
sults on two different families corresponding to the different Initial Conditions (I.C.) and/or Bound-
ary Conditions (B.C.) as mentioned. More details are in Appendix B.4.

Figure 5: Framework for solving a family of PDEs gov-
erned by operator L, where forcing function/external condi-
tion/PDE hyper-parameter are parameterized by known dis-
tribution p. Two hyper-networks with parameters θ and ϕ
generate the weight and solution function.

As can be seen, the model is able to
generalize very well on the test set
PDEs in each case. We visualize the
solution function and corresponding
error for the family corresponding to
wave equation and viscous Burgers’
equation in Figure 4. Additional de-
tails of PDE used and more visualiza-
tions are included in Appendix B.4.

Summary: Learning quadratures to
solve a family of PDEs is extremely
beneficial. Once we have trained our
model, given any new forcing func-
tion and boundary/initial condition,
we avoid the need to train a separate
model. We can generate the solution in a single forward pass. This is extremely efficient in terms of
time and completely removes the need to store and process different solution functions separately.
Remark 6.3 (Distinction with Operator Learning:). While the end result of learning for a family of
PDEs may appear similar to operator learning, the problem settings are actually very different. Op-
erator learning uses paired data (fi, ui) and is a supervised learning framework where the operator
is learned. On the other hand, our method using LearnQuad is completely unsupervised in the sense
that we only have access to fi’s,gi’s and complete knowledge of the shared operator, L.

7 RELATED WORK

Beyond the literature described in §1, a large body of work focuses on discovering solutions to PDEs
using neural networks. We mention some ideas and how our framework is different. In contrast to
Physics Informed Neural Networks (PINN)s Raissi et al. (2019), we use data-dependent sampling of
collocation points. While Variational-PINN (Kharazmi et al., 2019) and hp-VPINN (Kharazmi et al.,
2021) solve PDEs in weak form, they use a careful choice of test functions, which is learnable in
our case. Finally, compared to Deep-Ritz (Yu et al., 2018), our method does not need the minimum
energy principle to be applicable. In fact, as noted earlier, we provide a novel way to learn solving
PDEs which is complementary to existing works. We also acknowledge recent ideas focused on
or adjacent to adaptive quadrature (Rivera et al., 2022; Omella & Pardo, 2024; Lau et al., 2024),
which either directly try to optimize node locations thereby resulting in a much larger optimization
problem or fall-back to problem-specific regularizer(s) which may limit their applicability.

8 CONCLUSIONS

We present a data-driven approach to solve PDEs, by exploiting new results of fast quadrature com-
putation using asymptotic expansions and recent capabilities of implicit function differentiation. We
demonstrate the incorporating our learnable quadrature scheme, LearnQuad while solving a PDE
can lead to performance improvement over exisiting adaptive and non-adaptive sampling schemes
across a diverse set of PDEs. Additionally, we show that incorporation of LearnQuad is extremely
beneficial when solving a family of PDEs – where the alternative would be to deploy a Monte Carlo
based scheme for each instance individually. Our proposed hyper-network based approach generates
the solution to a PDE instance from a given family in just a single forward pass.

While our proposed framework is independent of the dimensionality of the problem, incorporation of
techniques such as sparse grids, can potentially yield better performance by exploiting the structure
better. It would be interesting to combine learnable quadratures with quasi-Monte Carlo technique
for potential benefits.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohammad H Aliabadi and David P Rooke. Numerical fracture mechanics, volume 8. Springer
Science & Business Media, 1991.

William F Ames. Numerical methods for partial differential equations. Academic press, 2014.

WA Beckham, PJ Keall, and JV Siebers. A fluence-convolution method to calculate radiation therapy
dose distributions that incorporate random set-up error. Physics in Medicine & Biology, 47(19):
3465, 2002.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
Advances in neural information processing systems, 35:5230–5242, 2022.

Ignace Bogaert. Iteration-free computation of gauss–legendre quadrature nodes and weights. SIAM
Journal on Scientific Computing, 36(3):A1008–A1026, 2014.

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. arXiv preprint
arXiv:2312.14688, 2023.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Stéphane d’Ascoli, Sören Becker, Alexander Mathis, Philippe Schwaller, and Niki Kilbertus.
Odeformer: Symbolic regression of dynamical systems with transformers. arXiv preprint
arXiv:2310.05573, 2023.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (R3) sampling. In Proceedings
of the 40th International Conference on Machine Learning, 2023.

Jochen Garcke et al. Sparse grid tutorial. Mathematical Sciences Institute, Australian National
University, Canberra Australia, 7, 2006.

Gene H Golub and John H Welsch. Calculation of gauss quadrature rules. Mathematics of compu-
tation, 23(106):221–230, 1969.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression.
arXiv preprint arXiv:2401.00282, 2023.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed
neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-vpinns: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Applied Mechanics
and Engineering, 374:113547, 2021.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in neural infor-
mation processing systems, 34:26548–26560, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

J Nathan Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:1–4, 2017.

Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang
Low. Pinnacle: Pinn adaptive collocation and experimental points selection. arXiv preprint
arXiv:2404.07662, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020a.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equa-
tions. In International Conference on Learning Representations, 2020b.

Qin Lou, Xuhui Meng, and George Em Karniadakis. Physics-informed neural networks for solving
forward and inverse flow problems via the boltzmann-bgk formulation. Journal of Computational
Physics, 447:110676, 2021.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962–977, 2021.

Sheehan Olver, Richard Mikaël Slevinsky, and Alex Townsend. Fast algorithms using orthogonal
polynomials. Acta Numerica, 29:573–699, 2020.

Ángel J Omella and David Pardo. r-adaptive deep learning method for solving partial differential
equations. Computers & Mathematics with Applications, 153:33–42, 2024.

Peter Opsomer. Asymptotics for orthogonal polynomials and high-frequency scattering problems.
2018.

Peter Opsomer and Daan Huybrechs. High-order asymptotic expansions of gaussian quadrature
rules with classical and generalized weight functions. Journal of Computational and Applied
Mathematics, 434:115317, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

JR Rice and Dennis Michael Tracey. Computational fracture mechanics. In Numerical and computer
methods in structural mechanics, pp. 585–623. Elsevier, 1973.

Jon A Rivera, Jamie M Taylor, Ángel J Omella, and David Pardo. On quadrature rules for solving
partial differential equations using neural networks. Computer Methods in Applied Mechanics
and Engineering, 393:114710, 2022.

Granville Sewell. The numerical solution of ordinary and partial differential equations, volume 75.
John Wiley & Sons, 2005.

Elias M Stein and Rami Shakarchi. Complex analysis, volume 2. Princeton University Press, 2010.

Alex Townsend. The race for high order gauss–legendre quadrature. SIAM News, 48:1–3, 2015.

Alex Townsend, Thomas Trogdon, and Sheehan Olver. Fast computation of gauss quadrature nodes
and weights on the whole real line. IMA Journal of Numerical Analysis, 36(1):337–358, 2016.

Lloyd N Trefethen and David Bau. Numerical linear algebra, volume 181. Siam, 2022.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Larry C Young. Orthogonal collocation revisited. Computer Methods in Applied Mechanics and
Engineering, 345:1033–1076, 2019.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

A ASYMPTOTIC EXPANSION

In this section, we list the full expansion of nodes and weights used for experiments in the paper:

For the left hard edge at x = −1

xk ∼ −1 +
2j2β,k

(Γ + d0)2
+

−2j2β,k
3(Γ + d0)4

[j2β,k − 3α2 − β2 + 1] + . . .

+
−j2β,k

6(2n+ α+ β + 1 + d0)5
[16(d0 − 3d1)j

4
β,k + 3(4α2 − 1)c0 + (12α2 + 8β2 − 5)d0

− 6(4β2 − 1)d1] + . . .+O(n−8)

wk

w(xk)
∼ 8

J2
β−1(jβ,k)[Γ− d0]2

+
8

3J2
β−1(jβ,k)[2n+ α+ β + 1− d0]4

[3α2 + β2 − 1− 2j2β,k]

−
2[32(d0 − 3d1)j

2
β,k + 3(4α2 − 1)c0 + (12α2 + 8β2 − 5)d0 − 6(4β2 − 1)d1]

3J2
β−1(jβ,k)[2n+ α+ β + 1− d0]5

+ . . .+O(n−8)

(23)

where Γ = 2n+ α+ β + 1

For the bulk region:

xk ∼ tk +
2α2 − 2β2 + (2α2 + 2β2 − 1)tk

2[Γ + τ0]2
− 1

4[2n+ α+ β + 1 + τ0]3
(
4(α2 − 1)c0+

+4(β2 − 1)d0 + 8(α2 − β2)τ0 − 4(α2 − β2)τ1 + 2(2α2 + 2β2 − 1)τ1t
3
k

+2[(2α2 + 2β2 − 1)τ0 + 2(α2 − β2)τ1]t
2
k

+[4(α2 − 1)c0 − 4(β2 − 1)d0 + 4(3α2 + β2 − 1)τ0 − 2(2α2 + 2β2 − 1)τ1]tk
)
+ h.o.t.

wk

w(xk)
∼
π
√
1− t2k
Γ

[
2− 2τ1(1− t2k)− 2τ0tk

Γ
] +

1

(2n+ α+ β + 1)2
(
2τ21 t

4
k + 4τ0τ1t

3
k

−4τ0τ1tk + 2(τ20 − 2τ21)t
2
k + 2α2 + 2β2 + 2τ21 − 1

)
+ h.o.t.

]
(24)

The coefficients ck and dk are given by:

ck =
1

2πi

∮
γ

log(h(ξ))

(ξ2 − 1)1/2
dξ

(ξ − 1)k+1 (25)

dk =
1

2πi

∮
γ

log(h(ξ))

(ξ2 − 1)1/2
dξ

(ξ + 1)k+1 (26)

Hereafter, we refer the reader to (Opsomer, 2018; Opsomer & Huybrechs, 2023) for further detail
on the asymptotic expansions pertinent to modified Gauss-Jacobi weight functions.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B EXPERIMENT DETAILS

B.1 SOLVING PDES VIA LEARNQUAD

Below we describe the four PDEs used in the experimental results of Table 2.

B.1.1 DIFFUSION EQUATION

We consider the following one dimensional diffusion equation:

∂u

∂t
=
∂2u

∂x2
+ e−t

(
− sin(πx) + π2 sin(πx)

)
, x ∈ [−1, 1], t ∈ [0, 1], (27)

u(x, 0) = sin(πx), (28)
u(−1, t) = u(1, t) = 0, (29)

with domain [−1, 1] in space and [0, 1] in time. The exact solution to this diffusion equation is
given by u(x, t) = sin(πx)e−t, which is a smooth one and hence all methods as illustrated in Table
2 perform reasonably well. The model used in this case is a fully connected neural network with
hidden layers of width 32 and depth 3.

B.1.2 BURGER’S EQUATION

We consider the following Burger’s equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 1], (30)

u(x, 0) = − sin(πx), (31)
u(−1, t) = u(1, t) = 0, (32)

where ν is the viscosity of the fluid and u is the desired flow velocity. In our experiments, we have
used ν = 0.01/π which results in a non-smooth solution. The model used in this case is a fully
connected neural network with hidden layers of width 64 and depth 3.

B.1.3 ALLEN-CAHN EQUATION

The Allen-Cahn PDE considered in our experiments is as follows:

∂u

∂t
= D

∂2u

∂x2
+ 5(u− u3), x ∈ [−1, 1], t ∈ [0, 1], (33)

u(x, 0) = x2 cos(πx), (34)
u(−1, t) = u(1, t) = −1, (35)

We use a value of D = 0.001 as the diffusion coefficient in the PDE. The model used in this case is
a fully connected neural network with hidden layers of width 64 and depth 3.

B.1.4 WAVE EQUATION

We consider the following one dimensional wave equation:

∂u

∂t
= c2

∂2u

∂x2
, x ∈ [0, 1], t ∈ [0, 1], (36)

u(0, t) = u(1, t) = 0, t ∈ [0, 1] (37)

u(x, 0) = sin(πx) +
1

2
sin(4πx), x ∈ [0, 1] (38)

∂u

∂t
(x, 0) = 0, x ∈ [0, 1] (39)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

with c = 2, where c is the velocity of the wave. The solution in this specific choice demonstrates a
multi-scale behavior in both space and time dimension and is as follows:

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(4πx) cos(8πt) (40)

The model used in this case is a fully connected neural network with hidden layers of width 100 and
depth 5.

B.1.5 OTHER DETAILS

The number of parameters used for the learnable weight function in the LearnQuad module was
roughly 500 parameters in all cases. All neural networks were implemented using fully connected
layers with tanh as the activation function. All experiments were performed on a single NVIDIA
2080 Ti GPU. The number of epochs used for diffusion PDE was 100k while for Burger’s, Wave
and Allen-Cahn PDE they were run for 200k epochs. This was determined empirically based on
convergence of the L2 relative error. We used a learning rate of 1e-3. As noted in Algorithm 1,
one could either use a noise sampled from the standard normal or the PDE specific parameters as
an input to the learnable quadrature module and results are not too different, but slightly better on
using standard normal noise as input. We find jointly optimizing both the LearnQuad and solution
model provides very good performance without the need for a sophisticated min-max optimization
scheme. The L2 relative error reported in the paper is computed as the following:

L2error =
||uθ − u||2

||u||2
(41)

Here, uθ is the learned solution function and u is the “ground truth” solution. In a small number
of cases where the true solution is available in a closed form we use that as u or we use u to be a
numerical solution achieved using a traditional numerical scheme (finite difference). In any case, the
test error is evaluated on a uniform grid of a much higher density (10x) than the number of points
used in the training scenario. We emphasize that the “ground truth” solution is not used in any form
during the training period.

B.1.6 PERFORMANCE OF LEARNQUAD

We enumerate the performance of LearnQuad with increasing number of points in three different
PDEs, (outlined previously) in Table 4. As expected, the performance in terms of L2 relative error
improves on increasing the number of points. Note that the solution to the diffusion equation is very
smooth and hence even a very small number of points can lead to very good performance.

Diffusion Equation Allen-Cahn Equation Wave Equation
No. of Points L2 Error No. of Points L2 Error No. of Points L2 Error

20 0.0013 200 0.017
25 0.0007 200 0.0444 500 0.0076
30 0.0004 700 0.0331 1500 0.0064
35 0.0003 2500 0.0052
40 0.0002 1500 0.0280 3500 0.0044

Table 4: L2 Relative Error for Different PDEs with varying number of points used by LearnQuad.
Performance improves on increasing the number of points as expected.

B.1.7 PERFORMANCE OF LEARNQUAD WITH VARYING HYPER-PARAMETER

We investigate the performance of LearnQuad with varying the hyper-parameters of α and β in
the modified Gauss-Jacobi weight function from (equation 10). We report the test performance in
terms of the relative L2 relative error in Table 5. We observe minor variations in the performance of
LearnQuad based on the choice of these hyper-parameters.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(α, β) Diffusion Wave Convection
(2, 2) 0.0004 0.0058 0.7299
(3, 3) 0.0005 0.0056 0.7163
(1, 2) 0.0004 0.0065 0.7207
(2, 1) 0.0006 0.0044 0.7323
(10, 10) 0.0007 0.0062 0.6774

Table 5: L2 Relative Error for Different PDEs with varying α and β in the modified Gauss-Jacobi
weight function used by LearnQuad. We observe there are minor variations based on the choice of
these hyper-parameters.

B.2 SOLVING HIGH DIMENSIONAL PDE

We consider the following high-dimensional Poisson equation.

−∆u = −200, x ∈ (0, 1)100 (42)

u(x) =

100∑
i=1

x2i , x ∈ ∂(0, 1)100 (43)

which is in a 100 dimensional space with the true solution being u(x) =
∑100

i=1 x
2
i . As mentioned in

Section 6.1 this is very smooth solution and hence both adaptive and non-adaptive methods perform
equally well. This experiment, demonstrates that LearnQuad is not restricted to low dimensional
problems. We used a fully connected neural network with hidden layers having a depth of 3 and
width of 100 as the solution model with tanh as the activation function. We used 1000 points in
100 dimensions. For this problem, our training took 18 seconds to converge in 300 epochs. After
this, evaluating the trained model on any given resolution takes 0.0065 seconds. The test errors were
computed with respect to the true analytical solution which is readily available in this case.

B.3 SOLVING PDES IN STRONG, WEAK AND ENERGY FROM VIA LEARNQUAD

We describe empirical evaluations of our proposed framework using LearnQuad. We show results
for solving a single given PDE via all three main approaches: (a) the strong form, (b) weak form
and (c) minimum principle.

(A) Numerical experiments with Strong Form. We begin by deploying our learnable quadrature
first in solving PDEs via the strong from described in §3. We consider two operators: (a) 1D-
Laplace and (b) d2

dx2 +
d
dx . For each of these operators, we consider two different non-homogeneous

conditions. As shown in Fig. 6, the results of the predicted and true solution function u coincide
exactly in all four cases. Both the domain and boundary loss are of the order of e-5, the same as the
baseline (PINN). (Raissi et al., 2019).

For the 1D-Laplace operator, we use the following two functions as the non-homogeneous terms:

f(x) = 2− sin(x) + 60x− 2((cos(x))2 − (sin(x))2) (44)

f(x) = 90(x8)− (4π2) sin(2πx)− (4π2) cos(2πx) (45)

For the 1D operator d2

dx2 + d
dx , we use the following two functions:

f(x) = 3x2 + 2πx cos(πx2) +
1

2
+ 6x+ 2π cos(πx2)− (4πx2) sin(πx2) (46)

f(x) = 3x2 + 6πx cos(3πx2) +
1

2
+ 6x+ 6π cos(3πx2)− 36π2x2 sin(3πx2) (47)

Remark B.1. Using Monte Carlo based sampling to solve PDEs (as in PINNs) can have undesirable
outcomes when dealing with irregular boundary, hence adaptive quadrature methods have been pro-
posed very recently (Omella & Pardo, 2024). Our method is data-driven does not suffer from such
challenges since the quadratures are adaptive by design.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: True/Predicted solution functions. 2 right-most two plots for 2 different conditions on the
1D-Laplace operator. 2 left-most two plots for solutions to 2 settings for the operator d2

dx2 + d
dx

Figure 7: Comparison of solution curves obtained via the proposed learnable method and baseline
method of Deep Ritz. Both methods perform equally well.

(B) Numerical experiments with Weak Form. We next apply our learnable quadratures to solve
PDEs written in their weak form as described in §3. Here, we consider the following two 1-D
operators: (a) 1D-Laplace and (b) d2

dx2 − d
dx . Similar to the strong form, we present results for two

different conditions for each operator. Again, we see from Fig. 8 that, the predicted and true solution
function in all cases coincide almost exactly. In terms of the domain and boundary loss, these are of
the same order of e−3 as the baseline method of hp-VPINN (Kharazmi et al., 2021).

Since the weight functions can be global, in using them as test functions to solve the weak form,
we can end up with a global test function. Avoiding this is possible via several schemes: one could
either choose a multitude of such test functions or simply use sub-domain splitting as suggested in
hp-VPINN over VPINN Kharazmi et al. (2019). Due to its simplicity, we choose the latter in our
experiments.

For the 1D-Laplace operator, we use the following two functions as the non-homogeneous terms:

f(x) = 2− sin(x) + 60x− 2(cos2(x)− sin2(x)) (48)

f(x) = 90(x8)− 4π2 sin(2πx)− 4 ∗ π2 cos(2πx) (49)

For the 1D operator d2

dx2 − d
dx , we use the following two functions:

f(x) = 6x+ 2π cos(πx2)− 4πx2 sin(πx2)− (3x2 + 2πx cos(πx2) +
1

2
) (50)

f(x) = 6x+ 6π cos(3πx2)− 36π2x2 sin(3πx2)− (3x2 + 6πx cos(3πx2) +
1

2
) (51)

Remark B.2. For solving PDEs in their strong and weak forms as presented above, we adopt a two
stage training scheme. In the first stage, the asymptotic quadrature is learned and in the second stage
these learned quadratures are used to either provide orthogonal collocation points in the strong form
or test function(s) for the weak form. Our overall procedure is otherwise unchanged.

(C) Energy Method. We now demonstrate the utility of learnable quadrature for solving a PDE
where the loss function is derived based on the minimum energy principle.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: True/Predicted solution functions. 2 right-most two plots for 2 different conditions on the
1D-Laplace operator. 2 left-most two plots for solutions to 2 settings for the operator d2

dx2 − d
dx

We consider the 2D-Laplace equation: ∆u = −100 with zero boundary conditions on a square
domain: [−1, 1]× [−1, 1]. In the energy form, the loss function has the form

L(u) =

∫ ∫
Ω

(
1

2
|∆u|2 − fu

)
dxdy + β

∫ ∫
∂Ω

u2dxdy (52)

where β is a penalty term on the second component denoting the boundary loss. The first compo-
nent is the loss on the domain. We use our learnable quadrature to approximate both integrals in
equation 52 and compare the solution obtained with the baseline method of Deep-Ritz (Yu et al.,
2018) with same number of parameters, running each for roughly 400 epochs. As can be seen from
Fig. 7, our method achieves comparable performance, with approximate loss value −2000 in both
case.

Remark B.3. Since our proposed method is, in essence, a data-driven way to sample points, it
shows its utility in solving PDEs via all three formulations as demonstrated above, where the basic
framework remains the same. In the strong form, it provides orthogonal collocation points. In the
weak form, it provides test functions (which induce the quadrature rules). Finally, in the energy
form it is used to directly provide a quadrature rule.

B.4 FAMILY OF PDE VIA LEARNQUAD

We specify the details of the family of PDEs which were solved using LearnQuad and the procedure
outlined in 6.2. The overall algorithm is presented in Algorithm 2.

In all experiments, we used 500 parameters each for the hyper-networks predicting the weight func-
tion and solution function as outlined in Section 6.2. Specifically, we used a MLP-based neural
network with depth 5; width 100 and tanh as the activation function.The number of parameters to
encode the actual solution function were kept smaller than 20. Using a learning rate of 0.0001, in
all cases, the methods took less than 10k epochs to converge. For each family, we sampled 100
instances of the PDE and used a train/test split of 80/20. We used 600 points as a standard number
of points to sample from LearnQuad.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Family corresponding to p ∼ U(1, 2.5)

(b) Family corresponding to p ∼ U(1, 4.0)

Figure 9: Test results for solving PDEs from two different family each with 1-D Laplace operator.
The second family 9(b) has more variance than the first. In all cases, the predicted solution almost
coincides with the original solution

Algorithm 2 Training for a family of PDEs
1: Input: Operator L; distribution p; parametric form of forcing function F and boundary/initial

conditions B. #epochs: T , Training size: n, Learnable modules θ, ϕ; PDE Loss function L and
regularization loss lw equation 20

2: Compute: Generate Training Set, S = {}
3: for i = 1 to i = n do
4: Sample κ ∼ p
5: Get fκ from F , Get bκ from B
6: S.append(κ, fκ, bκ)
7: end for
8: Compute: Training Loop
9: for i = 1 to i = T do

10: for each (κ, fκ, bκ) ∈ S do
11: Get wκ and {τ0, τ1, c0, d0, d1}κ from θ(κ)
12: Get uκ from ϕ(κ)
13: Use §5 to get quadrature nodes {xl}κ
14: Loss:l = L({Luκ(xl)}κ, {fκ(xi)}κ) + lw
15: Gradient based update for θ and ϕ based on l
16: end for
17: end for
18: Output: Learned modules θ and ϕ

B.4.1 FAMILY OF LAPLACE EQUATION

Here, we consider the 1D-Laplace operator which has the following parametric representation for
the non-homogeneous function:

fκ(x) = −(aπ2µ2 sin(πµx) + bπ2ν2 cos(πνx)) (53)

where, κ = {a, b, µ, ν} belong to different distribution. In our experiments, we choose these dis-
tributions as uniform, but our method can handle any distribution. In Figure 9 we show the perfor-
mance on the test set. It can seen that the predicted solution is very close to the true solution.

B.4.2 FAMILY OF HEAT EQUATION

We consider the one dimensional heat equation and sample the heat diffusivity, c; initial distribution,
f ; and two boundary conditions, Tl and Tr. The PDE along with initial and Dirichlet boundary

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of heat equation using (54)-(57) and (59)

conditions is given as follows:

∂u

∂t
= c2

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 2] (54)

u(−1, t) = Tl, t ∈ [0, 2] (55)
u(1, t) = Tr, t ∈ [0, 2] (56)
u(x, 0) = f(x), x ∈ [−1, 1] (57)

We perform experiments, with two choices for the initial distribution:

f(x) = mx+ n (58)
f(x) = a sin(πθx) + b cos(πϕx) (59)

We present a visualization of the true (numerical) solution obtained using the same number of do-
main points as LearnQuad, the predicted solution and their relative error in Figure 10.

B.4.3 FAMILY OF WAVE EQUATION

We consider the 1D wave equation and sample the wave speed, c and the initial position, f and
velocity, g. The PDE along with initial conditions is given below:

∂2u

∂t2
= c2

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 2] (60)

u(x, 0) = f(x), x ∈ [−1, 1] (61)
∂u

∂t
(x, 0) = g(x), x ∈ [−1, 1] (62)

We perform experiments, with the following two sets of initial conditions:

f(x) = mx, g(x) = a+ x; x ∈ [−1, 1] (63)
f(x) = mx+ n, g(x) = a sin(πθx) + b cos(πϕx); x ∈ [−1, 1] (64)

We present visualization of the true (numerical) solution obtained using the same number of domain
points as LearnQuad, the predicted solution and their relative error in Figure 11 and Figure 12.

B.4.4 FAMILY OF ADVECTION EQUATION

We consider the one dimensional advection equation and sample the advection speed, c and the
initial position f . The PDE along with the initial conditions is given by:

∂u

∂t
+ c

∂u

∂x
= 0, x ∈ [−1, 1], t ∈ [0, 2] (65)

u(x, 0) = f(x), x ∈ [−1, 1] (66)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of wave equation using (60)-(62) and (63)

Figure 12: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of wave equation using (60)-(62) and (64)

We conduct experiments with the two following choices for the initial displacement:

f(x) = mx+ n, x ∈ [−1, 1] (67)
f(x) = a sin(πθx) + b cos(πϕx), x ∈ [−1, 1] (68)

We present visualization of the true (numerical) solution obtained using the same number of domain
points as LearnQuad, the predicted solution and their relative error in Figure 13 and Figure 14.

Figure 13: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of advection equation using (65)-(66) and (67)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 14: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of advection equation using (65)-(66) and (68)

Figure 15: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of viscous Burgers’ advection equation using (69)-(72) and (73)

B.4.5 FAMILY OF BURGER’S EQUATION

We consider the one dimensional viscous Burgers’ equation which is a non-linear PDE. We sample
the diffusivity coefficient, c; initial velocity distribution, f ; and the two boundary conditions, Tl and
Tr. The PDE along with the initial and boundary conditions is given by:

∂u

∂t
+ u

∂u

∂x
= c2

∂u

∂x2
, x ∈ [−1, 1], t ∈ [0, 2] (69)

u(−1, t) = Tl, t ∈ [0, 2] (70)
u(1, t) = Tr, t ∈ [0, 2] (71)
u(x, 0) = f(x), x ∈ [−1, 1] (72)

We consider the following two different choices for the initial condition:

f(x) = m, x ∈ [−1, 1] (73)

f(x) = a exp−bx2

, x ∈ [−1, 1] (74)

We present visualization of the true (numerical) solution obtained using the same number of domain
points as LearnQuad, the predicted solution and their relative error in Figure 15, Figure 16 and
Figure 17.

C ADDITIONAL DISCUSSIONS

C.1 PINNS AND CLASSICAL SOLVERS

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 16: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of viscous Burgers’ equation using (69)-(72) and (74)

Figure 17: (Left)True solution, (Center) Predicted solution and (Right) Relative error for an instance
from the test set of the family of viscous Burgers’ equation using (69)-(72) and (74)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Our proposed method is not designed to compete with classical solvers. While for simple problems,
classical methods are indeed effective, one motivation behind the sizable PINN literature is an alter-
native which is advantageous in many scenarios: (a) PINN based solutions are mesh-independent;
(b) they rely on automatic-differentiation which are easier to implement; and (c) can handle non-
linearity effectively given the universal function approximation properties of neural networks. We
note that PINN based methods never use “classical solution” as the ground truth in the training pro-
cedure at all. It is only used to evaluate a test time performance metric. This is needed in cases
where the PDE solution is not given in a closed form, which is true for most scenarios.

C.2 PINN LOSS OVER PDE SOLVER

Our object of interest in this work is PINN. PINNs provide a mesh independent solution, are more
amenable to non-linearities and are easier to scale and implement. Hence, PINNs offer many benefits
in several cases and for this reason, are being studied extensively. Next, we justify our choice of
PINN loss instead of a PDE solver.

While the learnable quadrature rule is amenable for classical solvers, there are several issues. Sup-
pose we use a classical solver instead of a PINN loss. This means that for each update of parameters
θ in leanrable weight functionwθ (which induces the quadrature) we will need to (i) generate quadra-
ture points using current wθ, (ii) solve the system of equations (either implicitly using a solver or
iteratively), (iii) compute some loss/quality and (iv) update θ to improve this metric. This poses sev-
eral challenges. Explicit (iterative) solvers are memory-intensive when unrolling across time steps,
sensitive to numerical instabilities, thereby requiring fine time steps and increased computational
cost. When differentiating through a numerically unstable solver, the gradients can become inaccu-
rate or blow up. Implicit solvers demand solving linear or nonlinear systems. Computing Jacobians
for implicit differentiation requires significant computational resources. Furthermore, matrix in-
version or solving linear systems as part of implicit differentiation introduces high computational
overhead. Hence, we can agree that integrating PDE solvers into neural network modules presents
challenges for both explicit and implicit solvers due to the above mentioned issues in computing
gradients which are necessary to update the models via back-propagation. Therefore, in order to
make learnable quadrature feasible – the main goal of this work – we leverage the PINN loss which
is more suited for the end-to-end learning framework.

Another aspect worth mentioning is regarding the setup for a family of PDEs. Without a scheme to
learn the common structure shared between different instances of the PDE, it would require solving
each instance separately at each desired resolution. To conclude, the choice of the loss is important
not for solving individual PDEs, but for permitting the learning of quadrature rules that can then be
used across multiple problems/solution schemes.

C.3 CONTRAST WITH OTHER ADAPTIVE METHODS FOR PINNS

Our main contribution is not just solving PDEs, but learning how to optimally sample points based
on the PDE’s structure. We emphasize that advantages stem directly from our core theoretical con-
tribution: the learnable weight function that induces problem-specific quadrature rules. This is fun-
damentally different from both classical adaptive methods and other existing ML approaches like
R3Daw et al. (2023), RARLu et al. (2021), RADWu et al. (2023); all of whom invariably rely on
computing error estimates through residual-based estimators or gradient thresh-holding which are
problem-specific, need to be chosen carefully, and sometimes may need to solve additional local
problems. Instead we adaptively learn where refinement may be needed in an end-to-end fashion in
conjunction with the PINN loss and no additional explicit error estimation is required.

24

	Introduction
	Preliminaries
	Strong and Weak Forms
	How to learn Quadrature Rules?
	Learning Quadrature Rules Efficiently
	Instantiating Asymptotic Expansions
	Simplifications, Assumptions and Implementation

	Experimental Evaluations
	Solving PDEs using LearnQuad
	Solving a family of PDEs via LearnQuad

	Related Work
	Conclusions
	Asymptotic Expansion
	Experiment Details
	Solving PDEs via LearnQuad
	Diffusion Equation
	Burger's Equation
	Allen-Cahn Equation
	Wave Equation
	Other Details
	Performance of LearnQuad
	Performance of LearnQuad with varying hyper-parameter

	Solving high dimensional PDE
	Solving PDEs in strong, weak and energy from via LearnQuad
	Family of PDE via LearnQuad
	Family of Laplace Equation
	Family of Heat Equation
	Family of Wave Equation
	Family of Advection Equation
	Family of Burger's Equation

	Additional Discussions
	PINNs and Classical Solvers
	PINN loss over PDE solver
	Contrast with other adaptive methods for PINNs

