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ABSTRACT

The primary objective of brain—computer interfaces (BClIs) is to establish a direct
connection between neural activity and external devices. However, variability in
neural recordings poses significant challenges to maintaining stable neural decod-
ing with minimal recalibration. Existing neural decoding frameworks often fail
to enable efficient few-shot adaptation, typically due to the constraints imposed
by prior assumptions on latent variables or issues with training instability. Moti-
vated by the flexibility and tractability of diffusion models, we propose the novel
Dynamical Latent Flow Matching (DLFM) framework for high-performance few-
shot neural adaptation. Our DLFM performs flow matching in dynamical latent
spaces, leveraging preserved neural dynamics within the neural manifold. The
probabilistic flexibility of DLFM effectively captures intrinsic features of dynam-
ical patterns across heterogeneous sessions, significantly enhancing few-shot neu-
ral adaptation. The efficiency of DLFM for few-shot adaptation is validated on the
Falcon benchmark, achieving competitive performance with only 60% calibration
trials. Further experimental evaluation on the Neural Latents Benchmark 2021
demonstrates that DLFM ranks among the top two for forward prediction tasks
across all web submissions. Additional interpretability analysis on the Lorenz
attractor model and the Falcon dataset confirms that DLFM precisely identifies
the intrinsic features of neural dynamics, thus facilitating efficient few-shot neural
adaptation for neural decoding. Our DLFM framework emerges as a promising
candidate for superior few-shot neural adaptation, advancing the practicality of
real-world BCI systems.

1 INTRODUCTION

The goal of brain-computer interfaces (BCIs) is to establish a direct connection between the brain
and external devices, offering promising avenues for neural rehabilitation in individuals with paral-
ysis (Willett et al.l 2021} [Metzger et al.l |2023; |Willett et al., [2023). Nevertheless, variability in
neural recordings, arising from physiological changes (Athalye et al., | 2017) or device degrada-
tion (Woeppel et al.,|2021), poses significant challenges to maintaining reliable decoding over time.
Consequently, stable and high-performance neural adaptation is critical for maintaining long-term
decoding with minimal recalibration (Karpowicz et al., 2024)) in real-world BCI deployments. Self-
supervised learning (Schneider et al., [2023) with Variational Autoencoders (VAEs) (Azabou et al.,
20215 Schimel et al.l 2022; [Liu et al.l 2021)) and transformer-based neural foundation models (Ye
& Pandarinath, 2021} [Zhang et al., |2024; 2025) have been shown to extract latent variables from
heterogeneous neural recordings, enabling practical BCI adaptation (Rafiei et al., [2022).

However, the performance of VAE- and transformer-based frameworks often deteriorates under few-
shot neural adaptation with minimal recalibration. For example, the VAE-based Latent Factor Anal-
ysis via Dynamical Systems (LFADS) (Pandarinath et al., 2018])) exhibits a pronounced performance
decline under limited fine-tuning, with regression scores dropping below zero for five trials, as illus-
trated in Fig.[I[a). This may be attributed to the prior assumptions imposed on latent variables (Liu
et al.| 2025)), which result in negative transfer shown in Fig. Ekb). Furthermore, the transformer-
based foundation model MtM (Zhang et al.| [2024)) shows a reduced bits-per-second (bps) with few
shots for high-dimensional prediction tasks, as depicted in Fig.[T[(c). This issue stems from the train-
ing instability, as shown in Fig.[T|d), owing to both its large parameterization (Lai et al.| 2022; Yang
et al.l |2024) and deterministic forecasters (Liu et al.,[2025).
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Figure 1: (a) The performance of LFADS on behavioral decoding across sessions with decreased
fine-tuning trials. (b) Representative validation R? curves of LFADS across four different seeds on
target sessions using 5 trials. (c) The bits-per-second (bps) performance of MtM on intra-region
prediction across sessions varying with fine-tuning trials. (d) Representative validation loss curves
of MtM using 30 fine-tuning trials.

This necessitates the development of a novel adaptation framework capable of learning flexible la-
tent variable distributions through probabilistic generation. Motivated by the flexibility and tractabil-
ity of diffusion models (Sohl-Dickstein et al., 2015)), we propose performing flow matching in the
dynamical latent space to capture stable dynamical patterns, thereby facilitating efficient few-shot
adaptation. This flow matching framework is applicable in the neural dynamical latent space be-
cause preserved neural dynamical patterns persist across different individuals or sessions on low-
dimensional manifolds (Safaie et al.,[2023; |Abbaspourazad et al.,|2024).

Building on this concept, we introduce a novel neural decoding framework, Dynamical Latent Flow
Matching (DLFM), which performs flow matching in the dynamical latent space by leveraging stable
dynamical patterns within the neural manifold. The probabilistic flexibility of flow matching (Sohl-
Dickstein et al., [2015)) enables the learning of arbitrary distributions of dynamical patterns without
prior assumptions, thereby enhancing transferability across heterogeneous sessions. Moreover, the
tractable likelihood of flow matching allows parameter-efficient fine-tuning, contributing to the sta-
ble alignment under few-shot conditions. The efficacy of few-shot neural adaptation with DLFM
is validated on the Falcon benchmark (Karpowicz et al.,|2024), achieving competitive performance
using only 60% of original calibration trials. The neural decoding performance of our DLFM frame-
work is further comprehensively evaluated on the Neural Latents Benchmark 2021 (NLB21) (Pei
et al.| [2021), achieving a top-two ranking in the forward prediction tasks among all web submis-
sions (Pei et al., 2021). Additional interpretability analysis on the Lorenz attractor model and the
Falcon dataset confirms that DLFM precisely identifies the intrinsic features of neural dynamics,
thus facilitating efficient few-shot neural adaptation for high-dimensional decoding.

Our DLFM stands as a promising framework for high-performance few-shot neural adaptation, ad-
vancing the practicality of real-world BCI systems. The main contributions of this paper are sum-
marized as follows:

* Dynamical Latent Flow Matching: We propose a novel neural decoding framework based
on flow matching in the dynamical latent space, which effectively captures stable features
of dynamical patterns across heterogeneous sessions.

* Efficient Few-shot Neural Adaptation: The probabilistic flexibility and tractable likeli-
hood of DLFM enable efficient alignment of dynamical latent patterns, attaining top-two
ranking in forward bps on NLB21 and maintaining competitive performance on Falcon
with only 60% of original calibration trials.

* Experimental Validation: We conducted extensive evaluations of DLFM on both syn-
thetic and real neural datasets, demonstrating its superior performance in few-shot neural
adaptation for high-dimensional neural decoding.

2 RELATED WORK

2.1 NEURAL ADAPTATION THROUGH SELF-SUPERVISED PRE-TRAINING

Neural adaptation is commonly achieved through self-supervised pre-training on heterogeneous neu-
ral recordings. VAE-based frameworks (Liu et al., 2021} |Schimel et al., | 2022) learn Gaussian latent
variables, realizing tractable probabilistic computation. For example, LFADS |Pandarinath et al.
(2018)); [Karpowicz et al.| (2025) employs sequential VAEs to obtain low-dimensional latent dynam-



ics from high-dimensional spike trains. In addition, neural foundation models have been proposed
to extract shared latent variables from heterogeneous neural recordings (Jaegle et al., 2022; /Azabou
et al., 2023 [2025; Ryoo et al., [2025} [Le et al., 2025) for neural adaptation. Several recent works
are built on the neural data transformer (NDT) (Ye & Pandarinathl 2021) and its variants (Le &
Shlizerman, 2022} Ye et al., [2023;|2025). MtM (Zhang et al., 2024; [2025) explores diverse mask-
ing schemes for multi-modal neural datasets. To address their decoding degradation of the above
approaches under few-shot conditions, we propose a novel dynamical flow matching framework
(DLFM) for efficient few-shot adaptation.

2.2 FLOW MATCHING

Flow matching (Lipman et al., [2022; [Liu et al., 2022} [Peebles & Xie, 2023} |Geng et al., [2025)
extends diffusion models by directly learning a velocity field that guides the transformation from
noise to data. It achieves better efficiency for generation than that of denoising diffusion mod-
els (Tong et al., |2023)). Conditional flow matching (Liu et al.,2023)) further incorporates conditional
features to control the generation process and has been applied in domains such as cell dynamics
simulation (Atanackovic et al., [2025) and foundation models for time series (Liu et al., 2025). In
the context of neural recordings, such models have been employed for data augmentation (Kapoor
et al., 2024) by generating realistic synthetic neural activities. Furthermore, diffusion models have
also been applied to align the latent dynamics between sessions and subjects (Wang et al.l [2023).
In this work, we employ conditional flow matching for self-supervised pre-training and few-shot
neural adaptation, where its potential application in few-shot decoding remains underexplored.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We define the spiking signal dataset for self-supervised pretraining and few-shot neural adaptation
as D = {(z1,11),. .., (Tn,yn)}, where each x;(t) (for t = 1,2,...,m;) represents a raw signal
segment of length m;. The segments are recorded from one or multiple sessions, typically divided
by trials or short-time context windows. Each z;(t) € R!, where [ denotes the number of recording
channels. The behavioral variables such as cursor velocities associated with x;(¢) are denoted as
yi(t) € R?, where d represents dimensionality. For convenience, we omit the subscript i and
denote the segment and its behavioral variable by z(¢) and y(t), respectively. Based on the dataset
D, we define pre-training datasets as D), = {(z7,¥7),..., (2} ,y% )}, and fine-tuning datasets as

Dy = {(:c{ , y{ Yy ooy (zf - vl ;)1 respectively. Similarly, we omit the subscript i and denote the
segments and their corresponding behavioral variables as P and y? for the pre-training dataset, and
x and y7 for the fine-tuning dataset, respectively.

3.2 OVERALL FRAMEWORK

In this work, we propose a novel DLFM framework that first incorporates conditional flow matching
in the dynamical latent space for efficient few-shot neural adaptation. The proposed DLFM aims
to capture features of dynamical patterns guided by conditional variables from spike trains. We
introduce a coarse-to-fine refinement of noisy latent variables through flow-based generation, aiming
to recover the underlying dynamical latent structures. The resulting dynamical latent variables are
subsequently used to reconstruct raw spike trains and to perform downstream decoding tasks. Our
DLFM exhibits superior performance in few-shot neural adaptation for decoding high-dimensional
neural activity.

Building upon the aforementioned architecture, the DLFM framework comprises the two phases:
self-supervised pre-training and parameter-efficient fine-tuning, as illustrated in Fig.[2| During the
pre-training phase, the target dynamical latent space for flow matching is first constructed using an
autoencoder. Conditioned on the features extracted from masked neural signals, dynamical latent
flow matching performs a flow-based coarse-to-fine conditional reconstruction, mapping noisy latent
variables to the target dynamical latent space. During the fine-tuning phase, the parameter-efficient
fine-tuning is applied to the conditional network, achieving stable alignment of dynamical latent
variables. The variables obtained have been validated to effectively capture the stable features of



dynamical patterns underlying neural populations, as verified by the Lorenz attractor in the subse-
quent sections. The overall framework of DLFM is depicted in Fig. [2| and will be detailed in the
following. Further detailed architectures are provided in Section
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Figure 2: Workflow of the Dynamical Latent Flow Matching (DLFM) for few-shot neural adapta-
tion. DLFM operates in two phases: (1) pre-training, where dynamical latent variables are captured
via conditional flow-based generation, and (2) fine-tuning, where the conditional distribution of tar-
get latent variables is efficiently aligned.

3.2.1 DLFM-BASED SELF-SUPERVISED PRE-TRAINING

Target Dynamical Latent Space Flow matching (Lipman et al., [2022)) typically adopts the {3 norm
to achieve consistency between generated and target variables. However, due to the inherently
stochastic nature of neural recordings, directly applying deterministic loss functions in the origi-
nal high-dimensional space often fails to capture this variability (Liu et al., [2025). To address this,
we propose optimizing the target dynamical latent space of flow matching using the Poisson neg-
ative log-likelihood (PNLL) loss (Kapoor et al., 2024). This target dynamical latent space enables
efficient reconstruction of Poisson-like spike trains from flow-based latent variables trained with de-
terministic loss functions. The target latent space is trained before flow matching and remains fixed
during the following training.

Specifically, we construct the target dynamical latent space (Rombach et al.|[2022) using an autoen-
coder with the encoder E,, (parameterized by 7) and the decoder R (parameterized by /). The
autoencoder is trained by minimizing the following PNLL loss over raw signal samples z” from the
pre-training dataset:

> {Rp (By(a? (1)) — 2P (1) © log [R (Ey (27 (1)))]} , (1)

where © indicates element-wise multiplication. E, (2P (t)) is the target dynamical latent variable,
corresponding to ¥ (¢). With the behavioral variable y”(¢) and E, (zP(t)), a behavioral decoder G,
(with parameters <) is trained in a supervised manner.

Conditional Feature Extraction After learning the target dynamical latent space, conditional vari-
ables are extracted from masked neural recordings to perform self-supervised pre-training. To cap-
ture temporal evolution in the dynamical latent space of DLFM, conditional features are learned
utilizing an autoregressive architecture of transformers. Let the original signal be denoted by xP,
and the corresponding masked sample by 2P, which shares the same dimensionality as z”. The
network for conditional feature extraction is denoted as F, (with parameters o). The conditional
variable obtained is written as ¢? = F,(Z?), whose temporal length matches that of z?. In addi-
tion, the feature for each time step is denoted as c(t) € R¥<, where k. denotes its dimensionality.
Conditioned on ¢?(t), DLFM employs the flow-based generation to dynamical latent spaces for re-
constructing the input masked signal Z7(¢). Beyond masked reconstruction, this architecture can
be extended to other high-dimensional tasks such as next-token prediction by taking samples from
known time steps as input.

Flow Matching in Dynamical Latent Space Guided by ¢”(t), we establish dynamical latent flow
matching for masked reconstruction of P (t). Flow matching typically starts from Gaussian noise
and iteratively evolves toward the target latent space, following a continuous generation path gov-
erned by ordinary differential equations (ODEs) (Lipman et al., |2022)). To better capture dynamical



latent patterns, we propose performing flow matching at each time step, focusing on ZP(t) rather
than the entire sequence Z?. Dynamical evolution information is obtained from ¢ (¢), providing the
foundation for generating the dynamical latent space.

We further denote the dynamical latent variable of flow-based generation conditioned on ¢ (t) as
2P (7). Note that 7 denotes the iteration step along the continuous generative trajectory, rather than
the actual time step ¢ of neural spiking activity. For computational convenience, we normalize 7 to
the range [0, 1]. The flow-based generation of DLFM begins with a Gaussian latent variable 27 (0)
and evolves towards z¥ (1), which is trained to approximate the distribution of target dynamical vari-
ables E, (2P (t)). The velocity field of this flow-based generative path along = (7) is parameterized
by a neural network Vg, where € denotes the learnable parameters. The evolution of our dynamical
latent variables 27 (7) over 7 € [0, 1] is governed by the following ODE:

d2P (T
% = Vo (2 (1),c"(t), 7). ()
-
Here, P (t) refers to the conditional variables extracted from the input masked sample ZP.

During training, z¥'(7) can be explicitly obtained by the linear interpolation between the starting
point and the endpoint as 22 (1) = (1 — 7)27(0) 4+ 727 (1). Here, 2¥(0) is initialized with Gaussian
noises, and z; (1) = E,(zP(t)). Moreover, the training of flow matching network Vg aims to
approximate the derivative of latent variables along the flow-based generative path, i.e., z;(1)—2z(0).

We further define the training loss function Lgy, (v, 8) for flow-based networks as follows,

By pz20)).a(z2 1)) |[Vo (20 (1), P (t), ) — (2 (1) — 2 (0)) 3)

Here, the conditional variable cP(t) = F,(zP)[t]. p(2F(0)) and g(2 (1)) denote marginal distribu-
tions of the initial and final dynamical latent variables along the flow-based generative path. During
inference, as the target dynamical latent variable is not directly accessible, dynamical latent variables
are inferred by traversing the flow-based generative trajectory conditioned on the extracted features.
Specifically, at 7 = 0, the dynamical latent variable 2 (0) is initialized with Gaussian noises. During
the flow-based evolution governed by the ODE in Eq. (2)), numerical solvers such as Euler’s method
or Runge—Kutta schemes are employed to obtain z¥(1). This dynamical latent feature then serves
as input to either the spiking decoder Rg or the behavioral decoder G, for high-dimensional neural
decoding.

I

3.2.2 DLFM-BASED PARAMETER-EFFICIENT FINE-TUNING

During the fine-tuning phase, we propose the parameter-efficient fine-tuning utilizing the fixed flow-
based generative trajectory. Corresponding to the ODE-based transformation of dynamical latent
variables in Eq. (2)), the continuous evolution of their conditional distributions can be derived by the
Fokker—Planck equation (Lipman et al.,[2022). We define the conditional distribution of dynamical
latent variables along the pre-trained generative path as p, (27 (7)|cP(t)). Its evolution with respect
to 7 can be expressed as:

Ipr (24 (1)|cP (1))
or

Leveraging this probabilistic tractability, the stable transformation path from Gaussian distributions
to dynamical latent variables can be established under fixed Vy and conditional variables drawn
from similar distributions.

==V (pr( (1)|"(£)) Vo (2 (7), Fa(2"), 7)) . )

Therefore, we first fine-tune the encoder E,, while keeping the decoders Rz and G, fixed on the fine-
tuning dataset D. This step ensures a consistent mapping to the behavioral space, providing a coarse
alignment of the target dynamical latent space. Then, we propose to fine-tune the conditional feature
extractor F,, while keeping V, fixed to align the conditional variables c¢(t). Since Vg provides
a stable flow-based distribution transformation, aligning c¢(t) can be approximately interpreted as
maximizing the likelihood of the dynamical latent variable distributions on Dy. We thus minimize
Letm () using z/ to maximize the likelihood, which can be approximately regarded as minimizing
the KL divergence between the source and target dynamical latent spaces, as follows:

min Lot (0) % maxlogpr (=f (]! (1)) ~ min Da (p1(=f Dle! (1)) | o1 (FWIS(0)) - 5)



This fine-tuning strategy enables stable alignment of dynamical latent spaces under few-shot con-
ditions, owing to parameter-efficient optimization of the mean squared error-based L.t,,, as shown
in Table[ST0] The stable features of dynamical patterns is validated through the visualization analy-
sis presented in Section[4.5] The overall learning procedure of DLFM is presented in Algorithm [T}

Algorithm 1 Dynamical Latent Flow Matching (DLFM)

Input: pre-training dataset D), or fine-tuning dataset Dy; training phase phase_m
Output: F, Vg, autoencoders E,,, R, behavioral decoder G ;

. Initialize/Load pre-trained F,, Vg, E;;, R, G,
Target Dynamical Latent Space:
if phase_m is pre-training: then
Update E,;, R via Eq. (I); Update G, using behavioral variables from the dataset;
else if phase_m is fine-tuning: then
Update E,; via Eq. (I) and behavioral variables from the dataset;
end if
Conditional Feature Extraction & DLFM
9: for iter = 1 t0 nyphase.m do
10:  Sample x from the dataset, obtain  and c;
11:  Sample t, 7, z,(0) ~ N(0,1), z(1) = E, (x(t));
12:  if phase_m is pre-training: then Update F,, V via Eq. (3);
13:  else if phase_m is fine-tuning: then Update V via Eq. (3));
14: end for
15: return F,,, Vg, E,, Rg, G,

PPH?\H’.J?P.’!\.’:—‘

4 EXPERIMENTS AND RESULTS

4.1 COMPARATIVE EXPERIMENTS ON SIMULATED DATA

Experimental Setup We first conducted experiments on synthetic data to assess the performance
of DLFM in few-shot neural adaptation. Following (Kapoor et al.| 2024)), we employed the Lorenz
attractor as the latent dynamics. As illustrated in Fig. [3(a), firing rates were generated via an affine
transformation of 3D latent variables into a 96-dimensional space. The 50-time-step synthetic spike
trains were then sampled from a Poisson distribution. To further simulate the non-stationarity of
spike trains across sessions, we varied the mean firing rates (MFR) or randomly jittered channels
while keeping latent dynamics fixed, following the observations reported in (Degenhart et al., [2020)
and (Karpowicz et al., [2024).

NDT (Ye & Pandarinath, 2021) and LFADS (Pandarinath et al., 2018)) were selected as representa-
tive transformer- and VAE-based baselines, respectively. The few-shot adaptation performance was
evaluated using bits per spike (bps) [Pillow et al.| (2008) for high-dimensional spiking prediction.
The models were first pre-trained on synthetic data with a fixed MFR of 0.05, followed by few-shot
fine-tuning under varying target MFRs and jittered channels. Unless otherwise specified, the default
configuration employs 96 channels, 3 shots, and a target MFR of 0.02. The main hyperparameters
of DLFM were selected as detailed in Section [C.0.3}

Results Comparative bps results under varying percentages of jittered channels, shifts in MFRs, and
numbers of fine-tuning shots are presented in Fig. [3[b) (Left, Middle, Right), respectively. Each
result is averaged over five random runs. We observe that DLFM consistently achieves superior per-
formance under varying degrees of shift, demonstrating its efficiency in few-shot neural adaptation
on simulated neural data.

4.2 COMPARATIVE EXPERIMENTS ON NLB21

Experimental Setup We further evaluated the high-dimensional neural decoding performance of
DLFM after self-supervised pre-training on four single-session datasets from NLB21 (Pe1 et al.,
2021)), using Sms bin widths. A brief overview of these datasets is provided in both Section
and below:

dmfc_rsg: It contains spikes from the dorsomedial frontal cortex of a monkey during ready-set-go
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Figure 3: (a) Synthetic spike trains generated from an underlying Lorenz attractor using a Poisson
observation model. (b) Comparison of bits-per-spike (bps) performance among NDT, LFADS, and
DLFM as a function of percentage of jittered channels (Left), shift in mean firing rate (Middle), and
number of fine-tuning shots (Right).

timing tasks.

area2_bump: It records spikes from the somatosensory cortex of a monkey during a passive limb
perturbation task.

mec._rtt: It provides long-duration the primary motor cortex (M1) recordings from a monkey engaged
in a random target-reaching task.

mc_maze: It offers spikes from M1 as the monkey performs a maze-reaching task.

We compared DLFM with representative baselines for self-supervised representation learning of
spiking neural activity, including: (1) STNDT (Le & Shlizerman, |2022), a spatiotemporal trans-
former model; (2) S5 (Smith et al.l 2023)), which leverages simplified state-space dynamics; (3)
AESMTE3 (Ye & Pandarinath, 2021}, a transformer-based ensemble approach; and (4) AutoL-
FADS (Sedler & Pandarinath, |2023)), a variant of LFADS with automated hyperparameter optimiza-
tion. Evaluation metrics on the latent factors obtained include fp-bps for forward prediction, co-bps
for held-out neuron prediction, vel R2 for hand velocity decoding, and psth R2 for trial-averaged
neural response reconstruction. Here, we used transformer (Vaswani et al., 2017) as a condition
extractor and sit (Peebles & Xie, [2023) as the backbone of flow matching. Self-supervised training
was conducted via masked reconstruction, and sampling was based on 3-step Euler integration.

Results The best fp-bps results across the four selected datasets, achieved by the baseline methods
and our DLFM, are demonstrated in Table [I] The highest result for each dataset is highlighted
in bold red, while the second-best is underlined in blue. DLFM demonstrates significantly higher
fp-bps in the challenging task of forward time-step prediction.

We further compared the performance of DLFM with more online baselines detailed on the web-
sites listed in Section [C.0.I} Our DLFM ranks among the top two in fp-bps as shown in Fig. [ST]
Meanwhile, DLFM exhibits consistent performance on other metrics, such as co-bps and vel R2, as
presented in Section[C.0.1] These results demonstrate that DLFM achieves superior performance in
high-dimensional neural decoding via supervised learning.

Table 1: Best fp-bps (1) of the baselines and our DLFM on the dmfc_rsg, area2_bump, mc_rtt, and
mc_maze datasets with 5 ms bin widths.
STNDT S5 AESMTE3 AutoLFADS DLFM Total Rank

dmfc_rsg 0.1910 0.1841 0.1828 0.1960 0.1993 1720
area2_bump 0.1491  0.1518 0.1603 0.1455 0.1567 2/23
mc_rtt 0.1260  0.1271 0.1344 0.1240 0.1419 1725
mc_maze 0.2686  0.2581 0.2589 0.2447 0.2686 1726

4.3 COMPARATIVE EXPERIMENTS ON FALCON

Experimental Setup To evaluate DLFM in few-shot neural adaptation, we conducted experiments
on the M1 and M2 datasets from the Falcon benchmark (Karpowicz et al.|[2024). The M1 dataset in-
volves grasp-and-reach tasks accompanied by electromyography (EMG) signals, and the M2 dataset
captures fine-grained finger movements with high-resolution kinematic labels. Both datasets com-
prise multi-session recordings with limited calibration trials, enabling evaluations on few-shot cross-
session behavioral decoding.



We compared DLFM with typical baselines employing identical few-shot supervised adaptation
(FSS) strategies: Neural Data Transformer 2 (NDT2)(Ye et al., 2023) and NDT3 (Ye et al., |2025).
We fine-tuned DLFM using randomly selected trials from each target session, with only 60% and
80% of the original calibration trials, denoted as DLFM-0.6 and DLFM-0.8, respectively. The fol-
lowing results are averaged over 10 random selections. The evaluation metrics for few-shot neu-
ral adaptation include EMG or hand kinematic R? scores on both held-out and held-in sessions
(HeldInR? and HeldOutR?). Conditional features were also extracted using transformer (Vaswani
et al.,|2017) combined with session embeddings as contextual input.

Table 2: R? scores of held-in and held-out sessions on the M1 and M2 datasets. Mean values and
standard deviations are reported across sessions.

Data Metric Wiener Filter NDT2 NDT3 DLFM-0.6 DLFM-0.8 DLFM

HeldOutR?  0.3440.06  0.59 £0.07 0.58 £0.06 0.57 £0.08 0.61 £0.07 0.68 +0.07
HeldIn R? 0.46 £0.06  0.77 £0.03 0.76 £0.02 0.76 £0.02 0.75 £0.04 0.75 £0.03
HeldOutR?  0.06 £0.04  0.43 £0.08 0.48 £0.06 0.47 £0.05 0.48 £0.06 0.51 £0.06
HeldIn R? 0.15£0.07 0.63 £0.03 0.62+0.04 0.63 +£0.04 0.65+0.03 0.64 £0.03

M1

M2

Results The main results on HeldOutR? and HeldInR? averaged over both sessions and runs are
presented in Table[2] The highest result for each dataset is highlighted in bold red, while the second-
best is underlined in blue. We find that DLFM attains substantially higher HeldOutR? on both
datasets even with only 80% of the calibration trials, and achieves competitive performance even
with 60%. The increase in HeldOutR? does not come at the expense of decreased HeldInR?, indi-
cating the generalization capability of the learned dynamical latent space. Therefore, the proposed
DLFM demonstrates superiority in efficient few-shot neural adaptation.

4.4 ABLATION EXPERIMENTS ON MAIN COMPONENTS

We conducted ablation studies on the main components of both pre-training and fine-tuning phases,
as shown in Fig. f{a). During the pre-training phase, we compared DLFM with three variants:
DLFM-W, which performs flow matching directly on full input signal sequences; DLFM-R, which
replaces the conditional feature extractor with a recurrent neural network (RNN); and DLFM-M,
which employs a multilayer perceptron (MLP) as the flow-based backbone. For the fine-tuning
phase, we considered two variants: DLFM-F, which fine-tunes both F, and Vy, and DLFM-V,
which fine-tunes Vg while keeping F, fixed. The dmfc_rsg and mc_rtt datasets were selected as
representative datasets of passive and active motor tasks, respectively.

As shown in Fig. f{b), decoding performance on the dmfc_rsg and mc_rtt datasets substantially
decreases with the full sequence input, indicating that flow-based models may not be well-suited for
directly learning dynamical patterns. The pronounced performance drop of DLFM-R highlights the
importance of efficiently incorporating temporal evolution into the conditional variables, while the
comparative performance of DLFM-M illustrates the flexibility in choosing flow-based networks.
HeldOutR? of DLFM-F shows a slight drop, while DLFM-V decreases more on few-shot adaptation
of the M1 and M2 datasets. This demonstrates the effectiveness of our parameter-efficient fine-
tuning, as shown in Fig. dc).
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Figure 4: (a) Overview of DLFM variants across the pre-training and fine-tuning phases. (b)
Ablation performance of DLFM-W, DLFM-R, DLFM-M, and DLFM on the dmfc_rsg and mc_rtt
5ms datasets. (c) Few-shot adaptation performance, with HeldOutR? (Left) and HeldInR? (Right)
for DLFM-F, DLFM-V, and DLFM on the M1 and M2 datasets.



4.5 INTERPRETABILITY ANALYSIS OF DLFM

To examine the dynamical latent space for neural adaptation, we performed a interpretability analysis
of the dynamical latent variables by DLFM on both the synthetic datasets and Falcon. Since the
Lorenz attractor (Lorenz} [T963)) is widely used to model neural dynamics (Pandarinath et al., 2018},
Brenner et al., 2024), we used the aforementioned Lorenz-based synthetic data. We employed R*
scores to evaluate the latent dynamics captured by obtained latent variables. As shown in Fig. [5{(a)
and (b), as well as in Fig. [S2] the DLFM exhibits more consistent and accurate latent dynamical
trajectories under few-shot neural adaptation. In addition, we computed the mutual information to
quantify the consistency between dynamical latent variables extracted from HeldIn and HeldOut
sessions, as shown in Fig. ﬂc). We further visualized the latent variables of M1 using PCA, as
shown in Fig. B[d), and those of M2 in Fig. [S3] These results indicate that DLFM effectively
captures stable features of the underlying dynamical patterns, therefore enhancing few-shot neural
adaptation. Meanwhile, the superiority of DLFM in neural adaptation does not come at the expense
of computational time (pre-training, fine-tuning, and inference), as shown in Section [C.0.4]

NDT e Ground Tuth ~ LFADS DLFM

Recovered

0 3 5
Number of Fine-tuning Shots R? =0.8501 R? =0.8777 R? = 0.9505
(c) 0.45 (d) NDT2 DLFM-0.6 DLFM

o Heldin S
® Heldout

M1 M2

Figure 5: (a) R? scores of latent dynamical recovery by NDT, LFADS, and DLFM with different
fine-tuning shots. (b) Recovered latent dynamics and R? scores by NDT, LFADS, and DLFM.
The target mean firing rates are set to 0.1 under the 3-shot setting. Green lines denote the ground-
truth latent trajectories, while orange dashed lines indicate the recovered dynamics. (c) Mutual
information between held-in and held-out features by NDT2, DLFM-0.6, and DLFM for few-shot
adaptation. (d) The PCA visualization of latent features from NDT2, DLFM-0.6 and DLFM on M1.
The visualized features are randomly selected from held-in (green) and held-out (orange) sessions.

5 CONCLUSION AND LIMITATIONS

In this study, we introduce a novel neural decoding framework of Dynamical Latent Flow Matching
(DLFM) designed for efficient few-shot neural adaptation. Our DLFM performs flow matching
in the dynamical latent space through probabilistic flexibility and tractability, achieving efficient
few-shot adaptation. Further interpretability analysis on both the model of Lorenz attractor and the
Falcon benchmark demonstrates that DLFM successfully captures intrinsic features of dynamical
patterns within the neural manifold. Our framework achieves superior decoding performance on
both simulated data and the NLB21 benchmark, ranking among the top two in forward prediction
tasks across all web submissions. Additionally, DLFM exhibits high-performance over few-shot
adaptation on the Falcon, achieving competitive performance using only 60% of the calibration
trials. These findings underscore the potential of DLFM as a reliable and high-performance neural
decoding framework, advancing the practical deployment of BCI systems.

Limitations Several limitations of this work deserve further investigation. The effectiveness of
DLFM in more complex scenarios, such as multi-modal datasets from distributed brain regions,
remains to be explored. In addition, the application of DLFM to zero-shot or fully unsupervised
adaptation remains an open and promising direction for future investigation.
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APPENDIX OF DYNAMICAL LATENT FLOW MATCHING FOR
HIGH-PERFORMANCE FEW-SHOT NEURAL ADAPTATION

A METHODOLOGY

A.1 DETAILED ARCHITECTURE OF DLFM

We present the detailed architecture of our main modules as follows. The input neural signals have
the shape of (Batch size=256, Signal temporal length=m, Number of channels=!). The latent dimen-
sions of conditional features c(t) are denoted as k., the dimension of latent states in the spatially
coupled flow matching is the same, k.. The depth of the transformer layers in F, is denoted as n.g4,
and the depth of the transformer layers in Vy is denoted as n s4. The dropout value is represented as
o04- The architectures of F,, and Vy can be seen in Table[ST]

Table S1: Detailed Architectures of DLFM
Fa ‘ [MSA(ku nhead)s FFN(kc X Nheads kc)] XMNed
Vo | [FEN(kc x 2, k), MSA(ke, Nihead), MLP(ke X Theads ke)IXNfa

Here, we use the term MLP to refer to Multilayer perceptron with residual connections, MSA to
represent multi-head self-attention modules, and FFN to indicate feed-forward neural networks.

Moreover, default dimensions k.., the drop-out rate v4, the number of heads np..q and the network
depth n.q and ny; mentioned above are configured as shown in Table [S__Z] according to different
experimental datasets.

Table S2: Default Value Setup on Different Experimental Datasets

‘ ke Nfa Necd Vd Nhead

Simulated Data | 96 5 2 0.1 2
NLB21 64 5 2 0.1 2
Falcon 32 5 2 0.1 8

The default values for the simulated data are set according to the results reported in Table[S9} For the
other datasets, k. is selected based on the configurations used in (Ye & Pandarinathl [2021)) and (Ye
et al.| [2023), given the similarity of the datasets. The remaining hyperparameters are determined
through grid search, and were found to have minimal influence on the overall performance of DLFM.

A.2 ADDITIONAL RELATED WORK ON FLOW MATCHING

Normalizing flows have been widely applied in distribution sampling due to their precise and ex-
plicit likelihood modeling. Traditional normalizing flows (Chen et al., 2019; |Dinh et al., 2022)
typically rely on invertible transformations, but these can constrain the representational capacity of
the networks. Recent research has sought to alleviate this limitation by utilizing continuous normal-
izing flows (Yang et al.| |2019) based on ODEs. For example, flow matching (Lipman et al.| 2022;
Peebles & Xie, 2023)) extends diffusion models, an advanced generative model, allowing for more
flexible diffusion paths. Conditional flow matching (Atanackovic et al.| [2025) further incorporates
conditional features to model conditional distributions.
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B EXPERIMENTAL DETAILS

B.1 DATASET DESCRIPTION
B.1.1 NLB 21

The Neural Latents Benchmark 2021 (NLB 21) (Pei et al., [2021) is a comprehensive benchmark
suite designed to evaluate latent variable models on neural population spiking data. The central task
involves unsupervised co-smoothing, where models predict the firing rates of held-out neurons based
on observed neural activity, enabling systematic comparison across diverse brain areas and behav-
ioral paradigms. NLB 21 comprises four datasets collected from non-human primates performing
motor, sensory and cognitive tasks, which have been introduced in the main text.

All datasets are provided in the Neurodata Without Borders (NWB) standard format and are acces-
sible via the DANDI archive. The raw spike trains are typically binned into S5Sms non-overlapping
windows to convert discrete spike events into firing rate estimates suitable for latent variable mod-
eling. Trials with insufficient duration or excessive noise are excluded based on dataset-specific
criteria defined in the benchmark documentation. Behavioral and auxiliary signals, when available
(e.g., kinematics, force), are synchronized with neural data and preprocessed by standard normal-
ization techniques to ensure compatibility with modeling pipelines.

The benchmark uses the bits per spike (bps) metric within an unsupervised co-smoothing frame-
work as the primary evaluation criterion. This metric quantifies how accurately models reconstruct
the activity of held-out neurons from observed population activity. Submissions are evaluated on
the EvalAl platform, which provides a leaderboard and enforces standardized scoring procedures.
An official Python toolkit, n1b_tools, facilitates data loading, preprocessing, model evaluation,
and includes baseline implementations to support reproducibility and rapid experimentation. This
benchmark suite offers a rigorous platform to assess the ability of latent variables to capture complex
neural population dynamics across multiple brain regions, behavioral contexts, and data regimes.

B.1.2 FALCON

The Falcon dataset (Karpowicz et al.| [2024)) is a large-scale, high-quality neural recording dataset
designed to facilitate the study of neural population dynamics during naturalistic, free-behavior
tasks. Recorded from non-human primates, Falcon provides extensive spike train data collected
while subjects engage in complex, unconstrained movements.

Data are provided in standardized formats compatible with common neuroscience analysis toolk-
its. Neural spike trains are binned into non-overlapping windows to convert discrete spikes into
continuous firing rate estimates suitable for latent variable modeling. Behavioral signals are
preprocessed with standard normalization and temporal alignment procedures. Falcon offers a
challenging testbed for latent variable models aiming to capture high-dimensional neural popu-
lation activity in naturalistic conditions. The dataset enables evaluation of model robustness be-
yond traditional trial-based paradigms, facilitating progress towards understanding neural coding
in real-world contexts. The M1 and M2 dataset used in our paper are available from https:
//dandiarchive.org/dandiset/000941?search=falcon&pos=1| and https://
dandiarchive.org/dandiset/000953?search=falcon&pos=2, respectively.

15


https://dandiarchive.org/dandiset/000941?search=falcon&pos=1
https://dandiarchive.org/dandiset/000941?search=falcon&pos=1
https://dandiarchive.org/dandiset/000953?search=falcon&pos=2
https://dandiarchive.org/dandiset/000953?search=falcon&pos=2

B.2 TRAINING DETIALS

The main configurations for model training included the learning rate, weight decay parameters of
the Adam optimizer, batch sizes, number of iterative epochs, and random seeds during pre-training
and fine-tuning phases. The epochs of pre-training and fine-tuning use default settings with early
stopping. The best-trained weights are selected based on performance on the validation set, which
typically comprises 20% of the training data. Details of these hyperparameters are provided in
Table[S3]and Table[S4] respectively.

Table S3: Detailed Pre-training Setup

| Learning Rate  Weight Decay ~ Epochs  Batch Size  Random Seed

Simulated Data 2e-3 le-5 400 256 0-4
NLB21 2e-3 le-5 1200 256 0-4
Falcon 2e-3 le-5 2000 256 0-4

Table S4: Detailed Fine-tuning Setup
‘ Learning Rate  Weight Decay Epochs  Batch Size  Random Seed

Simulated Data 2e-3 le-5 80 256 0-4

Falcon 2e-3 le-5 1000 256 0-4

In addition, the pre-training and fine-tuning of SCFM on the simulated data and NLB21 datasets are
conducted using an NVIDIA GeForce RTX 3080 Ti (12GB). For the Falcon dataset, pre-training
is performed on four NVIDIA A800 GPUs (80GB each), and fine-tuning is carried out on a single
A800.

B.3 VALIDATION DETAILS

Specifically, during the validation after fine-tuning phases, we employed neural signals from the
test datasets, which were not leveraged during the fine-tuning phase, to evaluate the efficacy of our
DLFM.

The evaluation is conducted based on the decoding performance from the generated latent vari-
ables. Specifically, we first sample 2;(1) using a 3-step Euler method starting from z;(0), guided
by the velocity field Vy(2:(0),0,F,(Z)). The predicted target label y(t) is then computed as
y(t) = G,(2:(1)). The reconstructed or predicted neural recordings are further obtained as
2(t) = Ra(z0(1).
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C ADDITIONAL RESULTS

C.0.1 ADDITIONAL COMPARATIVE RESULTS ON NLB21

The web submissions for NLB21 [2021)) are available on the EvalAl platform. The
leaderboards summarizing all submissions for each dataset are presented below:
https://eval.ai/web/challenges/challenge—-page/1256/1leaderboard/
3185: dmfc_rsg
https://eval.ai/web/challenges/challenge—-page/1256/1leaderboard/
3186 : area2_bump
https://eval.ai/web/challenges/challenge-page/1256/1leaderboard/
3187 : me._rtt
https://eval.ai/web/challenges/challenge—-page/1256/1leaderboard/
3188 :/mc_maze

A snapshot of the leaderboard for fp-bps across the four nlb datasets is shown in Fig. [ST]

(a) ‘Leaderboard (b) Leaderboard
Ve ”

Model performance on various datasets

Phese: Tost Phose, Spi: OMFC_RS0 Sms . Phase: Test Phase,Spit Area2.Bump Sms

(c) (d)

Leaderboard
Model performance on various datasets Leaderboard

Figure S1: Snapshot of the fp-bps leaderboard for (a) dmfc_rsg, (b) area2_bump, (c) mc_rtt, and (d)
mc_maze datasets. Our method is reported as fmODE (DLFM).

The comprehensive results on various metrics are shown in Table [S3] (dmfc_rsg), Table [S6]
(area2_bump), Table [S7] (mc_rtt) and Table [S8] (mc_maze), correspondingly. Colored blocks in-
dicate the top three values in each column, with darker shades representing better values.
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Table S5: Comprehensive comparison

: : Table S6: Comprehensive comparison of DLFM
of DLFM with baselines on dmfc_rsg

with baselines on area2_bump dataset.

dataset. co-bps (1) velR2 (1) psthR2(T) fp-bps (1)
cobps (1) psth R2(1) fp-bps (1)

STNDT 02904 0.8937 0.7303 0.1491

ggNDT g-;g‘z‘g g-gjg% 8'}3}1? S5 0.2901 0.8727 0.7258 0.1518

S v odaor 018 AESMTE3 02860 [0:8999 0.7109 0.1603

' - : AutoLFADS 02535  0.8516 0.6104 0.1455

AutoLFADS ~ 0.1820 0.5873 0.1960 oo oo oem 0o l0s O1ser
DLFM 0.1869 0.6373 0.1993 : : - ]

Table S7: Comprehensive comparison

of DLFM with basclines on moe.rtt Table S8: Comprehensive comparison of DLFM

with baselines on mc_maze dataset.

dataset. I VR T co-bps (1) velR2(1) psthR2 (1) fp-bps ()
ps(f) velR2(f) fp-bps( STNDT 03862 09095 0.6693 0.2686
STNDT 0.2065 0.6352 0.1260 S5 0.3823 0.9043 0.6431 0.2581
S5 0.2296 0.6450 0.1271 AESMTE3 0.3676 0.9114 0.6683 0.2589
AESMTE3 0.2053 0.6334 0.1344 AutoLFADS  0.3497 0.9027 0.6170 0.2447
AutoLFADS  0.1882 0.6176 0.1240 DLFM 0.3779 0.9019 0.6525 0.2686
DLFM 0.2073 0.6663 0.1419

C.0.2 ADDITIONAL RESULTS ON INTERPRETABILITY ANALYSIS

As shown in Fig. we visualized the recovered trajectories along with their corresponding R?
under the 5-shot adaptation. Compared to NDT and LFADS, DLFM produces more consistent and
accurate reconstructions, closely matching those achieved under 3-shot adaptation. This underscores
its effectiveness in capturing stable features of dynamical patterns and enabling efficient few-shot
neural adaptation.

5-shot NDT LFADS
- |
it
Il
o
..
=
N § Ground Truth ; ! Ground Truth i
R2 =0.8360 recovered R2 = (0.8669 Recovered R2 = (),9694
B
s
Il
=
<]
=

R2 = 0.9206 R2 = 0.9248 R2 = 0.9695

Figure S2: Recovered latent dynamics and R? scores achieved by NDT, LFADS, and DLFM on
target datasets. The target mean firing rates (MFR) are set to 0.1 and 0.2 under the 5-shot setting,
respectively. Green lines denote the ground-truth latent trajectories, while orange dashed lines indi-
cate the recovered dynamics.

We further visualized the latent features obtained by DLFM-0.4, DLFM-0.6, DLFM-0.8 and DLFM
using randomly selected trials from held-in and held-out sessions of the M2 dataset. These features
were projected into two dimensions via Principal Component Analysis (PCA). As shown in Fig.
DLFM exhibits structured latent distributions and alignment between held-in and held-out sessions
even with fewer calibration trials. This indicates that DLFM preserves stability within the latent
space, thereby enabling consistent neural decoding in few-shot scenarios.
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Figure S3: The PCA visualization of latent features generated by DLFM-0.4, DLFM-0.6, DLFM-
0.8 and DLFM on M2. The visualized features are randomly selected from held-in (green) and
held-out (orange) sessions. DLFM-0.4, DLFM-0.6, and DLFM-0.8 denote partial fine-tuning using
40%, 60%, and 80% of the original calibration trials, respectively.

C.0.3 HYPER-PARAMETER SENSITIVITY ANALYSIS

The main hyperparameters of our DLFM method include the latent variable dimension k., the depth
of the transformer layers in the flow matching module 7 ¢4, and the depth of the transformer-based
conditional feature extractor n.4. In this experiment, we analyzed the performance of DLFM on the
synthetic datasets under different configurations of these main hyperparameters. This grid-search
was performed by varying each parameter individually while keeping the others fixed at their default
values as mentioned in Table[S2} As shown in Table[S9] excessively high latent dimensionality can
introduce representational redundancy and lead to a decline in bits-per-spike (bps) performance.
Additionally, variations in the number of transformer layers, denoted as n ¢4 and n.q, have minimal
impact on bps results. Based on these observations, we adopt default values of k. = 96, nyq = 5,
and n.q = 2 for our experiments.

Table S9: Bits-per-spike (bps) performance under varying hyperparameters: k., nfq, and ngq on
simulated source neural data with a mean firing rate of 0.05. The reported mean and standard
deviation are computed over five independent runs.

ke | 64 96 128
bps ‘ 0.954+0.01 096+0.02 0.90+0.05
nga | 4 5 6

bps ‘ 0.954+0.02 0.96+0.02 0.95+0.02
Ned | 1 2 3

bps | 0.97+0.02 0.96+0.02 0.9440.01

C.0.4 COMPUTATIONAL ANALYSIS

The computational analysis of DLFM is presented in terms of runtime and parameter count. The
number of parameters in the core components, the conditional feature extractor F,, and the flow-
based model Vy, is summarized in Table As expected, the total number of parameters in-
creases with dataset complexity and scale. Notably, F,, constitutes only a subset of the total model
parameters, supporting our claim that fine-tuning can be efficiently performed on small subsets of
DLFM.
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Table S10: The number of parameters in the conditional feature extractor F, the flow-based model
Vy, and the total parameter count of DLFM on the simulated neural data, NLB21, and Falcon
datasets.

Data ‘ Fao Vo Total
Simulated Data | 0.1M  03M  0.5M
NLB21 0.8M 3.1IM 45M
Falcon 12.6M 5.1M 329M

As shown in Table [STT|, DLFM achieves rapid fine-tuning with few-shot data, requiring less than
20 minutes (min) on the multi-session Falcon dataset. Furthermore, the inference time per sample
is under 20 milliseconds (ms), highlighting the potential of the DLFM framework for real-time or
online neural decoding applications.

Table S11: Computational time (minutes (min)/milliseconds (ms)) of DLFM during pre-training,
fine-tuning and inference on simulated neural data, NLB21 and Falcon datasets.

Data \ Pre-training (min)  Fine-tuning (min)  Inference (ms) Device

Simulated Data 15 0.2 4 3080Ti

NLB21 82 - 11 3080Ti
Falcon 571 17 18 A800
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