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ABSTRACT

The primary objective of brain–computer interfaces (BCIs) is to establish a direct
connection between neural activity and external devices. However, variability in
neural recordings poses significant challenges to maintaining stable neural decod-
ing with minimal recalibration. Existing neural decoding frameworks often fail
to enable efficient few-shot adaptation, typically due to the constraints imposed
by prior assumptions on latent variables or issues with training instability. Moti-
vated by the flexibility and tractability of diffusion models, we propose the novel
Dynamical Latent Flow Matching (DLFM) framework for high-performance few-
shot neural adaptation. Our DLFM performs flow matching in dynamical latent
spaces, leveraging preserved neural dynamics within the neural manifold. The
probabilistic flexibility of DLFM effectively captures intrinsic features of dynam-
ical patterns across heterogeneous sessions, significantly enhancing few-shot neu-
ral adaptation. The efficiency of DLFM for few-shot adaptation is validated on the
Falcon benchmark, achieving competitive performance with only 60% calibration
trials. Further experimental evaluation on the Neural Latents Benchmark 2021
demonstrates that DLFM ranks among the top two for forward prediction tasks
across all web submissions. Additional interpretability analysis on the Lorenz
attractor model and the Falcon dataset confirms that DLFM precisely identifies
the intrinsic features of neural dynamics, thus facilitating efficient few-shot neural
adaptation for neural decoding. Our DLFM framework emerges as a promising
candidate for superior few-shot neural adaptation, advancing the practicality of
real-world BCI systems.

1 INTRODUCTION

The goal of brain-computer interfaces (BCIs) is to establish a direct connection between the brain
and external devices, offering promising avenues for neural rehabilitation in individuals with paral-
ysis (Willett et al., 2021; Metzger et al., 2023; Willett et al., 2023). Nevertheless, variability in
neural recordings, arising from physiological changes (Athalye et al., 2017) or device degrada-
tion (Woeppel et al., 2021), poses significant challenges to maintaining reliable decoding over time.
Consequently, stable and high-performance neural adaptation is critical for maintaining long-term
decoding with minimal recalibration (Karpowicz et al., 2024) in real-world BCI deployments. Self-
supervised learning (Schneider et al., 2023) with Variational Autoencoders (VAEs) (Azabou et al.,
2021; Schimel et al., 2022; Liu et al., 2021) and transformer-based neural foundation models (Ye
& Pandarinath, 2021; Zhang et al., 2024; 2025) have been shown to extract latent variables from
heterogeneous neural recordings, enabling practical BCI adaptation (Rafiei et al., 2022).

However, the performance of VAE- and transformer-based frameworks often deteriorates under few-
shot neural adaptation with minimal recalibration. For example, the VAE-based Latent Factor Anal-
ysis via Dynamical Systems (LFADS) (Pandarinath et al., 2018) exhibits a pronounced performance
decline under limited fine-tuning, with regression scores dropping below zero for five trials, as illus-
trated in Fig. 1(a). This may be attributed to the prior assumptions imposed on latent variables (Liu
et al., 2025), which result in negative transfer shown in Fig. 1(b). Furthermore, the transformer-
based foundation model MtM (Zhang et al., 2024) shows a reduced bits-per-second (bps) with few
shots for high-dimensional prediction tasks, as depicted in Fig. 1(c). This issue stems from the train-
ing instability, as shown in Fig. 1(d), owing to both its large parameterization (Lai et al., 2022; Yang
et al., 2024) and deterministic forecasters (Liu et al., 2025).
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Figure 1: (a) The performance of LFADS on behavioral decoding across sessions with decreased
fine-tuning trials. (b) Representative validation R2 curves of LFADS across four different seeds on
target sessions using 5 trials. (c) The bits-per-second (bps) performance of MtM on intra-region
prediction across sessions varying with fine-tuning trials. (d) Representative validation loss curves
of MtM using 30 fine-tuning trials.

This necessitates the development of a novel adaptation framework capable of learning flexible la-
tent variable distributions through probabilistic generation. Motivated by the flexibility and tractabil-
ity of diffusion models (Sohl-Dickstein et al., 2015), we propose performing flow matching in the
dynamical latent space to capture stable dynamical patterns, thereby facilitating efficient few-shot
adaptation. This flow matching framework is applicable in the neural dynamical latent space be-
cause preserved neural dynamical patterns persist across different individuals or sessions on low-
dimensional manifolds (Safaie et al., 2023; Abbaspourazad et al., 2024).

Building on this concept, we introduce a novel neural decoding framework, Dynamical Latent Flow
Matching (DLFM), which performs flow matching in the dynamical latent space by leveraging stable
dynamical patterns within the neural manifold. The probabilistic flexibility of flow matching (Sohl-
Dickstein et al., 2015) enables the learning of arbitrary distributions of dynamical patterns without
prior assumptions, thereby enhancing transferability across heterogeneous sessions. Moreover, the
tractable likelihood of flow matching allows parameter-efficient fine-tuning, contributing to the sta-
ble alignment under few-shot conditions. The efficacy of few-shot neural adaptation with DLFM
is validated on the Falcon benchmark (Karpowicz et al., 2024), achieving competitive performance
using only 60% of original calibration trials. The neural decoding performance of our DLFM frame-
work is further comprehensively evaluated on the Neural Latents Benchmark 2021 (NLB21) (Pei
et al., 2021), achieving a top-two ranking in the forward prediction tasks among all web submis-
sions (Pei et al., 2021). Additional interpretability analysis on the Lorenz attractor model and the
Falcon dataset confirms that DLFM precisely identifies the intrinsic features of neural dynamics,
thus facilitating efficient few-shot neural adaptation for high-dimensional decoding.

Our DLFM stands as a promising framework for high-performance few-shot neural adaptation, ad-
vancing the practicality of real-world BCI systems. The main contributions of this paper are sum-
marized as follows:

• Dynamical Latent Flow Matching: We propose a novel neural decoding framework based
on flow matching in the dynamical latent space, which effectively captures stable features
of dynamical patterns across heterogeneous sessions.

• Efficient Few-shot Neural Adaptation: The probabilistic flexibility and tractable likeli-
hood of DLFM enable efficient alignment of dynamical latent patterns, attaining top-two
ranking in forward bps on NLB21 and maintaining competitive performance on Falcon
with only 60% of original calibration trials.

• Experimental Validation: We conducted extensive evaluations of DLFM on both syn-
thetic and real neural datasets, demonstrating its superior performance in few-shot neural
adaptation for high-dimensional neural decoding.

2 RELATED WORK

2.1 NEURAL ADAPTATION THROUGH SELF-SUPERVISED PRE-TRAINING

Neural adaptation is commonly achieved through self-supervised pre-training on heterogeneous neu-
ral recordings. VAE-based frameworks (Liu et al., 2021; Schimel et al., 2022) learn Gaussian latent
variables, realizing tractable probabilistic computation. For example, LFADS Pandarinath et al.
(2018); Karpowicz et al. (2025) employs sequential VAEs to obtain low-dimensional latent dynam-
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ics from high-dimensional spike trains. In addition, neural foundation models have been proposed
to extract shared latent variables from heterogeneous neural recordings (Jaegle et al., 2022; Azabou
et al., 2023; 2025; Ryoo et al., 2025; Le et al., 2025) for neural adaptation. Several recent works
are built on the neural data transformer (NDT) (Ye & Pandarinath, 2021) and its variants (Le &
Shlizerman, 2022; Ye et al., 2023; 2025). MtM (Zhang et al., 2024; 2025) explores diverse mask-
ing schemes for multi-modal neural datasets. To address their decoding degradation of the above
approaches under few-shot conditions, we propose a novel dynamical flow matching framework
(DLFM) for efficient few-shot adaptation.

2.2 FLOW MATCHING

Flow matching (Lipman et al., 2022; Liu et al., 2022; Peebles & Xie, 2023; Geng et al., 2025)
extends diffusion models by directly learning a velocity field that guides the transformation from
noise to data. It achieves better efficiency for generation than that of denoising diffusion mod-
els (Tong et al., 2023). Conditional flow matching (Liu et al., 2023) further incorporates conditional
features to control the generation process and has been applied in domains such as cell dynamics
simulation (Atanackovic et al., 2025) and foundation models for time series (Liu et al., 2025). In
the context of neural recordings, such models have been employed for data augmentation (Kapoor
et al., 2024) by generating realistic synthetic neural activities. Furthermore, diffusion models have
also been applied to align the latent dynamics between sessions and subjects (Wang et al., 2023).
In this work, we employ conditional flow matching for self-supervised pre-training and few-shot
neural adaptation, where its potential application in few-shot decoding remains underexplored.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We define the spiking signal dataset for self-supervised pretraining and few-shot neural adaptation
as D = {(x1, y1), . . . , (xn, yn)}, where each xi(t) (for t = 1, 2, . . . ,mi) represents a raw signal
segment of length mi. The segments are recorded from one or multiple sessions, typically divided
by trials or short-time context windows. Each xi(t) ∈ Rl, where l denotes the number of recording
channels. The behavioral variables such as cursor velocities associated with xi(t) are denoted as
yi(t) ∈ Rd, where d represents dimensionality. For convenience, we omit the subscript i and
denote the segment and its behavioral variable by x(t) and y(t), respectively. Based on the dataset
D, we define pre-training datasets as Dp = {(xp

1, y
p
1), . . . , (x

p
np
, ypnp

)}, and fine-tuning datasets as

Df = {(xf
1 , y

f
1 ), . . . , (x

f
nf
, yfnf

)}, respectively. Similarly, we omit the subscript i and denote the
segments and their corresponding behavioral variables as xp and yp for the pre-training dataset, and
xf and yf for the fine-tuning dataset, respectively.

3.2 OVERALL FRAMEWORK

In this work, we propose a novel DLFM framework that first incorporates conditional flow matching
in the dynamical latent space for efficient few-shot neural adaptation. The proposed DLFM aims
to capture features of dynamical patterns guided by conditional variables from spike trains. We
introduce a coarse-to-fine refinement of noisy latent variables through flow-based generation, aiming
to recover the underlying dynamical latent structures. The resulting dynamical latent variables are
subsequently used to reconstruct raw spike trains and to perform downstream decoding tasks. Our
DLFM exhibits superior performance in few-shot neural adaptation for decoding high-dimensional
neural activity.

Building upon the aforementioned architecture, the DLFM framework comprises the two phases:
self-supervised pre-training and parameter-efficient fine-tuning, as illustrated in Fig. 2. During the
pre-training phase, the target dynamical latent space for flow matching is first constructed using an
autoencoder. Conditioned on the features extracted from masked neural signals, dynamical latent
flow matching performs a flow-based coarse-to-fine conditional reconstruction, mapping noisy latent
variables to the target dynamical latent space. During the fine-tuning phase, the parameter-efficient
fine-tuning is applied to the conditional network, achieving stable alignment of dynamical latent
variables. The variables obtained have been validated to effectively capture the stable features of
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dynamical patterns underlying neural populations, as verified by the Lorenz attractor in the subse-
quent sections. The overall framework of DLFM is depicted in Fig. 2 and will be detailed in the
following. Further detailed architectures are provided in Section A.1.
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Figure 2: Workflow of the Dynamical Latent Flow Matching (DLFM) for few-shot neural adapta-
tion. DLFM operates in two phases: (1) pre-training, where dynamical latent variables are captured
via conditional flow-based generation, and (2) fine-tuning, where the conditional distribution of tar-
get latent variables is efficiently aligned.

3.2.1 DLFM-BASED SELF-SUPERVISED PRE-TRAINING

Target Dynamical Latent Space Flow matching (Lipman et al., 2022) typically adopts the ℓ2 norm
to achieve consistency between generated and target variables. However, due to the inherently
stochastic nature of neural recordings, directly applying deterministic loss functions in the origi-
nal high-dimensional space often fails to capture this variability (Liu et al., 2025). To address this,
we propose optimizing the target dynamical latent space of flow matching using the Poisson neg-
ative log-likelihood (PNLL) loss (Kapoor et al., 2024). This target dynamical latent space enables
efficient reconstruction of Poisson-like spike trains from flow-based latent variables trained with de-
terministic loss functions. The target latent space is trained before flow matching and remains fixed
during the following training.

Specifically, we construct the target dynamical latent space (Rombach et al., 2022) using an autoen-
coder with the encoder Eη (parameterized by η) and the decoder Rβ (parameterized by β). The
autoencoder is trained by minimizing the following PNLL loss over raw signal samples xp from the
pre-training dataset: ∑

t

{Rβ (Eη(x
p(t)))− xp(t)⊙ log [Rβ (Eη(x

p(t)))]} , (1)

where ⊙ indicates element-wise multiplication. Eη(x
p(t)) is the target dynamical latent variable,

corresponding to xp(t). With the behavioral variable yp(t) and Eη(x
p(t)), a behavioral decoder Gγ

(with parameters γ) is trained in a supervised manner.

Conditional Feature Extraction After learning the target dynamical latent space, conditional vari-
ables are extracted from masked neural recordings to perform self-supervised pre-training. To cap-
ture temporal evolution in the dynamical latent space of DLFM, conditional features are learned
utilizing an autoregressive architecture of transformers. Let the original signal be denoted by xp,
and the corresponding masked sample by x̃p, which shares the same dimensionality as xp. The
network for conditional feature extraction is denoted as Fα (with parameters α). The conditional
variable obtained is written as cp = Fα(x̃

p), whose temporal length matches that of xp. In addi-
tion, the feature for each time step is denoted as c(t) ∈ Rkc , where kc denotes its dimensionality.
Conditioned on cp(t), DLFM employs the flow-based generation to dynamical latent spaces for re-
constructing the input masked signal x̃p(t). Beyond masked reconstruction, this architecture can
be extended to other high-dimensional tasks such as next-token prediction by taking samples from
known time steps as input.

Flow Matching in Dynamical Latent Space Guided by cp(t), we establish dynamical latent flow
matching for masked reconstruction of x̃p(t). Flow matching typically starts from Gaussian noise
and iteratively evolves toward the target latent space, following a continuous generation path gov-
erned by ordinary differential equations (ODEs) (Lipman et al., 2022). To better capture dynamical
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latent patterns, we propose performing flow matching at each time step, focusing on x̃p(t) rather
than the entire sequence x̃p. Dynamical evolution information is obtained from cp(t), providing the
foundation for generating the dynamical latent space.

We further denote the dynamical latent variable of flow-based generation conditioned on cp(t) as
zpt (τ). Note that τ denotes the iteration step along the continuous generative trajectory, rather than
the actual time step t of neural spiking activity. For computational convenience, we normalize τ to
the range [0, 1]. The flow-based generation of DLFM begins with a Gaussian latent variable zpt (0)
and evolves towards zpt (1), which is trained to approximate the distribution of target dynamical vari-
ables Eη(x

p(t)). The velocity field of this flow-based generative path along zpt (τ) is parameterized
by a neural network Vθ, where θ denotes the learnable parameters. The evolution of our dynamical
latent variables zpt (τ) over τ ∈ [0, 1] is governed by the following ODE:

dzpt (τ)

dτ
= Vθ

(
zpt (τ), c

p(t), τ
)
. (2)

Here, cp(t) refers to the conditional variables extracted from the input masked sample x̃p.

During training, zpt (τ) can be explicitly obtained by the linear interpolation between the starting
point and the endpoint as zpt (τ) = (1− τ)zpt (0) + τzpt (1). Here, zpt (0) is initialized with Gaussian
noises, and zpt (1) = Eη(x

p(t)). Moreover, the training of flow matching network Vθ aims to
approximate the derivative of latent variables along the flow-based generative path, i.e., zt(1)−zt(0).
We further define the training loss function Lcfm(α, θ) for flow-based networks as follows,

Et,p(zp
t (0)),q(z

p
t (1))

∥∥Vθ

(
zpt (τ), c

p(t), τ
)
−

(
zpt (1)− zpt (0)

)∥∥2 . (3)

Here, the conditional variable cp(t) = Fα(x̃
p)[t]. p(zpt (0)) and q(zpt (1)) denote marginal distribu-

tions of the initial and final dynamical latent variables along the flow-based generative path. During
inference, as the target dynamical latent variable is not directly accessible, dynamical latent variables
are inferred by traversing the flow-based generative trajectory conditioned on the extracted features.
Specifically, at τ = 0, the dynamical latent variable zpt (0) is initialized with Gaussian noises. During
the flow-based evolution governed by the ODE in Eq. (2), numerical solvers such as Euler’s method
or Runge–Kutta schemes are employed to obtain zpt (1). This dynamical latent feature then serves
as input to either the spiking decoder Rβ or the behavioral decoder Gγ for high-dimensional neural
decoding.

3.2.2 DLFM-BASED PARAMETER-EFFICIENT FINE-TUNING

During the fine-tuning phase, we propose the parameter-efficient fine-tuning utilizing the fixed flow-
based generative trajectory. Corresponding to the ODE-based transformation of dynamical latent
variables in Eq. (2), the continuous evolution of their conditional distributions can be derived by the
Fokker–Planck equation (Lipman et al., 2022). We define the conditional distribution of dynamical
latent variables along the pre-trained generative path as pτ (z

p
t (τ)|cp(t)). Its evolution with respect

to τ can be expressed as:

∂pτ (z
p
t (τ)|cp(t))
∂τ

= −∇ · (pτ (zpt (τ)|cp(t))Vθ(z
p
t (τ),Fα(x

p), τ)) . (4)

Leveraging this probabilistic tractability, the stable transformation path from Gaussian distributions
to dynamical latent variables can be established under fixed Vθ and conditional variables drawn
from similar distributions.

Therefore, we first fine-tune the encoder Eη while keeping the decoders Rβ and Gγ fixed on the fine-
tuning dataset Df . This step ensures a consistent mapping to the behavioral space, providing a coarse
alignment of the target dynamical latent space. Then, we propose to fine-tune the conditional feature
extractor Fα while keeping Vθ fixed to align the conditional variables c(t). Since Vθ provides
a stable flow-based distribution transformation, aligning c(t) can be approximately interpreted as
maximizing the likelihood of the dynamical latent variable distributions on Df . We thus minimize
Lcfm(α) using xf to maximize the likelihood, which can be approximately regarded as minimizing
the KL divergence between the source and target dynamical latent spaces, as follows:

min
α

Lcfm(α) ≈ max
α

log p1(z
f
t (1)|cf (t)) ≈ min

α
DKL

(
p1(z

f
t (1)|cf (t)) ∥ p1(z

p
t (1)|cp(t))

)
. (5)
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This fine-tuning strategy enables stable alignment of dynamical latent spaces under few-shot con-
ditions, owing to parameter-efficient optimization of the mean squared error-based Lcfm, as shown
in Table S10. The stable features of dynamical patterns is validated through the visualization analy-
sis presented in Section 4.5. The overall learning procedure of DLFM is presented in Algorithm 1.

Algorithm 1 Dynamical Latent Flow Matching (DLFM)
Input: pre-training dataset Dp or fine-tuning dataset Df ; training phase phase m
Output: Fα, Vθ, autoencoders Eη , Rβ , behavioral decoder Gγ ;

1: Initialize/Load pre-trained Fα, Vθ, Eη , Rβ , Gγ

2: Target Dynamical Latent Space:
3: if phase m is pre-training: then
4: Update Eη , Rβ via Eq. (1); Update Gγ using behavioral variables from the dataset;
5: else if phase m is fine-tuning: then
6: Update Eη via Eq. (1) and behavioral variables from the dataset;
7: end if
8: Conditional Feature Extraction & DLFM
9: for iter = 1 to nphase m do

10: Sample x from the dataset, obtain x̃ and c;
11: Sample t, τ , zt(0) ∼ N (0, I), zt(1) = Eη(x(t));
12: if phase m is pre-training: then Update Fα, Vθ via Eq. (3);
13: else if phase m is fine-tuning: then Update Vθ via Eq. (3);
14: end for
15: return Fα, Vθ, Eη , Rβ , Gγ

4 EXPERIMENTS AND RESULTS

4.1 COMPARATIVE EXPERIMENTS ON SIMULATED DATA

Experimental Setup We first conducted experiments on synthetic data to assess the performance
of DLFM in few-shot neural adaptation. Following (Kapoor et al., 2024), we employed the Lorenz
attractor as the latent dynamics. As illustrated in Fig. 3(a), firing rates were generated via an affine
transformation of 3D latent variables into a 96-dimensional space. The 50-time-step synthetic spike
trains were then sampled from a Poisson distribution. To further simulate the non-stationarity of
spike trains across sessions, we varied the mean firing rates (MFR) or randomly jittered channels
while keeping latent dynamics fixed, following the observations reported in (Degenhart et al., 2020)
and (Karpowicz et al., 2024).

NDT (Ye & Pandarinath, 2021) and LFADS (Pandarinath et al., 2018) were selected as representa-
tive transformer- and VAE-based baselines, respectively. The few-shot adaptation performance was
evaluated using bits per spike (bps) Pillow et al. (2008) for high-dimensional spiking prediction.
The models were first pre-trained on synthetic data with a fixed MFR of 0.05, followed by few-shot
fine-tuning under varying target MFRs and jittered channels. Unless otherwise specified, the default
configuration employs 96 channels, 3 shots, and a target MFR of 0.02. The main hyperparameters
of DLFM were selected as detailed in Section C.0.3.

Results Comparative bps results under varying percentages of jittered channels, shifts in MFRs, and
numbers of fine-tuning shots are presented in Fig. 3(b) (Left, Middle, Right), respectively. Each
result is averaged over five random runs. We observe that DLFM consistently achieves superior per-
formance under varying degrees of shift, demonstrating its efficiency in few-shot neural adaptation
on simulated neural data.

4.2 COMPARATIVE EXPERIMENTS ON NLB21

Experimental Setup We further evaluated the high-dimensional neural decoding performance of
DLFM after self-supervised pre-training on four single-session datasets from NLB21 (Pei et al.,
2021), using 5ms bin widths. A brief overview of these datasets is provided in both Section B.1.1
and below:
dmfc rsg: It contains spikes from the dorsomedial frontal cortex of a monkey during ready-set-go
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Figure 3: (a) Synthetic spike trains generated from an underlying Lorenz attractor using a Poisson
observation model. (b) Comparison of bits-per-spike (bps) performance among NDT, LFADS, and
DLFM as a function of percentage of jittered channels (Left), shift in mean firing rate (Middle), and
number of fine-tuning shots (Right).

timing tasks.
area2 bump: It records spikes from the somatosensory cortex of a monkey during a passive limb
perturbation task.
mc rtt: It provides long-duration the primary motor cortex (M1) recordings from a monkey engaged
in a random target-reaching task.
mc maze: It offers spikes from M1 as the monkey performs a maze-reaching task.
We compared DLFM with representative baselines for self-supervised representation learning of
spiking neural activity, including: (1) STNDT (Le & Shlizerman, 2022), a spatiotemporal trans-
former model; (2) S5 (Smith et al., 2023), which leverages simplified state-space dynamics; (3)
AESMTE3 (Ye & Pandarinath, 2021), a transformer-based ensemble approach; and (4) AutoL-
FADS (Sedler & Pandarinath, 2023), a variant of LFADS with automated hyperparameter optimiza-
tion. Evaluation metrics on the latent factors obtained include fp-bps for forward prediction, co-bps
for held-out neuron prediction, vel R2 for hand velocity decoding, and psth R2 for trial-averaged
neural response reconstruction. Here, we used transformer (Vaswani et al., 2017) as a condition
extractor and sit (Peebles & Xie, 2023) as the backbone of flow matching. Self-supervised training
was conducted via masked reconstruction, and sampling was based on 3-step Euler integration.

Results The best fp-bps results across the four selected datasets, achieved by the baseline methods
and our DLFM, are demonstrated in Table 1. The highest result for each dataset is highlighted
in bold red, while the second-best is underlined in blue. DLFM demonstrates significantly higher
fp-bps in the challenging task of forward time-step prediction.

We further compared the performance of DLFM with more online baselines detailed on the web-
sites listed in Section C.0.1. Our DLFM ranks among the top two in fp-bps as shown in Fig. S1.
Meanwhile, DLFM exhibits consistent performance on other metrics, such as co-bps and vel R2, as
presented in Section C.0.1. These results demonstrate that DLFM achieves superior performance in
high-dimensional neural decoding via supervised learning.

Table 1: Best fp-bps (↑) of the baselines and our DLFM on the dmfc rsg, area2 bump, mc rtt, and
mc maze datasets with 5 ms bin widths.

STNDT S5 AESMTE3 AutoLFADS DLFM Total Rank

dmfc rsg 0.1910 0.1841 0.1828 0.1960 0.1993 1/20
area2 bump 0.1491 0.1518 0.1603 0.1455 0.1567 2/23
mc rtt 0.1260 0.1271 0.1344 0.1240 0.1419 1/25
mc maze 0.2686 0.2581 0.2589 0.2447 0.2686 1/26

4.3 COMPARATIVE EXPERIMENTS ON FALCON

Experimental Setup To evaluate DLFM in few-shot neural adaptation, we conducted experiments
on the M1 and M2 datasets from the Falcon benchmark (Karpowicz et al., 2024). The M1 dataset in-
volves grasp-and-reach tasks accompanied by electromyography (EMG) signals, and the M2 dataset
captures fine-grained finger movements with high-resolution kinematic labels. Both datasets com-
prise multi-session recordings with limited calibration trials, enabling evaluations on few-shot cross-
session behavioral decoding.
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We compared DLFM with typical baselines employing identical few-shot supervised adaptation
(FSS) strategies: Neural Data Transformer 2 (NDT2)(Ye et al., 2023) and NDT3 (Ye et al., 2025).
We fine-tuned DLFM using randomly selected trials from each target session, with only 60% and
80% of the original calibration trials, denoted as DLFM-0.6 and DLFM-0.8, respectively. The fol-
lowing results are averaged over 10 random selections. The evaluation metrics for few-shot neu-
ral adaptation include EMG or hand kinematic R2 scores on both held-out and held-in sessions
(HeldInR2 and HeldOutR2). Conditional features were also extracted using transformer (Vaswani
et al., 2017) combined with session embeddings as contextual input.

Table 2: R2 scores of held-in and held-out sessions on the M1 and M2 datasets. Mean values and
standard deviations are reported across sessions.

Data Metric Wiener Filter NDT2 NDT3 DLFM-0.6 DLFM-0.8 DLFM

M1 HeldOutR2 0.34 ±0.06 0.59 ±0.07 0.58 ±0.06 0.57 ±0.08 0.61 ±0.07 0.68 ±0.07
HeldInR2 0.46 ±0.06 0.77 ±0.03 0.76 ±0.02 0.76 ±0.02 0.75 ±0.04 0.75 ±0.03

M2 HeldOutR2 0.06 ±0.04 0.43 ±0.08 0.48 ±0.06 0.47 ±0.05 0.48 ±0.06 0.51 ±0.06
HeldInR2 0.15 ±0.07 0.63 ±0.03 0.62 ±0.04 0.63 ±0.04 0.65 ±0.03 0.64 ±0.03

Results The main results on HeldOutR2 and HeldInR2 averaged over both sessions and runs are
presented in Table 2. The highest result for each dataset is highlighted in bold red, while the second-
best is underlined in blue. We find that DLFM attains substantially higher HeldOutR2 on both
datasets even with only 80% of the calibration trials, and achieves competitive performance even
with 60%. The increase in HeldOutR2 does not come at the expense of decreased HeldInR2, indi-
cating the generalization capability of the learned dynamical latent space. Therefore, the proposed
DLFM demonstrates superiority in efficient few-shot neural adaptation.

4.4 ABLATION EXPERIMENTS ON MAIN COMPONENTS

We conducted ablation studies on the main components of both pre-training and fine-tuning phases,
as shown in Fig. 4(a). During the pre-training phase, we compared DLFM with three variants:
DLFM-W, which performs flow matching directly on full input signal sequences; DLFM-R, which
replaces the conditional feature extractor with a recurrent neural network (RNN); and DLFM-M,
which employs a multilayer perceptron (MLP) as the flow-based backbone. For the fine-tuning
phase, we considered two variants: DLFM-F, which fine-tunes both Fα and Vθ, and DLFM-V,
which fine-tunes Vθ while keeping Fα fixed. The dmfc rsg and mc rtt datasets were selected as
representative datasets of passive and active motor tasks, respectively.

As shown in Fig. 4(b), decoding performance on the dmfc rsg and mc rtt datasets substantially
decreases with the full sequence input, indicating that flow-based models may not be well-suited for
directly learning dynamical patterns. The pronounced performance drop of DLFM-R highlights the
importance of efficiently incorporating temporal evolution into the conditional variables, while the
comparative performance of DLFM-M illustrates the flexibility in choosing flow-based networks.
HeldOutR2 of DLFM-F shows a slight drop, while DLFM-V decreases more on few-shot adaptation
of the M1 and M2 datasets. This demonstrates the effectiveness of our parameter-efficient fine-
tuning, as shown in Fig. 4(c).
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DLFM-W Full sequence input

DLFM-R RNN-based 𝐅𝛂

DLFM-M MLP-based 𝐕𝛉

(a) (c)

Fine-tuning
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Figure 4: (a) Overview of DLFM variants across the pre-training and fine-tuning phases. (b)
Ablation performance of DLFM-W, DLFM-R, DLFM-M, and DLFM on the dmfc rsg and mc rtt
5ms datasets. (c) Few-shot adaptation performance, with HeldOutR2 (Left) and HeldInR2 (Right)
for DLFM-F, DLFM-V, and DLFM on the M1 and M2 datasets.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

4.5 INTERPRETABILITY ANALYSIS OF DLFM

To examine the dynamical latent space for neural adaptation, we performed a interpretability analysis
of the dynamical latent variables by DLFM on both the synthetic datasets and Falcon. Since the
Lorenz attractor (Lorenz, 1963) is widely used to model neural dynamics (Pandarinath et al., 2018;
Brenner et al., 2024), we used the aforementioned Lorenz-based synthetic data. We employed R2

scores to evaluate the latent dynamics captured by obtained latent variables. As shown in Fig. 5(a)
and (b), as well as in Fig. S2, the DLFM exhibits more consistent and accurate latent dynamical
trajectories under few-shot neural adaptation. In addition, we computed the mutual information to
quantify the consistency between dynamical latent variables extracted from HeldIn and HeldOut
sessions, as shown in Fig. 5(c). We further visualized the latent variables of M1 using PCA, as
shown in Fig. 5(d), and those of M2 in Fig. S3. These results indicate that DLFM effectively
captures stable features of the underlying dynamical patterns, therefore enhancing few-shot neural
adaptation. Meanwhile, the superiority of DLFM in neural adaptation does not come at the expense
of computational time (pre-training, fine-tuning, and inference), as shown in Section C.0.4.

x

z

y

(c)

(a)

𝑹
𝟐

Number of Fine-tuning Shots

(b)

(d)

NDT DLFM

𝑹𝟐 = 𝟎. 𝟖𝟓𝟎𝟏

LFADS

𝑹𝟐 = 𝟎. 𝟖𝟕𝟕𝟕 𝑹𝟐 = 𝟎. 𝟗𝟓𝟎𝟓

NDT2 DLFM-0.6 DLFM

M1 M2

M
u

tu
al

 In
fo

rm
at

io
n

Figure 5: (a) R2 scores of latent dynamical recovery by NDT, LFADS, and DLFM with different
fine-tuning shots. (b) Recovered latent dynamics and R2 scores by NDT, LFADS, and DLFM.
The target mean firing rates are set to 0.1 under the 3-shot setting. Green lines denote the ground-
truth latent trajectories, while orange dashed lines indicate the recovered dynamics. (c) Mutual
information between held-in and held-out features by NDT2, DLFM-0.6, and DLFM for few-shot
adaptation. (d) The PCA visualization of latent features from NDT2, DLFM-0.6 and DLFM on M1.
The visualized features are randomly selected from held-in (green) and held-out (orange) sessions.

5 CONCLUSION AND LIMITATIONS

In this study, we introduce a novel neural decoding framework of Dynamical Latent Flow Matching
(DLFM) designed for efficient few-shot neural adaptation. Our DLFM performs flow matching
in the dynamical latent space through probabilistic flexibility and tractability, achieving efficient
few-shot adaptation. Further interpretability analysis on both the model of Lorenz attractor and the
Falcon benchmark demonstrates that DLFM successfully captures intrinsic features of dynamical
patterns within the neural manifold. Our framework achieves superior decoding performance on
both simulated data and the NLB21 benchmark, ranking among the top two in forward prediction
tasks across all web submissions. Additionally, DLFM exhibits high-performance over few-shot
adaptation on the Falcon, achieving competitive performance using only 60% of the calibration
trials. These findings underscore the potential of DLFM as a reliable and high-performance neural
decoding framework, advancing the practical deployment of BCI systems.

Limitations Several limitations of this work deserve further investigation. The effectiveness of
DLFM in more complex scenarios, such as multi-modal datasets from distributed brain regions,
remains to be explored. In addition, the application of DLFM to zero-shot or fully unsupervised
adaptation remains an open and promising direction for future investigation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Hamidreza Abbaspourazad, Eray Erturk, Bijan Pesaran, and Maryam M Shanechi. Dynamical flex-
ible inference of nonlinear latent factors and structures in neural population activity. Nature
Biomedical Engineering, 8(1):85–108, 2024.

Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J Lee, Yoshua Bengio,
Alexander Tong, and Kirill Neklyudov. Meta flow matching: Integrating vector fields on the
wasserstein manifold. In The Thirteenth International Conference on Learning Representations,
2025.

Vivek R Athalye, Karunesh Ganguly, Rui M Costa, and Jose M Carmena. Emergence of coordinated
neural dynamics underlies neuroprosthetic learning and skillful control. Neuron, 93(4):955–970,
2017.

Mehdi Azabou, Mohammad Gheshlaghi Azar, Ran Liu, Chi-Heng Lin, Erik C Johnson, Kiran
Bhaskaran-Nair, Max Dabagia, Bernardo Avila-Pires, Lindsey Kitchell, Keith B Hengen, et al.
Mine your own view: Self-supervised learning through across-sample prediction. arXiv preprint
arXiv:2102.10106, 2021.

Mehdi Azabou, Vinam Arora, Venkataramana Ganesh, Ximeng Mao, Santosh Nachimuthu, Michael
Mendelson, Blake Richards, Matthew Perich, Guillaume Lajoie, and Eva Dyer. A unified, scalable
framework for neural population decoding. Advances in Neural Information Processing Systems,
36:44937–44956, 2023.

Mehdi Azabou, Krystal Xuejing Pan, Vinam Arora, Ian Jarratt Knight, Eva L Dyer, and Blake Aaron
Richards. Multi-session, multi-task neural decoding from distinct cell-types and brain regions.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=IuU0wcO0mo.

Manuel Brenner, Florian Hess, Georgia Koppe, and Daniel Durstewitz. Integrating multimodal data
for joint generative modeling of complex dynamics. In International Conference on Machine
Learning, pp. 4482–4516. PMLR, 2024.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
invertible generative modeling. Advances in Neural Information Processing Systems, 32, 2019.

Alan D Degenhart, William E Bishop, Emily R Oby, Elizabeth C Tyler-Kabara, Steven M Chase,
Aaron P Batista, and Byron M Yu. Stabilization of a brain–computer interface via the alignment of
low-dimensional spaces of neural activity. Nature biomedical engineering, 4(7):672–685, 2020.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2022.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier J Henaff, Matthew
Botvinick, Andrew Zisserman, Oriol Vinyals, and Joao Carreira. Perceiver IO: A general archi-
tecture for structured inputs & outputs. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=fILj7WpI-g.

Jaivardhan Kapoor, Auguste Schulz, Julius Vetter, Felix Pei, Richard Gao, and Jakob H Macke.
Latent diffusion for neural spiking data. Advances in Neural Information Processing Systems, 37:
118119–118154, 2024.

Brianna M Karpowicz, Joel Ye, Chaofei Fan, Pablo Tostado-Marcos, Fabio Rizzoglio, Clay Wash-
ington, Thiago Scodeler, Diogo de Lucena, Samuel R Nason-Tomaszewski, Matthew J Mender,
et al. Few-shot algorithms for consistent neural decoding (falcon) benchmark. Advances in Neural
Information Processing Systems, 37:76578–76615, 2024.

10

https://openreview.net/forum?id=IuU0wcO0mo
https://openreview.net/forum?id=IuU0wcO0mo
https://openreview.net/forum?id=fILj7WpI-g


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Brianna M Karpowicz, Yahia H Ali, Lahiru N Wimalasena, Andrew R Sedler, Mohammad Reza
Keshtkaran, Kevin Bodkin, Xuan Ma, Daniel B Rubin, Ziv M Williams, Sydney S Cash, et al.
Stabilizing brain-computer interfaces through alignment of latent dynamics. Nature Communica-
tions, 16(1):4662, 2025.

Jinxiang Lai, Siqian Yang, Wenlong Liu, Yi Zeng, Zhongyi Huang, Wenlong Wu, Jun Liu, Bin-
Bin Gao, and Chengjie Wang. tsf: Transformer-based semantic filter for few-shot learning. In
European Conference on Computer Vision, pp. 1–19. Springer, 2022.

Trung Le and Eli Shlizerman. Stndt: Modeling neural population activity with spatiotemporal trans-
formers. Advances in Neural Information Processing Systems, 35:17926–17939, 2022.

Trung Le, Hao Fang, Jingyuan Li, Tung Nguyen, Lu Mi, Amy Orsborn, Uygar Sümbül, and Eli
Shlizerman. Spint: Spatial permutation-invariant neural transformer for consistent intracortical
motor decoding. arXiv preprint arXiv:2507.08402, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Ran Liu, Mehdi Azabou, Max Dabagia, Chi-Heng Lin, Mohammad Gheshlaghi Azar, Keith Hengen,
Michal Valko, and Eva Dyer. Drop, swap, and generate: A self-supervised approach for generating
neural activity. Advances in neural information processing systems, 34:10587–10599, 2021.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and
Mingsheng Long. Sundial: A family of highly capable time series foundation models. In Forty-
second International Conference on Machine Learning, 2025.

Edward N Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):
130–148, 1963.

Sean L Metzger, Kaylo T Littlejohn, Alexander B Silva, David A Moses, Margaret P Seaton, Ran
Wang, Maximilian E Dougherty, Jessie R Liu, Peter Wu, Michael A Berger, et al. A high-
performance neuroprosthesis for speech decoding and avatar control. Nature, 620(7976):1037–
1046, 2023.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
methods, 15(10):805–815, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

F Pei, J Ye, D Zoltowski, A Wu, RH Chowdhury, H Sohn, JE O’Doherty, KV Shenoy, MT Kaufman,
MM Churchland, et al. Neural latents benchmark’21: Evaluating latent variable models of neural
population activity. Advances in Neural Information Processing Systems (NeurIPS), Track on
Datasets and Benchmarks, 34, 2021.

Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke,
EJ Chichilnisky, and Eero P Simoncelli. Spatio-temporal correlations and visual signalling in
a complete neuronal population. Nature, 454(7207):995–999, 2008.

Mohammad H Rafiei, Lynne V Gauthier, Hojjat Adeli, and Daniel Takabi. Self-supervised learning
for electroencephalography. IEEE Transactions on Neural Networks and Learning Systems, 35
(2):1457–1471, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Avery Hee-Woon Ryoo, Nanda H Krishna, Ximeng Mao, Mehdi Azabou, Eva L Dyer, Matthew G
Perich, and Guillaume Lajoie. Generalizable, real-time neural decoding with hybrid state-space
models. arXiv preprint arXiv:2506.05320, 2025.

Mostafa Safaie, Joanna C Chang, Junchol Park, Lee E Miller, Joshua T Dudman, Matthew G Perich,
and Juan A Gallego. Preserved neural dynamics across animals performing similar behaviour.
Nature, 623(7988):765–771, 2023.

Marine Schimel, Ta-Chu Kao, Kristopher T Jensen, and Guillaume Hennequin. ilqr-vae: control-
based learning of input-driven dynamics with applications to neural data. In International Con-
ference on Learning Representations, 2022.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for
joint behavioural and neural analysis. Nature, 617(7960):360–368, 2023.

Andrew R Sedler and Chethan Pandarinath. lfads-torch: A modular and extensible implementation
of latent factor analysis via dynamical systems. arXiv preprint arXiv:2309.01230, 2023.

Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yule Wang, Zijing Wu, Chengrui Li, and Anqi Wu. Extraction and recovery of spatio-temporal
structure in latent dynamics alignment with diffusion models. Advances in Neural Information
Processing Systems, 36:38988–39005, 2023.

Francis R Willett, Donald T Avansino, Leigh R Hochberg, Jaimie M Henderson, and Krishna V
Shenoy. High-performance brain-to-text communication via handwriting. Nature, 593(7858):
249–254, 2021.

Francis R Willett, Erin M Kunz, Chaofei Fan, Donald T Avansino, Guy H Wilson, Eun Young
Choi, Foram Kamdar, Matthew F Glasser, Leigh R Hochberg, Shaul Druckmann, et al. A high-
performance speech neuroprosthesis. Nature, 620(7976):1031–1036, 2023.

Kevin Woeppel, Christopher Hughes, Angelica J Herrera, James R Eles, Elizabeth C Tyler-Kabara,
Robert A Gaunt, Jennifer L Collinger, and Xinyan Tracy Cui. Explant analysis of utah electrode
arrays implanted in human cortex for brain-computer-interfaces. Frontiers in Bioengineering and
Biotechnology, 9:1137, 2021.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4541–4550, 2019.

Junjie Yang, Hao Wu, Ji Zhang, Lianli Gao, and Jingkuan Song. Effective and efficient few-shot
fine-tuning for vision transformers. In 2024 IEEE International Conference on Multimedia and
Expo (ICME), pp. 1–6. IEEE, 2024.

Joel Ye and Chethan Pandarinath. Representation learning for neural population activity with neural
data transformers. Neurons, Behavior, Data analysis, and Theory, 5(3):1–18, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Joel Ye, Jennifer Collinger, Leila Wehbe, and Robert Gaunt. Neural data transformer 2: multi-
context pretraining for neural spiking activity. Advances in Neural Information Processing Sys-
tems, 36:80352–80374, 2023.

Joel Ye, Fabio Rizzoglio, Adam Smoulder, Hongwei Mao, Xuan Ma, Patrick Marino, Raeed Chowd-
hury, Dalton Moore, Gary Blumenthal, William Hockeimer, et al. A generalist intracortical motor
decoder. bioRxiv, 2025.
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APPENDIX OF DYNAMICAL LATENT FLOW MATCHING FOR
HIGH-PERFORMANCE FEW-SHOT NEURAL ADAPTATION

A METHODOLOGY

A.1 DETAILED ARCHITECTURE OF DLFM

We present the detailed architecture of our main modules as follows. The input neural signals have
the shape of (Batch size=256, Signal temporal length=m, Number of channels=l). The latent dimen-
sions of conditional features c(t) are denoted as kc, the dimension of latent states in the spatially
coupled flow matching is the same, kc. The depth of the transformer layers in Fα is denoted as ncd,
and the depth of the transformer layers in Vθ is denoted as nfd. The dropout value is represented as
od. The architectures of Fα, and Vθ can be seen in Table S1.

Table S1: Detailed Architectures of DLFM

Fα [MSA(kc, nhead), FFN(kc × nhead, kc)]×ncd

Vθ [FFN(kc × 2, kc), MSA(kc, nhead), MLP(kc × nhead, kc)]×nfd

Here, we use the term MLP to refer to Multilayer perceptron with residual connections, MSA to
represent multi-head self-attention modules, and FFN to indicate feed-forward neural networks.

Moreover, default dimensions kc, the drop-out rate vd, the number of heads nhead and the network
depth ncd and nfd mentioned above are configured as shown in Table S2 according to different
experimental datasets.

Table S2: Default Value Setup on Different Experimental Datasets

kc nfd ncd vd nhead

Simulated Data 96 5 2 0.1 2
NLB21 64 5 2 0.1 2
Falcon 32 5 2 0.1 8

The default values for the simulated data are set according to the results reported in Table S9. For the
other datasets, kc is selected based on the configurations used in (Ye & Pandarinath, 2021) and (Ye
et al., 2023), given the similarity of the datasets. The remaining hyperparameters are determined
through grid search, and were found to have minimal influence on the overall performance of DLFM.

A.2 ADDITIONAL RELATED WORK ON FLOW MATCHING

Normalizing flows have been widely applied in distribution sampling due to their precise and ex-
plicit likelihood modeling. Traditional normalizing flows (Chen et al., 2019; Dinh et al., 2022)
typically rely on invertible transformations, but these can constrain the representational capacity of
the networks. Recent research has sought to alleviate this limitation by utilizing continuous normal-
izing flows (Yang et al., 2019) based on ODEs. For example, flow matching (Lipman et al., 2022;
Peebles & Xie, 2023) extends diffusion models, an advanced generative model, allowing for more
flexible diffusion paths. Conditional flow matching (Atanackovic et al., 2025) further incorporates
conditional features to model conditional distributions.
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B EXPERIMENTAL DETAILS

B.1 DATASET DESCRIPTION

B.1.1 NLB 21

The Neural Latents Benchmark 2021 (NLB 21) (Pei et al., 2021) is a comprehensive benchmark
suite designed to evaluate latent variable models on neural population spiking data. The central task
involves unsupervised co-smoothing, where models predict the firing rates of held-out neurons based
on observed neural activity, enabling systematic comparison across diverse brain areas and behav-
ioral paradigms. NLB 21 comprises four datasets collected from non-human primates performing
motor, sensory and cognitive tasks, which have been introduced in the main text.

All datasets are provided in the Neurodata Without Borders (NWB) standard format and are acces-
sible via the DANDI archive. The raw spike trains are typically binned into 5ms non-overlapping
windows to convert discrete spike events into firing rate estimates suitable for latent variable mod-
eling. Trials with insufficient duration or excessive noise are excluded based on dataset-specific
criteria defined in the benchmark documentation. Behavioral and auxiliary signals, when available
(e.g., kinematics, force), are synchronized with neural data and preprocessed by standard normal-
ization techniques to ensure compatibility with modeling pipelines.

The benchmark uses the bits per spike (bps) metric within an unsupervised co-smoothing frame-
work as the primary evaluation criterion. This metric quantifies how accurately models reconstruct
the activity of held-out neurons from observed population activity. Submissions are evaluated on
the EvalAI platform, which provides a leaderboard and enforces standardized scoring procedures.
An official Python toolkit, nlb tools, facilitates data loading, preprocessing, model evaluation,
and includes baseline implementations to support reproducibility and rapid experimentation. This
benchmark suite offers a rigorous platform to assess the ability of latent variables to capture complex
neural population dynamics across multiple brain regions, behavioral contexts, and data regimes.

B.1.2 FALCON

The Falcon dataset (Karpowicz et al., 2024) is a large-scale, high-quality neural recording dataset
designed to facilitate the study of neural population dynamics during naturalistic, free-behavior
tasks. Recorded from non-human primates, Falcon provides extensive spike train data collected
while subjects engage in complex, unconstrained movements.

Data are provided in standardized formats compatible with common neuroscience analysis toolk-
its. Neural spike trains are binned into non-overlapping windows to convert discrete spikes into
continuous firing rate estimates suitable for latent variable modeling. Behavioral signals are
preprocessed with standard normalization and temporal alignment procedures. Falcon offers a
challenging testbed for latent variable models aiming to capture high-dimensional neural popu-
lation activity in naturalistic conditions. The dataset enables evaluation of model robustness be-
yond traditional trial-based paradigms, facilitating progress towards understanding neural coding
in real-world contexts. The M1 and M2 dataset used in our paper are available from https:
//dandiarchive.org/dandiset/000941?search=falcon&pos=1 and https://
dandiarchive.org/dandiset/000953?search=falcon&pos=2, respectively.
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B.2 TRAINING DETIALS

The main configurations for model training included the learning rate, weight decay parameters of
the Adam optimizer, batch sizes, number of iterative epochs, and random seeds during pre-training
and fine-tuning phases. The epochs of pre-training and fine-tuning use default settings with early
stopping. The best-trained weights are selected based on performance on the validation set, which
typically comprises 20% of the training data. Details of these hyperparameters are provided in
Table S3 and Table S4, respectively.

Table S3: Detailed Pre-training Setup

Learning Rate Weight Decay Epochs Batch Size Random Seed

Simulated Data 2e-3 1e-5 400 256 0-4
NLB21 2e-3 1e-5 1200 256 0-4
Falcon 2e-3 1e-5 2000 256 0-4

Table S4: Detailed Fine-tuning Setup

Learning Rate Weight Decay Epochs Batch Size Random Seed

Simulated Data 2e-3 1e-5 80 256 0-4
Falcon 2e-3 1e-5 1000 256 0-4

In addition, the pre-training and fine-tuning of SCFM on the simulated data and NLB21 datasets are
conducted using an NVIDIA GeForce RTX 3080 Ti (12GB). For the Falcon dataset, pre-training
is performed on four NVIDIA A800 GPUs (80GB each), and fine-tuning is carried out on a single
A800.

B.3 VALIDATION DETAILS

Specifically, during the validation after fine-tuning phases, we employed neural signals from the
test datasets, which were not leveraged during the fine-tuning phase, to evaluate the efficacy of our
DLFM.

The evaluation is conducted based on the decoding performance from the generated latent vari-
ables. Specifically, we first sample zt(1) using a 3-step Euler method starting from zt(0), guided
by the velocity field Vθ(zt(0), 0,Fα(x̃)). The predicted target label y(t) is then computed as
y(t) = Gγ(zt(1)). The reconstructed or predicted neural recordings are further obtained as
x(t) = Rβ(zt(1)).
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C ADDITIONAL RESULTS

C.0.1 ADDITIONAL COMPARATIVE RESULTS ON NLB21

The web submissions for NLB21 (Pei et al., 2021) are available on the EvalAI platform. The
leaderboards summarizing all submissions for each dataset are presented below:
https://eval.ai/web/challenges/challenge-page/1256/leaderboard/
3185: dmfc rsg
https://eval.ai/web/challenges/challenge-page/1256/leaderboard/
3186: area2 bump
https://eval.ai/web/challenges/challenge-page/1256/leaderboard/
3187: mc rtt
https://eval.ai/web/challenges/challenge-page/1256/leaderboard/
3188: mc maze
A snapshot of the leaderboard for fp-bps across the four nlb datasets is shown in Fig. S1.

(a) (b)

(c) (d)

Figure S1: Snapshot of the fp-bps leaderboard for (a) dmfc rsg, (b) area2 bump, (c) mc rtt, and (d)
mc maze datasets. Our method is reported as fmODE (DLFM).

The comprehensive results on various metrics are shown in Table S5 (dmfc rsg), Table S6
(area2 bump), Table S7 (mc rtt) and Table S8 (mc maze), correspondingly. Colored blocks in-
dicate the top three values in each column, with darker shades representing better values.
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Table S5: Comprehensive comparison
of DLFM with baselines on dmfc rsg
dataset.

co-bps (↑) psth R2 (↑) fp-bps (↑)
STNDT 0.1940 0.6452 0.1910
S5 0.2020 0.4407 0.1841
AESMTE3 0.1886 0.6064 0.1828
AutoLFADS 0.1820 0.5873 0.1960
DLFM 0.1869 0.6373 0.1993

Table S6: Comprehensive comparison of DLFM
with baselines on area2 bump dataset.

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑)
STNDT 0.2904 0.8937 0.7303 0.1491
S5 0.2901 0.8727 0.7258 0.1518
AESMTE3 0.2860 0.8999 0.7109 0.1603
AutoLFADS 0.2535 0.8516 0.6104 0.1455
DLFM 0.2844 0.8820 0.7199 0.1567

Table S7: Comprehensive comparison
of DLFM with baselines on mc rtt
dataset.

co-bps (↑) vel R2 (↑) fp-bps (↑)
STNDT 0.2065 0.6352 0.1260
S5 0.2296 0.6450 0.1271
AESMTE3 0.2053 0.6334 0.1344
AutoLFADS 0.1882 0.6176 0.1240
DLFM 0.2073 0.6663 0.1419

Table S8: Comprehensive comparison of DLFM
with baselines on mc maze dataset.

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑)
STNDT 0.3862 0.9095 0.6693 0.2686
S5 0.3823 0.9043 0.6431 0.2581
AESMTE3 0.3676 0.9114 0.6683 0.2589
AutoLFADS 0.3497 0.9027 0.6170 0.2447
DLFM 0.3779 0.9019 0.6525 0.2686

C.0.2 ADDITIONAL RESULTS ON INTERPRETABILITY ANALYSIS

As shown in Fig. S2, we visualized the recovered trajectories along with their corresponding R2

under the 5-shot adaptation. Compared to NDT and LFADS, DLFM produces more consistent and
accurate reconstructions, closely matching those achieved under 3-shot adaptation. This underscores
its effectiveness in capturing stable features of dynamical patterns and enabling efficient few-shot
neural adaptation.

LFADS DLFMNDT

𝑹𝟐 = 𝟎. 𝟖𝟑𝟔𝟎 𝑹𝟐 = 𝟎. 𝟖𝟔𝟔𝟗

𝑹𝟐 = 𝟎. 𝟗𝟐𝟒𝟖

𝑹𝟐 = 𝟎. 𝟗𝟔𝟗𝟒
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5-shot

M
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𝟎
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𝐌
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Figure S2: Recovered latent dynamics and R2 scores achieved by NDT, LFADS, and DLFM on
target datasets. The target mean firing rates (MFR) are set to 0.1 and 0.2 under the 5-shot setting,
respectively. Green lines denote the ground-truth latent trajectories, while orange dashed lines indi-
cate the recovered dynamics.

We further visualized the latent features obtained by DLFM-0.4, DLFM-0.6, DLFM-0.8 and DLFM
using randomly selected trials from held-in and held-out sessions of the M2 dataset. These features
were projected into two dimensions via Principal Component Analysis (PCA). As shown in Fig. S3,
DLFM exhibits structured latent distributions and alignment between held-in and held-out sessions
even with fewer calibration trials. This indicates that DLFM preserves stability within the latent
space, thereby enabling consistent neural decoding in few-shot scenarios.
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DLFM-0.4 DLFM-0.6

DLFMDLFM-0.8

Figure S3: The PCA visualization of latent features generated by DLFM-0.4, DLFM-0.6, DLFM-
0.8 and DLFM on M2. The visualized features are randomly selected from held-in (green) and
held-out (orange) sessions. DLFM-0.4, DLFM-0.6, and DLFM-0.8 denote partial fine-tuning using
40%, 60%, and 80% of the original calibration trials, respectively.

C.0.3 HYPER-PARAMETER SENSITIVITY ANALYSIS

The main hyperparameters of our DLFM method include the latent variable dimension kc, the depth
of the transformer layers in the flow matching module nfd, and the depth of the transformer-based
conditional feature extractor ncd. In this experiment, we analyzed the performance of DLFM on the
synthetic datasets under different configurations of these main hyperparameters. This grid-search
was performed by varying each parameter individually while keeping the others fixed at their default
values as mentioned in Table S2. As shown in Table S9, excessively high latent dimensionality can
introduce representational redundancy and lead to a decline in bits-per-spike (bps) performance.
Additionally, variations in the number of transformer layers, denoted as nfd and ncd, have minimal
impact on bps results. Based on these observations, we adopt default values of kc = 96, nfd = 5,
and ncd = 2 for our experiments.

Table S9: Bits-per-spike (bps) performance under varying hyperparameters: kc, nfd, and ncd on
simulated source neural data with a mean firing rate of 0.05. The reported mean and standard
deviation are computed over five independent runs.

kc 64 96 128

bps 0.95± 0.01 0.96 ± 0.02 0.90± 0.05

nfd 4 5 6

bps 0.95± 0.02 0.96 ± 0.02 0.95± 0.02

ncd 1 2 3

bps 0.97± 0.02 0.96 ± 0.02 0.94± 0.01

C.0.4 COMPUTATIONAL ANALYSIS

The computational analysis of DLFM is presented in terms of runtime and parameter count. The
number of parameters in the core components, the conditional feature extractor Fα and the flow-
based model Vθ, is summarized in Table S10. As expected, the total number of parameters in-
creases with dataset complexity and scale. Notably, Fα constitutes only a subset of the total model
parameters, supporting our claim that fine-tuning can be efficiently performed on small subsets of
DLFM.
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Table S10: The number of parameters in the conditional feature extractor Fα, the flow-based model
Vθ, and the total parameter count of DLFM on the simulated neural data, NLB21, and Falcon
datasets.

Data Fα Vθ Total

Simulated Data 0.1M 0.3M 0.5M
NLB21 0.8M 3.1M 4.5M
Falcon 12.6M 5.1M 32.9M

As shown in Table S11, DLFM achieves rapid fine-tuning with few-shot data, requiring less than
20 minutes (min) on the multi-session Falcon dataset. Furthermore, the inference time per sample
is under 20 milliseconds (ms), highlighting the potential of the DLFM framework for real-time or
online neural decoding applications.

Table S11: Computational time (minutes (min)/milliseconds (ms)) of DLFM during pre-training,
fine-tuning and inference on simulated neural data, NLB21 and Falcon datasets.

Data Pre-training (min) Fine-tuning (min) Inference (ms) Device

Simulated Data 15 0.2 4 3080Ti
NLB21 82 – 11 3080Ti
Falcon 571 17 18 A800
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