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ABSTRACT

In permutation synchronization, the goal is to find globally cycle-consistent corre-
spondences from noisy pairwise matchings. In this work, unlike spectral relaxations
that embed permutations into an orthogonal space and often result in inaccuracies,
we maintain the problem in its original combinatorial form. By shifting the affinity
spectrum to ensure positive semidefiniteness, we cast the trace-maximization over
partial permutations as a convex-in-P formulation. Our minorization-maximization
scheme then replaces this with a sequence of exact linear-assignment subproblems,
the row-/column-sum constraints of which are totally unimodular, guaranteeing
integral solutions with no rounding. This direct, combinatorial approach delivers a
monotonic objective ascent, convergence to a KKT point, and achieves superior
accuracy, cycle consistency, and runtime on image-matching benchmarks.

1 INTRODUCTION

Matching features across images or shapes is a central challenge in pattern recognition and computer
vision, playing a vital role in numerous applications, ranging from learning models of shape defor-
mation Cootes & Taylor (1992); Heimann & Meinzer (2009) to object tracking, 3D reconstruction,
graph matching, and image registration. The inherent complexity of these matching problems become
evident when formulated as instances of the NP-hard quadratic assignment problem (QAP) Sahni &
Gonzalez (1976). Extending beyond matching pairs of objects, the broader task of matching across
multiple objects is known as multi-matching. Generally, multi-matching is at least as computation-
ally demanding as pairwise matching because it involves solving multiple interconnected pairwise
problems under consistency constraints. A popular strategy for tackling multi-matching in practice is
to leverage these pairwise couplings Kezurer et al. (2015); Yan et al. (2016a); Bernard et al. (2018).

Permutation synchronization has emerged as a key technique for refining matchings across multiple
objects Huang & Guibas (2013); Pachauri et al. (2013), and its principles have been applied to various
domains, including multi-alignment Bernard et al. (2015); Arrigoni et al. (2016); Huang et al. (2019b),
multi-shape matching Huang et al. (2019a; 2020); Gao et al. (2021), multi-image matching Zhou et al.
(2015); Tron et al. (2017); Bernard et al. (2019b); Birdal & Simsekli (2019); Birdal et al. (2021), and
multi-graph matching Yan et al. (2016b); Bernard et al. (2018); Swoboda et al. (2019), among others.
In essence, permutation synchronization seeks to enforce cycle consistency among the set of pairwise
permutation matrices that represent correspondences between points across multiple objects.

In scenarios involving full matchings, cycle-consistency requires that the composition of matchings
along any cycle yields the identity mapping. Synchronization techniques have been thoroughly
explored both within the specific context of multi-matching Nguyen et al. (2011); Pachauri et al.
(2013); Shen et al. (2016); Tron et al. (2017); Maset et al. (2017); Schiavinato & Torsello (2017);
Kahl et al. (2024; 2025) and for broader types of transformations Govindu (2004); Chatterjee &
Govindu (2013); Bernard et al. (2015); Arrigoni et al. (2017); Thunberg et al. (2017); Wang & Singer
(2013). Synchronization can be interpreted as a denoising step: it tries to eliminate incorrect pairwise
matchings, which manifest as cycle inconsistencies, thereby improving the overall correspondence
quality.

Typically, synchronizing pairwise matchings is formulated as an optimization problem over permu-
tation matrices. Notably, Pachauri et al. Pachauri et al. (2013) and Shen et al. Shen et al. (2016)
proposed spectral methods for synchronization. However, these approaches assume full permutation
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matrices, meaning that all features must exist across all objects. While Maset et al. (2017) has recently
tackled this restriction, the method does not enforce cycle-consistency. Given that true matchings
inherently satisfy cycle-consistency, we argue that ensuring this property is crucial.

In Bernard et al. (2021), the nonconvex problem of identifying a sparse matrix on the Stiefel manifold
is considered that maximizes a quadratic form, while explicitly enforcing cycle consistency. To
sidestep the combinatorial nature of the partial-permutation matching, a semi-orthogonality constraint
is put in place, trading exact discreteness for tractability. Unlike traditional spectral methods which
typically ignore sparsity due to their reliance on eigenvalue solvers, Bernard et al. (2021) augments
the orthogonal iteration algorithm with a sparsity-encouraging step, thereby attaining sparse solutions
that are globally optimal under the relaxed constraint. Nevertheless, this approach only yields “soft”
sparsity (most entries are nearly zero but not exactly zero); in addition, since the sparsity-promoting
objective remains nonconvex, global optimality cannot be assured. Furthermore, by relaxing the
problem away from the exact partial-permutation constraints, this approach cannot produce strictly
binary (0–1) correspondences, which undermines the precision of the recovered matches.

Recent advancements have focused on local search heuristics to tackle the combinatorial complexity.
For instance, Kahl et al. (2024) introduces a powerful local search framework for graph matching
(GM-LS) that can be extended to multi-graph matching through a sequential construction process.
This approach was further accelerated in Kahl et al. (2025) by parallelizing the construction and
local search phases. While these methods achieve state-of-the-art performance, due to their heuristic
nature, they do not provide any theoretical proof of convergence. Furthermore, GREEDA Kahl
et al. (2025), which combines distinct local search modules, faces a critical limitation: because each
module optimizes locally, their combination does not guarantee that the final solution will achieve an
acceptable level of performance, as it may converge to a suboptimal local minimum.

MAIN CONTRIBUTION

Below we summarize the key innovations of this work:

(i) Direct combinatorial formulation. We retain the problem in its original permutation
domain, eschewing relaxations into orthogonal spaces, and show that shifting the affinity
spectrum by its minimum eigenvalue yields an equivalent, positive-semidefinite trace-
maximization over partial permutation matrices.

(ii) Minorization–maximization with exact subproblems. We introduce an MM framework
that, at each iteration, constructs a tight linear surrogate of the convexified objective and
solves it exactly via a linear-assignment problem, ensuring the global optimum of each
surrogate step.

(iii) Total unimodularity guarantee. We prove that the combined row- and column-sum
constraints form a totally unimodular system, so the LP relaxation of each surrogate admits
only integral extreme points, eliminating the need for any heuristic rounding and preserving
exact partial permutations.

(iv) Monotonic ascent & convergence. We prove that the algorithm monotonically increases
the original trace objective at every MM iteration and converges to a stationary point of the
combinatorial formulation.

(v) Superior accuracy & cycle consistency. By operating directly on permutations, our
method achieves remarkable matching accuracy, cycle consistency, and efficient runtime
on real image-matching benchmarks, outperforming spectral and alternating-minimization
baselines.

(vi) Highly efficient and scalable runtimes. Each iteration reduces to one or more efficient
linear-assignment solvings, yielding faster overall runtimes than existing methods even on
large-scale, real-world datasets.

2 MM FRAMEWORK: AN OVERVIEW

Consider the constrained optimization problem

max
x∈χ

f(x), (1)
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where x denotes the decision variable, f(x) is the objective to be maximized, and χ represents the
feasible region. An MM-based method tackles (1) by introducing, at each iteration t, a surrogate
function g

(
x | xt

)
, which underestimates f(x) but matches it exactly at the current point xt. The next

iterate is then found by solving xt+1 ∈ argmaxx∈χ g
(
x | xt

)
. These two operations—surrogate

construction and maximization—are repeated until convergence to a stationary solution of (1).

For g(x | xt) to qualify as a valid minorizer, it must satisfy

g
(
x | xt

)
≤ f(x) ∀x ∈ χ, g

(
xt | xt

)
= f

(
xt
)
. (2)

As a result of the surrogate properties, each MM step yields

f(xt+1) ≥ g
(
xt+1 | xt

)
≥ g

(
xt | xt

)
= f(xt),

which shows the objective value never decreases, ensuring the sequence f(xt) converges to a KKT
point of (1). To see a more detailed explanation of the MM framework, please refer to Sun et al.
(2017).

3 PROBLEM FORMULATION

Let k be the number of objects, where object i comprises of mi points. Denote by 1p the p-
dimensional all-ones vector, and interpret vector inequalities entrywise. For each pair (i, j), let
Pij ∈ Pmimj

:=
{
X ∈ {0, 1}mi×mj : X1mj

≤ 1mi
,XT1mi

≤ 1mj

}
be the partial permutation

matrix encoding correspondences between the mi points of object i and the mj points of object j.
When these matrices are full bijections, the collection P = {Pij}ki,j=1 is called cycle-consistent if
for every triplets (i, ℓ, j) it holds that Piℓ Pℓj = Pij . We denote by Pmid the subset of Pmid whose
members have full row-rank, i.e. Pmid =

{
X ∈ Pmid : X1d = 1mi

, XT 1mi
≤ 1d

}
, where

d is the total number of distinct points across all objects. We further note that cycle consistency
among the pairwise maps {Pij} holds if and only if there exist “object-to-universe” matchings
U = {Pi ∈ Pmid}ki=1 such that Pij = Pi P

T
j ∀ i, j. This universe-matching characterization

remains valid even when the Pij are only partial (non-bijective) permutations (see Tron et al. (2017);
Bernard et al. (2019a) for more details). Given the noisy set of pairwise permutations P = {Pij}ki,j=1,
permutation synchronization can be formulated as

argmax
{Pi∈Pmid}

∑
i,j

tr
(
PT

ijPiP
T
j

)
⇔ argmax

P∈U
tr
(
PTWP

)
, (3)

where, for m :=
∑k

i=1 mi, we define

U := Pm1d × · · · × Pmkd ⊂ Rm×d, P =


PT

1

...
PT

k

 ∈ Rm×d, W := [Pij ]
k
i,j=1 ∈ Rm×m.

With the aforementioned notations, the problem in (3) can be compactly rewritten as:

arg max
P∈{0,1}

tr
(
PTWP

)
s.t. P1d = 1m

PT
i 1mi

≤ 1d, i = 1, 2, ...k.

(4)

As we can see, the problem in (4) is challenging because the objective tr
(
PTWP

)
is a non-concave

quadratic form (since W may be indefinite), and the binary row- and column-sum constraints make
the feasible set combinatorial and NP-hard to search. In the following section, inspired by the MM
approach, we show how to solve the problem without resorting to any relaxation that takes us far
from optimality.

3
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4 SOLVING THE PERMUTATION SYNCHRONIZATION PROBLEM

In order to apply MM framework to solve (4), it is necessary to have a convex form of the objective
function. As a result, we introduce Lemma 4.1.

Lemma 4.1.
P ∈ {0, 1}m×d

P1d = 1m

}
=⇒ ∥P∥2F = m. (5)

Proof. The proof is straightforward and omitted for brevity.

Let us define M = W − λmin(W) Im ⪰ 0. As a result, for any feasible P,

tr(PTMP) = tr(PTWP)− λmin(W) ∥P∥2F = tr(PTWP)−mλmin(W).

As mλmin(W) is a constant, it can be dropped and we arrive at the following equivalent problem:

argmax
P

tr
(
PTMP

)
s.t. P ∈ {0, 1}m×d

P1d = 1m

PT
i 1mi ≤ 1d i = 1, 2, ...k.

(6)

Since M ⪰ 0, the objective function is convex in P; thus, at any current iterate Pt, it can be
minorized by its tangent hyperplane:

tr(PTMP) ≥ 2 tr
(
(Pt)TMP

)
− tr

(
(P(t))TMP(t)

)
= gt(P).

Setting A(t) = MTP(t) and leaving the constant term in gt(P), we arrive at the following surrogate
maximization problem:

argmax
P

tr
(
(At)TP

)
s.t. P ∈ {0, 1}m×d

P1d = 1m

PT
i 1mi ≤ 1d, i = 1, 2, ...k.

(7)

All constraints except Pij ∈ {0, 1} are affine in P; by transforming this constraint into 0 ≤ Pij ≤
1, we obtain a convex feasible set, however, one might worry about having fractional entries in the
optimal P. The following definition and theorem adopted from Schrijver (1986) and Wolsey &
Nemhauser (1999) ensure that this does not happen.

Definition 4.1 (Total unimodularity). An integer matrix A (not necessarily square) is totally unimod-
ular (TU) if every square submatrix of A has determinant in {−1, 0, 1}.

Theorem 4.2 (Integral vertices of TU systems). Let D be a totally unimodular matrix and b an
integer vector. Then the polyhedron

{
x ∈ Rn : Dx ≤ b

}
has only integral vertices. In particular,

the linear program max
{
BTx : Dx ≤ b

}
admits an optimal solution x∗ ∈ Zn.

To invoke Theorem 4.2 on our partial matching problem, we begin by vectorizing the matrix P ∈
Rm×d into the column–stacked vector x = vec(P) ∈ Rmd. In this form, each of the original affine
constraints can be written as rows of a single integer matrix D acting on x, with an integral right-hand
side b.

First, the requirement that each row of P sums to one, P1d = 1m, becomes the pair of inequalities

(Im ⊗ 1T
d )x ≤ 1m, − (Im ⊗ 1T

d )x ≤ −1m,

where Im ⊗ 1T
d ∈ {0, 1}m×(md) is the Kronecker product of the m ×m identity matrix with the

1× d all-ones row vector.

4
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Second, the cluster-capacity constraints (namely that for each of the k clusters of rows, at most one
point may be assigned to each column) can be written as (J⊗ Id)x ≤ 1kd, where J ∈ {0, 1}k×m

encodes row-to-cluster membership and Id is the d× d identity. By stacking these blocks,

D =


Im ⊗ 1T

d

−
(
Im ⊗ 1T

d

)
J⊗ Id

 ∈ {0,±1}(2m+k d)×(md), b =

 1m

−1m

1k d

 ,

the LP relaxation of (7) can be written as: maxx∈Rmd

(
vec(A(t))

)T
x s.t. Dx ≤ b, 0 ≤ x ≤

1. Since Im ⊗ 1T
d and J ⊗ Id have the specific structure of network matrices (or are Kronecker

products thereof), they are totally unimodular. Importantly, Schrijver’s theorem Schrijver (1986)
establishes that total unimodularity is preserved when row-stacking matrices from certain special
classes—including network matrices, their Kronecker products, and their negations—provided they
share compatible structure. Since our constraint matrix D is formed by stacking matrices of this
specific form, and b is integral, the system satisfies the conditions for integrality of optimal solutions.
By Theorem 4.2, every vertex of the polyhedron {x : Dx ≤ b} is integral, so any optimal solution
x∗ satisfies x∗ ∈ {0, 1}md. Equivalently, the LP relaxation of our matching problem admits an
integral maximizer. As a result, the relaxed problem

argmax
P

tr
(
(A(t))TP

)
s.t. P ∈ [0, 1]m×d

P1d = 1m

PT
i 1mi ≤ 1d i = 1, 2, ...k,

(8)

is always tight. The optimzation problem 8 can be solved directly by CVX Grant & Boyd (2014),
or CVXPY Diamond & Boyd (2016) or by the Lagrangian duality approach in Sun et al. (2017);
Saini et al. (2024). However, since all constraints in (8) are linear, projection-based first-order
methods yield significantly faster and more scalable solutions: starting from an initial P(0) ∈ C,
one performs the iterations P(t+ 1

2 ) = P(t) + η(t)A(t), P(t+1) = ΠC
(
P(t+ 1

2 )
)
, where

C =
{
P ∈ [0, 1]m×d : P1d = 1m, PT

i 1mi ≤ 1d ∀i ∈ {0, 1, . . . , k}
}

,

and ΠC denotes the Euclidean projection onto C. Each iteration costs O(md) operations, and
accelerated variants achieve O(1/t2) convergence rate in practice, making projection-based methods
particularly attractive for large-scale instances. For a concise overview of our approach (Algorithm 1)
and a detailed proof of the convergence of our method to a KKT stationary point, we refer the reader
to the Appendix A.

5 EXPERIMENTAL RESULTS

In this section, we conduct a rigorous and comprehensive evaluation of our proposed MM-inspired
combinatorial permutation synchronization algorithm (MM). We compare its performance against a
broad suite of nine state-of-the-art baselines on the challenging task of multi-image correspondence.
Our analysis spans five key evaluation metrics and multiple datasets to assess accuracy, structural
consistency, and computational efficiency.

5.1 COMPARED METHODS

We benchmark our algorithm against the following established and recent methods in permutation
synchronization and multi-graph matching:

• Spectral Pachauri et al. (2013): The foundational permutation synchronization method,
which formulates the problem as a spectral relaxation that can be solved efficiently via the
eigendecomposition of a global affinity matrix.

• MatchEig Maset et al. (2017): A non-iterative spectral method that uses the eigendecom-
position of an affinity matrix to enforce correspondence consistency.

5
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• NmfSync Bernard et al. (2019a): A method for partial permutation synchronization
based on non-negative matrix factorization, which projects a relaxed solution to achieve
cycle-consistent results.

• stiefel Bernard et al. (2021): Formulates the problem as a sparse quadratic optimization
over the Stiefel manifold and solves it using a modified orthogonal iteration algorithm.

• FCC Shi et al. (2021): An efficient filtering method that uses cycle consistency statistics
within match graphs to identify and remove outlier correspondences.

• MatchFAME Li et al. (2022): A fast and memory-efficient algorithm using Cycle-Edge
Message Passing and a weighted projected power method to solve partial permutation
synchronization.

• GM-LS-seq Kahl et al. (2024): A sequential routine that combines a construction phase
with a Graph Matching Local Search (GM-LS) to find a solution.

• GM-LS-par Kahl et al. (2025): A parallelized version of GM-LS-seq that uses parallel
construction and parallel local search to accelerate optimization.

• GREEDA Kahl et al. (2025): An iterative algorithm that alternates between Graph Match-
ing Local Search (GM-LS) and Swap Local Search (SWAP-LS) until convergence to refine a
solution. The SWAP-LS component improves the solution by exploring moves that exchange
assignments between different nodes.

5.2 EVALUATION METRICS

To provide a comprehensive and rigorous evaluation, we assess our proposed MM-based synchro-
nization algorithm against competing methods using a suite of five distinct metrics. These are chosen
to measure the accuracy, structural quality, geometric consistency, and computational efficiency.

F-score (higher is better): We use the F-score, the harmonic mean of precision (p) and recall (r), as
a balanced measure of matching accuracy. It is defined as:

F =
2 p r

p+ r
, where p =

#correct matches
#predicted matches

, and r =
#correct matches

#ground-truth matches
.

Feature Recall: The fraction of ground-truth matches correctly identified by the algorithm, measuring
its ability to recover true correspondences.

Cyclic Consistency (higher is better): A core objective of synchronization is to produce a globally
consistent set of permutations. This metric directly measures the degree to which the recovered
permutations Pij satisfy the cycle-consistency constraint, i.e., Pik = PijPjk for any triplet (i, j, k).
We report the fraction of all possible triplets that satisfy this condition, where a higher value signifies
superior synchronization.

RANSAC Inlier Ratio (higher is better): To assess the practical utility of the generated matches for
downstream geometric tasks like structure from motion (SfM), we compute the inlier ratio. Keypoint
matches are used to estimate the relative camera pose (e.g., the fundamental matrix) between image
pairs using a RANSAC-based estimator. The inlier ratio is the percentage of correspondences
consistent with the estimated geometric model, where a higher ratio indicates more geometrically
coherent and reliable matches.

Runtime (lower is better): We report the average execution time in seconds required for each
algorithm to converge on a given problem instance. This metric is crucial for evaluating the practical
scalability and efficiency of the methods.

5.3 DATASETS AND PROTOCOL

Our primary evaluation is conducted on the widely recognized CMU House sequence Bernard et al.
(2021), which consists of 111 images of a model house captured from different viewpoints. Following
the approach of Bernard et al. (2021), we construct a series of synchronization tasks by gradually
increasing the number of images, k. Specifically, we vary k from 20 to 111. For each value of k, we
uniformly sample the corresponding k × k subset of the full 111 × 111 pairwise match matrix to
form the input for each problem instance.

6
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To further validate the robustness and generalizability of our method, we performed additional
experiments on five challenging sequences from the ETH3D benchmark Schöps et al. (2019; 2017):
statue, terrace, office, kicker, and electro. These datasets feature complex scenes with significant
occlusions, varying illumination, and diverse structures, providing a rigorous test for all methods. We
repeated the same comprehensive evaluation for these datasets as was performed for CMU House,
including all quantitative metrics and qualitative match analyses. These additional results, with a full,
detailed analysis, are available in Appendix B.

5.3.1 INITIALIZATION STRATEGY

For all experiments, our proposed MM algorithm is initialized using a warm-start strategy. Specifically,
we leverage the solution generated by the Stiefel baseline Bernard et al. (2021). The output from
the Stiefel method, which is a soft-assignment matrix on the Stiefel manifold, is projected onto
the set of feasible partial permutations {0, 1}m×d to provide a high-quality initial point, P(0), for
our iterative procedure. The rationale for this choice stems from the fact that the Stiefel method
solves a continuous relaxation of the original combinatorial problem. Although its formulation on
the Stiefel manifold does not enforce the discrete permutation constraints directly, it represents the
closest relaxed version of our problem. By leveraging its solution as an initial guess, we begin
our MM iterations from a point already situated in a promising region of the search space. This
approach effectively combines the broad perspective of a strong relaxation method with the exact,
combinatorial refinement of our MM framework, promoting convergence to a high-quality stationary
point.

5.4 IMPLEMENTATION DETAILS AND HARDWARE

To ensure reproducible results, we used the publicly available code for all baselines. Our method
(MM) and the MATLAB-based baselines—Spectral Pachauri et al. (2013), MatchEig Maset et al.
(2017), NmfSync Bernard et al. (2019a), stiefel Bernard et al. (2021), FCC Shi et al. (2021), and
MatchFAME Li et al. (2022)—were executed in MATLAB R2022b. The remaining methods, GM-
LS-seq Kahl et al. (2024), GM-LS-par Kahl et al. (2025), and GREEDA Kahl et al. (2025), were run
using their original Python implementations. All experiments were conducted on a desktop computer
with an AMD Ryzen 5 5600H CPU and 16GB of RAM.

5.5 QUANTITATIVE RESULTS

In this part, we present the mean performance of all evaluated algorithms on the CMU House
dataset, aggregated over problem sizes from k = 20 to k = 111, as detailed in Table 1. The
results unequivocally highlight the superior performance of our proposed MM algorithm, which
uniquely achieves state-of-the-art accuracy while maintaining competitive efficiency. In terms of
accuracy, our MM method is the only algorithm to secure a perfect F-score (1.000) and Feature Recall
(1.000), indicating perfect matching. MatchFAME (0.999) and GM-LS-par (0.999) deliver near-
perfect accuracy, establishing themselves as strong competitors. In contrast, traditional relaxation
methods show a noticeable degradation, with Stiefel achieving an F-score of 0.984, NmfSync 0.939,
and Spectral lagging at 0.863. Regarding structural integrity, our method obtains a perfect Cyclic
Consistency score of 1.000, a property shared by most baselines. The exceptions are MatchEig
(0.933) and FCC (0.913), whose formulations do not enforce this constraint. For geometric utility,
the RANSAC Inlier Ratio reveals that local search methods (GM-LS-seq, GM-LS-par, GREEDA)
produce the most geometrically coherent matches, leading with a ratio of 0.781. Our MM algorithm
follows closely with a ratio of 0.724, on par with MatchFAME (0.721) and FCC (0.722), confirming
the high geometric quality of its perfect correspondences. The classic relaxation methods again
lag, with inlier ratios below 0.70, indicating their errors are more geometrically disruptive. Finally,
in computational efficiency, GM-LS-seq is the fastest at 0.129 seconds. Our MM algorithm is
also exceptionally efficient, with a mean runtime of 1.662 seconds. This result is remarkable,
demonstrating that our perfect accuracy does not come at a high computational cost; it is significantly
faster than other top-tier methods like GM-LS-par (2.748s), Stiefel (5.378s), and MatchFAME
(13.935s), and is orders of magnitude faster than the slowest method, FCC (91.658s). In summary,
the quantitative data demonstrates that our MM algorithm occupies a unique position: it delivers
the highest possible accuracy and perfect consistency while maintaining excellent computational
efficiency.
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MatchEig Spectral

NmfSync Stiefel

FCC MatchFAME

GM-LS-seq GM-LS-par

GREEDA Ours

Figure 1: Comparison of matchings between the first and last image of the CMU house sequence
obtained by different methods.
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Table 1: Mean performance over k on the CMU house dataset. Best and second best are highlighted.

Method F-score ↑ Feature Recall ↑ Cyclic Const. ↑ Inlier Ratio ↑ Runtime (sec) ↓
MatchEig 0.926 0.905 0.928 0.686 17.425
Spectral 0.863 0.864 1.000 0.638 0.869
NmfSync 0.939 0.940 1.000 0.686 11.031
Stiefel 0.984 0.984 1.000 0.697 5.378
MatchFAME 0.999 1.000 1.000 0.721 13.935
FCC 0.913 0.857 0.974 0.722 91.658
GM-LS-seq 0.965 0.965 1.000 0.7814 0.129
GM-LS-par 0.999 0.999 1.000 0.7814 2.748
GREEDA 0.910 0.910 1.000 0.7814 1.811
MM (Ours) 1.000 1.000 1.000 0.724 1.662

5.6 QUALITATIVE RESULTS

To complement the quantitative analysis, Figure 1 provides a visual comparison of the correspon-
dences found between the first and last frames of the 111-image CMU House sequence. In these
visualizations, the colored dots represent the same set of ground-truth keypoints, where corresponding
points share an identical color across the two views. Correct matches are denoted by green lines and
mismatches by red lines, revealing the distinct structural quality and error patterns of each algorithm.

The results for our proposed MM algorithm show a complete set of correct correspondences, with
a total absence of mismatches. This visual confirmation, which corroborates our perfect F-score,
highlights the robustness of our combinatorial approach in resolving ambiguities, even in challenging
regions with repetitive textures like the window frames. In contrast, even the top-performing baselines
show visible imperfections. While the results for MatchFAME and GM-LS-par align with their high
quantitative scores, they do not achieve the error-free result of our method. Other high-performing
methods like GM-LS-seq and GREEDA begin to exhibit a few visible red mismatches, often clustered
in the lower portion of the house, which suggests that while their solutions are largely correct, they
can falter in areas of lower texture or geometric ambiguity. Among the classic relaxation-based
methods, Stiefel delivers a strong result but still shows one or two minor, non-systematic errors,
highlighting the inherent risk of small deviations from the discrete solution space that such methods
face. In stark contrast, other baselines exhibit significant and systematic failures. The Spectral
method clearly struggles with the symmetric structure of the house, producing a cluster of prominent
red mismatches around the windows—a classic failure mode where eigenvector ambiguity leads
to incorrect assignments. MatchEig suffers from numerous, scattered errors that create a visually
“jittery” effect, a direct consequence of its lack of a cyclic consistency constraint which allows local
inaccuracies to propagate globally. NmfSync and FCC also display several major mismatches, with
some red lines spanning large distances across the image, indicating that their underlying factorization
or compositional models can latch onto spurious correlations and produce structurally unsound results.
Overall, this qualitative analysis reinforces our quantitative findings, visually demonstrating that
our MM algorithm’s ability to preserve the discrete problem structure allows it to achieve a level of
accuracy and structural integrity that the other methods cannot match.

6 CONCLUSION

In this work, we have introduced a direct, combinatorial minorization-maximization framework for
permutation synchronization that operates entirely in the space of partial permutation matrices. By
shifting the spectrum of the affinity matrix to enforce positive semidefiniteness and constructing tight
linear surrogates at each iteration, our method reduces to a sequence of exact linear-assignment sub-
problems whose constraints are totally unimodular, guaranteeing integral, cycle-consistent matchings
without any rounding. We proved monotonic ascent of the original trace objective and convergence
to a stationary point, and demonstrated on real image-matching benchmarks that our algorithm
achieves state-of-the-art accuracy and consistency while running faster than existing spectral and
alternating-minimization approaches. The simplicity, efficiency, and strong empirical performance of
our approach make it an attractive candidate for a wide range of matching and alignment tasks.
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APPENDICES

A PROOF OF CONVERGENCE

Algorithm 1 MM-Inspired Combinatorial Permutation Synchronization

Require: Pairwise permutation matrices {Pij}ki,j=1, cluster sizes {mi}, universe size d, tolerance ϵ

Ensure: Object-to-universe matching P ∈ {0, 1}m×d

1: Build block-affinity W← [Pij ]
k
i,j=1 ∈ Rm×m

2: Compute smallest eigenvalue λmin ← λmin(W)
3: Form PSD shift M←W − λmin Im ⪰ 0
4: Initialize feasible P(0) ∈ {0, 1}m×d s.t. P(0)1d = 1m and PT

i 1mi ≤ 1d ∀i
5: for t = 0, 1, 2, . . . do
6: Surrogate: A(t) ← 2MP(t)

7: Projection-based update:
P(t+ 1

2
) ← P(t) + η(t) A(t)

P(t+1) ← ΠC
(
P(t+ 1

2
)
)

where C = {P ∈ [0, 1]m×d : P1d = 1m, PT
i 1mi ≤ 1d ∀i}

8: Check convergence:
∣∣tr((P(t+1))TWP(t+1))−tr((P(t))TWP(t))

∣∣∣∣tr((P(t))TWP(t))

∣∣ < ϵ

9: if true then
10: break
11: end if
12: end for
13: return P(t+1)

This appendix provides a proof that our Minorization-Maximization (MM) based method, summarized
in Algorithm 1, produces a non-decreasing objective sequence that converges. We also show that
every limit point of the sequence of iterates is a Karush-Kuhn-Tucker (KKT) stationary point of the
original combinatorial problem.

A.1 FIRST-ORDER OPTIMALITY CONDITION

We first introduce the necessary first-order optimality condition for maximizing a smooth function
over a closed constraint set, which follows from Bertsekas et al. (2003).
Proposition 1 (First-Order Necessary Condition for Maximization). Let f : Rm×d → R be a
continuously differentiable function, and let C ⊆ Rm×d be a closed, non-empty set. If P∗ is a local
maximizer of f over C, then:

tr
(
∇f(P∗)T (P−P∗)

)
≤ 0, ∀P ∈ C

where ∇f(P∗) is the gradient of f evaluated at P∗.

A.2 MONOTONICITY AND STATIONARITY

Recall our objective function f(P) = tr(PTMP) over the compact feasible set C of partial
permutation matrices. At each iteration t, the MM algorithm maximizes the surrogate function
g(P | P(t)), defined as the tangent hyperplane to the convex function f at P(t). The MM update rule
is P(t+1) = argmaxP∈C g

(
P | P(t)

)
.

Theorem A.1 (Convergence to a Stationary Point). The sequence {P(t)} generated by the MM
algorithm exhibits a non-decreasing objective sequence {f(P(t))} that converges. Furthermore,
every limit point of {P(t)} is a KKT stationary point of the original maximization problem.

Proof. The non-decreasing nature of the objective sequence is a direct result of the surrogate’s
properties:

f
(
P(t+1)

)
≥ g

(
P(t+1) | P(t)

)
≥ g

(
P(t) | P(t)

)
= f

(
P(t)

)
. (9)
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This shows the sequence {f(P(t))} is non-decreasing. Since the feasible set C is finite (and thus
compact), the function f(·) is bounded above on C. By the Monotone Convergence Theorem, the
sequence of values converges, i.e., f(P(t)) → f∗ < ∞.

Because C is compact, the sequence of iterates {P(t)} must admit at least one limit point. Let P(∞)

be such a point, which implies the existence of a subsequence {P(tj)} such that P(tj) → P(∞) as
j → ∞.

By definition of the MM update, for any P ∈ C:

g
(
P(tj+1) | P(tj)

)
≥ g

(
P | P(tj)

)
.

Taking the limit as j → ∞ and using the continuity of g(·|·) and the convergence of the objective
function value, we obtain:

g
(
P(∞) | P(∞)

)
≥ g

(
P | P(∞)

)
, ∀P ∈ C.

This shows that P(∞) globally maximizes its own surrogate function g(· | P(∞)) over the feasible
set C. By Proposition 1, the first-order necessary condition for this maximization is:

tr
(
∇g(P | P(∞))|TP=P(∞) (P−P(∞))

)
≤ 0.

The gradient of the surrogate is ∇g(P | P(∞)) = 2MP(∞). Critically, this is identical to the gradient
of the original objective function, ∇f(P(∞)) = 2MP(∞). Substituting this into the inequality gives:

tr
(
∇f(P(∞))T (P−P(∞))

)
≤ 0, ∀P ∈ C.

This is exactly the KKT stationarity condition for the original objective function f at the point P(∞).
This completes the proof.
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B ADDITIONAL EVALUATION AND RESULTS

In this section, we provide a comprehensive evaluation of our proposed MM algorithm on four
challenging sequences from the ETH3D benchmark: terrace (52 labels), office (40 labels), kicker
(26 labels), and statue (10 labels). This annotation was performed manually, guided by the method-
ology presented in several recent and high-impact papers Bernard et al. (2021); Kahl et al. (2024;
2025). These experiments are designed to further validate the robustness and generalizability of our
method against a suite of nine state-of-the-art competitors. For each dataset, we report quantitative
performance across five key metrics—F-score, Feature Recall, Cyclic Consistency, RANSAC Inlier
Ratio, and Runtime—and provide qualitative visualizations of the resulting feature correspondences
to corroborate the numerical results.

QUANTITATIVE AND QUALITATIVE ANALYSIS

The results, presented in the comprehensive Table 2, reveal a consistent and compelling performance
narrative. Whether faced with the challenging repetitive patterns in terrace, office, kicker, and
electro, the significant viewpoint rotation in electro and statue, or the universal difficulty of matching
extremely close keypoints, our proposed MM algorithm unequivocally demonstrates exceptional
performance. It is the only method among the ten contenders to achieve a perfect F-score, Feature
Recall, and Cyclic Consistency of 1.000 on every single dataset. This perfect accuracy underscores
the power of our combinatorial approach to find the exact, globally optimal solution. Furthermore,
this is achieved with outstanding efficiency, as our algorithm consistently ranks as the fastest or
joint-fastest method, with runtimes typically around 0.010 seconds.

In stark contrast, the performance of the nine competing methods is markedly less robust and
highly dependent on the specific challenge. While local search-based approaches like GM-LS-par
and GREEDA occasionally achieve high F-scores, their accuracy deteriorates significantly when
confronted with strong ambiguities arising from repetitive structures and feature proximity, as seen
in the kicker and office results. Moreover, other methods such as MatchEig and FCC often fail to
maintain coherence, evidenced by their poor cyclic consistency scores (e.g., 0.300 on terrace and
statue), a key limitation that our formulation successfully overcomes.

From a qualitative standpoint, the visual comparisons in Figures 2 through 6 further highlight
this distinction. In sequences dominated by repetitive patterns—such as the window frames in
terrace, symmetric objects in office, and ambiguous textures in kicker and electro—most competing
approaches yield numerous mismatches. They particularly falter when keypoints are located extremely
near one another, a scenario where descriptor-based methods struggle to disambiguate correct pairings,
leading to visually unstable correspondences and disordered match clusters that disrupt the underlying
geometry. In datasets with significant viewpoint rotation like electro and statue, baseline methods
also fail to maintain global coherence. For the statue sequence in particular, high surface curvature
severely alters local feature appearance across views, causing descriptor-based methods to break down.
By contrast, the MM algorithm’s output exhibits a remarkably clean topology across all scenarios.
Every correspondence aligns perfectly with semantic and geometric continuity, overcoming both
repetitive patterns and extreme viewpoint changes without producing a single spurious pair. Even
in statue, only MM maintains dense, globally accurate matching patterns that precisely follow the
complex surface geometry, proving its robustness to the most severe matching challenges.

Taken together, these visual results corroborate the quantitative dominance observed in Table 2.
The MM algorithm not only maximizes measurable accuracy but also delivers unmatched structural
coherence and perceptual reliability. This harmony between numerical perfection and visual integrity
establishes MM as a fundamentally stable solution for correspondence problems.
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Table 2: Performance comparison on multiple datasets (mean values). Best and second best results
for each dataset are highlighted.

Dataset Method F-score ↑ Feature
Recall ↑ Cyclic

Const. ↑
Inlier
Ratio ↑ Runtime

(sec) ↓
te

rr
ac

e

MatchEig 0.857 0.857 0.462 0.250 0.090
Spectral 0.825 0.825 1.000 0.221 0.030

NmfSync 0.834 0.825 1.000 0.231 0.070
Stiefel 0.825 0.825 1.000 0.256 0.060

MatchFAME 0.825 0.825 1.000 0.250 0.150
FCC 0.857 0.857 0.462 0.253 0.020

GM-LS-seq 0.930 0.930 1.000 0.400 0.023
GM-LS-par 0.9391 0.9391 1.000 0.400 0.024
GREEDA 0.878 0.878 1.000 0.400 0.027

MM (Ours) 1.000 1.000 1.000 0.308 0.010

of
fic

e

MatchEig 0.849 0.849 0.550 0.250 0.010
Spectral 0.837 0.838 1.000 0.258 0.010

NmfSync 0.840 0.840 1.000 0.267 0.030
Stiefel 0.840 0.840 1.000 0.250 0.020

MatchFAME 0.837 0.838 1.000 0.250 0.120
FCC 0.849 0.849 0.550 0.258 0.020

GM-LS-seq 0.800 0.800 1.000 0.3250 0.021
GM-LS-par 0.792 0.792 1.000 0.3250 0.021
GREEDA 0.717 0.717 1.000 0.3250 0.021

MM (Ours) 1.000 1.000 1.000 0.317 0.010

ki
ck

er

MatchEig 0.652 0.647 0.343 0.321 0.020
Spectral 0.564 0.564 1.000 0.310 0.010

NmfSync 0.600 0.598 0.995 0.276 0.040
Stiefel 0.595 0.595 1.000 0.308 0.040

MatchFAME 0.603 0.603 1.000 0.327 0.160
FCC 0.641 0.605 0.519 0.347 0.020

GM-LS-seq 0.571 0.571 1.000 0.340 0.026
GM-LS-par 0.609 0.609 1.000 0.372 0.026
GREEDA 0.692 0.692 1.000 0.365 0.027

MM (Ours) 1.000 1.000 1.000 0.365 0.010

el
ec

tr
o

MatchEig 0.879 0.879 0.559 0.388 0.010
Spectral 0.853 0.853 1.000 0.309 0.010

NmfSync 0.853 0.853 1.000 0.279 0.010
Stiefel 0.866 0.866 1.000 0.294 0.050

MatchFAME 0.853 0.853 1.000 0.279 0.050
FCC 0.879 0.879 0.559 0.304 0.010

GM-LS-seq 0.853 0.853 1.000 0.301 0.030
GM-LS-par 0.866 0.866 1.000 0.316 0.030
GREEDA 0.892 0.892 1.000 0.334 0.031

MM (Ours) 1.000 1.000 1.000 0.343 0.009

st
at

ue

MatchEig 0.857 0.857 0.720 0.250 0.090
Spectral 0.825 0.825 1.000 0.221 0.030

NmfSync 0.834 0.825 1.000 0.231 0.070
Stiefel 0.825 0.825 1.000 0.256 0.060

MatchFAME 0.825 0.825 1.000 0.250 0.150
FCC 0.857 0.857 0.754 0.253 0.020

GM-LS-seq 0.767 0.767 1.000 0.700 0.021
GM-LS-par 0.8800 0.8800 1.000 0.700 0.024
GREEDA 0.820 0.820 1.000 0.700 0.021

MM (Ours) 1.000 1.000 1.000 0.308 0.010
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MatchEig Spectral

NmfSync Stiefel

FCC MatchFAME

GM-LS-seq GM-LS-par

GREEDA Ours

Figure 2: Comparison of matchings between the first and last image of the terrace sequence obtained
by different methods.
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MatchEig Spectral

NmfSync Stiefel

FCC MatchFAME

GM-LS-seq GM-LS-par

GREEDA Ours

Figure 3: Comparison of matchings between the first and last image of the office sequence obtained
by different methods.
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MatchEig Spectral

NmfSync Stiefel

FCC MatchFAME

GM-LS-seq GM-LS-par

GREEDA Ours

Figure 4: Comparison of matchings between the first and last image of the kicker sequence obtained
by different methods.
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MatchEig Spectral

NmfSync Stiefel

FCC MatchFAME

GM-LS-seq GM-LS-par

GREEDA Ours

Figure 5: Comparison of matchings between the first and last image of the electro sequence obtained
by different methods.
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MatchEig Spectral

NmfSync Stiefel

FCC MatchFAME

GM-LS-seq GM-LS-par

GREEDA Ours

Figure 6: Comparison of matchings between the first and last image of the statue sequence obtained
by different methods.
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C COMPARISON OF INITIALIZATION RESULTS

(a) k=31 (b) k=57

(c) k=83 (d) k=109

Figure 7: Visualization of results for different initial values.

Due to the non-convex nature of our problem, a theoretical guarantee of convergence to a high-
quality maximum independent of initialization is not feasible—a common trait of such optimization
landscapes. We therefore provide extensive numerical evidence to demonstrate the practical robustness
of our method with respect to the choice of initial parameters.

To this end, we conducted experiments on the CMU House dataset using four distinct initialization
strategies: spectral, random permutation, Stiefel, and greedy matching. To ensure that our findings
are not an isolated phenomenon, this rigorous comparison was carried out for over forty different
odd values of k, with the full set of convergence plots publicly available for review1. For clarity and
consistent scaling across these runs, we adopt the normalization practice of Bernard et al. (2021) and
divide each objective function value by k2 in all plots.

Figure 7 illustrates this robust convergence for four representative cases on the CMU House dataset,
showcasing the results for k values of 31, 57, 83, and 109. As can be seen, despite their different
starting points, all four scenarios consistently converge to the same final objective function value. It is
worth noting that this stability extends beyond the objective value; empirical experiments show that the

1https://github.com/anonymous-user-anonymous-user/
Convergence-vs-iteration
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Figure 8: Quantitative results for the CMU house sequence are shown, reporting the objective value of
Problem (4) (higher is better). Each point along the horizontal axis represents a different permutation
synchronization instance.

resulting matchings for our proposed method are identical for all the initial values we considered. As
a result, the performance metrics—F-score, Feature Recall, and cyclic consistency—remain constant
across different initializations. We have omitted repetitive tables for brevity, but the implemented
code demonstrating identical objective values and maximizer results is provided in the supplementary
material. Given the consistent attainment of peak metric values and identical results across the diverse
conditions we have considered (e.g., different datasets and initial values), our method empirically
demonstrates behavior suggestive of global optimality. However, as the problem is non-convex and
NP-hard, a theoretical proof of global optimality is generally intractable Boyd & Vandenberghe
(2004). Therefore, while we have proven convergence to a KKT stationary point, we do not claim
theoretical global optimality.

As a complementary analysis, we examine the difference between the Stiefel method and our
MM-based framework, using the Stiefel solution as a warm-start initialization. As illustrated in
Figure 7, when k = 31, the objective value difference is 312 × (25.74 − 25.705) = 33.635.
Comparable improvements are observed for k = 57, k = 83, and k = 109, where our framework
achieves increases in the objective value of 556.22, 988.57, and 1953.23, respectively. This analysis
demonstrates the significant enhancement achieved by the MM-based framework over the Stiefel
method when the latter is used as a warm start.

D OBJECTIVE VALUE EVALUATION

Figure 8 juxtaposes trace objective and runtime curves for six methods as k increases from 20 to 111.

The objective curve (left): higher values indicate tighter alignment with the ground-truth cycle-
consistent structure. It is worth mentioning that the objective plot has been drawn just for methods
that deal with the same objective function. MM’s objective (magenta) climbs smoothly from around
25.4 at k = 20 to about 26.0 at k = 111, with negligible jitter, confirming the guaranteed monotonic
ascent of our MM iterations. Stiefel (light red) follows closely but exhibits small dips when its local
relaxations fail to fully capture newly added permutations, before recovering in subsequent iterations.
NmfSync (dark green) achieves a competitive starting objective but shows more pronounced dips
and plateaus, indicating occasional surrogate gaps. Spectral (light green) remains the lowest, with
significant noise at small k due to eigenvector instability, and only gradually increases thereafter.

In the runtime panel (right), as we can see, spectral (light green) is the fastest, owing to its single-shot
eigen-decomposition, but at the cost of lower accuracy. MM (magenta) executes in roughly 1.3 s
at k = 111—only marginally slower—by leveraging efficient pivot-based assignment steps and
sparse matrix multiplications. Stiefel (light red) takes about 4.0 s, as its iterative relaxations invoke
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repeated EVD- or SVD-like steps under the hood. NmfSync (dark green) consumes 8.3 s, reflecting
its factorization overhead.

Together, these two curves in Figure 8 underscore MM’s superior balance: it achieves the highest
objective values with comparable runtime to the fastest relaxation methods, indicating that MM’s
exact combinatorial surrogates capture more of the affinity than relaxation-based baselines.

The results in Figure 8 underscore MM’s superior performance: it achieves the highest objec-
tive values, indicating that MM’s exact combinatorial surrogates capture more of the affinity than
relaxation-based baselines.

E BROADER APPLICATIONS OF OUR SOLVER

Beyond permutation synchronization, the proposed exact combinatorial MM optimization framework
provides a unified foundation for various discrete inference problems. In particular, three applications
are described below, to which our MM-based approach — with minor structural modifications — can
be effectively applied.

E.1 MULTI-MODEL FITTING AND GEOMETRIC CONSENSUS

A significant challenge in computer vision is multi-model fitting—the task of grouping noisy data
points into multiple geometric structures (such as lines, circles, or homographies) while simulta-
neously rejecting outliers. Recent state-of-the-art approaches, including those exploring Quantum
Annealing Pandey et al. (2025), formulate this as a consensus maximization problem. These methods
typically map the task to complex binary optimization models to determine which points belong to
which model. Our proposed framework can be effectively adapted to this domain. By treating the
assignment of points to geometric models as a discrete optimization task similar to matching, our
approach offers a highly efficient classical alternative. It is capable of solving the consensus problem
deterministically, avoiding the hardware limitations and embedding constraints often associated with
quantum-based solvers.

E.2 SEMI-SUPERVISED LEARNING AND LABEL PROPAGATION

In the field of machine learning, semi-supervised label propagation aims to infer the class labels
of a large set of unlabeled data based on a small number of labeled examples and the underlying
graph structure. Standard techniques typically relax the discrete class indicators into continuous
real values to minimize an energy function involving the graph Laplacian Holtz et al. (2024). This
relaxation often leads to ambiguity when mapping the continuous results back to discrete classes. Our
framework is naturally suited to address this by maintaining the problem in its discrete form. It can
be extended to optimize the label assignment directly on the graph, ensuring that the inferred labels
remain valid integers throughout the process, thereby avoiding the errors introduced by continuous
relaxation and post-hoc rounding.

E.3 QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION (QUBO)

A fundamental formulation for many NP-hard combinatorial problems—ranging from Max-Cut and
Maximum Independent Set to social network clustering—is the Quadratic Unconstrained Binary
Optimization (QUBO) problem. A growing body of research attempts to solve QUBO by transforming
the optimization task into a learning problem. These methods typically employ Graph Neural
Networks (GNNs) to treat the binary variable assignment as a vertex classification task, using
strategies like Batch Greedy Flipping to iteratively refine solutions based on learned probabilities
Chen et al. (2024). However, these learning-based methods require extensive training data and
often struggle to generalize to graph structures unseen during the training phase. Our proposed
exact combinatorial MM framework offers a robust, training-free alternative for this domain. By
constructing tight linear surrogates for the quadratic affinity terms, our method reduces the complex
energy landscape into a sequence of exact linear steps. This provides a deterministic path to high-
quality solutions for general binary optimization problems without the overhead of training neural
networks or the unpredictability of stochastic search heuristics.
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