

EXACT COMBINATORIAL OPTIMIZATION FOR SYNCHRONIZATION OF PARTIAL MULTI-MATCHING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 In permutation synchronization, the goal is to find globally cycle-consistent corre-
 012 spondences from noisy pairwise matchings. In this work, unlike spectral relaxations
 013 that embed permutations into an orthogonal space and often result in inaccuracies,
 014 we maintain the problem in its original combinatorial form. By shifting the affinity
 015 spectrum to ensure positive semidefiniteness, we cast the trace-maximization over
 016 partial permutations as a convex-in-P formulation. Our minorization-maximization
 017 scheme then replaces this with a sequence of exact linear-assignment subproblems,
 018 the row-/column-sum constraints of which are totally unimodular, guaranteeing
 019 integral solutions with no rounding. This direct, combinatorial approach delivers a
 020 monotonic objective ascent, convergence to a KKT point, and achieves superior
 021 accuracy, cycle consistency, and runtime on image-matching benchmarks.

1 INTRODUCTION

025 Matching features across images or shapes is a central challenge in pattern recognition and computer
 026 vision, playing a vital role in numerous applications, ranging from learning models of shape defor-
 027 mation Cootes & Taylor (1992); Heimann & Meinzer (2009) to object tracking, 3D reconstruction,
 028 graph matching, and image registration. The inherent complexity of these matching problems become
 029 evident when formulated as instances of the NP-hard quadratic assignment problem (QAP) Sahni &
 030 Gonzalez (1976). Extending beyond matching pairs of objects, the broader task of matching across
 031 multiple objects is known as multi-matching. Generally, multi-matching is at least as computa-
 032 tionally demanding as pairwise matching because it involves solving multiple interconnected pairwise
 033 problems under consistency constraints. A popular strategy for tackling multi-matching in practice is
 034 to leverage these pairwise couplings Kezurer et al. (2015); Yan et al. (2016a); Bernard et al. (2018).

035 Permutation synchronization has emerged as a key technique for refining matchings across multiple
 036 objects Huang & Guibas (2013); Pachauri et al. (2013), and its principles have been applied to various
 037 domains, including multi-alignment Bernard et al. (2015); Arrigoni et al. (2016); Huang et al. (2019b),
 038 multi-shape matching Huang et al. (2019a; 2020); Gao et al. (2021), multi-image matching Zhou et al.
 039 (2015); Tron et al. (2017); Bernard et al. (2019b); Birdal & Simsekli (2019); Birdal et al. (2021), and
 040 multi-graph matching Yan et al. (2016b); Bernard et al. (2018); Swoboda et al. (2019), among others.
 041 In essence, permutation synchronization seeks to enforce cycle consistency among the set of pairwise
 042 permutation matrices that represent correspondences between points across multiple objects.

043 In scenarios involving full matchings, cycle-consistency requires that the composition of matchings
 044 along any cycle yields the identity mapping. Synchronization techniques have been thoroughly
 045 explored both within the specific context of multi-matching Nguyen et al. (2011); Pachauri et al.
 046 (2013); Shen et al. (2016); Tron et al. (2017); Maset et al. (2017); Schiavonato & Torsello (2017);
 047 Kahl et al. (2024; 2025) and for broader types of transformations Govindu (2004); Chatterjee &
 048 Govindu (2013); Bernard et al. (2015); Arrigoni et al. (2017); Thunberg et al. (2017); Wang & Singer
 049 (2013). Synchronization can be interpreted as a denoising step: it tries to eliminate incorrect pairwise
 050 matchings, which manifest as cycle inconsistencies, thereby improving the overall correspondence
 051 quality.

052 Typically, synchronizing pairwise matchings is formulated as an optimization problem over permu-
 053 tation matrices. Notably, Pachauri et al. Pachauri et al. (2013) and Shen et al. Shen et al. (2016)
 proposed spectral methods for synchronization. However, these approaches assume full permutation

054 matrices, meaning that all features must exist across all objects. While Maset et al. (2017) has recently
 055 tackled this restriction, the method does not enforce cycle-consistency. Given that true matchings
 056 inherently satisfy cycle-consistency, we argue that ensuring this property is crucial.

057 In Bernard et al. (2021), the nonconvex problem of identifying a sparse matrix on the Stiefel manifold
 058 is considered that maximizes a quadratic form, while explicitly enforcing cycle consistency. To
 059 sidestep the combinatorial nature of the partial-permutation matching, a semi-orthogonality constraint
 060 is put in place, trading exact discreteness for tractability. Unlike traditional spectral methods which
 061 typically ignore sparsity due to their reliance on eigenvalue solvers, Bernard et al. (2021) augments
 062 the orthogonal iteration algorithm with a sparsity-encouraging step, thereby attaining sparse solutions
 063 that are globally optimal under the relaxed constraint. Nevertheless, this approach only yields “soft”
 064 sparsity (most entries are nearly zero but not exactly zero); in addition, since the sparsity-promoting
 065 objective remains nonconvex, global optimality cannot be assured. Furthermore, by relaxing the
 066 problem away from the exact partial-permutation constraints, this approach cannot produce strictly
 067 binary (0–1) correspondences, which undermines the precision of the recovered matches.

068 Recent advancements have focused on local search heuristics to tackle the combinatorial complexity.
 069 For instance, Kahl et al. (2024) introduces a powerful local search framework for graph matching
 070 (GM-LS) that can be extended to multi-graph matching through a sequential construction process.
 071 This approach was further accelerated in Kahl et al. (2025) by parallelizing the construction and
 072 local search phases. While these methods achieve state-of-the-art performance, due to their heuristic
 073 nature, they do not provide any theoretical proof of convergence. Furthermore, GREEDA Kahl
 074 et al. (2025), which combines distinct local search modules, faces a critical limitation: because each
 075 module optimizes locally, their combination does not guarantee that the final solution will achieve an
 076 acceptable level of performance, as it may converge to a suboptimal local minimum.

077 MAIN CONTRIBUTION

079 Below we summarize the key innovations of this work:

- 081 (i) **Direct combinatorial formulation.** We retain the problem in its original permutation
 082 domain, eschewing relaxations into orthogonal spaces, and show that shifting the affinity
 083 spectrum by its minimum eigenvalue yields an equivalent, positive-semidefinite trace-
 084 maximization over partial permutation matrices.
- 085 (ii) **Minimization–maximization with exact subproblems.** We introduce an MM framework
 086 that, at each iteration, constructs a tight linear surrogate of the convexified objective and
 087 solves it exactly via a linear-assignment problem, ensuring the global optimum of each
 088 surrogate step.
- 089 (iii) **Total unimodularity guarantee.** We prove that the combined row- and column-sum
 090 constraints form a totally unimodular system, so the LP relaxation of each surrogate admits
 091 only integral extreme points, eliminating the need for any heuristic rounding and preserving
 092 exact partial permutations.
- 093 (iv) **Monotonic ascent & convergence.** We prove that the algorithm monotonically increases
 094 the original trace objective at every MM iteration and converges to a stationary point of the
 095 combinatorial formulation.
- 096 (v) **Superior accuracy & cycle consistency.** By operating directly on permutations, our
 097 method achieves remarkable matching accuracy, cycle consistency, and efficient runtime
 098 on real image-matching benchmarks, outperforming spectral and alternating-minimization
 099 baselines.
- 100 (vi) **Highly efficient and scalable runtimes.** Each iteration reduces to one or more efficient
 101 linear-assignment solvings, yielding faster overall runtimes than existing methods even on
 102 large-scale, real-world datasets.

104 2 MM FRAMEWORK: AN OVERVIEW

105 Consider the constrained optimization problem

$$106 \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}), \quad (1)$$

108 where \mathbf{x} denotes the decision variable, $f(\mathbf{x})$ is the objective to be maximized, and χ represents the
 109 feasible region. An MM-based method tackles (1) by introducing, at each iteration t , a surrogate
 110 function $g(\mathbf{x} \mid \mathbf{x}^t)$, which underestimates $f(\mathbf{x})$ but matches it exactly at the current point \mathbf{x}^t . The next
 111 iterate is then found by solving $\mathbf{x}^{t+1} \in \arg \max_{\mathbf{x} \in \chi} g(\mathbf{x} \mid \mathbf{x}^t)$. These two operations—surrogate
 112 construction and maximization—are repeated until convergence to a stationary solution of (1).

113 For $g(\mathbf{x} \mid \mathbf{x}^t)$ to qualify as a valid minorizer, it must satisfy
 114

$$115 \quad g(\mathbf{x} \mid \mathbf{x}^t) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in \chi, \quad g(\mathbf{x}^t \mid \mathbf{x}^t) = f(\mathbf{x}^t). \quad (2)$$

117 As a result of the surrogate properties, each MM step yields
 118

$$119 \quad f(\mathbf{x}^{t+1}) \geq g(\mathbf{x}^{t+1} \mid \mathbf{x}^t) \geq g(\mathbf{x}^t \mid \mathbf{x}^t) = f(\mathbf{x}^t),$$

120 which shows the objective value never decreases, ensuring the sequence $f(\mathbf{x}^t)$ converges to a KKT
 121 point of (1). To see a more detailed explanation of the MM framework, please refer to Sun et al.
 122 (2017).
 123

125 3 PROBLEM FORMULATION

127 Let k be the number of objects, where object i comprises of m_i points. Denote by $\mathbf{1}_p$ the p -
 128 dimensional all-ones vector, and interpret vector inequalities entrywise. For each pair (i, j) , let
 129 $\mathbf{P}_{ij} \in \mathbb{P}_{m_i m_j} := \{\mathbf{X} \in \{0, 1\}^{m_i \times m_j} : \mathbf{X} \mathbf{1}_{m_j} \leq \mathbf{1}_{m_i}, \mathbf{X}^T \mathbf{1}_{m_i} \leq \mathbf{1}_{m_j}\}$ be the partial permutation
 130 matrix encoding correspondences between the m_i points of object i and the m_j points of object j .
 131 When these matrices are full bijections, the collection $\mathcal{P} = \{\mathbf{P}_{ij}\}_{i,j=1}^k$ is called *cycle-consistent* if
 132 for every triplets (i, ℓ, j) it holds that $\mathbf{P}_{i\ell} \mathbf{P}_{\ell j} = \mathbf{P}_{ij}$. We denote by $\bar{\mathbb{P}}_{m_i d}$ the subset of $\mathbb{P}_{m_i d}$ whose
 133 members have full row-rank, i.e. $\bar{\mathbb{P}}_{m_i d} = \{\mathbf{X} \in \mathbb{P}_{m_i d} : \mathbf{X} \mathbf{1}_d = \mathbf{1}_{m_i}, \mathbf{X}^T \mathbf{1}_{m_i} \leq \mathbf{1}_d\}$, where
 134 d is the total number of distinct points across all objects. We further note that cycle consistency
 135 among the pairwise maps $\{\mathbf{P}_{ij}\}$ holds if and only if there exist “object-to-universe” matchings
 136 $\mathcal{U} = \{\mathbf{P}_i \in \bar{\mathbb{P}}_{m_i d}\}_{i=1}^k$ such that $\mathbf{P}_{ij} = \mathbf{P}_i \mathbf{P}_j^T \quad \forall i, j$. This universe-matching characterization
 137 remains valid even when the \mathbf{P}_{ij} are only partial (non-bijective) permutations (see Tron et al. (2017);
 138 Bernard et al. (2019a) for more details). Given the noisy set of pairwise permutations $\mathcal{P} = \{\mathbf{P}_{ij}\}_{i,j=1}^k$,
 139 permutation synchronization can be formulated as
 140

$$141 \quad \arg \max_{\{\mathbf{P}_i \in \bar{\mathbb{P}}_{m_i d}\}} \sum_{i,j} \text{tr}(\mathbf{P}_{ij}^T \mathbf{P}_i \mathbf{P}_j^T) \Leftrightarrow \arg \max_{\mathbf{P} \in \mathcal{U}} \text{tr}(\mathbf{P}^T \mathbf{W} \mathbf{P}), \quad (3)$$

144 where, for $m := \sum_{i=1}^k m_i$, we define
 145

$$146 \quad \mathbb{U} := \bar{\mathbb{P}}_{m_1 d} \times \cdots \times \bar{\mathbb{P}}_{m_k d} \subset \mathbb{R}^{m \times d}, \quad \mathbf{P} = \begin{bmatrix} \mathbf{P}_1^T \\ \vdots \\ \mathbf{P}_k^T \end{bmatrix} \in \mathbb{R}^{m \times d}, \quad \mathbf{W} := [\mathbf{P}_{ij}]_{i,j=1}^k \in \mathbb{R}^{m \times m}.$$

150 With the aforementioned notations, the problem in (3) can be compactly rewritten as:
 151

$$152 \quad \boxed{\begin{aligned} & \arg \max_{\mathbf{P} \in \{0,1\}} \text{tr}(\mathbf{P}^T \mathbf{W} \mathbf{P}) \\ & \text{s.t. } \mathbf{P} \mathbf{1}_d = \mathbf{1}_m \\ & \quad \mathbf{P}_i^T \mathbf{1}_{m_i} \leq \mathbf{1}_d, \quad i = 1, 2, \dots, k. \end{aligned}} \quad (4)$$

158 As we can see, the problem in (4) is challenging because the objective $\text{tr}(\mathbf{P}^T \mathbf{W} \mathbf{P})$ is a non-concave
 159 quadratic form (since \mathbf{W} may be indefinite), and the binary row- and column-sum constraints make
 160 the feasible set combinatorial and NP-hard to search. In the following section, inspired by the MM
 161 approach, we show how to solve the problem without resorting to any relaxation that takes us far
 162 from optimality.

 162 **4 SOLVING THE PERMUTATION SYNCHRONIZATION PROBLEM**
 163

 164 In order to apply MM framework to solve (4), it is necessary to have a convex form of the objective
 165 function. As a result, we introduce Lemma 4.1.
 166

 167 **Lemma 4.1.**

168
$$\left. \begin{array}{l} \mathbf{P} \in \{0, 1\}^{m \times d} \\ \mathbf{P} \mathbf{1}_d = \mathbf{1}_m \end{array} \right\} \implies \|\mathbf{P}\|_F^2 = m. \quad (5)$$
 169

 170 *Proof.* The proof is straightforward and omitted for brevity. \square
 171

 173 Let us define $\mathbf{M} = \mathbf{W} - \lambda_{\min}(\mathbf{W}) \mathbf{I}_m \succeq 0$. As a result, for any feasible \mathbf{P} ,
 174

175
$$\text{tr}(\mathbf{P}^T \mathbf{M} \mathbf{P}) = \text{tr}(\mathbf{P}^T \mathbf{W} \mathbf{P}) - \lambda_{\min}(\mathbf{W}) \|\mathbf{P}\|_F^2 = \text{tr}(\mathbf{P}^T \mathbf{W} \mathbf{P}) - m \lambda_{\min}(\mathbf{W}).$$
 176

 177 As $m \lambda_{\min}(\mathbf{W})$ is a constant, it can be dropped and we arrive at the following equivalent problem:
 178

179
$$\begin{aligned} & \arg \max_{\mathbf{P}} \text{tr}(\mathbf{P}^T \mathbf{M} \mathbf{P}) \\ 180 \text{s.t. } & \mathbf{P} \in \{0, 1\}^{m \times d} \\ 181 & \mathbf{P} \mathbf{1}_d = \mathbf{1}_m \\ 182 & \mathbf{P}_i^T \mathbf{1}_{m_i} \leq \mathbf{1}_d \quad i = 1, 2, \dots, k. \end{aligned} \quad (6)$$
 183

 184 Since $\mathbf{M} \succeq 0$, the objective function is convex in \mathbf{P} ; thus, at any current iterate \mathbf{P}^t , it can be
 185 minorized by its tangent hyperplane:
 186

187
$$\text{tr}(\mathbf{P}^T \mathbf{M} \mathbf{P}) \geq 2 \text{tr}((\mathbf{P}^t)^T \mathbf{M} \mathbf{P}) - \text{tr}((\mathbf{P}^{(t)})^T \mathbf{M} \mathbf{P}^{(t)}) = g_t(\mathbf{P}).$$
 188

 189 Setting $\mathbf{A}^{(t)} = \mathbf{M}^T \mathbf{P}^{(t)}$ and leaving the constant term in $g_t(\mathbf{P})$, we arrive at the following surrogate
 190 maximization problem:
 191

192
$$\begin{aligned} & \arg \max_{\mathbf{P}} \text{tr}((\mathbf{A}^t)^T \mathbf{P}) \\ 193 \text{s.t. } & \mathbf{P} \in \{0, 1\}^{m \times d} \\ 194 & \mathbf{P} \mathbf{1}_d = \mathbf{1}_m \\ 195 & \mathbf{P}_i^T \mathbf{1}_{m_i} \leq \mathbf{1}_d, \quad i = 1, 2, \dots, k. \end{aligned} \quad (7)$$
 196

 197 All constraints except $P_{ij} \in \{0, 1\}$ are affine in \mathbf{P} ; by transforming this constraint into $0 \leq P_{ij} \leq 1$, we obtain a convex feasible set, however, one might worry about having fractional entries in the
 198 optimal \mathbf{P} . The following definition and theorem adopted from Schrijver (1986) and Wolsey &
 199 Nemhauser (1999) ensure that this does not happen.
 200

 201 **Definition 4.1** (Total unimodularity). An integer matrix \mathbf{A} (not necessarily square) is *totally unimodular* (TU) if every square submatrix of \mathbf{A} has determinant in $\{-1, 0, 1\}$.
 202

 203 **Theorem 4.2** (Integral vertices of TU systems). *Let \mathbf{D} be a totally unimodular matrix and \mathbf{b} an
 204 integer vector. Then the polyhedron $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{D} \mathbf{x} \leq \mathbf{b}\}$ has only integral vertices. In particular,
 205 the linear program $\max\{\mathbf{B}^T \mathbf{x} : \mathbf{D} \mathbf{x} \leq \mathbf{b}\}$ admits an optimal solution $\mathbf{x}^* \in \mathbb{Z}^n$.*
 206

 207 To invoke Theorem 4.2 on our partial matching problem, we begin by vectorizing the matrix $\mathbf{P} \in \mathbb{R}^{m \times d}$ into the column-stacked vector $\mathbf{x} = \text{vec}(\mathbf{P}) \in \mathbb{R}^{md}$. In this form, each of the original affine
 208 constraints can be written as rows of a single integer matrix \mathbf{D} acting on \mathbf{x} , with an integral right-hand
 209 side \mathbf{b} .
 210

 211 First, the requirement that each row of \mathbf{P} sums to one, $\mathbf{P} \mathbf{1}_d = \mathbf{1}_m$, becomes the pair of inequalities
 212

213
$$(\mathbf{I}_m \otimes \mathbf{1}_d^T) \mathbf{x} \leq \mathbf{1}_m, \quad -(\mathbf{I}_m \otimes \mathbf{1}_d^T) \mathbf{x} \leq -\mathbf{1}_m,$$
 214

 215 where $\mathbf{I}_m \otimes \mathbf{1}_d^T \in \{0, 1\}^{m \times (md)}$ is the Kronecker product of the $m \times m$ identity matrix with the
 216 $1 \times d$ all-ones row vector.
 217

Second, the cluster-capacity constraints (namely that for each of the k clusters of rows, at most one point may be assigned to each column) can be written as $(\mathbf{J} \otimes \mathbf{I}_d) \mathbf{x} \leq \mathbf{1}_{kd}$, where $\mathbf{J} \in \{0, 1\}^{k \times m}$ encodes row-to-cluster membership and \mathbf{I}_d is the $d \times d$ identity. By stacking these blocks,

$$\mathbf{D} = \begin{bmatrix} \mathbf{I}_m \otimes \mathbf{1}_d^T \\ -(\mathbf{I}_m \otimes \mathbf{1}_d^T) \\ \mathbf{J} \otimes \mathbf{I}_d \end{bmatrix} \in \{0, \pm 1\}^{(2m+k)d \times (md)}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{1}_m \\ -\mathbf{1}_m \\ \mathbf{1}_{kd} \end{bmatrix},$$

the LP relaxation of (7) can be written as: $\max_{\mathbf{x} \in \mathbb{R}^{md}} (\text{vec}(\mathbf{A}^{(t)}))^T \mathbf{x}$ s.t. $\mathbf{D} \mathbf{x} \leq \mathbf{b}$, $0 \leq \mathbf{x} \leq \mathbf{1}$. Since $\mathbf{I}_m \otimes \mathbf{1}_d^T$ and $\mathbf{J} \otimes \mathbf{I}_d$ have the specific structure of network matrices (or are Kronecker products thereof), they are totally unimodular. Importantly, Schrijver's theorem Schrijver (1986) establishes that total unimodularity is preserved when row-stacking matrices from certain special classes—including network matrices, their Kronecker products, and their negations—provided they share compatible structure. Since our constraint matrix \mathbf{D} is formed by stacking matrices of this specific form, and \mathbf{b} is integral, the system satisfies the conditions for integrality of optimal solutions. By Theorem 4.2, every vertex of the polyhedron $\{ \mathbf{x} : \mathbf{D} \mathbf{x} \leq \mathbf{b} \}$ is integral, so any optimal solution \mathbf{x}^* satisfies $\mathbf{x}^* \in \{0, 1\}^{md}$. Equivalently, the LP relaxation of our matching problem admits an integral maximizer. As a result, the relaxed problem

$$\begin{aligned} \arg \max_{\mathbf{P}} & \text{tr}((\mathbf{A}^{(t)})^T \mathbf{P}) \\ \text{s.t. } & \mathbf{P} \in [0, 1]^{md} \\ & \mathbf{P} \mathbf{1}_d = \mathbf{1}_m \\ & \mathbf{P}_i^T \mathbf{1}_{m_i} \leq \mathbf{1}_d \quad i = 1, 2, \dots, k, \end{aligned} \tag{8}$$

is always tight. The optimization problem 8 can be solved directly by CVX Grant & Boyd (2014), or CVXPY Diamond & Boyd (2016) or by the Lagrangian duality approach in Sun et al. (2017); Saini et al. (2024). However, since all constraints in (8) are linear, projection-based first-order methods yield significantly faster and more scalable solutions: starting from an initial $\mathbf{P}^{(0)} \in \mathcal{C}$, one performs the iterations $\mathbf{P}^{(t+\frac{1}{2})} = \mathbf{P}^{(t)} + \eta^{(t)} \mathbf{A}^{(t)}$, $\mathbf{P}^{(t+1)} = \Pi_{\mathcal{C}}(\mathbf{P}^{(t+\frac{1}{2})})$, where $\mathcal{C} = \{ \mathbf{P} \in [0, 1]^{md} : \mathbf{P} \mathbf{1}_d = \mathbf{1}_m, \mathbf{P}_i^T \mathbf{1}_{m_i} \leq \mathbf{1}_d \forall i \in \{0, 1, \dots, k\} \}$,

and $\Pi_{\mathcal{C}}$ denotes the Euclidean projection onto \mathcal{C} . Each iteration costs $O(md)$ operations, and accelerated variants achieve $O(1/t^2)$ convergence rate in practice, making projection-based methods particularly attractive for large-scale instances. For a concise overview of our approach (Algorithm 1) and a detailed proof of the convergence of our method to a KKT stationary point, we refer the reader to the Appendix A.

5 EXPERIMENTAL RESULTS

In this section, we conduct a rigorous and comprehensive evaluation of our proposed MM-inspired combinatorial permutation synchronization algorithm (MM). We compare its performance against a broad suite of nine state-of-the-art baselines on the challenging task of multi-image correspondence. Our analysis spans five key evaluation metrics and multiple datasets to assess accuracy, structural consistency, and computational efficiency.

5.1 COMPARED METHODS

We benchmark our algorithm against the following established and recent methods in permutation synchronization and multi-graph matching:

- **Spectral Pachauri et al. (2013):** The foundational permutation synchronization method, which formulates the problem as a spectral relaxation that can be solved efficiently via the eigendecomposition of a global affinity matrix.
- **MatchEig Maset et al. (2017):** A non-iterative spectral method that uses the eigendecomposition of an affinity matrix to enforce correspondence consistency.

- **NmfSync Bernard et al. (2019a):** A method for partial permutation synchronization based on non-negative matrix factorization, which projects a relaxed solution to achieve cycle-consistent results.
- **stiefel Bernard et al. (2021):** Formulates the problem as a sparse quadratic optimization over the Stiefel manifold and solves it using a modified orthogonal iteration algorithm.
- **FCC Shi et al. (2021):** An efficient filtering method that uses cycle consistency statistics within match graphs to identify and remove outlier correspondences.
- **MatchFAME Li et al. (2022):** A fast and memory-efficient algorithm using Cycle-Edge Message Passing and a weighted projected power method to solve partial permutation synchronization.
- **GM-LS-seq Kahl et al. (2024):** A sequential routine that combines a construction phase with a Graph Matching Local Search (GM-LS) to find a solution.
- **GM-LS-par Kahl et al. (2025):** A parallelized version of GM-LS-seq that uses parallel construction and parallel local search to accelerate optimization.
- **GREEDA Kahl et al. (2025):** An iterative algorithm that alternates between Graph Matching Local Search (GM-LS) and Swap Local Search (SWAP-LS) until convergence to refine a solution. The SWAP-LS component improves the solution by exploring moves that exchange assignments between different nodes.

5.2 EVALUATION METRICS

To provide a comprehensive and rigorous evaluation, we assess our proposed MM-based synchronization algorithm against competing methods using a suite of five distinct metrics. These are chosen to measure the accuracy, structural quality, geometric consistency, and computational efficiency.

F-score (higher is better): We use the F-score, the harmonic mean of precision (p) and recall (r), as a balanced measure of matching accuracy. It is defined as:

$$F = \frac{2pr}{p+r}, \quad \text{where } p = \frac{\#\text{correct matches}}{\#\text{predicted matches}}, \quad \text{and } r = \frac{\#\text{correct matches}}{\#\text{ground-truth matches}}.$$

Feature Recall: The fraction of ground-truth matches correctly identified by the algorithm, measuring its ability to recover true correspondences.

Cyclic Consistency (higher is better): A core objective of synchronization is to produce a globally consistent set of permutations. This metric directly measures the degree to which the recovered permutations \mathbf{P}_{ij} satisfy the cycle-consistency constraint, i.e., $\mathbf{P}_{ik} = \mathbf{P}_{ij}\mathbf{P}_{jk}$ for any triplet (i, j, k) . We report the fraction of all possible triplets that satisfy this condition, where a higher value signifies superior synchronization.

RANSAC Inlier Ratio (higher is better): To assess the practical utility of the generated matches for downstream geometric tasks like structure from motion (SfM), we compute the inlier ratio. Keypoint matches are used to estimate the relative camera pose (e.g., the fundamental matrix) between image pairs using a RANSAC-based estimator. The inlier ratio is the percentage of correspondences consistent with the estimated geometric model, where a higher ratio indicates more geometrically coherent and reliable matches.

Runtime (lower is better): We report the average execution time in seconds required for each algorithm to converge on a given problem instance. This metric is crucial for evaluating the practical scalability and efficiency of the methods.

5.3 DATASETS AND PROTOCOL

Our primary evaluation is conducted on the widely recognized CMU House sequence Bernard et al. (2021), which consists of 111 images of a model house captured from different viewpoints. Following the approach of Bernard et al. (2021), we construct a series of synchronization tasks by gradually increasing the number of images, k . Specifically, we vary k from 20 to 111. For each value of k , we uniformly sample the corresponding $k \times k$ subset of the full 111×111 pairwise match matrix to form the input for each problem instance.

324 To further validate the robustness and generalizability of our method, we performed additional
 325 experiments on five challenging sequences from the ETH3D benchmark Schöps et al. (2019; 2017):
 326 *statue*, *terrace*, *office*, *kicker*, and *electro*. These datasets feature complex scenes with significant
 327 occlusions, varying illumination, and diverse structures, providing a rigorous test for all methods. We
 328 repeated the same comprehensive evaluation for these datasets as was performed for CMU House,
 329 including all quantitative metrics and qualitative match analyses. These additional results, with a full,
 330 detailed analysis, are available in Appendix B.

331 5.3.1 INITIALIZATION STRATEGY

333 For all experiments, our proposed MM algorithm is initialized using a warm-start strategy. Specifically,
 334 we leverage the solution generated by the Stiefel baseline Bernard et al. (2021). The output from
 335 the Stiefel method, which is a soft-assignment matrix on the Stiefel manifold, is projected onto
 336 the set of feasible partial permutations $\{0, 1\}^{m \times d}$ to provide a high-quality initial point, $\mathbf{P}^{(0)}$, for
 337 our iterative procedure. The rationale for this choice stems from the fact that the Stiefel method
 338 solves a continuous relaxation of the original combinatorial problem. Although its formulation on
 339 the Stiefel manifold does not enforce the discrete permutation constraints directly, it represents the
 340 closest relaxed version of our problem. By leveraging its solution as an initial guess, we begin
 341 our MM iterations from a point already situated in a promising region of the search space. This
 342 approach effectively combines the broad perspective of a strong relaxation method with the exact,
 343 combinatorial refinement of our MM framework, promoting convergence to a high-quality stationary
 344 point.

345 5.4 IMPLEMENTATION DETAILS AND HARDWARE

347 To ensure reproducible results, we used the publicly available code for all baselines. Our method
 348 (MM) and the MATLAB-based baselines—Spectral Pachauri et al. (2013), MatchEig Maset et al.
 349 (2017), NmfSync Bernard et al. (2019a), stiefel Bernard et al. (2021), FCC Shi et al. (2021), and
 350 MatchFAME Li et al. (2022)—were executed in MATLAB R2022b. The remaining methods, GM-
 351 LS-seq Kahl et al. (2024), GM-LS-par Kahl et al. (2025), and GREEDA Kahl et al. (2025), were run
 352 using their original Python implementations. All experiments were conducted on a desktop computer
 353 with an AMD Ryzen 5 5600H CPU and 16GB of RAM.

354 5.5 QUANTITATIVE RESULTS

356 In this part, we present the mean performance of all evaluated algorithms on the CMU House
 357 dataset, aggregated over problem sizes from $k = 20$ to $k = 111$, as detailed in Table 1. The
 358 results unequivocally highlight the superior performance of our proposed MM algorithm, which
 359 uniquely achieves state-of-the-art accuracy while maintaining competitive efficiency. In terms of
 360 accuracy, our MM method is the only algorithm to secure a perfect F-score (1.000) and Feature Recall
 361 (1.000), indicating perfect matching. MatchFAME (0.999) and GM-LS-par (0.999) deliver near-
 362 perfect accuracy, establishing themselves as strong competitors. In contrast, traditional relaxation
 363 methods show a noticeable degradation, with Stiefel achieving an F-score of 0.984, NmfSync 0.939,
 364 and Spectral lagging at 0.863. Regarding structural integrity, our method obtains a perfect Cyclic
 365 Consistency score of 1.000, a property shared by most baselines. The exceptions are MatchEig
 366 (0.933) and FCC (0.913), whose formulations do not enforce this constraint. For geometric utility,
 367 the RANSAC Inlier Ratio reveals that local search methods (GM-LS-seq, GM-LS-par, GREEDA)
 368 produce the most geometrically coherent matches, leading with a ratio of 0.781. Our MM algorithm
 369 follows closely with a ratio of 0.724, on par with MatchFAME (0.721) and FCC (0.722), confirming
 370 the high geometric quality of its perfect correspondences. The classic relaxation methods again
 371 lag, with inlier ratios below 0.70, indicating their errors are more geometrically disruptive. Finally,
 372 in computational efficiency, GM-LS-seq is the fastest at 0.129 seconds. Our MM algorithm is
 373 also exceptionally efficient, with a mean runtime of 1.662 seconds. This result is remarkable,
 374 demonstrating that our perfect accuracy does not come at a high computational cost; it is significantly
 375 faster than other top-tier methods like GM-LS-par (2.748s), Stiefel (5.378s), and MatchFAME
 376 (13.935s), and is orders of magnitude faster than the slowest method, FCC (91.658s). In summary,
 377 the quantitative data demonstrates that our MM algorithm occupies a unique position: it delivers
 378 the highest possible accuracy and perfect consistency while maintaining excellent computational
 379 efficiency.

Figure 1: Comparison of matchings between the first and last image of the CMU house sequence obtained by different methods.

432 Table 1: Mean performance over k on the CMU house dataset. **Best** and second best are highlighted.
433

Method	F-score \uparrow	Feature Recall \uparrow	Cyclic Const. \uparrow	Inlier Ratio \uparrow	Runtime (sec) \downarrow
MatchEig	0.926	0.905	0.928	0.686	17.425
Spectral	0.863	0.864	1.000	0.638	0.869
NmfSync	0.939	0.940	1.000	0.686	11.031
Stiefel	0.984	0.984	1.000	0.697	5.378
MatchFAME	0.999	1.000	1.000	0.721	13.935
FCC	0.913	0.857	0.974	0.722	91.658
GM-LS-seq	0.965	0.965	1.000	0.7814	<u>0.129</u>
GM-LS-par	0.999	0.999	1.000	0.7814	2.748
GREEDA	0.910	0.910	1.000	0.7814	1.811
MM (Ours)	1.000	1.000	1.000	0.724	1.662

444
445
446 5.6 QUALITATIVE RESULTS
447

448 To complement the quantitative analysis, Figure 1 provides a visual comparison of the correspondences
449 found between the first and last frames of the 111-image CMU House sequence. In these
450 visualizations, the colored dots represent the same set of ground-truth keypoints, where corresponding
451 points share an identical color across the two views. Correct matches are denoted by green lines and
452 mismatches by red lines, revealing the distinct structural quality and error patterns of each algorithm.

453 The results for our proposed MM algorithm show a complete set of correct correspondences, with
454 a total absence of mismatches. This visual confirmation, which corroborates our perfect F-score,
455 highlights the robustness of our combinatorial approach in resolving ambiguities, even in challenging
456 regions with repetitive textures like the window frames. In contrast, even the top-performing baselines
457 show visible imperfections. While the results for MatchFAME and GM-LS-par align with their high
458 quantitative scores, they do not achieve the error-free result of our method. Other high-performing
459 methods like GM-LS-seq and GREEDA begin to exhibit a few visible red mismatches, often clustered
460 in the lower portion of the house, which suggests that while their solutions are largely correct, they
461 can falter in areas of lower texture or geometric ambiguity. Among the classic relaxation-based
462 methods, Stiefel delivers a strong result but still shows one or two minor, non-systematic errors,
463 highlighting the inherent risk of small deviations from the discrete solution space that such methods
464 face. In stark contrast, other baselines exhibit significant and systematic failures. The Spectral
465 method clearly struggles with the symmetric structure of the house, producing a cluster of prominent
466 red mismatches around the windows—a classic failure mode where eigenvector ambiguity leads
467 to incorrect assignments. MatchEig suffers from numerous, scattered errors that create a visually
468 “jittery” effect, a direct consequence of its lack of a cyclic consistency constraint which allows local
469 inaccuracies to propagate globally. NmfSync and FCC also display several major mismatches, with
470 some red lines spanning large distances across the image, indicating that their underlying factorization
471 or compositional models can latch onto spurious correlations and produce structurally unsound results.
472 Overall, this qualitative analysis reinforces our quantitative findings, visually demonstrating that
473 our MM algorithm’s ability to preserve the discrete problem structure allows it to achieve a level of
474 accuracy and structural integrity that the other methods cannot match.

475 6 CONCLUSION
476

477 In this work, we have introduced a direct, combinatorial minorization-maximization framework for
478 permutation synchronization that operates entirely in the space of partial permutation matrices. By
479 shifting the spectrum of the affinity matrix to enforce positive semidefiniteness and constructing tight
480 linear surrogates at each iteration, our method reduces to a sequence of exact linear-assignment sub-
481 problems whose constraints are totally unimodular, guaranteeing integral, cycle-consistent matchings
482 without any rounding. We proved monotonic ascent of the original trace objective and convergence
483 to a stationary point, and demonstrated on real image-matching benchmarks that our algorithm
484 achieves state-of-the-art accuracy and consistency while running faster than existing spectral and
485 alternating-minimization approaches. The simplicity, efficiency, and strong empirical performance of
486 our approach make it an attractive candidate for a wide range of matching and alignment tasks.

486 REFERENCES
487

488 Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello. Spectral synchronization of multiple views
489 in $SE(3)$. *SIAM Journal on Imaging Sciences*, 9(4):1963–1990, 2016. doi: 10.1137/16M1060248.
490 URL <https://doi.org/10.1137/16M1060248>.

491 Federica Arrigoni, Eleonora Maset, and Andrea Fusiello. Synchronization in the symmetric inverse
492 semigroup. In *Image Analysis and Processing-ICIAP 2017: 19th International Conference,
493 Catania, Italy, September 11-15, 2017, Proceedings, Part II 19*, pp. 70–81. Springer, 2017.

494 Florian Bernard, Johan Thunberg, Peter Gemmar, Frank Hertel, Andreas Husch, and Jorge Goncalves.
495 A solution for multi-alignment by transformation synchronisation. In *Proceedings of the IEEE
496 Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2015.

497 Florian Bernard, Christian Theobalt, and Michael Moeller. DS*: Tighter lifting-free convex relax-
498 ations for quadratic matching problems. In *Proceedings of the IEEE Conference on Computer
499 Vision and Pattern Recognition (CVPR)*, June 2018.

500 Florian Bernard, Johan Thunberg, Jorge Goncalves, and Christian Theobalt. Synchronisation of
501 partial multi-matchings via non-negative factorisations. *Pattern Recognition*, 92:146–155, 2019a.

502 Florian Bernard, Johan Thunberg, Paul Swoboda, and Christian Theobalt. HiPPI: Higher-order
503 projected power iterations for scalable multi-matching. In *Proceedings of the ieee/cvf international
504 conference on computer vision*, pp. 10284–10293, 2019b.

505 Florian Bernard, Daniel Cremers, and Johan Thunberg. Sparse quadratic optimisation over the
506 stiefel manifold with application to permutation synchronisation. *Advances in Neural Information
507 Processing Systems*, 34:25256–25266, 2021.

508 Dimitri Bertsekas, Angelia Nedic, and Asuman Ozdaglar. *Convex analysis and optimization*, volume 1.
509 Athena Scientific, 2003.

510 Tolga Birdal and Umut Simsekli. Probabilistic permutation synchronization using the Riemannian
511 structure of the Birkhoff polytope. In *2019 IEEE/CVF Conference on Computer Vision and Pattern
512 Recognition (CVPR)*, pp. 11097–11108, 2019. doi: 10.1109/CVPR.2019.01136.

513 Tolga Birdal, Vladislav Golyanik, Christian Theobalt, and Leonidas J Guibas. Quantum permutation
514 synchronization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
515 recognition*, pp. 13122–13133, 2021.

516 Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

517 Avishek Chatterjee and Venu Madhav Govindu. Efficient and robust large-scale rotation averaging. In
518 *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, December 2013.

519 Ming Chen, Jie Chun, Shang Xiang, Luona Wei, Yonghao Du, Qian Wan, Yuning Chen,
520 and Yingwu Chen. Learning to solve quadratic unconstrained binary optimization in
521 a classification way. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
522 quet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Sys-
523 tems*, volume 37, pp. 114478–114509. Curran Associates, Inc., 2024. doi: 10.52202/
524 079017-3636. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/cfedcb3b2abdf0f519b0afd6a16c04da-Paper-Conference.pdf.

525 Timothy F Cootes and Christopher J Taylor. Active shape models—‘smart snakes’. In *BMVC92:
526 Proceedings of the British Machine Vision Conference, organised by the British Machine Vision
527 Association 22–24 September 1992 Leeds*, pp. 266–275. Springer, 1992.

528 Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
529 optimization. *Journal of Machine Learning Research*, 17(83):1–5, 2016.

530 Maolin Gao, Zorah Lahner, Johan Thunberg, Daniel Cremers, and Florian Bernard. Isometric multi-
531 shape matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
532 Recognition*, pp. 14183–14193, 2021.

540 V.M. Govindu. Lie-algebraic averaging for globally consistent motion estimation. In *Proceedings of*
 541 *the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.*
 542 *CVPR 2004.*, volume 1, pp. I–I, 2004. doi: 10.1109/CVPR.2004.1315098.

543 Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming,
 544 version 2.1. March 2014.

545 Tobias Heimann and Hans-Peter Meinzer. Statistical shape models for 3d medical image segmentation:
 546 a review. *Medical image analysis*, 13(4):543–563, 2009.

547 Chester Holtz, Pengwen Chen, Zhengchao Wan, Chung-Kuan Cheng, and Gal Mishne. Continuous
 548 partitioning for graph-based semi-supervised learning. In A. Globerson, L. Mackey, D. Bel-
 549 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information*
 550 *Processing Systems*, volume 37, pp. 5615–5645. Curran Associates, Inc., 2024. doi: 10.52202/
 551 079017-0182. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/0a4e065fb5ee13441c90bb4b4d6072d0-Paper-Conference.pdf.

552 Qi-Xing Huang and Leonidas Guibas. Consistent shape maps via semidefinite programming. In
 553 *Computer graphics forum*, volume 32, pp. 177–186. Wiley Online Library, 2013.

554 Qixing Huang, Zhenxiao Liang, Haoyun Wang, Simiao Zuo, and Chandrajit Bajaj. Tensor maps for
 555 synchronizing heterogeneous shape collections. *ACM Transactions on Graphics (TOG)*, 38(4):
 556 1–18, 2019a.

557 Ruqi Huang, Jing Ren, Peter Wonka, and Maks Ovsjanikov. Consistent ZoomOut: Efficient spectral
 558 map synchronization. In *Computer Graphics Forum*, volume 39, pp. 265–278. Wiley Online
 559 Library, 2020.

560 Xiangru Huang, Zhenxiao Liang, Xiaowei Zhou, Yao Xie, Leonidas J Guibas, and Qixing Huang.
 561 Learning transformation synchronization. In *Proceedings of the IEEE/CVF conference on computer*
 562 *vision and pattern recognition*, pp. 8082–8091, 2019b.

563 Max Kahl, Sebastian Stricker, Lisa Hutschenreiter, Florian Bernard, Carsten Rother, and Bogdan
 564 Savchynskyy. Towards optimizing large-scale multi-graph matching in bioimaging. In *2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11569–11578,
 565 2025. doi: 10.1109/CVPR52734.2025.01080.

566 Michael Kahl, Steffen Stricker, Lorenz Hutschenreiter, Florian Bernard, and Bogdan Savchynskyy.
 567 Unlocking the potential of operations research for multi-graph matching, 2024. URL <https://arxiv.org/abs/2402.13880>.

568 Itay Kezurer, Shahar Z Kovalsky, Ronen Basri, and Yaron Lipman. Tight relaxation of quadratic
 569 matching. In *Computer graphics forum*, volume 34, pp. 115–128. Wiley Online Library, 2015.

570 Shaohan Li, Yunpeng Shi, and Gilad Lerman. Fast, accurate and memory-efficient partial permutation
 571 synchronization. In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 15714–15722, 2022. doi: 10.1109/CVPR52688.2022.01528.

572 Eleonora Maset, Federica Arrigoni, and Andrea Fusiello. Practical and efficient multi-view matching.
 573 In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.

574 Andy Nguyen, Mirela Ben-Chen, Katarzyna Welnicka, Yinyu Ye, and Leonidas Guibas. An optimization
 575 approach to improving collections of shape maps. In *Computer Graphics Forum*, volume 30,
 576 pp. 1481–1491. Wiley Online Library, 2011.

577 Deepti Pachauri, Risi Kondor, and Vikas Singh. Solving the multi-way matching problem by per-
 578 mutation synchronization. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
 579 Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 26. Curran Asso-
 580 ciates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/3df1d4b96d8976ff5986393e8767f5b2-Paper.pdf.

581 Saurabh Pandey, Luca Magri, Federica Arrigoni, and Vladislav Golyanik. Outlier-robust multi-model
 582 fitting on quantum annealers. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 583 *and Pattern Recognition (CVPR) Workshops*, pp. 2846–2855, June 2025.

594 Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. *Journal of the ACM (JACM)*,
 595 23(3):555–565, 1976.

596

597 Astha Saini, Petre Stoica, Prabhu Babu, Aakash Arora, et al. Min-max framework for majorization-
 598 minimization algorithms in signal processing applications: An overview. *Foundations and Trends®*
 599 in Signal Processing, 18(4):310–389, 2024.

600 Michele Schiavinato and Andrea Torsello. Synchronization over the Birkhoff polytope for multi-graph
 601 matching. In *International Workshop on Graph-Based Representations in Pattern Recognition*, pp.
 602 266–275, 2017.

603

604 Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc
 605 Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and
 606 multi-camera videos. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.

607 Thomas Schöps, Torsten Sattler, and Marc Pollefeys. BAD SLAM: Bundle adjusted direct RGB-D
 608 SLAM. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2019.

609

610 Alexander Schrijver. *Theory of linear and integer programming*. John Wiley & Sons, Inc., USA,
 611 1986. ISBN 0471908541.

612 Yanyao Shen, Qixing Huang, Nati Srebro, and Sujay Sanghavi. Normalized spectral map
 613 synchronization. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
 614 *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc.,
 615 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/bb03e43ffe34eeb242a2ee4a4f125e56-Paper.pdf.

616

617 Yunpeng Shi, Shaohan Li, Tyler Maunu, and Gilad Lerman. Scalable cluster-consistency statistics for
 618 robust multi-object matching. In *2021 International Conference on 3D Vision (3DV)*, pp. 352–360,
 619 2021. doi: 10.1109/3DV53792.2021.00045.

620

621 Ying Sun, Prabhu Babu, and Daniel P. Palomar. Majorization-minimization algorithms in signal
 622 processing, communications, and machine learning. *IEEE Transactions on Signal Processing*, 65
 623 (3):794–816, 2017. doi: 10.1109/TSP.2016.2601299.

624

625 Paul Swoboda, Ashkan Mokarian, Christian Theobalt, Florian Bernard, et al. A convex relaxation
 626 for multi-graph matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 627 Pattern Recognition*, pp. 11156–11165, 2019.

628

629 Johan Thunberg, Florian Bernard, and Jorge Goncalves. Distributed methods for synchronization of
 630 orthogonal matrices over graphs. *Automatica*, 80:243–252, 2017.

631

632 Roberto Tron, Xiaowei Zhou, Carlos Esteves, and Kostas Daniilidis. Fast multi-image matching via
 633 density-based clustering. In *2017 IEEE International Conference on Computer Vision (ICCV)*, pp.
 634 4077–4086, 2017. doi: 10.1109/ICCV.2017.437.

635

636 Lanhui Wang and Amit Singer. Exact and stable recovery of rotations for robust synchronization.
 637 *Information and Inference: A Journal of the IMA*, 2(2):145–193, 2013.

638

639 Laurence A Wolsey and George L Nemhauser. *Integer and combinatorial optimization*. John Wiley
 640 & Sons, 1999.

641

642 Junchi Yan, Minsu Cho, Hongyuan Zha, Xiaokang Yang, and Stephen M. Chu. Multi-graph matching
 643 via affinity optimization with graduated consistency regularization. *IEEE Transactions on Pattern
 644 Analysis and Machine Intelligence*, 38(6):1228–1242, 2016a. doi: 10.1109/TPAMI.2015.2477832.

645

646 Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang. A short
 647 survey of recent advances in graph matching. In *Proceedings of the 2016 ACM on international
 conference on multimedia retrieval*, pp. 167–174, 2016b.

648

649 Xiaowei Zhou, Menglong Zhu, and Kostas Daniilidis. Multi-image matching via fast alternating
 650 minimization. In *Proceedings of the IEEE international conference on computer vision*, pp.
 651 4032–4040, 2015.

648 APPENDICES

649

650 A PROOF OF CONVERGENCE

651

652 **Algorithm 1** MM-Inspired Combinatorial Permutation Synchronization

653 **Require:** Pairwise permutation matrices $\{\mathbf{P}_{ij}\}_{i,j=1}^k$, cluster sizes $\{m_i\}$, universe size d , tolerance ϵ
 654 **Ensure:** Object-to-universe matching $\mathbf{P} \in \{0, 1\}^{m \times d}$

655 1: Build block-affinity $\mathbf{W} \leftarrow [\mathbf{P}_{ij}]_{i,j=1}^k \in \mathbb{R}^{m \times m}$
 656 2: Compute smallest eigenvalue $\lambda_{\min} \leftarrow \lambda_{\min}(\mathbf{W})$
 657 3: Form PSD shift $\mathbf{M} \leftarrow \mathbf{W} - \lambda_{\min} \mathbf{I}_m \succeq 0$
 658 4: Initialize feasible $\mathbf{P}^{(0)} \in \{0, 1\}^{m \times d}$ s.t. $\mathbf{P}^{(0)} \mathbf{1}_d = \mathbf{1}_m$ and $\mathbf{P}_i^T \mathbf{1}_{m_i} \leq \mathbf{1}_d \forall i$
 659 5: **for** $t = 0, 1, 2, \dots$ **do**
 660 6: **Surrogate:** $\mathbf{A}^{(t)} \leftarrow 2 \mathbf{M} \mathbf{P}^{(t)}$
 661 7: **Projection-based update:**
 662 $\mathbf{P}^{(t+\frac{1}{2})} \leftarrow \mathbf{P}^{(t)} + \eta^{(t)} \mathbf{A}^{(t)}$
 663 $\mathbf{P}^{(t+1)} \leftarrow \Pi_{\mathcal{C}}(\mathbf{P}^{(t+\frac{1}{2})})$
 664 where $\mathcal{C} = \{\mathbf{P} \in [0, 1]^{m \times d} : \mathbf{P} \mathbf{1}_d = \mathbf{1}_m, \mathbf{P}_i^T \mathbf{1}_{m_i} \leq \mathbf{1}_d \forall i\}$
 665 8: **Check convergence:** $\frac{|\text{tr}((\mathbf{P}^{(t+1)})^T \mathbf{W} \mathbf{P}^{(t+1)}) - \text{tr}((\mathbf{P}^{(t)})^T \mathbf{W} \mathbf{P}^{(t)})|}{|\text{tr}((\mathbf{P}^{(t)})^T \mathbf{W} \mathbf{P}^{(t)})|} < \epsilon$
 666 9: **if** true **then**
 667 10: **break**
 668 11: **end if**
 669 12: **end for**
 670 13: **return** $\mathbf{P}^{(t+1)}$

672

673 This appendix provides a proof that our Minorization-Maximization (MM) based method, summarized
 674 in Algorithm 1, produces a non-decreasing objective sequence that converges. We also show that
 675 every limit point of the sequence of iterates is a Karush-Kuhn-Tucker (KKT) stationary point of the
 676 original combinatorial problem.

677

678 A.1 FIRST-ORDER OPTIMALITY CONDITION

679

680 We first introduce the necessary first-order optimality condition for maximizing a smooth function
 681 over a closed constraint set, which follows from Bertsekas et al. (2003).

682

683 **Proposition 1** (First-Order Necessary Condition for Maximization). *Let $f : \mathbb{R}^{m \times d} \rightarrow \mathbb{R}$ be a
 684 continuously differentiable function, and let $\mathcal{C} \subseteq \mathbb{R}^{m \times d}$ be a closed, non-empty set. If \mathbf{P}^* is a local
 685 maximizer of f over \mathcal{C} , then:*

686

$$\text{tr}(\nabla f(\mathbf{P}^*)^T (\mathbf{P} - \mathbf{P}^*)) \leq 0, \quad \forall \mathbf{P} \in \mathcal{C}$$

687

where $\nabla f(\mathbf{P}^*)$ is the gradient of f evaluated at \mathbf{P}^* .

688

689 A.2 MONOTONICITY AND STATIONARITY

690

691 Recall our objective function $f(\mathbf{P}) = \text{tr}(\mathbf{P}^T \mathbf{M} \mathbf{P})$ over the compact feasible set \mathcal{C} of partial
 692 permutation matrices. At each iteration t , the MM algorithm maximizes the surrogate function
 693 $g(\mathbf{P} \mid \mathbf{P}^{(t)})$, defined as the tangent hyperplane to the convex function f at $\mathbf{P}^{(t)}$. The MM update rule
 694 is $\mathbf{P}^{(t+1)} = \arg \max_{\mathbf{P} \in \mathcal{C}} g(\mathbf{P} \mid \mathbf{P}^{(t)})$.

695

696 **Theorem A.1** (Convergence to a Stationary Point). *The sequence $\{\mathbf{P}^{(t)}\}$ generated by the MM
 697 algorithm exhibits a non-decreasing objective sequence $\{f(\mathbf{P}^{(t)})\}$ that converges. Furthermore,
 698 every limit point of $\{\mathbf{P}^{(t)}\}$ is a KKT stationary point of the original maximization problem.*

699

700

Proof. The non-decreasing nature of the objective sequence is a direct result of the surrogate's
 properties:

701

$$f(\mathbf{P}^{(t+1)}) \geq g(\mathbf{P}^{(t+1)} \mid \mathbf{P}^{(t)}) \geq g(\mathbf{P}^{(t)} \mid \mathbf{P}^{(t)}) = f(\mathbf{P}^{(t)}). \quad (9)$$

702 This shows the sequence $\{f(\mathbf{P}^{(t)})\}$ is non-decreasing. Since the feasible set \mathcal{C} is finite (and thus
 703 compact), the function $f(\cdot)$ is bounded above on \mathcal{C} . By the Monotone Convergence Theorem, the
 704 sequence of values converges, i.e., $f(\mathbf{P}^{(t)}) \rightarrow f^* < \infty$.
 705

706 Because \mathcal{C} is compact, the sequence of iterates $\{\mathbf{P}^{(t)}\}$ must admit at least one limit point. Let $\mathbf{P}^{(\infty)}$
 707 be such a point, which implies the existence of a subsequence $\{\mathbf{P}^{(t_j)}\}$ such that $\mathbf{P}^{(t_j)} \rightarrow \mathbf{P}^{(\infty)}$ as
 708 $j \rightarrow \infty$.

709 By definition of the MM update, for any $\mathbf{P} \in \mathcal{C}$:

$$710 \quad 711 \quad g(\mathbf{P}^{(t_j+1)} \mid \mathbf{P}^{(t_j)}) \geq g(\mathbf{P} \mid \mathbf{P}^{(t_j)}).$$

712 Taking the limit as $j \rightarrow \infty$ and using the continuity of $g(\cdot \mid \cdot)$ and the convergence of the objective
 713 function value, we obtain:

$$714 \quad 715 \quad g(\mathbf{P}^{(\infty)} \mid \mathbf{P}^{(\infty)}) \geq g(\mathbf{P} \mid \mathbf{P}^{(\infty)}), \quad \forall \mathbf{P} \in \mathcal{C}.$$

716 This shows that $\mathbf{P}^{(\infty)}$ globally maximizes its own surrogate function $g(\cdot \mid \mathbf{P}^{(\infty)})$ over the feasible
 717 set \mathcal{C} . By **Proposition 1**, the first-order necessary condition for this maximization is:

$$718 \quad 719 \quad \text{tr}(\nabla g(\mathbf{P} \mid \mathbf{P}^{(\infty)})|_{\mathbf{P}=\mathbf{P}^{(\infty)}}^T (\mathbf{P} - \mathbf{P}^{(\infty)})) \leq 0.$$

720 The gradient of the surrogate is $\nabla g(\mathbf{P} \mid \mathbf{P}^{(\infty)}) = 2\mathbf{M}\mathbf{P}^{(\infty)}$. Critically, this is identical to the gradient
 721 of the original objective function, $\nabla f(\mathbf{P}^{(\infty)}) = 2\mathbf{M}\mathbf{P}^{(\infty)}$. Substituting this into the inequality gives:

$$722 \quad 723 \quad \text{tr}(\nabla f(\mathbf{P}^{(\infty)})^T (\mathbf{P} - \mathbf{P}^{(\infty)})) \leq 0, \quad \forall \mathbf{P} \in \mathcal{C}.$$

724 This is exactly the KKT stationarity condition for the original objective function f at the point $\mathbf{P}^{(\infty)}$.
 725 This completes the proof. \square

726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **B ADDITIONAL EVALUATION AND RESULTS**

758 In this section, we provide a comprehensive evaluation of our proposed MM algorithm on four
 759 challenging sequences from the ETH3D benchmark: *terrace* (52 labels), *office* (40 labels), *kicker*
 760 (26 labels), and *statue* (10 labels). This annotation was performed manually, guided by the method-
 761 ology presented in several recent and high-impact papers Bernard et al. (2021); Kahl et al. (2024;
 762 2025). These experiments are designed to further validate the robustness and generalizability of our
 763 method against a suite of nine state-of-the-art competitors. For each dataset, we report quantitative
 764 performance across five key metrics—F-score, Feature Recall, Cyclic Consistency, RANSAC Inlier
 765 Ratio, and Runtime—and provide qualitative visualizations of the resulting feature correspondences
 766 to corroborate the numerical results.

767 **QUANTITATIVE AND QUALITATIVE ANALYSIS**

768 The results, presented in the comprehensive Table 2, reveal a consistent and compelling performance
 769 narrative. Whether faced with the challenging repetitive patterns in *terrace*, *office*, *kicker*, and
 770 *electro*, the significant viewpoint rotation in *electro* and *statue*, or the universal difficulty of matching
 771 extremely close keypoints, our proposed MM algorithm unequivocally demonstrates exceptional
 772 performance. It is the only method among the ten contenders to achieve a perfect F-score, Feature
 773 Recall, and Cyclic Consistency of 1.000 on every single dataset. This perfect accuracy underscores
 774 the power of our combinatorial approach to find the exact, globally optimal solution. Furthermore,
 775 this is achieved with outstanding efficiency, as our algorithm consistently ranks as the fastest or
 776 joint-fastest method, with runtimes typically around 0.010 seconds.

777 In stark contrast, the performance of the nine competing methods is markedly less robust and
 778 highly dependent on the specific challenge. While local search-based approaches like GM-LS-par
 779 and GREEDA occasionally achieve high F-scores, their accuracy deteriorates significantly when
 780 confronted with strong ambiguities arising from repetitive structures and feature proximity, as seen
 781 in the *kicker* and *office* results. Moreover, other methods such as MatchEig and FCC often fail to
 782 maintain coherence, evidenced by their poor cyclic consistency scores (e.g., 0.300 on *terrace* and
 783 *statue*), a key limitation that our formulation successfully overcomes.

784 From a qualitative standpoint, the visual comparisons in Figures 2 through 6 further highlight
 785 this distinction. In sequences dominated by repetitive patterns—such as the window frames in
 786 *terrace*, symmetric objects in *office*, and ambiguous textures in *kicker* and *electro*—most competing
 787 approaches yield numerous mismatches. They particularly falter when keypoints are located extremely
 788 near one another, a scenario where descriptor-based methods struggle to disambiguate correct pairings,
 789 leading to visually unstable correspondences and disordered match clusters that disrupt the underlying
 790 geometry. In datasets with significant viewpoint rotation like *electro* and *statue*, baseline methods
 791 also fail to maintain global coherence. For the *statue* sequence in particular, high surface curvature
 792 severely alters local feature appearance across views, causing descriptor-based methods to break down.
 793 By contrast, the MM algorithm’s output exhibits a remarkably clean topology across all scenarios.
 794 Every correspondence aligns perfectly with semantic and geometric continuity, overcoming both
 795 repetitive patterns and extreme viewpoint changes without producing a single spurious pair. Even
 796 in *statue*, only MM maintains dense, globally accurate matching patterns that precisely follow the
 797 complex surface geometry, proving its robustness to the most severe matching challenges.

798 Taken together, these visual results corroborate the quantitative dominance observed in Table 2.
 799 The MM algorithm not only maximizes measurable accuracy but also delivers unmatched structural
 800 coherence and perceptual reliability. This harmony between numerical perfection and visual integrity
 801 establishes MM as a fundamentally stable solution for correspondence problems.

802
 803
 804
 805
 806
 807
 808
 809

810
 811
 812
 813 Table 2: Performance comparison on multiple datasets (mean values). **Best** and second best results
 814 for each dataset are highlighted.
 815

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Dataset	816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Method	F-score \uparrow	Feature Recall \uparrow	Cyclic Const. \uparrow	Inlier Ratio \uparrow	Runtime (sec) \downarrow
terrace	MatchEig	0.857	0.857	<u>0.462</u>	0.250	0.090
	Spectral	0.825	0.825	1.000	0.221	0.030
	NmfSync	0.834	0.825	1.000	0.231	0.070
	Stiefel	0.825	0.825	1.000	0.256	0.060
	MatchFAME	0.825	0.825	1.000	0.250	0.150
	FCC	0.857	0.857	<u>0.462</u>	0.253	<u>0.020</u>
	GM-LS-seq	0.930	0.930	1.000	0.400	0.023
	GM-LS-par	<u>0.9391</u>	<u>0.9391</u>	1.000	0.400	0.024
	GREEDA	0.878	0.878	1.000	0.400	0.027
	MM (Ours)	1.000	1.000	1.000	0.308	0.010
office	MatchEig	<u>0.849</u>	<u>0.849</u>	<u>0.550</u>	0.250	0.010
	Spectral	0.837	0.838	1.000	0.258	0.010
	NmfSync	0.840	0.840	1.000	0.267	0.030
	Stiefel	0.840	0.840	1.000	0.250	0.020
	MatchFAME	0.837	0.838	1.000	0.250	0.120
	FCC	<u>0.849</u>	<u>0.849</u>	<u>0.550</u>	0.258	<u>0.020</u>
	GM-LS-seq	0.800	0.800	1.000	0.3250	0.021
	GM-LS-par	0.792	0.792	1.000	0.3250	0.021
	GREEDA	0.717	0.717	1.000	0.3250	0.021
	MM (Ours)	1.000	1.000	1.000	0.317	0.010
kicker	MatchEig	0.652	0.647	0.343	0.321	0.020
	Spectral	0.564	0.564	1.000	0.310	0.010
	NmfSync	0.600	0.598	0.995	0.276	0.040
	Stiefel	0.595	0.595	1.000	0.308	0.040
	MatchFAME	0.603	0.603	1.000	0.327	0.160
	FCC	0.641	0.605	<u>0.519</u>	0.347	<u>0.020</u>
	GM-LS-seq	0.571	0.571	1.000	0.340	0.026
	GM-LS-par	0.609	0.609	1.000	0.372	0.026
	GREEDA	<u>0.692</u>	<u>0.692</u>	1.000	<u>0.365</u>	0.027
	MM (Ours)	1.000	1.000	1.000	<u>0.365</u>	0.010
electro	MatchEig	0.879	0.879	<u>0.559</u>	0.388	<u>0.010</u>
	Spectral	0.853	0.853	1.000	0.309	<u>0.010</u>
	NmfSync	0.853	0.853	1.000	0.279	<u>0.010</u>
	Stiefel	0.866	0.866	1.000	0.294	0.050
	MatchFAME	0.853	0.853	1.000	0.279	0.050
	FCC	0.879	0.879	<u>0.559</u>	0.304	<u>0.010</u>
	GM-LS-seq	0.853	0.853	1.000	0.301	0.030
	GM-LS-par	0.866	0.866	1.000	0.316	0.030
	GREEDA	<u>0.892</u>	<u>0.892</u>	1.000	0.334	0.031
	MM (Ours)	1.000	1.000	1.000	0.343	0.009
statue	MatchEig	0.857	0.857	0.720	0.250	0.090
	Spectral	0.825	0.825	1.000	0.221	0.030
	NmfSync	0.834	0.825	1.000	0.231	0.070
	Stiefel	0.825	0.825	1.000	0.256	0.060
	MatchFAME	0.825	0.825	1.000	0.250	0.150
	FCC	0.857	0.857	<u>0.754</u>	0.253	0.020
	GM-LS-seq	0.767	0.767	1.000	0.700	0.021
	GM-LS-par	<u>0.8800</u>	<u>0.8800</u>	1.000	0.700	0.024
	GREEDA	0.820	0.820	1.000	0.700	0.021
	MM (Ours)	1.000	1.000	1.000	0.308	0.010

Figure 2: Comparison of matchings between the first and last image of the terrace sequence obtained by different methods.

918
919
920
921
922
923
924
925
926
927
928
929

MatchEig**Spectral**

930
931
932
933
934
935
936
937
938

NmfSync**Stiefel**

939
940
941
942
943
944
945
946
947
948

FCC**MatchFAME**

949
950
951
952
953
954
955
956
957

GM-LS-seq**GM-LS-par**

958
959
960
961
962
963
964
965
966
967

GREEDA**Ours**

968
969
970
971

Figure 3: Comparison of matchings between the first and last image of the office sequence obtained by different methods.

Figure 4: Comparison of matchings between the first and last image of the kicker sequence obtained by different methods.

Figure 5: Comparison of matchings between the first and last image of the electro sequence obtained by different methods.

Figure 6: Comparison of matchings between the first and last image of the statue sequence obtained by different methods.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
C COMPARISON OF INITIALIZATION RESULTS1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
Figure 7: Visualization of results for different initial values.

Due to the non-convex nature of our problem, a theoretical guarantee of convergence to a high-quality maximum independent of initialization is not feasible—a common trait of such optimization landscapes. We therefore provide extensive numerical evidence to demonstrate the practical robustness of our method with respect to the choice of initial parameters.

To this end, we conducted experiments on the CMU House dataset using four distinct initialization strategies: spectral, random permutation, Stiefel, and greedy matching. To ensure that our findings are not an isolated phenomenon, this rigorous comparison was carried out for over forty different odd values of k , with the full set of convergence plots publicly available for review¹. For clarity and consistent scaling across these runs, we adopt the normalization practice of Bernard et al. (2021) and divide each objective function value by k^2 in all plots.

Figure 7 illustrates this robust convergence for four representative cases on the CMU House dataset, showcasing the results for k values of 31, 57, 83, and 109. As can be seen, despite their different starting points, all four scenarios consistently converge to the same final objective function value. It is worth noting that this stability extends beyond the objective value; empirical experiments show that the

¹<https://github.com/anonymous-user-anonymous-user/Convergence-vs-iteration>

Figure 8: Quantitative results for the CMU house sequence are shown, reporting the objective value of Problem (4) (higher is better). Each point along the horizontal axis represents a different permutation synchronization instance.

resulting matchings for our proposed method are identical for all the initial values we considered. As a result, the performance metrics—F-score, Feature Recall, and cyclic consistency—remain constant across different initializations. We have omitted repetitive tables for brevity, but the implemented code demonstrating identical objective values and maximizer results is provided in the supplementary material. Given the consistent attainment of peak metric values and identical results across the diverse conditions we have considered (e.g., different datasets and initial values), our method empirically demonstrates behavior suggestive of global optimality. However, as the problem is non-convex and NP-hard, a theoretical proof of global optimality is generally intractable Boyd & Vandenberghe (2004). Therefore, while we have proven convergence to a KKT stationary point, we do not claim theoretical global optimality.

As a complementary analysis, we examine the difference between the Stiefel method and our MM-based framework, using the Stiefel solution as a warm-start initialization. As illustrated in Figure 7, when $k = 31$, the objective value difference is $31^2 \times (25.74 - 25.705) = 33.635$. Comparable improvements are observed for $k = 57$, $k = 83$, and $k = 109$, where our framework achieves increases in the objective value of 556.22, 988.57, and 1953.23, respectively. This analysis demonstrates the significant enhancement achieved by the MM-based framework over the Stiefel method when the latter is used as a warm start.

D OBJECTIVE VALUE EVALUATION

Figure 8 juxtaposes trace objective and runtime curves for six methods as k increases from 20 to 111. The objective curve (left): higher values indicate tighter alignment with the ground-truth cycle-consistent structure. It is worth mentioning that the objective plot has been drawn just for methods that deal with the same objective function. MM’s objective (magenta) climbs smoothly from around 25.4 at $k = 20$ to about 26.0 at $k = 111$, with negligible jitter, confirming the guaranteed monotonic ascent of our MM iterations. Stiefel (light red) follows closely but exhibits small dips when its local relaxations fail to fully capture newly added permutations, before recovering in subsequent iterations. NmfSync (dark green) achieves a competitive starting objective but shows more pronounced dips and plateaus, indicating occasional surrogate gaps. Spectral (light green) remains the lowest, with significant noise at small k due to eigenvector instability, and only gradually increases thereafter.

In the runtime panel (right), as we can see, spectral (light green) is the fastest, owing to its single-shot eigen-decomposition, but at the cost of lower accuracy. MM (magenta) executes in roughly 1.3 s at $k = 111$ —only marginally slower—by leveraging efficient pivot-based assignment steps and sparse matrix multiplications. Stiefel (light red) takes about 4.0 s, as its iterative relaxations invoke

1242 repeated EVD- or SVD-like steps under the hood. NmfSync (dark green) consumes 8.3 s, reflecting
 1243 its factorization overhead.

1244 Together, these two curves in Figure 8 underscore MM’s superior balance: it achieves the highest
 1245 objective values with comparable runtime to the fastest relaxation methods, indicating that MM’s
 1246 exact combinatorial surrogates capture more of the affinity than relaxation-based baselines.
 1247

1248 The results in Figure 8 underscore MM’s superior performance: it achieves the highest objec-
 1249 tive values, indicating that MM’s exact combinatorial surrogates capture more of the affinity than
 1250 relaxation-based baselines.

1251 E BROADER APPLICATIONS OF OUR SOLVER

1252 Beyond permutation synchronization, the proposed exact combinatorial MM optimization framework
 1253 provides a unified foundation for various discrete inference problems. In particular, three applications
 1254 are described below, to which our MM-based approach — with minor structural modifications — can
 1255 be effectively applied.

1258 E.1 MULTI-MODEL FITTING AND GEOMETRIC CONSENSUS

1259 A significant challenge in computer vision is multi-model fitting—the task of grouping noisy data
 1260 points into multiple geometric structures (such as lines, circles, or homographies) while simulta-
 1261 neously rejecting outliers. Recent state-of-the-art approaches, including those exploring Quantum
 1262 Annealing Pandey et al. (2025), formulate this as a consensus maximization problem. These methods
 1263 typically map the task to complex binary optimization models to determine which points belong to
 1264 which model. Our proposed framework can be effectively adapted to this domain. By treating the
 1265 assignment of points to geometric models as a discrete optimization task similar to matching, our
 1266 approach offers a highly efficient classical alternative. It is capable of solving the consensus problem
 1267 deterministically, avoiding the hardware limitations and embedding constraints often associated with
 1268 quantum-based solvers.

1271 E.2 SEMI-SUPERVISED LEARNING AND LABEL PROPAGATION

1272 In the field of machine learning, semi-supervised label propagation aims to infer the class labels
 1273 of a large set of unlabeled data based on a small number of labeled examples and the underlying
 1274 graph structure. Standard techniques typically relax the discrete class indicators into continuous
 1275 real values to minimize an energy function involving the graph Laplacian Holtz et al. (2024). This
 1276 relaxation often leads to ambiguity when mapping the continuous results back to discrete classes. Our
 1277 framework is naturally suited to address this by maintaining the problem in its discrete form. It can
 1278 be extended to optimize the label assignment directly on the graph, ensuring that the inferred labels
 1279 remain valid integers throughout the process, thereby avoiding the errors introduced by continuous
 1280 relaxation and post-hoc rounding.

1282 E.3 QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION (QUBO)

1283 A fundamental formulation for many NP-hard combinatorial problems—ranging from Max-Cut and
 1284 Maximum Independent Set to social network clustering—is the Quadratic Unconstrained Binary
 1285 Optimization (QUBO) problem. A growing body of research attempts to solve QUBO by transforming
 1286 the optimization task into a learning problem. These methods typically employ Graph Neural
 1287 Networks (GNNs) to treat the binary variable assignment as a vertex classification task, using
 1288 strategies like Batch Greedy Flipping to iteratively refine solutions based on learned probabilities
 1289 Chen et al. (2024). However, these learning-based methods require extensive training data and
 1290 often struggle to generalize to graph structures unseen during the training phase. Our proposed
 1291 exact combinatorial MM framework offers a robust, training-free alternative for this domain. By
 1292 constructing tight linear surrogates for the quadratic affinity terms, our method reduces the complex
 1293 energy landscape into a sequence of exact linear steps. This provides a deterministic path to high-
 1294 quality solutions for general binary optimization problems without the overhead of training neural
 1295 networks or the unpredictability of stochastic search heuristics.