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Abstract

Multi-agent reinforcement learning (MARL) has been largely developed to solve
multi-agent cooperation problems. However, it remains insufficiently developed
for explaining decision-making processes. This challenge becomes particularly
pronounced with delayed rewards, especially episodic ones, as credit allocation
must be accounted for along both the temporal and spatial axes involving multiple
agents. In this paper, we propose a CAusally-inspired Spatial-Temporal return
decomposition method, named CAST, to tackle episodic reward in cooperative
MARL. We provide interpretable return decomposition and allow the complexity of
multi-agent dynamics by relaxing the common assumption. Specifically, along the
temporal dimension, episodic long-term return satisfies a linear summation of team
rewards from all time steps. More interestingly, in the spatial dimension, beyond
a simple linear summation of individual rewards, team rewards are allowed to be
general nonlinear mixtures of individual rewards, facilitating more reasonable and
precise credit allocation. We theoretically show that, under the proposed framework,
the team rewards, individual rewards, and underlying causal relationships are
identifiable, which naturally introduces additional structure constraints to enhance
the interpretability of reward redistribution. Our experiments demonstrate state-of-
the-art results in MPE and its variants, and the provided visualization of the causal
structure demonstrates the interpretability of our method.

1 Introduction

Cooperative Multi-agent Reinforcement Learning (MARL) is a burgeoning area that allows agents
to learn to collaborate towards a shared team goal [24, 49, 48, 45]. It widely accelerates multiple
applications of AI in the real world, such as games [38, 44, 30] and robotics [17, 33]. The challenges
of learning individual cooperative policies stem not only from the complex dynamics where each
agent’s actions influence both their own observations and those of others but also from the single
scalar team reward, which measures their collective performance. These factors pose the central
challenge in cooperative MARL: credit assignment [28, 34, 39, 15, 7]. Those methods work well
while the team reward signals are dense. However, a more practical but challenging scenario is where
the team of agents is only awarded sparse and delayed rewards at the end of the episode. Recently,
works along spatial-temporal credit assignment propose to explicitly redistribute the individual
rewards for the agents and timesteps to mitigate this problem [32, 4].
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Figure 1: A graphical illustration G of the causal process that describes the generation of long-term
return in general. Individual reward {r1t · · · , rNt } is generated from the joint state {s1,t · · · s|s|,t}
and joint action {a1

t · · · ,aN
t } by reward function f , and transformed individual reward {r̃1t , · · · r̃Nt }

is generated from individual reward by invertible function g. Accordingly, team reward Rt is the
causal effect of individual rewards of all agents, and long-term reward Q equals the sum of team
rewards from all the timesteps.

Previous work often lacks detailed interpretability about why specific contributions are generated.
Understanding how states and actions impact the team’s outcome can provide valuable insights
for further policy learning. Some previous work emphasizes the benefits of utilizing the structural
generation process of rewards. For instance, AdaRL constructs a compact representation for policy
learning [11], and LAIES[16] uses given structural information to design intrinsic rewards. However,
achieving both reasonable and precise credit allocation under the complex dynamics of MARL while
also providing interpretability is not trivial. Current studies commonly decompose the long-term
return into individual rewards through a simple structural assumption by assuming the team reward is
a direct summation of individual rewards [4, 32]. Although they do not explicitly estimate the causal
structures behind the individual reward generation, such a simple and strict summation assumption
indeed can guarantee an identifiable causal structure for allocating individual credits. However, it
oversimplifies the complex dynamics in MARL and may hinder the ability to allocate credit accurately
and reasonably. Let’s consider a team game scenario with three players: A, B, and C. Players A and B
are responsible for attacking the enemy, while player C is a medic who heals A and B, allowing them
to survive longer and deal more damage over time. It is not reasonable to simply equal the success of
the game to the damage dealt by A and B, ignoring the essential support provided by C, which is
usually complex, in enhancing the overall performance of the team. Hence, the credit assignment in
such a case is beyond linear decomposition and instead an unknown mixture of agents’ individual
contributions, where using the linear summation assumption to estimate individual reward functions
can limit the representation capability of the learned reward predictor, thereby impairing reasonable
and precise credit allocation.

In this paper, we propose a CAusality-inspired Spatial-Temporal return decomposition (CAST)
method, providing the interpretability of allocating agents’ individual contributions. More specifically,
as shown in Figure 1, along the temporal dimension, CAST models the long-term return as the causal
effect of team rewards at all the timesteps, enabling decomposition of the long-term return into a
team reward for each timestep [29, 47, 1]; Along the spatial dimension, CAST views team reward
as the causal effect of the actual individual contributions (for simplicity, we use individual rewards
in the rest of the paper) of all the agents. What makes CAST advance beyond previous work [4]
is its departure from the simple linear assumption, i.e., equating the team reward to the sum of
agents’ individual rewards. Instead, CAST adopts a more general and flexible modeling where the
team reward is generated from a nonlinear mixture of individual rewards, inspired by iVAE [14].
We assume an invertible mixture function to map the individual rewards to immediate transformed
rewards, which sum to the team reward, thus guaranteeing the identifiability of the causal structures
and the unobserved individual reward functions within the generative process of multi-agent systems.
Such identifiability further enables us to incorporate explicit structural modeling and constraints that
provide interpretability. Overall, we not only provide interpretability but also relax the assumption of
additive linear team reward as a nonlinear mixture of individual rewards which allows a much richer
class of possible functions.

Our contributions are four-faceted. (1) We expand the theoretical understanding of spatial-temporal
credit assignment in MARL by introducing a nonlinear invertible mixture model for team reward gen-
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eration. The proposed method, CAST, captures the complex dynamics and ensures the identifiability
of causal relationships and unobserved individual reward functions within the generative process of
cooperative MARL. (2) We explicitly estimate causal relationships that influence the generation of
individual rewards, thereby modeling the contribution of agents and providing interpretability. (3) We
design an individual reward predictor based on iVAE [14] under the nonlinear mixture assumption.
(4) Experimental results on the classic and modified Multi-agent Particle environment underscore the
superiority of our approach, and the visualization verifies the interpretability of our method.

2 CAST: Causality-Inspired Spatial-Temporal Return Decomposition

We focus on enhancing policy learning through explicit credit assignments in cooperative games with
sparse and delayed team rewards, especially episodic ones. We begin by describing the generative
process in cooperative games, which lays the foundation for our proposed approach. We then detail
a technique for recovering this process and conducting policy learning using individually assigned
rewards. Similar to the previous work [47], the proposed method, CAST, contains a generative
model Φm and a policy model Φπ . After learning individual reward functions for each agent through
generative model learning, we can exploit the predicted individual rewards for independent policy
learning. The overall learning objective is to minimize,

L(Φm,Φπ) = Lm(Φm) + Jπ(Φπ), (1)

where the Lm is designed for model estimation (defined in Eq. 4) and Jπ is for policy learning
depends on specific RL optimization algorithm (defined in Eq. 6).

2.1 Underlying Generative Process in MARL

We first state the setting of CAST: for each timestep t with a joint state st, the agent n ∈ [1, · · · , A]
takes action an

t , forming the joint action at, and contributes to the team reward Rt by individual
reward rnt (the goal of spatial-temporal credit assignment). However, the agent can only observe an
episodic reward, which measures the performance of the entire trajectory at t = T ; otherwise, the
agent receives zero rewards.

Generative Model. As shown in Figure 1, CAST exploits a Dynamic Bayesian Network (DBN) [22],
G, over a finite number of random variables,

{{s1,t, · · · , s|s|,t}︸ ︷︷ ︸
joint state

∪ {a1
t , · · ·aN

t }︸ ︷︷ ︸
agents’ action

∪ {r1t , · · · , rNt }︸ ︷︷ ︸
individual rewards

∪ {r̃1t , · · · , r̃Nt }︸ ︷︷ ︸
transformed individual rewards

}Tt=1

⋃
Q,

where |s| and |an| are the dimension of st and an
t , N is the number of agents, and G characterizes

the underlying generative process in MARL as follows,
individual reward: rnt = fn(Cn ⊙ st,a

n
t , ϵr,n,t)

team reward: Rt =
∑N

n=1 g
n([r1t , r

2
t , · · · , rNt ])

long-term return: Q =
∑T

t=1 γ
t−1Rt

(2)

where ⊙ is the element-wise product. Note that such causal modeling relaxes the previous strict
linear assumption [4], which can be regarded as a special case of our model when g is an identity
function. In our experimental environments, where the state is not available during training, we use
the agents’ observations ot as a proxy for the environmental state st and agents’ index n.

Notations. For simplicity, we denote r̃nt = gn(rt), rt = [r1t , · · · , rNt ] and r̃t = [r̃1t , · · · , r̃Nt ]. We
denote by rnt the individual reward at time step t of agent n. In the rest of the paper, we call r̃nt
as transformed individual rewards. Q is the trajectory-wise long-term return. T is the maximum
episode length of the environment. ϵr,n,t is the i.i.d. noise.

Causal structure and interpretability. Cn,∀n ∈ [1, · · · , N ] is a binary mask to capture the causal
structure between the elements of joint state and individual rewards of agents, with Cn ∈ {0, 1}|s|.
Cn controls if a specific dimension of the state st impacts the individual reward rnt at timestep t.
Let Cn

k be the k-th element in the vector Cn. If there is an edge from the k-th dimension of st to
the agent n’s individual reward rnt in G, then Cn

k = 1. Given G, we can naturally explain how the
individual rewards are generated, i.e., the explicit contribution of each dimension of the joint state
towards individual rewards.
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Figure 2: The overall pipeline of the proposed method. Generative Model Φm: The causal structures
for prediction of individual rewards rnt are Cn

t , sampled from ϕcau; The module (Φtrans, in green)
takes (ot,a

n
t ) as input to predict the transformed individual rewards r̃nt (in orange) and optimized

by Ltrans. The module (Φinv, in blue) is constructed as an iVAE, consisting of an encoder (ϕenc), a
decoder (ϕg), an individual reward predictor (ϕf ). The encoder takes as input ot, an

t to predict the
individual rewards rnt , individual rewards r̃t. We treat the latent of the iVAE as the individual rewards
rnt (in purple) and optimize Φinv through LELBO. Policy Φπ: The prediction of rnt from the encoder
ϕenc finally guides the independent policy learning process.

Functions in Eq. 2. f is the unknown individual reward function, whose output rnt is expected to
accurately describe the contribution of agent n, and serves as the reward signals for independent
policy learning. g is an invertible function to generate the transformed individual rewards r̃t from
individual rewards rt, i.e., r̃t is a nonlinear or linear invertible mixture of rt. We assume that the
sum of transformed individual rewards

∑N
n=1 r̃

n
t equals Q, where we follow previous work to ignore

discount factor γ [29].

Relaxed assumption. We want to highlight the complexity of team reward generation in a multi-agent
system, which can range from simple linear sums to complex nonlinear functions. This contrasts with
previous work, such as STAS [4], which assumes that the team reward equals the sum of individual
rewards. Such a restrictive assumption limits the reasonable and precise credit assignment in the
complex MARL system. In contrast, our proposed framework allows the team reward to be a general
mixture of individual rewards rnt , with the linear assumption being a special case when rt = r̃t.

2.2 Theoretical Results

In this subsection, we provide 1) the identifiability results of the unknown functions and structures in
Eq. 2, which support the estimation of the causal structure from the data, enabling the interpretability
of our method; 2) the equivalence of using the decomposed rewards for policy learning in our
proposed framework.

Proposition 2.1 (Identifiability for Spatial-Temporal Credit Assignment). Consider the data generat-
ing process in Eq. 2. Suppose the joint state st, the action an

t for each agent n and the long-term
return (can be calculated by the discounted sum of delayed rewards) are observable, while the
individual rnt for each agent n and team reward Rt are unobserved.

Under the Markov condition (Definition E.2) and faithfulness assumption ( Definition E.3), if the
function g for generating the transformed individual rewards is invertible, then the causal mask
Cn is identifiable and we can identify the individual rewards rnt to their monolithic invertible
transformations, e.g. log (rnt ).

Proof Sketch. The proof begins by establishing the identifiability of the transformed individual
rewards, represented by r̃n, indicating the possibility of recovering it from the data. The second part
of the proof highlights the relationship between our method and nonlinear Independent Component
Analysis (ICA), along with confirming the identifiability of individual rewards, rnt .
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Remark 2.2. The proposition 2.1 shows that we can identify causal structures and individual rewards
(up to their invertible nonlinear transformation) from the observed data. The proof is in Appendix F.

Based on Proposition 2.1, since the individual rewards are 1-dimensional, it is equivalently to say that
we can identify the individual rewards up to their monolithic function of the ground truth individual
rewards. Since the recovered individual rewards can be positively or negatively correlated to their
ground truth, we give the Proposition 2.3 for policy learning with the estimated individual rewards.

Proposition 2.3. If k(·) is a monotonically increasing invertible transformation, then it is equivalence
to optimize the policy using the ground individual rewards rnt and its k-based transformation k(rnt ).

2.3 Generative Model Learning

In this subsection, we present how our proposed method recovers the underlying generative process.
This includes the identification of binary masks (C), as well as the estimation of unknown functions
(f and g). The parameterized model Φm that incorporates the structures and functions in Eq. 2 is used
to approximate the causal generative process. The pseudocode is in Pseudocode 1 in Appendix I.

Generative Model. As shown in Figure 2, Φm consists of two parts: (1) Φtrans for prediction of
transformed rewards r̃nt = Φtrans(ot,a

n
t ); (2)Φinv := [ϕcau, ϕf , ϕenc, ϕg] for prediction of individual

rewards rnt while keep the function g invertible.

We illustrate more details about Φinv as follows. We first exploit a set of free parameters, ϕcau ∈
RN×|s|, to estimate the existence of the causal edges for the generation of the individual rewards
rnt . Define ϕn

i,j,cau as the (n, i, j)-th element of ϕcau, where n ∈ [1, N ], i ∈ [1, |oi|], j ∈ [0, 1]. The
existence of the edge Cn

j ,∀n ∈ [1, N ], j ∈ [1, |oi|], is modeled by ϕn
i,j,cau whose value fails in

between 0 and 1. Then, given the output of Φtrans, the transformed individual rewards r̃nt , we construct
an iVAE [14] to mimic the invertible function, which consists of ϕf , ϕenc, ϕg . It is defined as follows,

Prior: rnt = ϕf (C
n⊙on

t ,a
n
t ), Encoder: rnt = ϕenc(C

n⊙on
t ,a

n
t , r̃t), Decoder: r̃t = ϕg(rt), (3)

where r̃t = [r̃1t , · · · , r̃Nt ] and rt = [r1t , · · · , rNt ]. In Eq. 3, ϕf and ϕenc both aim to predict the
individual rewards. While both of them take as input the causal structure, the joint state, as well
as the action and index of an individual agent, the latter one takes one more, i.e., the prediction of
transformed individual reward r̃nt . Hence, we consider that the prediction of rnt from ϕenc is more
informative and use it for further policy learning.

Learning Objective. The overall loss term for generative model learning is as follows,

Lm(Φm) = Ltrans(Φtrans) + LELBO(Φinv). (4)

Specifically, Ltrans is responsible for optimizing Φtrans to predict the transformed individual rewards:

Ltrans = Eτ∼D||Q−
T∑

t=1

N∑
n=1

Φtrans(o
n
t ,at)||2. where τ := [ot,at]

T
t=1 ∪Q. For the optimization of

Φinv, we maximize the lower bound on the log-likelihood and define LELBO as follows,

LELBO = Ert∼ϕenc,r̃t∼Φtrans , τ ∼ D
[
−

N∑
n=1

logPϕf (r
n
t | Cn ⊙ on

t ,a
n
t )

+
N∑

n=1

logPϕenc(r
n
t | on

t ,a
n
t , r̃t)− logPϕg (r̃t | rt)

]
+ λ

N∑
n=1

|oi|∑
i=1

Cn
i ,

(5)

where τ = [ot, [a
n
t ]

N
n=1]

T
t=1, r̃nt is generated by Φtrans, dropping the gradients, and the last loss term

is for regulating the sparsity of learned causal structure, avoiding trial solutions. For more details
about the model structure and hyper-parameters, please refer to Appendix I.

2.4 Policy Learning

After assigning the individual rewards rnt predicted by ϕenc, we convert the multi-agent learning into
independent single-agent policy training. In the experiments, we adopt Proximal Policy Optimization
(PPO) [31] for independent policy optimization and let all the agents share the same policy. The
policy model Φπ contains two parts, a critic ϕv and an actor ϕπ due to the applied PPO algorithm.
PPO trains an actor ϕπ(o

n
t ) by minimizing,
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Figure 3: Learning curve on Multi-agent Particle Environment with episodic rewards, based on 3
independent runs with random initialization. The shaded region indicates the standard deviation
and the lines are smoothed by averaging the 10 most recent evaluation points using an exponential
moving average.

Jπ = E
[
min(

πϕ(a
n
t | on

t )

ϕϕ,old(a
n
t | on

t )
Ât, clip(

πϕ(a
n
t | on

t )

ϕϕ,old(a
n
t | on

t )
, 1− ϵ, 1 + ϵ)Ât)

]
(6)

where Â is the advantage function in PPO [31]. Detailed implementation of Φπ is in Appendix I.
Search the positive correlated individual rewards. Supported by the identifiability result, the
proposed method is able to identify the individual rewards up to its monolithic transformation.
However, it is unclear whether the recovered reward is positively or negatively correlated with the
actual agent’s contribution (individual rewards). Consequently, given the recovered individual reward
r, we applied policy learning for both the positive reward (r) and negative reward (−r), and then
selected the policy that demonstrated better performance. According to Proposition 2.3, we can learn
the optimal policy using the recovered positive correlated nonlinear invertible transformation of the
actual individual rewards.

3 Experiments
In this section, we begin with evaluating our method in the Multi-agent Particle Environment (MPE)
and its variants against several baselines. Then, we conduct ablation studies to verify the benefit of
relaxing the linear assumption and investigate the interpretability of our methods.

Setup We begin with the setup of our experiments, including the baselines, environments, and
metrics. Baselines. We compare our method with four baselines, including COMA [7], QMIX [28],
SQDDPG [41] and STAS [4]. The implementation of baselines is from STAS [4]. For more
details, please refer to Appendix G.2. Environments. We evaluate our method and investigate
its reasonable design in a Multi-agent Particle Environment (MPE) [21, 19]. More specifically, we
utilize the challenging episodic scenarios built upon the classic implementation of MPE, Classical
MPE (Episodic) and the variant of Episodic MPE with nonlinear team rewards, named Nonlinear
MPE (Episodic). For more details, please refer to Appendix I

3.1 Main Results

We provide the learning curve on the classic and modified MPE scenarios, as shown in Figure 3.
The line in red and pink denote our method using the recovered individual rewards (CAST) and the
recovered transformed individual rewards, (CAST-L) separately. The others are baseline methods.
The proposed method achieves a higher cumulative reward than the others across most different
scenarios in the Multi-agent Particle Environment (MPE), including the classic MPE scenarios
(linear, first row) and the modified MPE (nonlinear, last row). Among the baselines, STAS [4]
explicitly addresses spatial-temporal credit assignment by reward redistribution thus obtaining good
performance in the classic MPE (first row). However, limited by the assumption of a linear sum of
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individual rewards, they fail to credit the agents by a granular contribution allocation in non-linear
MPE. This observation demonstrates that applying a simple linear assumption to credit the agents is
not suitable in the nonlinear team reward setting, which is a more general setting in the real world.
In contrast, although CAST relaxes the linear assumption, it can perform well in both linear and
nonlinear team reward settings, revealing the generalizability of our method.

3.2 Ablation Study

We conduct the following ablation study: 1) the results of the ablation versions of our method:
CAST-L decomposes rewards under linear assignment CA-T: policy learning with predicted team
rewards, i.e. without spatial credit assignment; 2) the results of using ground truth rewards for policy
learning: methods named GT (team), GT (trans), GT use ground truth team reward, transformed
individual rewards and individual rewards, separately for policy learning; 3) the visualization of
causal structure to demonstrate the interpretability of our method; 4) the Spearman’s rank correlation
coefficient of the recovered individual rewards with the ground truth.

Policy learning with Linear Modeling. To demonstrate the necessity of relaxing the strict linear
team reward assumption, we provide the experimental results of policy with predicted transformed
individual rewards CAST-L, which can be treated as the redistributed reward under the linear
assumption. CAST-L obtains a good performance in the classic MPE while failing in the nonlinear
MPE, which demonstrates that through relaxing the linear assumption in previous work, our method
achieves a better performance.

Policy Learning without Spatial Credit Assignment. We provide the experimental results of CA-T,
using team rewards (sum of predicted transformed individual rewards) for policy learning, i.e. without
spatial credit assignment. According to Figure A2, lacking explicit spatial credit assignment, the
contribution of individual agents to the overall team performance is not distinctly identified, inducing
worse performance than that under spatial-temporal credit assignment.

P1 V1 P4 P2 P3 V2

P1 V1 P4 P2 P3 V2

P4: Landmark’s Relative Position

V1: Agent’s Velocity V2: Prey’ Velocity

P1: Agent’s Position

P2: Other Predators’ Relative Position

P3: Prey’s Relative Position

Figure 4: Learned causal structure from i-th dimension of observa-
tion to individual reward of agent n in Predator-Prey (3/6 agents).
The darker, the higher the probability of the causal edges existing.
The black block denotes the ground truth causal structure.

Visualization of Causal Struc-
ture on MPE. Here, we delve
into the visualization of the
learned causal structure in the
MPE, the scenarios Predator-
Prey (3 agents) and Predator-
Prey (6 agents) to highlight the
interpretability of our method
by understanding the underly-
ing causal relationships between
agents’ state and their outcomes.
As shown in Figure 4, the lighter
the color, the higher the edge ex-
ists. According to the reward de-
sign in the scenarios, the agent’s
individual reward is decided by
their minimal distance from the
prey. Therefore, the causal edge
only exists from the prey’s rel-
ative position (P4 in Figure 4)
to the individual rewards, which
is consistent with the learned
causal structure.

Additional Experimental Results. We provide more experimental results of policy learning with
ground truth rewards and the recovery accuracy of the individual rewards in Appendix H.

4 Conclusion
In conclusion, our paper addresses the challenge of credit assignment in cooperative multi-agent
learning, specifically focusing on delayed rewards in episodic scenarios. By modeling reward
generation along spatial and temporal axes causally, we introduce a novel framework, CAST, to
address interpretable spatial-temporal credit assignment. We relax the conventional assumption
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of equal values between the sum of individual contributions to team outcomes and propose more
general causal modeling to allow the complex generation of the team reward. We show its state-of-
the-art results in MPE and its variants and verify the method’s interpretability through insightful
visualizations.
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A Related Work

Below we review the related works on credit assignment in multi-agent reinforcement learning,
including those on spatial-temporal credit assignment and causality-facilitated reinforcement learning.

Credit assignment in multi-agent reinforcement learning investigates the contribution of each in-
dividual agent towards the common goal of the team (measured by a team reward) in cooperative
multi-agent environments [3]. A rich line of work [37, 7, 41, 28, 15] focus on value decomposition
under the centralized training with decentralized execution (CTDE) paradigm. SHAQ [40] and
SQDDPG [41] utilize an agent’s approximate Shapley value for credit assignment. Another line of
work follows independent learning and demonstrates a robust performance while using decentralized
training [5, 20]. Among them, [42] decomposes the team reward and assumes that the team reward
equals the sum of contributions of individuals, which we relax in our method. Those methods may
not work when the reward signal is extremely sparse and delayed.

Facing the challenge of sparse and delayed rewards in the multi-agent tasks, there is a recent
rising need to do Spatial-Temporal Credit Assignment [32, 4]. This line of work explores reward
redistribution methods that can be integrated with independent policy learning. ATA [32] extends
the RUDDER [1] in a single-agent setting into the multi-agent setting and treats the difference in
long-term return predictions between two timesteps as the agent’s redistributed rewards. However,
the RUDDER-manner redistribution method may not work well in complex environments and lacks
interpretability [25, 29, 47]. STAS [4] works in a similar way to us to learn the individual reward
redistribution model for each agent, which is more flexible. After the decomposition of the long-term
return into each timestep, STAS uses Shapley values to redistribute the individual payoff of agents.
However, STAS assumes that the long-term return is equal to the linear sum of individual rewards
from all the agents and timesteps, which is a strict assumption and is abandoned in our work.

Plenty of work explores solving diverse RL problems with causality tools. From the aspect of the
transfer ability of RL agents, [12, 6] learn factored representation and individual change factors for
different domains in the stationary and non-stationary changes separately. More recently, [27] and
[10] work in different ways to utilize the causal structure and variable dependencies to improve the
generalizing capability of RL agents. For model-based RL, [46] discerns the confounders and [18]
factorizes the state space in an identifiable way. In MARL, [8] discusses some open problems and
[13] measures the causal influence of one agent on others as intrinsic rewards to motivate the agents
to achieve higher change in the other agent’s behavior. Another work related is LAIES [16], which
also addresses the sparse reward in multi-agent learning and working along another line using the
intrinsic rewards. However, they assume that the reward-relevant state components are known which
is not practical in the real world. By contrast, our method can disentangle the reward-relevant state
from the non-relevant component automatically.

B Background

Decentralized Partially Observable Markov Decision Process (Dec-POMDP). Dec-POMDP
[23] is widely utilized in multi-agent reinforcement learning. It is defined by a tuple M =
⟨N,S,A,P,R,O,Ω, γ⟩, where N represents the number of agents, S and A denote the state
and action spaces, respectively. At each timestep t, given an environment state (joint state) st, each
agent n observes observation on

t = O(st, n) : S ×N → Ω, and takes its individual action an
t and all

the actions form a joint action at = [a1
t , · · · ,aN

t ]. Afterward, the agent n receives the team reward
Rt based on the team reward function R : S × A → R. P(st+1 | st,at) specifies the probability
of transitioning to a new state st+1 given the current state st and joint action at. The objective for
each agent is to find an optimal policy π∗ that maximizes the discounted sum of team rewards, which
is denoted as π∗ = argmaxπ E[

∑∞
t=0 γ

tR(st,at)], where γ represents the discount factor. The
Dec-POMDP model is flexible and can be used in a wide range of multi-agent scenarios, making it a
popular choice for coordination among multiple agents.

Episodic Reward Setting in Cooperative Games. Commonly, the team of agents receives a reward
Rt immediately after the execution of the joint action at which consists of all the agents’ action
an
t at joint state st. However, in the setting of episodic reinforcement learning, agents can only

obtain one global reward feedback at the end of the trajectory. Let τ = (s1,a1, s2,a2, · · · , sT ,aT )
denotes a trajectory of length T . Then, the team of agents can only observe an episodic reward Rep at
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timestep t = T , otherwise zero (t ̸= T ). Therefore, the goal of the team of agents is to maximize the
trajectory return, J = E[

∑T
t=1[γ

t−1Rt]] = E[γT−1Rep]. In practice, it is common to assume that the
episodic reward has some structure in nature, i.e., reconstructing by an underlying reward function in
a sum-decomposable form: Rep ≈ R̂ep =

∑T
t=1 γ

t−1R(st,at), where γ is usually regarded to be 1.

C Limitations

The limitations of our work primarily stem from certain assumptions and constraints in the proposed
method. Firstly, while our approach significantly enhances interpretability through causal-inspired
spatial-temporal return decomposition, it relies on the assumption of a linear summation of team
rewards over time, which may not always hold in more complex, real-world scenarios. Besides,
although we allow for nonlinear mixtures of individual rewards in the spatial dimension, it requires
the invertibility between the transformed reward and the individual reward. Future work could focus
on extending our method to incorporate human knowledge to further relax the assumption of linear
temporal and invertible spatial assumptions, making the proposed method more general.

D Broader Impact

The proposed framework has significant broader societal impacts in the field of multi-agent coop-
erative learning, as well as the real world. First, we provide a general approach to solving sparse
rewards in Multi-agent Reinforcement Learning, especially enabling addressing the nonlinear team
reward function, which is much more general and practical in the real world. Second, we enhance
the transparency and credibility of algorithms through causal structure explanation, which can foster
reliable and responsible decision-making in various fields, leading to better human-AI collaboration.

E Theoretical background

E.1 Causal Inference

A directed acyclic graph (DAG), G = (V ,E), can be deployed to represent a graphical criterion
carrying out a set of conditions on the paths, where V and E denote the set of nodes and the set of
directed edges, separately.
Definition E.1 (d-separation [26]). A set of nodes Z ⊆ V blocks the path p if and only if (1) p
contains a chain i → m → j or a fork i ← m → j such that the middle node m is in Z, or
(2) p contains a collider i → m ← j such that the middle node m is not in Z and such that no
descendant of m is in Z. Let X , Y and Z be disjunct sets of nodes. If and only if the set Z blocks
all paths from one node in X to one node in Y , Z is considered to d-separate X from Y , denoting
as (X ⊥d Y | Z).
Definition E.2 (Global Markov Condition [35, 26]). If, for any partition (X,Y ,Z), X is d-
separated from Y given Z, i.e., X ⊥d Y | Z. Then the distribution P over V satisfies the global
Markov condition on graph G, and can be factorized as, P (X,Y | Z) = P (X | Z)P (Y | Z).
That is, X is conditionally independent of Y given Z, writing as X ⊥⊥ Y | Z.
Definition E.3 (Faithfulness Assumption [35, 26]). The variables, which are not entailed by the
Markov Condition, are not independent of each other.

Under the above assumptions, we can apply d-separation as a criterion to understand the conditional
independencies from a given DAG G. That is, for any disjoint subset of nodes X,Y ,Z ⊆ V ,
(X ⊥⊥ Y | Z) and X ⊥d Y | Z are the necessary and sufficient condition of each other.

E.2 Exponential family

Definition E.4 (Exponential family). A univariate exponential family is a set of distributions whose
probability density function can be written as

p(x) = Q(x)Z(θ)eT (x),θ, (A1)

where T : R→ Rk is called the sufficient statistic, θ ∈ Rk is the natural parameter, Q : R→ R the
base measure and Z(θ) the normalization constant. The dimension k ∈ N \ {0} of the parameter is
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always considered to be minimal, meaning that we can’t rewrite the density p to have the form with a
smaller k′ < k. We call k the size of p.
Lemma E.5. Consider an exponential family distribution with k ≥ 2 components. If there exists
α ∈ Rk such that Tk(x) =

∑k−1
i=1 αiTi(x) + αk, then α = 0. In particular, the components of the

sufficient statistic T are linearly independent.

F Details of Theoretical Analysis

Below is the proof of Proposition 2.1 and Proposition 2.3. The proof is carried out through,

• identify transformed individual reward r̃nt , given the long-term return Q, joint state st, joint
action at, and agent id n (Appendix F.1);

• identify individual reward vector rt, given the transformed individual reward r̃nt , joint state
st, joint action at, and agent id n (Appendix F.2);

• distinguishes the individual rewards from the individual reward vector rt (Appendix F.3);
• equivalence of policy learning with a monolithic transformation of the ground truth individ-

ual rewards (Appendix F.4).

For each part, we begin by clarifying the assumptions we made and then provide the mathematical
proof.

F.1 Identifiability of transformed individual reward r̃nt

Assumption We assume that ϵr,n,t in Eq. 2 are i.i.d additive noise. From the weight-space view of
Gaussian Process [43], equivalently, the causal models for transformed individual reward r̃nt , team
reward Rt and long-term return Q can be represented as follows, respectively,

r̃nt = Rf,g(st,at, n) + ϵr,n,t

= WT
f,gϕf,g(st,at) + ϵr,n,t,

(A2)

where ϕf,g denotes basis function sets.

Then we denote the variable set in the system by V , with V =
{s1,t, . . . , s|s|,t,a1,t, . . . ,a|a|,t, r̃

1
t , · · · , r̃Nt , Rt}Tt=1 ∪ Q, and the variables form a Bayesian

network G. Note, we assume that there are possible edges only from si,t ∈ st to r̃nt , from aj,t ∈ at

to r̃nt , from r̃nt to Rt, and from Rt to Q in G.

Following the above assumption, we first rewrite the function to calculate trajectory-wise long-term
return Q in Eq. 2 as,

Q =

T∑
t=1

Rt =

T∑
t=1

N∑
n=1

r̃nt

=

T∑
t=1

(
N∑

n=1

(Rf,g(st,at, n) + ϵr,n,t)

)

=

T∑
t=1

N∑
n=1

WT
f,gϕf,g(st,at) +

T∑
t=1

N∑
n=1

ϵr,n,t

= WT
f,g

T∑
t=1

N∑
n=1

ϕf,g(st,at) +

T∑
t=1

N∑
n=1

ϵr,n,t,

(A3)

For simplicity, we replace the components in Eq. A3 by,

ζ(X) =
T∑

t=1

N∑
n=1

ϕf,g(st,at, n),

E =
T∑

t=1

N∑
n=1

ϵr,n,t,

(A4)

where X := [st,at, n]
N,T
n=1,t=1 representing the concatenation of the covariates st, at , n from n = 1

to N and from t = 1 to T . Consequently, we derive the following equation,
Q = WT ζ(X) + E. (A5)
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Then we can obtain a closed-form solution of WT in Eq. A5 by modeling the dependencies between
the covariates Xτ and response variables Qτ , where both are continuous. One classical approach
to finding such a solution involves minimizing the quadratic cost and incorporating a weight-decay
regularizer to prevent overfitting. Specifically, we define the cost function as,

C(W ) =
1

2

∑
Xτ ,Qτ∼D

(Qτ −WT ζ(Xτ ))
2 +

1

2
λ∥W∥2, (A6)

where τ represents trajectories consisting of state-action-id combinations Xτ and long-term returns
Qτ , which are sampled from the replay buffer D. λ is the weight-decay regularization parameter.
To find the closed-form solution, we differentiate the cost function with respect to W and set the
derivative to zero:

∂C(W )

∂W
= 0. (A7)

Solving this equation will yield the closed-form solution for WT , i.e.,

W = (λId + ζζT )−1ζQ = ζ(ζT ζ + λIn)
−1Q, (A8)

where In denotes the identity matrix with size n. Therefore, W , which indicates the causal structure
and strength of the edge, can be identified from the observed data. In summary, given trajectory-wise
long-term return Q, the causal structure for the generation of the transformed individual rewards r̃t
and team reward Rt are identifiable.

F.2 Identifiability of individual reward vector rt

Now we solve the problem of identifying the individual reward vector rt, given the joint state st,
joint action at, transformed individual rewards. We assume that there is no direct causal edge within
individual rewards rnt . The following proof is the application of the theorems in iVAE [14], and we
further go beyond permutation-invariant latent by leveraging the agent’s action.

Assumptions Let X ⊂ RD×N denotes the combination of joint state, joint action, and agent id for
simplicity, where D is the dimension of Xn the combination of joint state, joint action and a single
id for the n-th agent. The agent number is N . LetR ⊂ RN be the individual rewards for N agents
organized by the order of the agent’s action in the joint action. Let R̃ ⊂ RN be the transformed
individual rewards for N agents, also organized by the order of the agents’ actions in the joint action.
Therefore, we want to identifyR, given X and R̃. They have the following causal relationships,

X → R → R̃. (A9)

We suppose that X ,R, R̃ are open sets.

Therefore, we have the following conditional generative model for the generation of the involved
data,

pθ(r̃, r | x) = pg(r̃ | r)pT ,λ(r | x) = pg(r̃ | r)
N∏

n=1

pTn,λn(rn | xn), (A10)

where we define,
pg(r̃ | r) = pϵ(r̃ − g(r)), (A11)

which means that the value of r̃ can be decomposed as r̃ = g(r) + ϵ where ϵ is an independent
noise variable with probability density function pϵ, i.e., ϵ is independent of r or g. Therefore, the set
{r̃ ∈ R̃ | ϕϵ = 0} has measure zero, where ϕϵ is the characteristic function of the density pϵ.

We use Θ = {θ := (g,T ,λ}) to denote the involved parameters. Recall our assumption that, g is the
invertible function, and the R̃ is generated through the invertible function g fromR. We denote by
g−1 the inverse defined from R̃ → R. Note that, since the g is invertible, it is also bijective (i.e., both
injective and surjective). Also, the g has all second order cross derivatives We denote by T (r) :=
(T 1(r1), · · · ,TN (rN )) = (T 1

1 (r
1), · · · , T 1

K(r1), · · · , TN
1 (rN ), · · · , TN

K (rN )) ∈ RN,K the vector
of sufficient statistics of the probability density function, and λ(x) = (λ1(x1), · · · ,λN (xN )) =
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(λ1
1(x

1), · · · , λ1
K(xN ), · · · , λN

1 (xN ) · · · , λN
K(xN )) ∈ RN,K the corresponding parameters, cru-

cially depending on x for

pT,λ(r | x) =
∏
n

Qn(rn)

Zn(xn)
exp

[
K∑

k=1

Tn
k (r

n)λn
k (x

n)

]
, (A12)

where Qn is the base measure, Zn(xn) is the normalizing constant, and the dimension of each
sufficient statistic, K. Such exponential families have universal approximation capabilities [36].

Following iVAE [14], we further have the following assumptions.

Assumption F.1. The sufficient statistics T n
k in Eq. A12 are twice differentiable, and

(T n
k )1≤k≤K,1≤n≤N are linearly independent on any subset of R̃ of measure greater than zero.

Assumption F.2. There exist NK + 1 distinct point x0, · · · ,xNK such that the matrix

L = (λ(x1)− λ(x0), · · · ,λ(xNK)− λ(x0)), (A13)

of size NK ×NK is invertible.

Then we demonstrate that the vector r, i.e., the goal of credit assignment are identifiable up to a class
of transformation.

Recall Θ = {θ := (g,T ,λ}) to denote the involved parameters. We give the following definitions:

Definition F.3. Let ∼ be an equivalence relation on Θ. We say that,

pθ(r̃, r) = pθ(r̃ | r)pθ(r), (A14)

is identifiable up to ∼ (or ∼-identifiable) if

pθ(r̃) = pθ̃(r̃)⇒ θ̃ ∼ θ, (A15)

where (θ, θ̃) ∈ Θ. The elements of the quotient space Θ/ ∼ are called the identifiability classes.

Definition F.4. There are two equivalence relations on the set of parameters Θ. Let ∼ be the
equivalence relation on Θ defined as follows:

(g,T ,λ) ∼ (g̃, T̃ , λ̃)⇔ ∃A, c | T (g−1(r̃)) = AT̃ (g̃−1(r̃) + c,∀r̃ ∈ R̃, (A16)

where A is an NK ×NK matrix and c is a vector. If A is invertible, we denote this relation by ∼A.
If A is a block permutation matrix, we denote it by ∼P .

We begin with proving that the parameters (g,T ,λ) are ∼A-identifiable, which means that 1) if there
is no noise, we can learn the transformation g transforms the r̃ into individual rewards r = g−1(r̃)
that are equal to the ground truth individual rewards, up to a linear invertible transformation (the
matrix A) and point-wise nonlinearities (in the form of T and T̃ ). 2) if with noise, we obtain the
posteriors of the individual rewards r up to an analogous indeterminacy. We prove the identifiability
result in several steps.

• In the first step, we demonstrate that, given the assumption that,

{r̃ ∈ R̃ | ϕϵ = 0}, (A17)

has measured zero, it is possible to use a simple convolutional trick to transform the equality
of observed data distributions into the equality of noiseless distributions. In other words, it
simplifies the noisy case into a noiseless case.

• The second step consists of removing all terms that are either a function of transformed
individual rewards r̃ or observed x. This is done by introducing the points provided by
Eq. A13 and using x0 as a “pivot”. This is simply done in equations.

• The last step of the proof is to show that the linear transformation is invertible, thus resulting
in an equivalence relation.
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Step I We introduce here the volume of a matrix denoted vol(A) as the product of the singular values
of A. When A is full column rank, vol(A) =

√
detATA, and when A is invertible, vol(A) = |detA|.

The matrix volume can be used in the change of variable formula as a replacement for the absolute
determinant of the [2]. This is most useful when the Jacobian is a rectangular matrix (N < D).
Suppose we have two sets of parameters (g,T ,λ) and (g̃, T̃ , λ̃) such that pg,T ,λ(r̃|x) = pg̃,T̃ ,λ̃(r̃ |
x) for all pairs (r̃,x). Then:

∫
R

[∏
n

pT ,λ(r
n|xn)

]
pg(r̃|r)dr =

∫
R
[pT ,λ(r|x)] pg(r̃|r)dr

⇒
∫
R
[pT ,λ(r|x)] pg(r̃|r)dr =

∫
R

[
pT̃ ,λ̃(r | x)

]
pg̃(r̃|r)dr

⇒
∫
R
[pT ,λ(r|x)] pϵ(r̃ − g(r))dr =

∫
R

[
pT̃ ,λ̃(r | x)

]
pϵ(r̃ − g̃(r))dr

⇒
∫
R̃

[
pT ,λ(g

−1(¯̃r)|x)vol(J)g−1(¯̃r)

]
pϵ(r̃ − ¯̃r)d¯̃r =

∫
R̃

[
pT̃ ,λ̃(g̃

−1(¯̃r)|x)vol(J)g̃−1(¯̃r)

]
pϵ(r̃ − ¯̃r)d¯̃r,

(A18)
where J denotes the Jacobian, and we made the change of variable ¯̃r = g(r) and ¯̃r = g̃(r). Then,
we use the following to replace the terms in the Equation,

p̃T ,λ,g,x(r̃) = pT ,λ(g
−1(r̃)|xn)vol(J)g−1(r̃)1R̃(r̃) = pT ,λ(g

−1(r̃)|x)vol(J)g−1(r̃)1R̃(r̃),
(A19)

and get the following,

⇒
∫
RN

p̃T ,λ,g,x(¯̃r)pe(r̃ − ¯̃r)d¯̃r =

∫
RN

p̃T̃ ,λ̃,g̃,x(
¯̃r)pe(r̃ − ¯̃r)d¯̃r

⇒ (p̃T ,λ,g,x ∗ pϵ)(r̃) = (pT̃ ,λ̃,g̃,x ∗ pϵ)(r̃),
(A20)

where ∗ denotes the convolution operator. Then we used F [·] to designate the Fourier transform, and
where ϕϵ = F [pϵ] (by definition of the characteristic function).

⇒ F [p̃T ,λ,g,x](ω)pϵ(ω) = F [p̃T̃ ,λ̃,g̃,x](ω)pϵ(ω)

⇒ F [p̃T ,λ,g,x](ω) = F [p̃T̃ ,λ̃,g̃,x](ω),
(A21)

ϕe(ω) from both sides are dropped as it is non-zero almost everywhere {r̃ ∈ R̃ | ϕϵ = 0}. Then we
get

p̃T ,λ,g,x(r̃) = p̃T̃ ,λ̃,g̃,x(r̃), (A22)

Eq. A22 is valid for all (r̃,x) ∈ R̃×X . It basically says that for the distributions to be the same after
adding the noise, the noise-free distributions have to be the same. Note that r̃ is a general variable
and we are actually dealing with the noise-free probability densities.

Step II By taking the logarithm on both sides of Eq. A22 and replacing pT ,λ by its expression from
Eq. A10, we get:

log [p̃T ,λ,g,x(r̃)] = log
[
pT ,λ(g

−1(r̃)|x)vol(J)g−1(r̃)1R̃(r̃)
]

= log
[
vol(J)g−1(r̃) + pT ,λ(g

−1(r̃) | xn)
]

= log
[
vol(J)g−1(r̃)

]
+ log

[∏
n

Qn([g−1(r̃)]n)

Zn(xn)
exp

[
K∑

k=1

Tn
k ([g

−1(r̃)]n)λn
k (x

n)

]]

= log
[
vol(J)g−1(r̃)

]
+

N∑
n=1

[
logQn(g−1,n(r̃))− logZn(xn) +

K∑
k=1

Tn
k (g

−1,n(r̃))λn
k (x

n)

]
,

(A23)
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where we denote the n-th element of g−1(r̃) by [g−1(r̃)]n. Therefore,

log
[
vol(J)g−1(r̃)

]
+

N∑
n=1

(
logQn([g−1(r̃))]n − logZn(xn) +

K∑
k=1

Tn
k [(g

−1(r̃)]n)λn
k (x

n)

)
=

log
[
vol(J)g̃−1(r̃)

]
+

N∑
n=1

(
log Q̃n([g̃−1(r̃)]n)− log Z̃n(xn) +

K∑
k=1

T̃n
k ([g̃

−1(r̃)]n)λ̃n
k (x

n)

)
.

(A24)

Let x0, . . . ,xNK be the points provided by Assumption F.2 and define λ(x) = λ(x)− λ(x0). We
plug each of those xi in Eq. A24 to obtain NK + 1 such equations. We subtract the first equation for
x0 from the remaining NK equations to get for l = 1, ..., NK:

⟨T (g−1(r̃)), λ̄(xl)⟩+
∑
n

log
Zn(x0)

Zn(xl)
= ⟨T̃ (g̃−1(r̃)), λ̃(x)⟩+

∑
n

log
Z̃n(x0)

Z̃n(xl)
. (A25)

Let L be the matrix defined in Assumption F.2, and L̃ similarly defined for λ̃ (L is not necessarily
invertible). Define bl =

∑
n log

Z̃n(x0)Zn(xl)

Zn(x0)Z̃n(xl)
and b the vector of all bl for l = 1, ..., NK. Expressing

Eq. A25 for all points xl in matrix form, we get:

LTT (g−1(r̃)) = L̃T T̃ (g̃−1(r̃)) + b. (A26)

Then, after multiplying both sides of Eq. A26 by the transpose of the inverse of LT from the left, we
obtain:

T (g−1(r̃)) = [LT ]−1L̃T T̃ (g̃−1(r̃)) + [LT ]−1b. (A27)

Denoting A = [LT ]−1L̃ and c = [LT ]−1b, we have

T (g−1(r̃)) = AT̃ (g̃−1(r̃)) + c. (A28)

Step III Now by definition of T and according to Assumption F.1, its Jacobian exists and is an
NK ×N matrix of rank N , which implies that the Jacobian of T̃ ◦ g−1 exists and is of rank N and
so is A.

We distinguish two cases in the following.

If K = 1, then this means that A is invertible (because A is N ×N ).

If K > 1, define r̄ = g−1(r̃) and T n(r̃n) = (Tn
1 (r̄), . . . , T

N
K (r̄)).

Lemma F.5. Consider a strongly exponential distribution of size k ≥ 2 with sufficient statistic
T (x) = (T 1(x), · · · , TK(x)). Further, assume that T is differentiable almost everywhere. Then
there exists K distinct values x1 to xK such that (T ′(x1), · · · ,T ′(xk)) are linearly independent in
RK .

According to the Lamma, for each n ∈ {1, . . . , N} there exist K points (r̄n1 , . . . , r̄
n
K) such that

(T n′(r̄n1 ), . . . ,T
n′(r̄nK)) are linearly independent. Collect those points into K vectors (r̄11, . . . , r̄K),

and concatenate the K Jacobians JT (r̄l) evaluated at each of those vectors horizontally into the
matrix Q = (JT (r̄1), . . . , JT (r̄

K)) (and similarly define Q̃ as the concatenation of the Jacobians of
T̃ (g̃−1 ◦ g(r̄)) evaluated at those points). Then the matrix Q is invertible (through a combination of
Lemma F.5 and the fact that each component of T̃ is univariate). By differentiating Eq. A28 for each
r̃l, we get (in matrix form):

Q = AQ̃. (A29)

The invertibility of Q implies the invertibility of A and Q̃. Hence, Eq. A28 and the invertibility of A
mean that (g̃, T̃ , λ̃) ∼ (g,T ,λ). Moreover, we have the following observations:
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• the invertibility of A and L imply that L̃ is invertible,

• because the Jacobian of T̃ ◦ g̃−1 is full rank and g̃ is injective (hence its Jacobian is full rank
too), JT̃ has to be full rank too, and T̃ n′

k (r) ̸= 0 almost everywhere.
• the real equivalence class of identifiability may actually be narrower than what is defined by
∼, as the matrix A and the vector c here have very specific forms, and are functions of λ
and λ̃.

Step IV Following iVAE [14], the assumption mentioned still holds, we then remove the linear
indeterminacy A, and reduce the equivalence relation to ∼P .

First, we want to show the case of K ≥ 2. Recall we observe the following from the last part of the
proof:

T (g−1(r̃)) = AT̃ (g̃−1(r̃)) + c. (A30)
for an invertible A ∈ RNK×NK . Following iVAE [14], we index A by (i, l, a, b) where 1 ≤ i ≤
N, 1 ≤ l ≤ K and 1 ≤ a ≤ N, 1 ≤ b ≤ K to denote the rows and columns separately. Define
v(r) = g̃−1 ◦ g(r) : R → R where v is bijective since both g and g−1 are injective. Then we show
vi(r) is a function of only one rji , for all i. Define vsi := ∂v1

∂rs
(r) and vsti := ∂2vi

∂rs∂rt
(r). For each

1 ≤ i ≤ N, 1 ≤ l ≤ K, we obtain

δisT
i′
l (r

i) =
∑
a,b

Ai,l,a,bT̃
a′
b (va(r))v

s
a(r), (A31)

by differentiating Eq. A30 with respect to rs and by differentiating Eq. A31 with respect to rq, q > s,
we have,

0 =
∑
a,b

Ai,l,a,b

(
T̃ a′
b (va(r))v

s,q
a (r) + T̃ a,′′

b (va(r))v
s
a(r)v

q
a(z)

)
, (A32)

which is valid for all pairs (s, q), q > s.

According to iVAE, the Jacobian of v at each r has at most one non-zero entry in each row. Since Jv
is invertible and continuous, the locations of the non-zero entries are fixed and do not change as a
function of r. Therefore, we know that, the g̃−1 ◦ g is point-wise nonlinearity.

Then we combine the mentioned observation of g̃ ◦ g−1 with the results of Eq. A28 from the last
part of the proof. Let T̄ (r = ˜v(r) +A−1c. T̄ is a composition of a permutation and pointwise
nonlinearity. Without any loss of generality, the permutation in T̄ is assumed to be the identity. Then
we have,

T (r) = AT̄ (r). (A33)

Let D = A−1, Eq. A33 is valid for every component in,

T̄ i
l (r

i) =
∑
a,b

Di,l,a,bT
a
b (ra). (A34)

Through differentiating with respect to rs where s ̸= i, we have,

0 =
∑
b

Di,l,s,bT
s,′
b (rs), (A35)

which is valid for all l and all s ̸= i. By the Lemma 1 in iVAE [14], we get Di,l,a,b = 0 for all
1 ≤ b ≤ K. Then we know that matrix D has a block diagonal form:

D =

(
D1

. . .
Dn

)
. (A36)

Therefore, A has the same black diagonal form. Each block i transforms T i(r) into T̄ i(r), which
demonstrate A is necessarily a permutation matrix.

According to iVAE, in the case of K = 1, g̃ ◦ g is also a point-wise nonlinearity.

Therefore, we can identify the individual reward vector r up to its invertible transformation.
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F.3 Identify rnt from r for each agents

Through the iVAE’s application in our setting, we already prove that, we can recover a latent vector
rt, as well as the behind parameters, which also includes the causal structures. However, in the setting
of iVAE, it is only required to identify a permutation-invariant latent vector. So now the key problem
is how we determine which element of the latent vector r should be responsible for the agent n.

We assume that, the individual rewards are the outcome of the joint state and the agent’s own action,
therefore, there is always a causal edge from the agent n’s individual action into its own individual
reward rnt , which can help us extend the conclusion of identifying the permutation-invariant latent
vector into identifying a permutation-variant and agent-aware latent vector.

F.4 Equivalence of Policy Learning with Nonlinear Invertible Transformations of Individual
Rewards

Here is the proof of Proposition 2.3. Assume k(·) : R→ R is a monotonically increasing transforma-
tion in Proposition 2.3. We now prove that, it is equivalent to optimizing the policy π by the guidance
of individual reward rt and the transformation k(rt). For simplicity, we ignore the agent index n, i.e.,
rt = rnt .

Assume that optimal policy π∗:

V π(s) = Eat∼π

T∑
t=1

γt−1rt

π∗ = argmax
π∈Π

V π(s),

(A37)

Eat∼π∗

T∑
t=1

γt−1rt ≥ Eat∼π

T∑
t=1

γt−1rt, ∀π ∈ Π. (A38)

Recall k is monotonically increasing, therefore, the order of the sequence of reward [rt] |Tt=1 is the
same as [k(rt)] |Tt=1. That is, given any pairs of two reward sequences, [rt] |Tt=1 and [r′t] |Tt=1,

T∑
t=1

γt−1rt >

T∑
t=1

γt−1r′t ⇌
T∑

t=1

γt−1k(rt) >

T∑
t=1

γt−1k(r′t). (A39)

Observed above, we can deduce the following,

argmax
π∈Π

Eat∼π

T∑
t=1

γt−1rt ⇌ argmax
π∈Π

Eat∼π

T∑
t=1

γt−1k(rt). (A40)

Therefore, learning a policy that maximizes V π(s) calculated by rt is equivalent to learning a policy
that maximizes V π(s) calculated by k(rt).

G Experimental Details

(1) Classic (Linear) MPE. We evaluate our method in Predator-Prey scenarios, where the agent
numbers vary in 3, 6 and 15. In the classic MPE, the team reward equals the sum of individual rewards.
This characteristic provides benefits for those methods that assume a linear sum of individual rewards,
like STAS [4]. What makes it challenging is the episodic modification: we mark the performance
of the team as Rt for each timestep but only award they

∑T
t=1 Rt when t = T , otherwise 0. (2)

Nonlinear MPE. Classic MPE is easy to address for the previous work making a linear assumption
of team reward, but not general. In order to create a more general evaluation platform, we modify
the linear team reward setting in classic MPE into a nonlinear setting, posing obstacles in spatial
credit assignment. We obtain the episodic rewards in the same way as that in the classic MPE as
well. For more details, please refer to Appendix G. Metrics. We evaluate the effectiveness of credit
assignment of all the methods by reporting the average accumulative reward across three random
seeds. Intuitively, higher rewards indicate better performance of credit assignment algorithms.
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G.1 Multi-agent Particle Environment (Predator-Prey)

We use Predator-Prey in our experiments, as illustrated in Figure A1. Good agents (green) are faster
and are controlled by pre-trained model [21, 19]. Adversaries are slower and aim to hit good agents.
Obstacles (large black circles) block the way. By default, there are N good agents, 3N adversaries,
and several landmarks.

State Each agent observes an ego-centric state. For the agent n, the state consists of,

• agent.vel: agent n’s x, y-axis velocity;
• agent.pos: agent n’s x, y-axis location in the global world;
• landmark.relative_pos: the landmarks’s relative x, y-axis position in the agent n’s frame.
• good_agent.relative_pos: the other adversaries agent’s relative x, y-axis position in the agent
n’s frame.

• adversary_agent.relative_pos: the good agent’s relative x, y-axis position in the agent n’s
frame.

• other_agent.relative_vel: the good agent’s velocity.

Reward Let there be 3N predators and N prey. We evaluate our method in the Predator-Prey
scenarios of 3N ∈ [3, 6, 15]. For each predator, the reward calculation is as follows:

1. Calculate the distance, di,jt , between the predator i and the prey j

2. Denote the distance of predatory i to its nearest prey as dit = minj d
i,j
t

3. The individual rewards for each predator, ri, is given by ri = −0.1× dit.
4. If a collision occurs between the predator i and prey, the predator is award +10 i.e. ri =

ri + 10 ×
∑

j 1(d
i,j) < dsh), where dsh is the threshold for collision and 1 is indicator

function.
5. The team reward in the classic MPE is then given by Rt =

∑3N
i=1 r

i
t.

6. The team reward in the Nonlinear MPE is then given by Rt =
∑3N

i=1 r̃
i
t where transformed

individual reward r̃i is,

r̃i =

{
exp(r̄t) r̄t < 0,

5× [1 + log(r̄t + 1)] r̄t > 0,
(A41)

and we provide python code for generating r̃t for different scenarios in Listing 1, Listing 2
and Listing 3.

7. When the episode ends, the episodic reward is given by Q =
∑T

t=1 Rt.

1 def nonlinear_mixture(self , rew):
2 # maping from rew_i , rew_{i+1}:
3 rew_i = copy.deepcopy(rew)
4 rew_j = np.concatenate ([ rew_i [1:], rew_i [:1]])
5 rew_jj = np.concatenate ([rew_i [2:], rew_i [:2]])
6

7 sum_rew_ij = 0.75 * rew_i + 0.5 * rew_j + 0.25 * rew_jj
8

9 # convert into transformed rewards
10 rew = np.piecewise(sum_rew_ij , [sum_rew_ij < 0, sum_rew_ij >=

0], [lambda x: np.exp(x), lambda x: 5 * (1 + np.log(x+1))])
11

12 self.transformed_individual_rew = rew
13 # return team reward
14 return rew.sum()

Listing 1: Team reward in Nonlinear Predator Prey (N = 3)

1 def nonlinear_mixture(self , rew):
2 # maping from rew_i , rew_{i+1}:
3 rew_i = copy.deepcopy(rew)
4 sum_rew_ij = 2 * rew_i
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Prey

Predator

Figure A1: Predator-Prey scenario (3 agents) in Multi-agent Particle Environments.

5 coef = 0.75
6 for i in range (3):
7 rew_j = np.concatenate ([ rew_i[i:], rew_i[:i]])
8 sum_rew_ij += coef * rew_j
9 coef *= 0.6

10

11 # convert into transformed rewards
12 rew = np.piecewise(sum_rew_ij , [sum_rew_ij < 0, sum_rew_ij >=

0], [lambda x: np.exp(x), lambda x: 5 * (1 + np.log(x+1))])
13 self.transformed_individual_rew = rew
14 return rew.sum()

Listing 2: Team reward in Nonlinear Predator Prey (N = 6)

1

2 def nonlinear_mixture(self , rew):
3 # maping from rew_i , rew_{i+1}:
4 rew_i = copy.deepcopy(rew)
5

6 sum_rew_ij = rew_i
7 coef = 0.75
8 for i in range (6):
9 rew_j = np.concatenate ([ rew_i[i:], rew_i[:i]])

10 sum_rew_ij += coef * rew_j
11 coef *= 0.8
12

13 # convert into transformed rewards
14 rew = np.piecewise(sum_rew_ij , [sum_rew_ij < 0, sum_rew_ij >=

0], [lambda x: np.exp(x), lambda x: 5 * (1 + np.log(x+1))])
15 self.transformed_individual_rew = rew
16 return rew.sum()

Listing 3: Team reward in Nonlinear Predator Prey (N = 15)

It is important to note, that the above is the generative process of the individual rewards, transformed
individual rewards, team rewards, and episodic rewards. We address the episodic reward setting,
instead of observing the individual rewards and the team rewards, the agent can only observe the
episodic rewards when the episode ends, otherwise, it gets zero.

G.2 Baselines

We compare our method with several baselines,

• QMIX [28] is a value-based Centralized Training with a Decentralized Execution (CTDE)
approach that computes joint action values through a monotonic non-linear combination of
individual agent values, which are based solely on local observations. This design enables
efficient maximization of the joint action value in off-policy learning and ensures alignment
between centralized and decentralized policies.

22



0 2 4 6 8
Number of Episodes ×104

2

0

2

4

6 ×101
Predator-prey (3 agents)

0 2 4 6 8
Number of Episodes ×104

1

0

1

2

3

×102
Predator-prey (6 agents)

0 2 4 6 8
Number of Episodes ×104

2.5

0.0

2.5

5.0

7.5

×102
Predator-prey (15 agents)

0 2 4 6 8
Number of Episodes ×104

2.0

2.5

3.0

3.5

4.0

4.5
×102

Nonlinear Predator-prey (3 agents)

0 2 4 6 8
Number of Episodes ×104

0.75

1.00

1.25

1.50

1.75

2.00 ×103
Nonlinear Predator-prey (6 agents)

0 2 4 6 8
Number of Episodes ×104

0.5

1.0

1.5

2.0

2.5 ×104
Nonlinear Predator-prey (15 agents)

Av
er

ag
e 

Ac
cu

m
ul

at
iv

e 
Re

wa
rd

GT (team) GT (trans) GT CA-T CAST-L CAST

Figure A2: Ablation study on Multi-agent Particle Environment (MPE). The first row is the accumu-
lative reward in classical MPE, while the second row is in the modified MPE.

• COMA [7], a Centralized Training with Decentralized Execution (CTDE) technique that
effectively marginalizes an individual agent’s action for evaluation: holding the actions of
other agents fixed and comparing the estimated return for the joint action to the conterfac-
tual baseline. Meanwhile, their critic architecture facilitates the swift computation of the
counterfactual baseline within a single forward pass, enhancing efficiency.

• SQDDPG [41] addresses the inaccurate credit assignment and inefficient policy learning
caused by the team reward. They extend the convex game (ECG) and design a local reward
approach called Shapley Q-value to distribute the global reward, which reflects each agent’s
own contribution and serves as the critic for each agent.

• STAS [4] addresses the spatial-temporal credit assignment by learning the individual reward
redistribution model for each agent. After the decomposition of the long-term return into
each timestep, STAS uses Shapley values to redistribute the individual payoff of agents.
However, STAS assumes that the long-term return is equal to the linear sum of individual
rewards from all the agents and timesteps, which is relatively more strict than the assumption
we made in this paper.

H Additional Experimental Results

Policy Learning with Ground Truth Rewards. As shown in Figure A2, we provide the results
of policy learning with ground truth individual rewards (GT), transformed individual rewards (GT
(trans)) and team rewards (GT (team)). We are surprised that the performance is improved using the
estimated rewards. A possible reason is that such a reward can encourage exploration, thus leading to
better policies [9].

Recovery Accuracy. We provide Spearman’s rank correlation coefficient between recovered indi-
vidual rewards and the ground truth individual rewards to demonstrate the accuracy of the recovery
and the necessity of relaxing the linear assumption across the agents’ individual contributions. Ac-
cording to Table A1, CAST achieves comparable with the CAST-L in the Classic MPE and achieves
the best estimation of individual rewards in the Nonlinear MPE. Note that CAST-L in Classic MPE
is the model with the prior knowledge of the linear team reward setting, which is expected to be the
best one in the linear MPE. Therefore the comparable result demonstrates that our method can be
regarded as a general method to address both linear and nonlinear team reward settings without the
requirement of domain knowledge.

23



Classic MPE Nonlinear MPE
N=3 N=6 N=15 N=3 N=6 N =15

Ours 0.92 0.79 0.65 0.84 0.74 0.73
CAST-L 0.94 0.84 0.74 0.47 0.62 0.55

STAS 0.40 0.27 0.20 0.21 0.16 0.04
Table A1: Spearman’s rank correlation coefficient between recovered individual rewards and the
ground truth individual rewards. The best values are in bold.

I Other Implementation Details

I.1 Overall Pipeline

As shown in Algorithm 1, we train the generative model and the policy model alternately. In each
epoch of generative model learning, we first train the transformed individual reward predictor Φtrans
and then train the iVAE Φinv.

Algorithm 1 Causally-inspired Spatial-Temporal Credit Assignment

Require: Environment E , Generative Model ϕm := [Φtrans,Φinv]; Policy Model ϕπ; Replay buffer
Bm,Bπ ← ∅; Frequency M .

1: for i in ntraining epoch do
2: If using On-policy Algorithm: Bπ ← ∅
3: for b in nbatch size do
4: Sample trajectory τ = [st, [a

n
t ,o

n
t ]

N
n=1]

T
t=1 ∪Q from E , where Q is the long-term return

5: store τ into the buffer Bm, Bπ
6: end for
7: // Generative Model Learning
8: if i mod M = 0 then
9: for ii in nsteps do

10: Sample a batch of trajectories D ∼ Bm
11: Calculate Ltrans through Eq. ??
12: Optimize: Φtrans ← Φtrans − α∇Φtrans(Ltrans)
13: end for
14: for ii in nsteps do
15: Sample a batch of trajectories D ∼ Bm
16: Calculate LELBO through Eq. 5
17: Optimize Φinv: Φinv ← Φinv − α∇ΦinvLELBO
18: end for
19: end if
20: // Independent Policy Learning
21: Sample data D from Bπ
22: Calculate individual rewards rnt through Φm
23: Calculate Jπ using rnt
24: Optimize the policy Φπ ← Φπ − α∇Φπ

Jπ
25: end for

I.2 Generative Model Learning

The generative model contains: Φtrans, [Φinv := ϕf , ϕenc, ϕg], whose network structure is listed in
Table A2.

Below, we give an illustration of the ϕcau ∈ RN×|s|. Recall the definition of Cn
i ∈ [0, 1]: if Cn

i = 1,
then the corresponding causal edge exists, and the i-th dimension of joint state causes agent n’s
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Layer# 1 2 3 4
Φtrans FC256 FC128 FC1 -
ϕf FC64 FC64 FC1 -
ϕenc FC128 FC64 FC64 FC1
ϕg FC64 FC64 FCN -
ϕπ FC64 FC64 FC|a| -
ϕv FC64 FC64 FC1 -

Table A2: The network structures used in CAST. CF256 denotes a fully-connected layer with an
output size of 256. Each hidden layer is followed by an activation function, LReLU. |a| is the number
of dimensions of the action in a specific task. N is the number of agents.
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Figure A3: Illustration of using the causal mask to predict the reward by ϕf .

individual rewards. We define,

Cn
i =


Sigmoid(ϕn,i

cau) for training
Sigmoid(ϕn,i

cau) for inference, if Sigmoid(ϕn,i
cau) > 0.1

0 for inference, if Sigmoid(ϕn,i
cau) < 0.1

(A42)

where ϕn,i
cau denotes the (n, i)-element in the free parameters ϕcau.

One example of using the estimated mask is given as Figure A3.

I.3 Policy Model Learning

Considering the specific requirements of the employed RL algorithm, Proximal Policy Optimization
(PPO), our Policy Model Φπ comprises two components, the actor ϕπ and the critic ϕv. Detailed
network structures for both components can be found in Table A2.

I.4 Hyper-parameters

The network is trained from scratch using the Adam optimizer, without any pre-training. The initial
learning rate for Φtrans, Φinv and Φπ are set to 1 × 10−4, 5 × 10−4 and 1 × 10−4, separately. The
hyperparameters for policy learning are shared across all tasks, with a discount factor of 1.00. To
facilitate training, we utilize a replay buffer with a size of 2 × 106 time steps for policy learning
and a size of 2× 106 trajectories for generative model learning. The warmup size of the buffer for
generative model learning is set to 1× 103 timesteps and 4× 103 timesteps. The model is trained for
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Table A3: The hyper-parameters.

hyperparameters value hyperparameters value

epochs 1000 optimizer Adam
Φπ learning rate 1× 10−4 Φtrans learning rate 5× 10−4

Φinv learning rate 1× 10−4 Φπ train_batches 100
Φtrans train_batches 50 Φinv train_batches 60
Φπ replay buffer size 2× 106 Φm replay buffer size 2× 106

Φm training frequency 3 evaluation episodes 30
γ 1.00 λ 1e-3

1000 epochs, with each epoch consisting of 100 policy learning cycles and 50 cycles for Φtrans and
60 cycles for Φinv. During each iteration, we collect data from 2× 103 time steps of interaction with
the MPE simulation, which is then stored in the replay buffer. For training the Φm, we sample 512
trajectories, each is no more than 25 steps. As for policy learning and the optimization of ϕdyn, we
use data from 2000 time steps. Validation is performed per training epoch, and the average metric
is computed based on 30 test rollouts. The hyperparameters for learning the CAST model can be
found in Table A3. All experiments were conducted on an HPC system equipped with 128 Intel Xeon
processors operating at a clock speed of 2.2 GHz and 5 terabytes of memory. Runtime should be
ranged between 5 hours to 22 hours for the different agent numbers in the evaluation environments.
Our code is built based on Code.
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NeurIPS Paper Checklist

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we discuss the limitations in Section C
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide code, the hyperparameter setting as well as the used neural network
structure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use the open-source Multi-agent Particle Environment and provide the
code for the transformed reward function in Nonlinear Predator Prey in the Appendix. The
training code is provided through Anonymous GitHub: Code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental details in Section 3 and Appendix I.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We plot the shaded region (standard deviation) in the Figure 3 and Figure A2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information on the computer resources in the Appendix I.4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
We provide the broader impacts of our work in Section D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use an open-source evaluation environment, and the code base is from
Code.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper of Multi-agent Particle Environment in Section 3
and the GitHub link of the code that we built on in Appendix I.4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

We do not involve crowdsourcing experiments and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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