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Abstract

Language Models (LMs) become outdated001
as the world changes; they often fail to per-002
form tasks requiring recent factual informa-003
tion which was absent or different during train-004
ing, a phenomenon called temporal misalign-005
ment. This is especially a challenging prob-006
lem because the research community still lacks007
a coherent dataset for assessing the adaptabil-008
ity of LMs to frequently-updated knowledge009
corpus such as Wikipedia. To this end, we010
introduce TEMPORALWIKI, a lifelong bench-011
mark for ever-evolving LMs that utilizes the dif-012
ference between the consecutive snapshots of013
Wikipedia and Wikidata for training and evalua-014
tion, respectively. The benchmark hence allows015
one to periodically track an LM’s ability to re-016
tain previous knowledge and acquire new or up-017
dated knowledge at each point in time. We also018
find that training an LM on the diff data with019
an adapter achieves similar or better perplexity020
than on the entire snapshot in our benchmark021
with 12 times less computational cost, which022
verifies that factual knowledge in LMs can be023
safely updated with minimal training data via024
continual learning. The dataset and the code025
will be available at www.omitted.link.026

1 Introduction027

Large Language Models (LMs) pretrained on a vast028

amount of text corpus have shown to be highly ef-029

fective when finetuned or prompted to perform var-030

ious downstream tasks (Raffel et al., 2019; Brown031

et al., 2020; Sanh et al., 2021; Wei et al., 2021).032

However, most of the datasets used to evaluate033

these LMs are static benchmarks; the train and test034

data are both from similar points in time. On the035

other hand, in the real world, factual knowledge036

is frequently changed, added, or deprecated. For037

example, suppose a language model is asked what038

the most dominant coronavirus variant is (Figure 1).039

The answer would have been the Delta variant in040

the fall of 2021 but has changed to the Omicron041

variant near the end of 2021. If LMs remain un- 042

changed and are not periodically trained to cope 043

with the changing world, they will be outdated very 044

quickly. This means downstream tasks that directly 045

depend on or are finetuned from the LM will suf- 046

fer from temporal misalignment (Luu et al., 2021; 047

Lazaridou et al., 2021), which refers to the mis- 048

alignment in time between the train and test data. 049

Temporal misalignment becomes a critical prob- 050

lem, especially when using language models for 051

knowledge-intensive tasks such as closed-book 052

question answering (Roberts et al., 2020; Petroni 053

et al., 2021; Jang et al., 2021) since they rely 054

solely on the knowledge stored in their parame- 055

ters. Furthermore, LMs augmented with retrieval 056

mechanism (Guu et al., 2020; Lewis et al., 2020; 057

Borgeaud et al., 2021) often suffer from hallucina- 058

tion even if they successfully retrieve up-to-date 059

information (Zhang and Choi, 2021; Chen et al., 060

2021), meaning temporal misalignment still needs 061

to be addressed in such semi-parametric LMs. 062

Recently, Lazaridou et al. (2021); Jang et al. 063

(2021) have explored updating the internal knowl- 064

edge of LMs through continual pretraining on new 065

and updated data as a solution for mitigating tem- 066

poral misalignment. However, these datasets are 067

still static in nature: as the world changes, they will 068

eventually get outdated as well. In order to compre- 069

hensively measure the capability of ever-evolving 070

LMs on addressing temporal misalignment, auto- 071

mated periodic evaluation of the LMs is crucial. 072

In this paper, we introduce TEMPORALWIKI, 073

a lifelong benchmark for training and evaluating 074

ever-evolving LMs in a periodic and automated 075

manner, shown in Figure 1. The corpora used for 076

updating LMs are constructed by comparing arti- 077

cles from consecutive Wikipedia snapshots and re- 078

trieving only changed information, which we name 079

as TWIKI-DIFFSETS. The evaluation datasets are 080

constructed in a similar manner by comparing Wiki- 081

data snapshots that correspond to the Wikipedia 082
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Figure 1: An overview of using TEMPORALWIKI, consisting of TWIKI-DIFFSETS and TWIKI-PROBES to train and evaluate
ever-evolving LMs, respectively. Differences between Wikipedia snapshots at different points in time are used for temporal
language modeling and categorized factual instances in the corresponding Wikidata snapshots are used for temporal evaluation.

snapshots in time and categorizing each factual083

instance into UNCHANGED, UPDATED, or NEW.084

Since Wikidata updates may not exactly align with085

Wikipedia updates, we only retain factual instances086

that can be grounded to articles in Wikipedia, ensur-087

ing the quality of the data and name the resulting088

evaluation dataset as TWIKI-PROBES. The whole089

benchmark creation process is done without any090

human annotation, thus allowing it to be automated091

and lifelong as new Wikipedia and Wikidata snap-092

shots are released by Wikimedia1 on a monthly093

basis.094

Through TEMPORALWIKI, we aim to tackle the095

following research questions: How can we train096

ever-evolving LMs efficiently and automate the097

evaluation of each update? How does updating098

LMs only on new and updated data from Wikipedia099

compare to updating LMs on entire Wikipedia100

snapshots, especially in scenarios with multiple101

updates? How problematic is catastrophic forget-102

ting (McCloskey and Cohen, 1989) when LMs are103

updated only on new and updated data, and how104

can we effectively mitigate catastrophic forgetting?105

Our main contributions are summarized as follows:106

• We introduce TEMPORALWIKI, a lifelong107

benchmark for ever-evolving LMs. Unlike108

previous static benchmarks, TEMPORALWIKI109

1https://commons.wikimedia.org/

is responsive to the dynamic changes in the 110

world and can be utilized to automatically 111

train and evaluate ever-evolving LMs on each 112

Wikipedia and Wikidata snapshot update. 113

• We find that continually training LMs only on 114

the updated and the new portion of Wikipedia, 115

which we call temporal language modeling, 116

is much more computationally efficient than 117

updating LMs on entire Wikipedia snapshots 118

as well as being more effective in terms of 119

stability-plasticity trade-off. It is still a chal- 120

lenging task especially when multiple updates 121

are required due to catastrophic forgetting. 122

• As a competitive baseline for temporal lan- 123

guage modeling, we implement an adapter- 124

based continual learning approach that miti- 125

gates forgetting while bolstering the learning 126

of new knowledge, thus providing an overall 127

enhancement in terms of both stability and 128

plasticity. We hope that TEMPORALWIKI 129

will foster future research on continual learn- 130

ing methods for the temporal aspect of ever- 131

evolving LMs. 132

2 Background 133

Recent works have introduced the need to tackle 134

the issue of temporal misalignment, which refers 135
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to machine learning models showing poor perfor-136

mance due to misalignment in time between the137

train and test data. Temporal misalignment can138

be caused either by (1) the dynamic nature of lan-139

guage (Röttger and Pierrehumbert, 2021; Homba-140

iah et al., 2021; Rosin et al., 2021) or (2) the update141

of factual information (Chen et al., 2021; Dhingra142

et al., 2021; Jang et al., 2021).143

Luu et al. (2021) have emphasized the effect of144

temporal misalignment on 8 different NLP down-145

stream tasks, asserting that misalignment between146

the train and test sets of the downstream tasks147

causes severe performance degradation which can148

be mitigated by fine-tuning on the corpus from the149

target period. Agarwal and Nenkova (2021) have150

argued this to be less of a concern when utiliz-151

ing representations from pretrained LMs and show152

that self-labeling on the downstream task is more153

effective than continued pretraining on more re-154

cent data for temporal adaptation. Note that these155

works have focused on misalignment caused by the156

dynamic nature of language on tasks that are not157

knowledge-intensive, such as text classification.158

Others have tackled the problem of temporal mis-159

alignment caused by the update of factual knowl-160

edge. Lazaridou et al. (2021) have shown that LMs161

deteriorate significantly in performance when there162

is a misalignment in time between the pretrain-163

ing data and the downstream task and argued ever-164

evolving LMs are necessary. Dhingra et al. (2021)165

have proposed explicitly including time informa-166

tion during pretraining as a potential solution. Jang167

et al. (2021); Jin et al. (2021) have implemented168

continual learning methods to mitigate catastrophic169

forgetting that occurs during continued pretraining170

on new data.171

Despite the recent surge of community interest172

in the need for ever-evolving LMs, the community173

still lacks widely-available resources to train and174

evaluate such LMs. Previous works have intro-175

duced benchmarks comprised of data sources from176

Twitter feeds (Osborne et al., 2014; Yogatama et al.,177

2014), recent news articles (Jang et al., 2021), and178

arXiv papers (Lazaridou et al., 2021) where the179

temporal adaptability of LMs and the effectiveness180

of different methodologies of updating LMs can be181

evaluated. However, these data sources are domain-182

specific and inherently static. On the other hand,183

Wikipedia and Wikidata are great sources of track-184

ing the dynamic change of world knowledge in185

diverse domains. 120K volunteer editors make 120186

updates to the English Wikipedia per minute and 187

add hundreds of new article entries every day (Lo- 188

gan IV et al., 2021)2. TEMPORALWIKI leverages 189

the dynamic nature of Wikipedia and Wikidata to 190

provide a lifelong benchmark for developing and 191

maintaining ever-evolving LMs. 192

3 TemporalWiki 193

In this section, we delve into the process of cre- 194

ating TEMPORALWIKI, which is comprised of 195

training corpora (TWIKI-DIFFSETS) and evalua- 196

tion datasets (TWIKI-PROBES) constructed from 197

comparing the consecutive snapshots of Wikipedia 198

and Wikidata, respectively. In Section 3.1, we first 199

describe the process of constructing the training 200

corpora from Wikipedia snapshots. Then in Sec- 201

tion 3.2, we describe the process of generating the 202

evaluation datasets from Wikidata snapshots and 203

their alignment with Wikipedia. In Section 3.3, 204

we describe the quality control applied to the eval- 205

uation datasets. Lastly, in Section 3.4, we briefly 206

discuss the current limitations of TEMPORALWIKI. 207

Algorithm 1 Generating TWIKI-DIFFSETS

Require: Wikipedia snapshots WPprev and WPrecent where
WPrecent is more recent.
D := An empty array to store new and updated data.
*article in WP has attributes id and text
for all article ar ∈WPrecent do

if ar.id = ap.id for some article ap ∈WPprev then
D.append(GETDIFF(ap,ar))

else
D.append(ar)

end if
end for

function GETDIFF(ap,ar)
Di f f := An empty string to append difference between text
in two articles.
for all paragraph pr ∈ ar.text do

if pr have no matching sentences with any paragraph
pp ∈ ap.text then

Di f f ← Di f f + pr
else if pr have some matching and some different sen-
tences with any paragraph pp ∈ ap.text then

Di f f ←Di f f + sentences that differ between pr and
pp.

end if
end for
return Di f f

3.1 Generating Corpora for Temporal 208

Language Modeling from Wikipedia 209

In terms of computational resources, it is highly 210

inefficient to train an LM on the entire Wikipedia 211

snapshot every time the LM requires updates since 212

2https://en.wikipedia.org/wiki/Wikipedia:Statistics
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most part of Wikipedia has not changed since the213

previous snapshot. Moreover, it is not certain214

whether updating the LM on the entire Wikipedia215

snapshot is the best approach for updating the216

factual knowledge stored in the LM. Therefore,217

we compare the differences between consecutive218

Wikipedia snapshots in order to use only updated219

and new text for training. We call these subsets220

TWIKI-DIFFSETS. Algorithm 1 shows the proce-221

dure for generating them.222

As shown in Algorithm 1, a single TWIKI-223

DIFFSET is generated by getting the differences224

(similarly to git diff) between two consecu-225

tive Wikipedia snapshots. If an article with a226

new unique id is included in the recent snapshot,227

we append the entire article to TWIKI-DIFFSET.228

For an article having an existing id in the pre-229

vious snapshot, we compare the two articles by230

paragraphs and add new or updated sentences to231

TWIKI-DIFFSETS. Detailed Statistics are shown232

in Section 4.233

3.2 Generating Evaluation Datasets from234

Wikidata235

In our work, the main objective for continually pre-236

training LMs is to add and update the factual knowl-237

edge stored in the implicit parameters of LMs. The238

success of an LM update can be evaluated by quan-239

tifying the stability-plasticity dilemma (Mermillod240

et al., 2013): the dilemma of artificial and bio-241

logical neural systems having to sacrifice either242

stability, ability to retain learned knowledge, or243

plasticity, ability to obtain new knowledge. In or-244

der to evaluate whether each update is successful,245

we need evaluation datasets that can quantify the246

amount of new and updated knowledge success-247

fully gained (plasticity) and the amount of knowl-248

edge that remains unchanged as intended after the249

LM update (stability). Therefore, we categorize250

factual instances from Wikidata snapshots that are251

temporally aligned with Wikipedia snapshots and252

call the resulting datasets TWIKI-PROBES.253

Wikidata snapshots are structured knowledge254

graphs that store factual information in the form255

of (Subject, Relation, Object) such as256

(Barack Obama, born-in, Hawaii). These257

factual instances can be used to probe the LM for258

factual knowledge (Petroni et al., 2019). Through259

Algorithm 2, we distinguish each factual instance260

into either one of the three categories: UN-261

CHANGED, UPDATED, or NEW.262

Algorithm 2 Generating TWIKI-PROBES

Require: Wikidata snapshots WDprev and WDrecent where
WDrecent is more recent.
Un, U p, N := Arrays that store UNCHANGED, UPDATED,
and NEW factual instances, respectively.
for all fact (sr,rr,or) ∈WDrecent do

P←{(s,r,o) | s = sr where (s,r,o) ∈WDprev}
if P= /0 then

N.append(sr,rr,or)
else if rr /∈ P then

N.append(sr,rr,or)
else if r = rr and o = or for some(s,r,o) ∈ P then

Un.append(sr,rr,or)
else

U p.append(sr,rr,or)
end if

end for

As shown in Algorithm 2, given two consecu- 263

tive Wikidata snapshots, a single TWIKI-PROBE 264

is constructed which is used to evaluate an LM 265

updated with TWIKI-DIFFSET. We categorize in- 266

stances with new Relation into NEW, instances 267

with the same Relation but a new Object into 268

UPDATED, and the others into UNCHANGED. 269

3.3 Quality Control for Evaluation Data 270

We further apply several quality control steps to 271

the categorized factual instances from Section 3.2 272

(Algorithm 2) to best represent the actual change 273

of knowledge from the LM update. 274

Aligning with TWIKI-DIFFSETS We ensure 275

correct alignment of UPDATED and NEW factual 276

instances with articles in TWIKI-DIFFSETS and 277

UNCHANGED factual instances with articles from 278

the entire Wikipedia since Wikidata updates do 279

not necessarily entail Wikipedia updates and vice 280

versa. In order to do this, we crawl information 281

from Wikipedia article pages to find the mapping 282

to the corresponding Wikidata entity id and store 283

the information as a dictionary. 284

Then, for each factual instance from UPDATED 285

and NEW, we check if the Subject id can be 286

mapped to an article id from TWIKI-DIFFSETS 287

using the dictionary of id mappings. For each 288

instance from UNCHANGED, we check if the 289

Subject id can be mapped to an article id 290

from Wikipedia. For a given factual instance, if 291

Subject id is successfully mapped to an article 292

id, we finally check if the Object exists in the 293

text of the article. Figure 2 shows an example of a 294

successful alignment. Finally, we remove duplicate 295

instances and instances containing Object which 296

has > 5% overlap on the same evaluation subset. 297
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Figure 2: An example of a successful alignment between an
NEW factual instance from TWIKI-PROBES and an article
from TWIKI-DIFFSETS. The alignment is considered suc-
cessful because for the given factual instance, the Subject
matches the title of the Wikipedia page and the Object exists
in the article.

# of Articles # of Tokens

WIKIPEDIA-08 6.3M 4.6B
TWIKI-DIFFSET-0809 306.4K 347.29M
WIKIPEDIA-09 6.3M 4.6B
TWIKI-DIFFSET-0910 299.2K 347.96M
WIKIPEDIA-10 6.3M 4.7B
TWIKI-DIFFSET-1011 301.1K 346.45M
WIKIPEDIA-11 6.3M 4.6B
TWIKI-DIFFSET-1112 328.9K 376.09M
WIKIPEDIA-12 6.3M 4.7B

Table 1: Statistics of TWIKI-DIFFSETS. The two digits indi-
cate the month of the year 2021 that the Wikipedia snapshot
was obtained from. The four digits for WIKI-DIFFSET indi-
cate the months of the two snapshots being compared. For
instance, TWIKI-DIFFSET-0809 indicates the difference be-
tween August (08) and September (09).

3.4 Limitations of TEMPORALWIKI298

One aspect that is not covered in this work is knowl-299

edge deletion. While maintaining Wikipedia and300

Wikidata, volunteer editors not only update or add301

new information but also delete information that is302

incorrect or misinformed. As removing the misin-303

formation and bias stored in LMs is an important304

issue and necessary for truly ever-evolving LMs,305

future work should address this aspect.306

4 Dataset Statistics307

TEMPORALWIKI is constructed from 08.2021 to308

12.2021, and its statistics are discussed below.309

Training Corpora Statistics Statistics of310

Wikipedia snapshots and TWIKI-DIFFSETS311

constructed from comparing the snapshots are312

shown in Table 1. An interesting aspect of TWIKI-313

DIFFSETS is that the amount of information being314

updated and added (i.e. number of tokens in each315

subset) is similar for each month.316

Evaluation Dataset Statistics Statistics of317

TWIKI-PROBES divided into categories before and318

after quality control at each time step are shown in319

Initial Categorization → Alignment

Month Un Up N Un Up N

0809 514,017 807,320 401,952 10,133 785 1,544
0910 544,708 747,022 449,784 10,625 802 1,819
1011 460,228 1,037,248 535,530 10,544 580 1,162
1112 463,623 906,002 747,707 10,580 850 2,622

Table 2: Detailed Statistics of TWIKI-PROBES during con-
struction phase. Un, Up, and N represents UNCHANGED,
UPDATED, and NEW factual instances, respectively. For each
subset, alignment with Wikipedia corpus is processed to en-
sure quality of the dataset. For Un, we randomly sample 0.1%
of the factual instances after Algorithm 2 because majority of
factual instances were initially categorized as Un.

Table 2. A single Wikidata snapshot is comprised 320

of 93 million entities where there are around 30 321

facts for each entity which amounts to roughly 2.8 322

billion factual instances. Since most instances from 323

Algorithm 2 are categorized into UNCHANGED, we 324

randomly sample 0.1% of its original size and then 325

apply alignment for quality control, reducing the 326

number of unchanged instances to around 10k. 327

For further analysis, we break down the entity 328

types of Subject and Object and observe a 329

similar proportion of each entity category for each 330

month of TWIKI-PROBES (Appendix A). We also 331

find that the distribution of Relation is skewed 332

in the decreasing order of NEW, UPDATED, and 333

UNCHANGED (Appendix B). 334

5 Experiments with TEMPORALWIKI 335

In this section, we train and evaluate ever-evolving 336

LMs with TEMPORALWIKI, which consists of 337

TWIKI-DIFFSETS and TWIKI-PROBES. Section 338

5.1 describes the experimental settings. Section 5.2 339

describes the baseline methodologies for updating 340

LMs. Section 5.3 shows evaluation results on the 341

training corpora. Section 5.4 presents evaluation 342

results on TWIKI-PROBES. 343

5.1 Settings 344

We continue pretraining GPT-2-Large (Radford 345

et al., 2019) (774M parameters), which serves as 346

our baseline language model (LM). We compare 347

the baseline performances between updating GPT- 348

2 with TWIKI-DIFFSETS and updating it with en- 349

tire Wikipedia snapshots and evaluate each update 350

using TWIKI-PROBES. We also implement an 351

adapter-based continual learning method for mit- 352

igating catastrophic forgetting that occurs when 353

updating GPT-2 with only TWIKI-DIFFSETS. See 354

the detailed configuration in Appendix C. 355
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5.2 Baseline Models356

Here we describe four baseline methods used for357

training and evaluation, namely INITIAL, FULL,358

DIFF and DIFF-CL, as shown in Table 3 and 4.359

Initial As the initial model checkpoint, we first360

bring pretrained GPT-2 from Radford et al. (2019),361

continue pretraining it on the 08.2021 Wikipedia362

snapshot for four epochs in total (around 546K363

global steps), and denote it as INITIAL.364

Full We start from INITIAL and continue pre-365

training it on the entire Wikipedia snapshot of each366

month in a sequential manner. For example, after367

training on the 09.2021 Wikipedia snapshot from368

INITIAL, we continue training it on the 10.2021369

Wikipedia snapshot and move on to the next snap-370

shot. We denote the resulting model as FULL. We371

iterate through the training data only once, which372

corresponds to an average of 4.6 billion token up-373

dates (140K global steps) for each month.374

Diff We start from INITIAL and continue pretrain-375

ing it on TWIKI-DIFFSETS in a sequential manner.376

We denote the resulting model as DIFF. Similarly377

to FULL, we iterate through the training data only378

once, which is an average of 347 million token379

updates (12K global steps) for each month.380

Diff-CL Since catastrophic forgetting may oc-381

cur when updating LMs with TWIKI-DIFFSETS,382

we also experiment with applying a competi-383

tive adapter-based continual learning method, K-384

Adapters (Wang et al., 2021), which is a method of385

freezing the original parameters and adding addi-386

tional adapters (an increase of 103M parameters) to387

the LM. We denote the resulting LM as DIFF-CL.3388

5.3 Intrinsic Evaluation389

We first perform intrinsic evaluation by measur-390

ing the perplexity of the baseline models on their391

training corpora. For each month, we measure392

the model’s perplexity on TWIKI-DIFFSETS and393

NON-TWIKI-DIFFSETS, where the latter refers to394

the subset of the month’s entire Wikipedia snap-395

shot that does not include the data from TWIKI-396

DIFFSETS. We sample 10,000 input instances from397

each subset with a fixed length of 512 and measure398

the perplexity on proper noun tokens determined by399

3We add the additional parameters once for the updates
from 08.2021. Exploring the optimal interval to add parame-
ters for ever-evolving LMs is left for future work.

(a) NON-TWIKI-DIFFSETS

(b) TWIKI-DIFFSETS

Figure 3: Relative pronoun perplexity of FULL, DIFF, and
DIFF-CL compared to INITIAL on TWIKI-DIFFSETS and
NON-TWIKI-DIFFSETS for each month. Lower ratio indicates
better performance.

a Part-of-Speech (POS) tagger (Honnibal and Mon- 400

tani, 2017) as in (Lazaridou et al., 2021), which 401

can be considered as a proxy for tokens contain- 402

ing factual knowledge. Therefore, the result on 403

NON-TWIKI-DIFFSETS is meant to indicate the 404

performance on unchanged knowledge, while the 405

result on TWIKI-DIFFSEETS corresponds to up- 406

dated and new knowledge. Figure 3 shows the 407

relative perplexity of FULL, DIFF, and DIFF-CL 408

compared to INITIAL (i.e., dividing each model by 409

INITIAL, and thus the lower the better). 410

Results on NON-TWIKI-DIFFSETS show that 411

the relative perplexity of DIFF increases rapidly 412

while that of FULL remains constant as time goes, 413

which implies that forgetting occurs when the LM 414

is trained with TWIKI-DIFFSETS. The relative per- 415

plexity of DIFF-CL increases more slowly than 416

DIFF, which means that applying continual learn- 417

ing mitigates catastrophic forgetting. 418

On the other hand, the results on TWIKI- 419

DIFFSETS show the opposite trend: the relative 420

perplexity of DIFF is much lower than FULL. 421

One thing to note is that the perplexity of FULL 422

is very similar to that of INITIAL on TWIKI- 423

DIFFSETS, which suggests that updating LMs on 424

entire Wikipedia snapshots hinders the effective 425

learning of changed data compared to DIFF, despite 426
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TWiki-Probes-0809 TWiki-Probes-0910 TWiki-Probes-1011 TWiki-Probes-1112

Time Un Up N Un Up N Un Up N Un Up N

INITIAL 0 hours 370.42 312.32 367.68 333.39 355.88 429.43 336.14 349.18 410.94 342.48 373.27 386.56
FULL ∼24 hours 364.94 309.05 366.69 357.87 369.68 458.45 306.25 329.29 365.66 348.00 354.95 357.17
DIFF ∼2 hours 395.33 246.49 301.05 384.12 268.58 353.96 418.19 272.18 337.45 384.08 297.75 315.19

DIFF-CL ∼2 hours 326.54 255.02 297.64 305.26 285.92 344.42 311.44 287.01 321.77 318.66 314.37 320.90

Table 3: Zero-shot perplexity of LMs measured on TWIKI-PROBES where each of Un, Up, N represents UNCHANGED,
UPDATED, and NEW factual instances, respectively. Time represents the average training time of a single update under the
setting described in Section 5.1. The descriptions of each baseline models are explained in Section 5.2.

Figure 4: Weighted overall perplexity of TWIKI-PROBES. We
weigh and sum the perplexity with equal importance placed
on stability and plasticity. A lower score indicates better
performance.

both having seen the same instances of TWIKI-427

DIFFSETS during training for the same number of428

iterations. DIFF-CL shows higher overall perplex-429

ity than DIFF on TWIKI-DIFFSETS due to less430

number of trainable parameters compared to DIFF.431

5.4 Extrinsic Evaluation on TWIKI-PROBES432

Performing only intrinsic evaluation on the training433

corpora is not sufficient because the intrinsic eval-434

uation itself only tests the capability of the LMs435

for memorization (McCoy et al., 2021). Through436

extrinsic evaluation with TWIKI-PROBES (Sec-437

tion 3.2), we specifically focus on evaluating the438

factual knowledge from each month.439

Zero-shot We use TWIKI-PROBES to measure440

the zero-shot average perplexity of the updated441

LMs on each fact instance, shown in Table 3. DIFF442

and DIFF-CL show better overall performance on443

UPDATED and NEW factual instances than INITIAL444

in all months, bolstering the results from intrin-445

sic evaluation. For UNCHANGED, however, DIFF446

suffers from catastrophic forgetting, showing con-447

sistent performance degradation as the number of448

updates increases. In contrast, DIFF-CL shows449

surprising results on UNCHANGED, outperform-450

ing even FULL for three out of the four months.451

This means that DIFF-CL has effectively mitigated452

much of the catastrophic forgetting during temporal453

language modeling. Moreover, it surpasses DIFF454

on NEW factual instances, showing that the contin- 455

ual learning method does not hinder the LM from 456

effectively learning new knowledge. 457

Placing equal importance on stability 458

(UNCHANGED) and plasticity (UPDATED 459

and NEW), we show the weighted sum of the 460

perplexity on UNCHANGED, UPDATED and NEW 461

data from Table 3 with weights of 0.5, 0.25, 462

0.25, respectively, in Figure 4. The figure shows 463

that DIFF-CL is the most effective method of 464

updating the LMs over all the time periods while 465

being around 12 times more computationally 466

efficient than FULL. DIFF also outperforms FULL 467

in all months but 1011, showing that temporal 468

language modeling is an effective approach for 469

stability-plasticity trade-off. 470

We note that, as also shown in previous 471

works (Lazaridou et al., 2021), results in Table 472

3 present an overall high perplexity (>200) because 473

the sentences in TWIKI-PROBES are not natural 474

sentences; they are factual phrases synthetically 475

generated from a naive concatenation of Subject, 476

Relation, and Object. We aim to address this 477

issue via light-tuning, as discussed below. 478

Light-tuning To alleviate the distributional shift 479

that causes high zero-shot perplexity, we light-tune 480

the LMs on 500 instances randomly sampled from 481

WikiData that do not overlap with instances from 482

TWIKI-PROBES (details in Appendix D). Unlike 483

fine-tuning, light-tuning lets the LM only learn the 484

input and output distribution of the task, avoiding 485

the problem of test-train overlap pointed out by 486

Lewis et al. (2021). Table 4 shows the results of 487

light-tuning, which demonstrate a similar trend as 488

the zero-shot performance. We also report light- 489

tuning results with the F1 score metric in Appendix 490

E. Although light-tuning avoids the problem of 491

test-train overlap, results are largely affected by 492

the sampled instances for tuning, so a zero-shot 493

evaluation setting is preferred for reliability. 494

Effect of Temporal Misalignment We quan- 495

tify the effect of temporal misalignment on each 496
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TWiki-Probes-0809 TWiki-Probes-0910 TWiki-Probes-1011 TWiki-Probes-1112

Un Up N Un Up N Un Up N Un Up N

INITIAL 95.93 99.68 101.05 91.34 114.19 108.12 91.23 115.78 122.3 92.96 121.42 116.72
FULL 103.81 108.41 108.56 97.3 122.27 115.58 95.08 119.21 125.2 96.79 119.66 116.72
DIFF 105.95 84.92 86.3 110.89 95.59 99.51 119.86 104.11 121.67 116.54 116.69 114.11

DIFF-CL 98.46 94.58 99.48 102.41 113.89 105.59 99.18 111.29 115.73 98.42 113.94 112.94

Table 4: Light-tuning perplexity of LMs measured on TWIKI-PROBES where each of Un, Up, N represents UNCHANGED,
UPDATED, and NEW factual instances, respectively.

(a) FULL (b) DIFF (c) DIFF-CL

Figure 5: The zero-shot perplexity of the LMs updated and evaluated on various time intervals of NEW of TWIKI-PROBES,
showing the effect of temporal misalignment. The better the results, the darker the performance is colored. The color is compared
within the same method and also the same evaluation set.

method by training the LMs and evaluating their497

zero-shot perplexity on NEW instances of TWIKI-498

PROBES with various time intervals of training and499

evaluation. As shown in Figure 5, FULL method500

is mostly influenced by the number of training up-501

dates and not much by whether there is temporal502

alignment. Since FULL is continuously pretrained503

on the entire Wikipedia corpus in each month, it504

would have likely seen the data containing NEW505

factual instances multiple times, leading to lower506

perplexity as training steps increases.4 For DIFF507

and DIFF-CL, there is a general trend of strong508

performance when there is temporal alignment (di-509

agonal entries), outperforming FULL with much510

fewer global training steps. It is important to511

note that DIFF-CL shows robustness against tem-512

poral misalignment, i.e. the perplexity does not513

increase much even when the training and evalua-514

tion months do not match, compared to DIFF which515

suffers from a more severe perplexity spike.516

6 Conclusion517

In this paper, we provide some answers to the four518

proposed questions in Section 1. (1) How can519

we train ever-evolving LMs efficiently and auto-520

mate the evaluation of each update? We introduce521

TEMPORALWIKI, a lifelong benchmark that can522

4Although directly training INITIAL on the whole
Wikipedia corpus of a specific month can be an alternative,
we exclude it here because it would only learn the knowledge
of the specific month and thus inappropriate for ever-evolving
LMs.

be used for training and evaluating ever-evolving 523

language models (LMs) in an automated manner. 524

It consists of TWIKI-DIFFSETS as the training cor- 525

pora for temporal language modeling and TWIKI- 526

PROBES as the evaluation datasets for measuring 527

the stability-plasticity trade-off at each LM update. 528

(2) How does updating LMs only on new and up- 529

dated data from Wikipedia compare to updating 530

LMs on entire Wikipedia snapshots, especially in 531

scenarios with multiple updates? Through experi- 532

ments on TEMPORALWIKI, we show that updating 533

LMs on TWIKI-DIFFSETS leads to better acquisi- 534

tion of new and updated knowledge than updating 535

on entire Wikipedia snapshots with much less com- 536

putational cost. (3) How serious is catastrophic 537

forgetting when LMs are updated only on new and 538

updated data? Temporal language modeling is 539

still a challenging problem, as we observe more 540

forgetting of previous knowledge not contained in 541

TWIKI-DIFFSETS as the number of LM updates 542

increases. However, results still show an overall 543

enhancement in terms of stability and plasticity 544

compared to updating with entire Wikipedia snap- 545

shots, showing that temporal language modeling 546

can be also an effective alternative. (4) How can 547

we mitigate catastrophic forgetting? We find that 548

an adapter-based continual learning method can 549

mitigate forgetting without hindering the learning 550

of new knowledge, thus achieving the best overall 551

performance. 552
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A Details of Entity Types of Subject688

and Relation689

Figure 6 shows the ratio of different entity types690

of Subject and Relation of UNCHANGED,691

UPDATED, and NEW.

(a) UNCHANGED (b) UPDATED (c) NEW

Figure 6: Entity types of Subject and Object in TWIKI-
PROBES.692

B Details of Relation Distribution693

The distribution of Relation for UNCHANGED,694

UPDATED, and NEW factual instances in TWIKI-695

PROBES is shown in Figure 7.696

C Continual Pretraining and Light 697

Tuning Configuration 698

For continual pretraining of LMs, we use 8 V100 699

GPUs with a global batch size of 64 and a fixed 700

input sequence length of 512 for each update. We 701

use the max learning rate of 1e-4 and one cycle 702

learning rate scheduling policy (Smith, 2018). For 703

light-tuning, the training is done for only 1 epoch 704

with a learning rate of 1e-5 and batch size of 32. 705

Input and output sequence lengths are equal to 25. 706

For DIFF-CL, we unfreeze the whole parameters 707

for tuning, following Jang et al. (2021). 708

D Light-Tuning Data 709

We sample 500 instances from WikiData for each 710

time step that do not overlap with instances from 711

TWIKI-PROBES for each factual instance category. 712

During sampling, we keep the distribution of each 713

Relation proportional to the original distribu- 714

tion. Table 5 shows the size and distribution of 715

Relation of light-tuning datasets. 716

Size # of
Relation

Maximum
Repetition
of Relation

# of
Subject

UNCHANGED 500 115 38 500
UPDATED 500 114 32 496

NEW 500 145 50 497

Table 5: Statistics of the data used for Light-Tuning

E F1 score results of light-tuning with 717

TWIKI-PROBES 718

Many knowledge-intensive tasks such as closed- 719

book question answering (Roberts et al., 2020; 720

Petroni et al., 2021; Jang et al., 2021) or slot filling 721

(Petroni et al., 2021) use accuracy, EM, or F1 score 722

to evaluate the task. We also show the F1 score on 723

TWIKI-PROBES in Table 6. Overall trend is con- 724

sistent with the perplexity metric: INITIAL shows 725

good performance for UNCHANGED while DIFF 726

and DIFF-CL shows better results for UPDATED 727

and NEW. There are some cases that INITIAL per- 728

forms best for UPDATED. This is due to the small 729

evaluation set size (<1,000) and low absolute F1 730

score of UPDATED. 731
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TWiki-Probes-0809 TWiki-Probes-0910 TWiki-Probes-1011 TWiki-Probes-1112

Un Up N Un Up N Un Up N Un Up N

INITIAL 13.50 4.99 13.32 12.95 4.11 17.57 13.12 3.93 12.12 13.04 3.98 13.58
FULL 12.97 4.91 13.08 12.66 3.66 16.04 12.96 3.70 11.11 13.38 3.60 11.98
DIFF 13.32 4.86 14.66 13.14 3.93 18.39 11.38 5.39 12.42 13.13 4.11 13.94

DIFF-CL 11.38 4.86 11.60 10.87 3.93 16.47 11.09 3.81 12.50 11.42 3.60 12.07

Table 6: F1 score result of LMs on TWIKI-PROBES after light-tuning.
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(a) UNCHANGED

(b) UPDATED

(c) NEW

Figure 7: TWiki-Probes distribution of the top 30 most frequent Relation.
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