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Abstract

Language Models (LMs) become outdated
as the world changes; they often fail to per-
form tasks requiring recent factual informa-
tion which was absent or different during train-
ing, a phenomenon called temporal misalign-
ment. This is especially a challenging prob-
lem because the research community still lacks
a coherent dataset for assessing the adaptabil-
ity of LMs to frequently-updated knowledge
corpus such as Wikipedia. To this end, we
introduce TEMPORALWIKI, a lifelong bench-
mark for ever-evolving LMs that utilizes the dif-
ference between the consecutive snapshots of
Wikipedia and Wikidata for training and evalua-
tion, respectively. The benchmark hence allows
one to periodically track an LM’s ability to re-
tain previous knowledge and acquire new or up-
dated knowledge at each point in time. We also
find that training an LM on the diff data with
an adapter achieves similar or better perplexity
than on the entire snapshot in our benchmark
with 12 times less computational cost, which
verifies that factual knowledge in LMs can be
safely updated with minimal training data via
continual learning. The dataset and the code
will be available at www.omitted.link.

1 Introduction

Large Language Models (LMs) pretrained on a vast
amount of text corpus have shown to be highly ef-
fective when finetuned or prompted to perform var-
ious downstream tasks (Raffel et al., 2019; Brown
et al., 2020; Sanh et al., 2021; Wei et al., 2021).
However, most of the datasets used to evaluate
these LMs are static benchmarks; the train and test
data are both from similar points in time. On the
other hand, in the real world, factual knowledge
is frequently changed, added, or deprecated. For
example, suppose a language model is asked what
the most dominant coronavirus variant is (Figure 1).
The answer would have been the Delta variant in
the fall of 2021 but has changed to the Omicron

variant near the end of 2021. If LMs remain un-
changed and are not periodically trained to cope
with the changing world, they will be outdated very
quickly. This means downstream tasks that directly
depend on or are finetuned from the LM will suf-
fer from temporal misalignment (Luu et al., 2021;
Lazaridou et al., 2021), which refers to the mis-
alignment in time between the train and test data.

Temporal misalignment becomes a critical prob-
lem, especially when using language models for
knowledge-intensive tasks such as closed-book
question answering (Roberts et al., 2020; Petroni
et al., 2021; Jang et al., 2021) since they rely
solely on the knowledge stored in their parame-
ters. Furthermore, LMs augmented with retrieval
mechanism (Guu et al., 2020; Lewis et al., 2020;
Borgeaud et al., 2021) often suffer from hallucina-
tion even if they successfully retrieve up-to-date
information (Zhang and Choi, 2021; Chen et al.,
2021), meaning temporal misalignment still needs
to be addressed in such semi-parametric LMs.

Recently, Lazaridou et al. (2021); Jang et al.
(2021) have explored updating the internal knowl-
edge of LMs through continual pretraining on new
and updated data as a solution for mitigating tem-
poral misalignment. However, these datasets are
still static in nature: as the world changes, they will
eventually get outdated as well. In order to compre-
hensively measure the capability of ever-evolving
LMs on addressing temporal misalignment, auto-
mated periodic evaluation of the LMs is crucial.

In this paper, we introduce TEMPORALWIKI,
a lifelong benchmark for training and evaluating
ever-evolving LMs in a periodic and automated
manner, shown in Figure 1. The corpora used for
updating LMs are constructed by comparing arti-
cles from consecutive Wikipedia snapshots and re-
trieving only changed information, which we name
as TWIKI-DIFFSETS. The evaluation datasets are
constructed in a similar manner by comparing Wiki-
data snapshots that correspond to the Wikipedia
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Figure 1: An overview of using TEMPORALWIKI, consisting of TWIKI-DIFFSETS and TWIKI-PROBES to train and evaluate
ever-evolving LMs, respectively. Differences between Wikipedia snapshots at different points in time are used for temporal
language modeling and categorized factual instances in the corresponding Wikidata snapshots are used for temporal evaluation.

snapshots in time and categorizing each factual
instance into UNCHANGED, UPDATED, or NEW.
Since Wikidata updates may not exactly align with
Wikipedia updates, we only retain factual instances
that can be grounded to articles in Wikipedia, ensur-
ing the quality of the data and name the resulting
evaluation dataset as TWIKI-PROBES. The whole
benchmark creation process is done without any
human annotation, thus allowing it to be automated
and lifelong as new Wikipedia and Wikidata snap-
shots are released by Wikimedia' on a monthly
basis.

Through TEMPORALWIKI, we aim to tackle the
following research questions: How can we train
ever-evolving LMs efficiently and automate the
evaluation of each update? How does updating
LMs only on new and updated data from Wikipedia
compare to updating LMs on entire Wikipedia
snapshots, especially in scenarios with multiple
updates? How problematic is catastrophic forget-
ting (McCloskey and Cohen, 1989) when LMs are
updated only on new and updated data, and how
can we effectively mitigate catastrophic forgetting?
Our main contributions are summarized as follows:

* We introduce TEMPORALWIKI, a lifelong
benchmark for ever-evolving LMs. Unlike
previous static benchmarks, TEMPORALWIKI
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is responsive to the dynamic changes in the
world and can be utilized to automatically
train and evaluate ever-evolving LMs on each
Wikipedia and Wikidata snapshot update.

* We find that continually training LMs only on
the updated and the new portion of Wikipedia,
which we call temporal language modeling,
is much more computationally efficient than
updating LMs on entire Wikipedia snapshots
as well as being more effective in terms of
stability-plasticity trade-off. It is still a chal-
lenging task especially when multiple updates
are required due to catastrophic forgetting.

* As a competitive baseline for temporal lan-
guage modeling, we implement an adapter-
based continual learning approach that miti-
gates forgetting while bolstering the learning
of new knowledge, thus providing an overall
enhancement in terms of both stability and
plasticity. We hope that TEMPORALWIKI
will foster future research on continual learn-
ing methods for the temporal aspect of ever-
evolving LMs.

2 Background

Recent works have introduced the need to tackle
the issue of temporal misalignment, which refers
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to machine learning models showing poor perfor-
mance due to misalignment in time between the
train and test data. Temporal misalignment can
be caused either by (1) the dynamic nature of lan-
guage (Rottger and Pierrehumbert, 2021; Homba-
iah et al., 2021; Rosin et al., 2021) or (2) the update
of factual information (Chen et al., 2021; Dhingra
et al., 2021; Jang et al., 2021).

Luu et al. (2021) have emphasized the effect of
temporal misalignment on 8 different NLP down-
stream tasks, asserting that misalignment between
the train and test sets of the downstream tasks
causes severe performance degradation which can
be mitigated by fine-tuning on the corpus from the
target period. Agarwal and Nenkova (2021) have
argued this to be less of a concern when utiliz-
ing representations from pretrained LMs and show
that self-labeling on the downstream task is more
effective than continued pretraining on more re-
cent data for temporal adaptation. Note that these
works have focused on misalignment caused by the
dynamic nature of language on tasks that are not
knowledge-intensive, such as text classification.

Others have tackled the problem of temporal mis-
alignment caused by the update of factual knowl-
edge. Lazaridou et al. (2021) have shown that LMs
deteriorate significantly in performance when there
is a misalignment in time between the pretrain-
ing data and the downstream task and argued ever-
evolving LMs are necessary. Dhingra et al. (2021)
have proposed explicitly including time informa-
tion during pretraining as a potential solution. Jang
et al. (2021); Jin et al. (2021) have implemented
continual learning methods to mitigate catastrophic
forgetting that occurs during continued pretraining
on new data.

Despite the recent surge of community interest
in the need for ever-evolving LMs, the community
still lacks widely-available resources to train and
evaluate such LMs. Previous works have intro-
duced benchmarks comprised of data sources from
Twitter feeds (Osborne et al., 2014; Yogatama et al.,
2014), recent news articles (Jang et al., 2021), and
arXiv papers (Lazaridou et al., 2021) where the
temporal adaptability of LMs and the effectiveness
of different methodologies of updating LMs can be
evaluated. However, these data sources are domain-
specific and inherently static. On the other hand,
Wikipedia and Wikidata are great sources of track-
ing the dynamic change of world knowledge in
diverse domains. 120K volunteer editors make 120

updates to the English Wikipedia per minute and
add hundreds of new article entries every day (Lo-
gan IV et al., 2021)*>. TEMPORALWIKI leverages
the dynamic nature of Wikipedia and Wikidata to
provide a lifelong benchmark for developing and
maintaining ever-evolving LMs.

3 TemporalWiki

In this section, we delve into the process of cre-
ating TEMPORALWIKI, which is comprised of
training corpora (TWIKI-DIFFSETS) and evalua-
tion datasets (TWIKI-PROBES) constructed from
comparing the consecutive snapshots of Wikipedia
and Wikidata, respectively. In Section 3.1, we first
describe the process of constructing the training
corpora from Wikipedia snapshots. Then in Sec-
tion 3.2, we describe the process of generating the
evaluation datasets from Wikidata snapshots and
their alignment with Wikipedia. In Section 3.3,
we describe the quality control applied to the eval-
uation datasets. Lastly, in Section 3.4, we briefly
discuss the current limitations of TEMPORALWIKI.

Algorithm 1 Generating TWIKI-DIFFSETS

Require: Wikipedia snapshots WPy, and W Precens Where
W Precent 1S more recent.
D := An empty array to store new and updated data.
*qrticle in W P has attributes id and text
for all article a, € W Precens dO
if a,.id = a),.id for some article a, € WPy, then
D.append(GETDIFF(ay,ay))
else
D.append(a,)
end if
end for

function GETDIFF(ap, a,)
Diff := An empty string to append difference between text
in two articles.
for all paragraph p, € a,.text do
if p, have no matching sentences with any paragraph
Pp € ap.text then
Diff < Diff+pr
else if p, have some matching and some different sen-
tences with any paragraph p,, € a,.text then
Diff < Dif f + sentences that differ between p, and
Pp-
end if
end for
return Dif f

3.1 Generating Corpora for Temporal
Language Modeling from Wikipedia

In terms of computational resources, it is highly
inefficient to train an LM on the entire Wikipedia
snapshot every time the LM requires updates since
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most part of Wikipedia has not changed since the
previous snapshot. Moreover, it is not certain
whether updating the LM on the entire Wikipedia
snapshot is the best approach for updating the
factual knowledge stored in the LM. Therefore,
we compare the differences between consecutive
Wikipedia snapshots in order to use only updated
and new text for training. We call these subsets
TWIKI-DIFFSETS. Algorithm 1 shows the proce-
dure for generating them.

As shown in Algorithm 1, a single TWIKI-
DIFFSET is generated by getting the differences
(similarly to git diff) between two consecu-
tive Wikipedia snapshots. If an article with a
new unique id is included in the recent snapshot,
we append the entire article to TWIKI-DIFFSET.
For an article having an existing id in the pre-
vious snapshot, we compare the two articles by
paragraphs and add new or updated sentences to
TWIKI-DIFFSETS. Detailed Statistics are shown
in Section 4.

3.2 Generating Evaluation Datasets from
Wikidata

In our work, the main objective for continually pre-
training LMs is to add and update the factual knowl-
edge stored in the implicit parameters of LMs. The
success of an LM update can be evaluated by quan-
tifying the stability-plasticity dilemma (Mermillod
et al., 2013): the dilemma of artificial and bio-
logical neural systems having to sacrifice either
stability, ability to retain learned knowledge, or
plasticity, ability to obtain new knowledge. In or-
der to evaluate whether each update is successful,
we need evaluation datasets that can quantify the
amount of new and updated knowledge success-
fully gained (plasticity) and the amount of knowl-
edge that remains unchanged as intended after the
LM update (stability). Therefore, we categorize
factual instances from Wikidata snapshots that are
temporally aligned with Wikipedia snapshots and
call the resulting datasets TWIKI-PROBES.

Wikidata snapshots are structured knowledge
graphs that store factual information in the form
of (Subject, Relation, Object) such as
(Barack Obama, born—-in, Hawaii). These
factual instances can be used to probe the LM for
factual knowledge (Petroni et al., 2019). Through
Algorithm 2, we distinguish each factual instance
into either one of the three categories: UN-
CHANGED, UPDATED, or NEW.

Algorithm 2 Generating TWIKI-PROBES

Require: Wikidata snapshots WD, and WDyecens Where
W Dyecens 18 more recent.
Un, Up, N := Arrays that store UNCHANGED, UPDATED,
and NEW factual instances, respectively.
for all fact (s,,7r,0) € WDyecent do
P« {(s,r,0) | s =5, where (s,7,0) € WDpyey }
if P = 0 then
N.append(s;, ry,0;)
else if , ¢ P then
N.append(s;, ry,0;)
else if r = r, and 0 = o, for some(s, r,0) € P then
Un.append(s,, r,0,)
else
Up‘append(s,-, Try Ur)
end if
end for

As shown in Algorithm 2, given two consecu-
tive Wikidata snapshots, a single TWIKI-PROBE
is constructed which is used to evaluate an LM
updated with TWIKI-DIFFSET. We categorize in-
stances with new Relation into NEW, instances
with the same Relation but anew Object into
UPDATED, and the others into UNCHANGED.

3.3 Quality Control for Evaluation Data

We further apply several quality control steps to
the categorized factual instances from Section 3.2
(Algorithm 2) to best represent the actual change
of knowledge from the LM update.

Aligning with TWIKI-DIFFSETS We ensure
correct alignment of UPDATED and NEW factual
instances with articles in TWIKI-DIFFSETS and
UNCHANGED factual instances with articles from
the entire Wikipedia since Wikidata updates do
not necessarily entail Wikipedia updates and vice
versa. In order to do this, we crawl information
from Wikipedia article pages to find the mapping
to the corresponding Wikidata entity id and store
the information as a dictionary.

Then, for each factual instance from UPDATED
and NEWw, we check if the Subject id can be
mapped to an article id from TWIKI-DIFFSETS
using the dictionary of id mappings. For each
instance from UNCHANGED, we check if the
Subject id can be mapped to an article id
from Wikipedia. For a given factual instance, if
Subject id is successfully mapped to an article
id, we finally check if the Object exists in the
text of the article. Figure 2 shows an example of a
successful alignment. Finally, we remove duplicate
instances and instances containing Ob ject which
has > 5% overlap on the same evaluation subset.
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Figure 2: An example of a successful alignment between an
NEW factual instance from TWIKI-PROBES and an article
from TWIKI-DIFFSETS. The alignment is considered suc-
cessful because for the given factual instance, the Subject
matches the title of the Wikipedia page and the Ob ject exists
in the article.

# of Articles # of Tokens
WIKIPEDIA-08 6.3M 4.6B
TWIKI-DIFFSET-0809 306.4K 347.29M
WIKIPEDIA-09 6.3M 4.6B
TWIKI-DIFFSET-0910 299.2K 347.96M
WIKIPEDIA-10 6.3M 4.7B
TWIKI-DIFFSET-1011 301.1K 346.45M
WIKIPEDIA-11 6.3M 4.6B
TWIKI-DIFFSET-1112 328.9K 376.09M
WIKIPEDIA-12 6.3M 4.7B

Table 1: Statistics of TWIKI-DIFFSETS. The two digits indi-
cate the month of the year 2021 that the Wikipedia snapshot
was obtained from. The four digits for WIKI-DIFFSET indi-
cate the months of the two snapshots being compared. For
instance, TWIKI-DIFFSET-0809 indicates the difference be-
tween August (08) and September (09).

3.4 Limitations of TEMPORALWIKI

One aspect that is not covered in this work is knowl-
edge deletion. While maintaining Wikipedia and
Wikidata, volunteer editors not only update or add
new information but also delete information that is
incorrect or misinformed. As removing the misin-
formation and bias stored in LMs is an important
issue and necessary for truly ever-evolving LMs,
future work should address this aspect.

4 Dataset Statistics

TEMPORALWIKI is constructed from 08.2021 to
12.2021, and its statistics are discussed below.

Training Corpora Statistics Statistics of
Wikipedia snapshots and TWIKI-DIFFSETS
constructed from comparing the snapshots are
shown in Table 1. An interesting aspect of TWIKI-
DIFFSETS is that the amount of information being
updated and added (i.e. number of tokens in each
subset) is similar for each month.

Evaluation Dataset Statistics Statistics of
TWIKI-PROBES divided into categories before and
after quality control at each time step are shown in

Initial Categorization Alignment
Month Un Up N Un Up N
0809 514,017 807,320 401,952 10,133 785 1,544
0910 544,708 747,022 449,784 10,625 802 1,819
1011 460,228 1,037,248 535,530 10,544 580 1,162
1112 463,623 906,002 747,707 10,580 850 2,622

Table 2: Detailed Statistics of TWIKI-PROBES during con-
struction phase. Un, Up, and N represents UNCHANGED,
UPDATED, and NEW factual instances, respectively. For each
subset, alignment with Wikipedia corpus is processed to en-
sure quality of the dataset. For Un, we randomly sample 0.1%
of the factual instances after Algorithm 2 because majority of
factual instances were initially categorized as Un.

Table 2. A single Wikidata snapshot is comprised
of 93 million entities where there are around 30
facts for each entity which amounts to roughly 2.8
billion factual instances. Since most instances from
Algorithm 2 are categorized into UNCHANGED, we
randomly sample 0.1% of its original size and then
apply alignment for quality control, reducing the
number of unchanged instances to around 10k.

For further analysis, we break down the entity
types of Subject and Object and observe a
similar proportion of each entity category for each
month of TWIKI-PROBES (Appendix A). We also
find that the distribution of Relation is skewed
in the decreasing order of NEW, UPDATED, and
UNCHANGED (Appendix B).

5 Experiments with TEMPORALWIKI

In this section, we train and evaluate ever-evolving
LMs with TEMPORALWIKI, which consists of
TWIKI-DIFFSETS and TWIKI-PROBES. Section
5.1 describes the experimental settings. Section 5.2
describes the baseline methodologies for updating
LMs. Section 5.3 shows evaluation results on the
training corpora. Section 5.4 presents evaluation
results on TWIKI-PROBES.

5.1 Settings

We continue pretraining GPT-2-Large (Radford
et al., 2019) (774M parameters), which serves as
our baseline language model (LM). We compare
the baseline performances between updating GPT-
2 with TWIKI-DIFFSETS and updating it with en-
tire Wikipedia snapshots and evaluate each update
using TWIKI-PROBES. We also implement an
adapter-based continual learning method for mit-
igating catastrophic forgetting that occurs when
updating GPT-2 with only TWIKI-DIFFSETS. See
the detailed configuration in Appendix C.



5.2 Baseline Models

Here we describe four baseline methods used for
training and evaluation, namely INITIAL, FULL,
DIFF and DIFF-CL, as shown in Table 3 and 4.

Initial As the initial model checkpoint, we first
bring pretrained GPT-2 from Radford et al. (2019),
continue pretraining it on the 08.2021 Wikipedia
snapshot for four epochs in total (around 546K
global steps), and denote it as INITIAL.

Full We start from INITIAL and continue pre-
training it on the entire Wikipedia snapshot of each
month in a sequential manner. For example, after
training on the 09.2021 Wikipedia snapshot from
INITIAL, we continue training it on the 10.2021
Wikipedia snapshot and move on to the next snap-
shot. We denote the resulting model as FULL. We
iterate through the training data only once, which
corresponds to an average of 4.6 billion token up-
dates (140K global steps) for each month.

Diff We start from INITIAL and continue pretrain-
ing it on TWIKI-DIFFSETS in a sequential manner.
We denote the resulting model as DIFF. Similarly
to FULL, we iterate through the training data only
once, which is an average of 347 million token
updates (12K global steps) for each month.

Diff-CL  Since catastrophic forgetting may oc-
cur when updating LMs with TWIKI-DIFFSETS,
we also experiment with applying a competi-
tive adapter-based continual learning method, K-
Adapters (Wang et al., 2021), which is a method of
freezing the original parameters and adding addi-
tional adapters (an increase of 103M parameters) to
the LM. We denote the resulting LM as DIFF-CL.3

5.3 Intrinsic Evaluation

We first perform intrinsic evaluation by measur-
ing the perplexity of the baseline models on their
training corpora. For each month, we measure
the model’s perplexity on TWIKI-DIFFSETS and
NON-TWIKI-DIFFSETS, where the latter refers to
the subset of the month’s entire Wikipedia snap-
shot that does not include the data from TWIKI-
DIFFSETS. We sample 10,000 input instances from
each subset with a fixed length of 512 and measure
the perplexity on proper noun tokens determined by

3We add the additional parameters once for the updates
from 08.2021. Exploring the optimal interval to add parame-
ters for ever-evolving LMs is left for future work.
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Figure 3: Relative pronoun perplexity of FULL, DIFF, and
Di1FF-CL compared to INITIAL on TWIKI-DIFFSETS and
NON-TWIKI-DIFFSETS for each month. Lower ratio indicates
better performance.

a Part-of-Speech (POS) tagger (Honnibal and Mon-
tani, 2017) as in (Lazaridou et al., 2021), which
can be considered as a proxy for tokens contain-
ing factual knowledge. Therefore, the result on
NON-TWIKI-DIFFSETS is meant to indicate the
performance on unchanged knowledge, while the
result on TWIKI-DIFFSEETS corresponds to up-
dated and new knowledge. Figure 3 shows the
relative perplexity of FULL, DIFF, and DIFF-CL
compared to INITIAL (i.e., dividing each model by
INITIAL, and thus the lower the better).

Results on NON-TWIKI-DIFFSETS show that
the relative perplexity of DIFF increases rapidly
while that of FULL remains constant as time goes,
which implies that forgetting occurs when the LM
is trained with TWIKI-DIFFSETS. The relative per-
plexity of DIFF-CL increases more slowly than
DIFF, which means that applying continual learn-
ing mitigates catastrophic forgetting.

On the other hand, the results on TWIKI-
DIFFSETS show the opposite trend: the relative
perplexity of DIFF is much lower than FULL.
One thing to note is that the perplexity of FULL
is very similar to that of INITIAL on TWIKI-
DIFFSETS, which suggests that updating LMs on
entire Wikipedia snapshots hinders the effective
learning of changed data compared to DIFF, despite
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TWiki-Probes-0910

TWiki-Probes-1011

TWiki-Probes-1112

Time Un Up N Un Up N Un Up N Un Up N
INITIAL Ohours 37042 31232 367.68 333.39 35588 42943 336.14 349.18 410.94 34248 37327 386.56
FuLL ~24 hours 364.94 309.05 366.69 357.87 369.68 458.45 306.25 329.29 365.66 348.00 35495 357.17
DIFF ~2hours 395.33 246.49 301.05 384.12 268.58 35396 418.19 272.18 337.45 384.08 297.75 315.19
DIFF-CL  ~2hours 326.54 255.02 297.64 305.26 28592 34442 311.44 287.01 321.77 318.66 314.37 320.90

Table 3: Zero-shot perplexity of LMs measured on TWIKI-PROBES where each of Un, Up, N represents UNCHANGED,
UPDATED, and NEW factual instances, respectively. Time represents the average training time of a single update under the
setting described in Section 5.1. The descriptions of each baseline models are explained in Section 5.2.
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Figure 4: Weighted overall perplexity of TWIKI-PROBES. We
weigh and sum the perplexity with equal importance placed
on stability and plasticity. A lower score indicates better
performance.

both having seen the same instances of TWIKI-
DIFFSETS during training for the same number of
iterations. DIFF-CL shows higher overall perplex-
ity than DIFF on TWIKI-DIFFSETS due to less
number of trainable parameters compared to DIFF.

5.4 Extrinsic Evaluation on TWIKI-PROBES

Performing only intrinsic evaluation on the training
corpora is not sufficient because the intrinsic eval-
uation itself only tests the capability of the LMs
for memorization (McCoy et al., 2021). Through
extrinsic evaluation with TWIKI-PROBES (Sec-
tion 3.2), we specifically focus on evaluating the
factual knowledge from each month.

Zero-shot We use TWIKI-PROBES to measure
the zero-shot average perplexity of the updated
LMs on each fact instance, shown in Table 3. DIFF
and DIFF-CL show better overall performance on
UPDATED and NEW factual instances than INITIAL
in all months, bolstering the results from intrin-
sic evaluation. For UNCHANGED, however, DIFF
suffers from catastrophic forgetting, showing con-
sistent performance degradation as the number of
updates increases. In contrast, DIFF-CL shows
surprising results on UNCHANGED, outperform-
ing even FULL for three out of the four months.
This means that DIFF-CL has effectively mitigated
much of the catastrophic forgetting during temporal
language modeling. Moreover, it surpasses DIFF

on NEW factual instances, showing that the contin-
ual learning method does not hinder the LM from
effectively learning new knowledge.

Placing equal importance stability
(UNCHANGED) and plasticity (UPDATED
and NEW), we show the weighted sum of the
perplexity on UNCHANGED, UPDATED and NEW
data from Table 3 with weights of 0.5, 0.25,
0.25, respectively, in Figure 4. The figure shows
that DIFF-CL is the most effective method of
updating the LMs over all the time periods while
being around 12 times more computationally
efficient than FULL. DIFF also outperforms FULL
in all months but 1011, showing that temporal
language modeling is an effective approach for
stability-plasticity trade-off.

We note that, as also shown in previous
works (Lazaridou et al., 2021), results in Table
3 present an overall high perplexity (>200) because
the sentences in TWIKI-PROBES are not natural
sentences; they are factual phrases synthetically
generated from a naive concatenation of Sub ject,
Relation, and Object. We aim to address this
issue via light-tuning, as discussed below.

on

Light-tuning To alleviate the distributional shift
that causes high zero-shot perplexity, we light-tune
the LMs on 500 instances randomly sampled from
WikiData that do not overlap with instances from
TWIKI-PROBES (details in Appendix D). Unlike
fine-tuning, light-tuning lets the LM only learn the
input and output distribution of the task, avoiding
the problem of test-train overlap pointed out by
Lewis et al. (2021). Table 4 shows the results of
light-tuning, which demonstrate a similar trend as
the zero-shot performance. We also report light-
tuning results with the F1 score metric in Appendix
E. Although light-tuning avoids the problem of
test-train overlap, results are largely affected by
the sampled instances for tuning, so a zero-shot
evaluation setting is preferred for reliability.

Effect of Temporal Misalignment We quan-
tify the effect of temporal misalignment on each



TWiki-Probes-0809

TWiki-Probes-0910

TWiki-Probes-1011 TWiki-Probes-1112

Un Up N Un Up N Un Up N Un Up N
INITIAL 9593  99.68 101.05 91.34 114.19 108.12 91.23 115.78 1223 9296 121.42 116.72
FuLL 103.81 10841 108.56 97.3 12227 11558 9508 119.21 1252 96.79 119.66 116.72
DIFF 10595 84.92 86.3 110.89 9559 99,51 119.86 104.11 121.67 11654 116.69 114.11
DIFF-CL 9846 9458 9948 10241 113.89 10559 99.18 111.29 115.73 9842 113.94 112.94

Table 4: Light-tuning perplexity of LMs measured on TWIKI-PROBES where each of Un, Up, N represents UNCHANGED,

UPDATED, and NEW factual instances, respectively.
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Figure 5: The zero-shot perplexity of the LMs updated and evaluated on various time intervals of NEw of TWIKI-PROBES,
showing the effect of temporal misalignment. The better the results, the darker the performance is colored. The color is compared

within the same method and also the same evaluation set.

method by training the LMs and evaluating their
zero-shot perplexity on NEW instances of TWIKI-
PROBES with various time intervals of training and
evaluation. As shown in Figure 5, FULL method
is mostly influenced by the number of training up-
dates and not much by whether there is temporal
alignment. Since FULL is continuously pretrained
on the entire Wikipedia corpus in each month, it
would have likely seen the data containing NEW
factual instances multiple times, leading to lower
perplexity as training steps increases.* For DIFF
and DIFF-CL, there is a general trend of strong
performance when there is temporal alignment (di-
agonal entries), outperforming FULL with much
fewer global training steps. It is important to
note that DIFF-CL shows robustness against tem-
poral misalignment, i.e. the perplexity does not
increase much even when the training and evalua-
tion months do not match, compared to DIFF which
suffers from a more severe perplexity spike.

6 Conclusion

In this paper, we provide some answers to the four
proposed questions in Section 1. (1) How can
we train ever-evolving LMs efficiently and auto-
mate the evaluation of each update? We introduce
TEMPORALWIKI, a lifelong benchmark that can

4Although directly training INITIAL on the whole
Wikipedia corpus of a specific month can be an alternative,
we exclude it here because it would only learn the knowledge
of the specific month and thus inappropriate for ever-evolving
LMs.

be used for training and evaluating ever-evolving
language models (LMs) in an automated manner.
It consists of TWIKI-DIFFSETS as the training cor-
pora for temporal language modeling and TWIKI-
PROBES as the evaluation datasets for measuring
the stability-plasticity trade-off at each LM update.
(2) How does updating LMs only on new and up-
dated data from Wikipedia compare to updating
LMs on entire Wikipedia snapshots, especially in
scenarios with multiple updates? Through experi-
ments on TEMPORALWIKI, we show that updating
LMs on TWIKI-DIFFSETS leads to better acquisi-
tion of new and updated knowledge than updating
on entire Wikipedia snapshots with much less com-
putational cost. (3) How serious is catastrophic
forgetting when LMs are updated only on new and
updated data? Temporal language modeling is
still a challenging problem, as we observe more
forgetting of previous knowledge not contained in
TWIKI-DIFFSETS as the number of LM updates
increases. However, results still show an overall
enhancement in terms of stability and plasticity
compared to updating with entire Wikipedia snap-
shots, showing that temporal language modeling
can be also an effective alternative. (4) How can
we mitigate catastrophic forgetting? We find that
an adapter-based continual learning method can
mitigate forgetting without hindering the learning
of new knowledge, thus achieving the best overall
performance.
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A Details of Entity Types of Subject
and Relation

Figure 6 shows the ratio of different entity types
of Subject and Relation of UNCHANGED,
UPDATED, and NEW.

People Companies Location Nationalities Others
8% 9% 7%
4% 5%. 9%
0,
18% 4% 15% ° 529 18% = 51%
16% 18% 15%

(a) UNCHANGED  (b) UPDATED (c) NEW

Figure 6: Entity types of Subject and Object in TWIKI-
PROBES.

B Details of Relation Distribution

The distribution of Relation for UNCHANGED,
UPDATED, and NEW factual instances in TWIKI-
PROBES is shown in Figure 7.

C Continual Pretraining and Light
Tuning Configuration

For continual pretraining of LMs, we use 8 V100
GPUs with a global batch size of 64 and a fixed
input sequence length of 512 for each update. We
use the max learning rate of le-4 and one cycle
learning rate scheduling policy (Smith, 2018). For
light-tuning, the training is done for only 1 epoch
with a learning rate of le-5 and batch size of 32.
Input and output sequence lengths are equal to 25.
For DIFF-CL, we unfreeze the whole parameters
for tuning, following Jang et al. (2021).

D Light-Tuning Data

We sample 500 instances from WikiData for each
time step that do not overlap with instances from
TWIKI-PROBES for each factual instance category.
During sampling, we keep the distribution of each
Relation proportional to the original distribu-
tion. Table 5 shows the size and distribution of
Relation of light-tuning datasets.

. #of MaXilflflm # of
Size Relation Repetition Subject
of Relation
UNCHANGED 500 115 38 500
UPDATED 500 114 32 496
NEW 500 145 50 497

Table 5: Statistics of the data used for Light-Tuning

E F1 score results of light-tuning with
TWIKI-PROBES

Many knowledge-intensive tasks such as closed-
book question answering (Roberts et al., 2020;
Petroni et al., 2021; Jang et al., 2021) or slot filling
(Petroni et al., 2021) use accuracy, EM, or F1 score
to evaluate the task. We also show the F1 score on
TWIKI-PROBES in Table 6. Overall trend is con-
sistent with the perplexity metric: INITIAL shows
good performance for UNCHANGED while DIFF
and DIFF-CL shows better results for UPDATED
and NEW. There are some cases that INITTIAL per-
forms best for UPDATED. This is due to the small
evaluation set size (<1,000) and low absolute F1
score of UPDATED.



TWiki-Probes-0809

TWiki-Probes-0910

TWiki-Probes-1011

TWiki-Probes-1112

Un Up N Un Up N Un Up N Un Up N
INITIAL  13.50 4.99 1332 1295 411 1757 1312 393 12.12 13.04 398 13.58
FuLL 1297 491 13.08 12.66 3.66 16.04 1296 3.70 11.11 1338 3.60 11.98
DIFF 1332 486 14.66 13.14 393 1839 11.38 539 1242 13.13 4.11 13.94
Drrr-CL 1138 486 11.60 10.87 393 1647 11.09 3.81 1250 1142 3.60 12.07
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Table 6: F1 score result of LMs on TWIKI-PROBES after light-tuning.
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Figure 7: TWiki-Probes distribution of the top 30 most frequent Relation.



