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Abstract

Speculative decoding (SD) is a promising001
method for accelerating Large Language Model002
(LLM) decoding. The speedup efficiency of SD003
mainly depends on the consistency between the004
draft model and the verify model. However,005
previous drafting methods usually require to006
train extra modules, which are challenging to007
obtain and be consistent with different LLMs.008
In this paper, we introduce CLaSp, an in-009
context layer skip strategy for self-speculative010
decoding. It requires neither additional draft-011
ing modules nor additional training. Instead, it012
employs a plug-and-play method by skipping013
the intermediate layers of the verify model to014
be a compressed draft model. Specifically, we015
design a dynamic programming algorithm to016
skip layers for current drafting, which utilizes017
the full hidden states from last verify stage as018
optimization objective. Therefore, CLaSp can019
dynamically adjust the layer skipping strategy020
based on context after each verify stage, with-021
out pre-optimizing a fixed set of skipped layers022
on amounts of training data. Experimental re-023
sults across various downstream tasks indicate024
that CLaSp achieved 1.3× ∼ 1.7× speedup025
on LLaMA3 series models without altering the026
original distribution of the generated text.027

1 Introduction028

Transformer Large Language Models (LLMs) have029

achieved remarkable success in a wide range of nat-030

ural language processing applications (Brown et al.,031

2020; Achiam et al., 2023). Scaling the model032

size and context window brings superior perfor-033

mance (Kaplan et al., 2020; Anil et al., 2023; Reid034

et al., 2024), but also leads to a rapid increase in035

inference latency. The inference latency is mainly036

attributed to the autoregressive nature of LLMs,037

where the model parameters will be loaded into the038

GPU SRAM for each token generation, resulting039

in underutilization of the computing cores during040
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Figure 1: Previous Self-Speculative Decoding vs.
CLaSp. Compared to the previous Self-SD method,
which requires costly Bayesian optimization on train-
ing data to select a fixed set of skipped layers, CLaSp
employs a dynamic skip-layer strategy that adjusts in
real-time based on context.

the decoding stage (Patterson, 2004; Shazeer, 2019; 041

Agrawal et al., 2023). 042

Inspired by speculative execution (Burton, 1985; 043

Hennessy and Patterson, 2012), speculative decod- 044

ing (SD) (Xia et al., 2023; Leviathan et al., 2023; 045

Chen et al., 2023) is proposed as a lossless autore- 046

gressive decoding acceleration technique. These 047

methods employ an efficient draft model to quickly 048

generate some draft tokens. Then, a slower LLM 049

(referred to as the verify model) validates generated 050

tokens in parallel by a single forward pass. Con- 051

sequently, SD could effectively reduce the number 052

of verify model’s forward passes, alleviating the 053

memory-bound problem caused by reading/writing 054

of LLM parameters frequently. 055

The original SD requires to identify or train a 056

suitable draft model that can generate outputs con- 057
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sistent with the verify model. This is friendly for058

some series of models that have already been open-059

sourced in different sizes (Touvron et al., 2023a,b;060

Dubey et al., 2024; Yang et al., 2024), but it’s dif-061

ficult to obtain a matching draft model for fine-062

tuned specialized models. To address this limita-063

tion, some previous method (Cai et al., 2024; Li064

et al., 2024b; Du et al., 2024; Liu et al., 2024) in-065

troduced additional lightweight modules as draft066

model to avoid retraining from scratch. However,067

they cannot generalize well to all tasks based on068

context, leading to a sharp drop in acceptance rate069

for some unseen tasks.070

In parallel to introducing lightweight modules,071

Zhang et al. (2024) present a novel inference072

scheme, self-speculative decoding (Self-SD). Self-073

SD directly utilizes parts of the verify model as a074

compact draft model without any additional train-075

ing. Specifically, it applies sparsification at the076

layer-level, skipping some intermediate layers of077

the verify model to create the draft model. Simi-078

lar to methods that require training, it also lacks079

robust generalization and severely relies on an080

time-consuming Bayesian optimization process.081

SWIFT (Xia et al., 2024a) enhances Self-SD by082

dynamically optimizing the skipped layers as the083

number of user requests for the same task increases.084

However, when handling a single or a small amount085

of task data, SWIFT also exhibits poor perfor-086

mance.087

Inspired by the contextual sparsity found in Deja088

Vu (Liu et al., 2023), we propose a dynamic in-089

context layer skip method (called CLaSp). Specif-090

ically, based on the observation of slowly chang-091

ing embeddings across layers, we designed a dy-092

namic programming algorithm to select the optimal093

skipped layer set with minimal additional latency.094

As shown in Figure 1, with its lower layer optimiza-095

tion latency, CLaSp can update the skipped layer096

set before each drafting step. It predicts the spar-097

sity of the draft model ahead of the next drafting,098

leveraging the full hidden states from the last ver-099

ification step as ground truth. Therefore, CLaSp100

identifies the most suitable draft model at each de-101

coding step, maximizing the acceptance rate and102

thereby optimizing acceleration benefits. We con-103

duct experiments using LLaMA3 series models on104

Spec-Bench (Xia et al., 2024b), a comprehensive105

benchmark designed for assessing speculative de-106

coding methods across diverse scenarios. CLaSp107

achieves a 1.3× ∼ 1.7× wallclock time speedup108

compared to conventional autoregressive decoding.109

Our main contributions are summarized as follows: 110

• We introduce CLaSp, a self-speculative de- 111

coding framework that adaptively adjusts the 112

layer skip strategy based on context. 113

• We propose additional performance optimiza- 114

tion strategies in CLaSp to fully leverage 115

GPU parallelism, making the extra latency 116

from layer optimization almost negligible. 117

• We conduct comprehensive experiments on 118

Spec-Bench, demonstrating that CLaSp con- 119

sistently achieved 1.3× ∼ 1.7× speedup 120

without training. Additionally, a detailed anal- 121

ysis of key hyper-parameters further demon- 122

strated the effectiveness of our method. 123

2 Related Work 124

Speculative Decoding. Speculative decod- 125

ing (Xia et al., 2023; Leviathan et al., 2023; Chen 126

et al., 2023) has been proposed as an effective 127

strategy for lossless acceleration of LLM inference. 128

Some approaches aim to reduce the high cost 129

of training from scratch by adding an additional 130

lightweight module as a draft model. Medusa (Cai 131

et al., 2024) additionally trained multiple decoding 132

heads to predict the next n tokens in parallel. 133

EAGLE/EAGLE-2 (Li et al., 2024b,a) adds 134

only a lightweight plug-in (a single transformer 135

decoder layer) to existing LLM. GliDe (Du et al., 136

2024) reuses the verify model’s KV cache, and 137

the proposed chunked attention mask method 138

addresses the issue of context misalignment when 139

using information from the verify model. However, 140

they do not generalize well to some unseen 141

tasks, resulting in only minor acceleration effects. 142

REST (He et al., 2024) and Prompt Lookup 143

Decoding (Saxena, 2023) replace specific draft 144

model with retrieval, pulling relevant drafts from 145

a text corpus or context based on input prompts. 146

But this approach is highly task-sensitive and may 147

not be suitable for all scenarios. Self-SD (Zhang 148

et al., 2024) and SWIFT (Xia et al., 2024a) rapidly 149

generates drafts by skipping intermediate layers 150

of the original LLM without requiring additional 151

draft models or modules. Triforce (Sun et al., 152

2024) using partial KV cache as draft model, 153

full KV cache as verify model. In long context 154

tasks, reducing the I/O operations of the KV cache 155

can effectively decrease inference latency, as its 156

memory footprint far exceeds that of the model 157

weights. Jacobi Decoding (Santilli et al., 2023) 158
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and Lookahead (Fu et al., 2024) reformulates159

autoregressive decoding as a fixed-point Jacobi160

iteration, enabling the parallel generation of161

multiple tokens at each Jacobi decoding step.162

Although the above methods require no additional163

parameters and use part of the original LLM as a164

draft model, they lack the flexibility to dynamically165

adjust based on context, thus not maximizing166

the potential of the draft model. To enhance the167

acceleration effect of speculative decoding, tree168

attention (Miao et al., 2024; Cai et al., 2024; Chen169

et al., 2024; Svirschevski et al., 2024) has become170

an indispensable component. It extends from a171

single candidate sequence to a candidate tree,172

providing the verify model with more options.173

Layer-wise Sparsity. Many previous studies174

have identified layer redundancy in LLMs as evi-175

denced by methods such as LayerDrop (Fan et al.,176

2020), LayerSkip (Elhoushi et al., 2024), structured177

pruning (Zhang and He, 2020), SkipDecode (Corro178

et al., 2023) and LayerSharing (Zhang et al., 2023).179

This suggests that the importance of each layer180

may vary, and not all layers are necessary. How-181

ever, selecting the appropriate layers for different182

downstream tasks remains a significant challenge.183

Deja Vu (Liu et al., 2023) identifies the presence of184

context sparsity and leverages it to accelerate LLM185

inference without affecting the model’s capabili-186

ties. LISA (pan, 2024) randomly selects a subset187

of layers to optimize during training, aiming for188

faster convergence and improved performance. Al-189

though these methods are effective, sparsification190

is lossy and cannot guarantee that the sparse distri-191

bution will perfectly match the original distribution.192

Glavas et al. (2024) discuss two common dynamic193

inference methods for natural language generation:194

layer skipping and early exiting. Unlike these pre-195

vious methods, we focus on the layer-wise sparse196

strategy compatible with speculative decoding, en-197

abling lossless inference acceleration.198

3 CLaSp199

In this section, we first introduced the complete200

pipeline of CLaSp from a global perspective.201

Then, we explore the main challenges (§3.2) faced202

by CLaSp and the problem formulation of layer203

skip (§3.3). Subsequently, we provide a detailed204

description of the CLaSp algorithm (§3.4 and205

§3.5) and efficiency optimization strategies(§3.6206

and §3.7).207

Algorithm 1: CLaSp Skip Layer Strategy
Input: Num hidden layers L, num skip layers M ,

hidden states X = {x0, x1, ..., xL−1},
DecoderLayer fi, hidden size d

Output: The optimal skipped layer set S
g ← zeros(L+ 1,M + 1, d), g[0, 0]← x0

// Dynamic programming
for i = 1 to L+ 1 do

g[i, 0]← xi

ℓ← min(i− 1,M)
G ← fi−1(g[i− 1, 1 : ℓ+ 1])
F ← norm(cat(G, g[i− 1, : ℓ]))
σ ← F · norm(xi)
if σ[: ℓ] > σ[ℓ :] then

g[i][1 : ℓ+ 1]← G
else

g[i][1 : ℓ+ 1]← g[i− 1, : ℓ]
if i ≤M then

g[i, i]← g[i− 1, i− 1]
S ← zeros(L)
// Backtracking optimal skipped layer set S
while i > 0 and j > 0 do

if g[i, j] = g[i− 1, j − 1] then
S[i− 1]← 1
j ← j − 1

i← i− 1
return S

3.1 Pipeline 208

CLaSp can be explained as a three-stage process: 209

(1) drafting: the draft model autoregressively gen- 210

erates K draft tokens from the given prompt se- 211

quence x1, . . . , xi denoted as xi+1, . . . , xi+K . (2) 212

verification: the verify model verifies the tokens 213

from the drafting stage. This verification is com- 214

pleted in a single forward pass, where the LLM 215

predicts the probability distribution for each draft 216

token and evaluates whether they align with the 217

full model. Once a draft token xj is rejected, we 218

use the original LLM’s prediction to overwrite xj 219

and resume from token xj+1 for the next round 220

of drafting. (3) layer optimization: using the hid- 221

den states of generating the last accepted token xj 222

as optimization objective, we update the optimal 223

skipped layer set S∗ to guide the next round of 224

drafting process. In this way, before each round of 225

drafting, we could update the draft model to better 226

adapt to the current context. 227

3.2 Main Challenges 228

Compared to previous methods, CLaSp requires 229

updating the skipped layer set before each draft 230

step, which necessitates considering two main chal- 231

lenges: 1) How to determine which layers should 232

be skipped? This is the most critical issue that 233

CLaSp aims to address, as it essentially determines 234

the drafting quality. An ideal layer skip strategy 235
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Figure 2: The overall framework of CLaSp consists of three stages: (1) Draft, (2) Verify, (3) Layer Optimization.
After the Verify stage, CLaSp uses the information obtained to perform Layer Optimization, resulting in a new
optimal layer skipping set S∗. This set guides the next Draft round, repeating the entire process.

depends on the most recent context, ensuring that236

drafted tokens could be more likely to be accepted237

by the verify model. 2) How to reduce the ad-238

ditional latency caused by layer optimization?239

Dynamic skipping strategy inevitably introduces240

additional computational delays, due to the multi-241

ple searches for the current optimal layer subset.242

3.3 Problem Formulation of Layer Skip243

Let Mv be the verify model and Md be the244

draft model obtained by skipping certain interme-245

diate layers from the original LLM. FMv(X) and246

FMd
(X) represent the output hidden states on the247

top of the last token of current input X , passing248

through the verify model or the draft model respec-249

tively. Our goal is to find the optimal skipped layer250

set S that minimizes the cosine similarity between251

FMv(X) and FMd
(X):252

S∗ = argmin
S

cosine(FMV
(X), FMD

(X)),

s.t. S ∈ {0, 1}L
(1)253

where L represents the number of transformer lay-254

ers in the verify model.255

3.4 Approximate Dynamic Programming256

The principle for selecting information for layer op-257

timization is to avoid introducing additional compu-258

tations, using information obtained from previous259

steps to reduce extra delays. We observed that after 260

each verification step in speculative decoding, all 261

the hidden states of the last accepted token are not 262

fully utilized. So we aim to use this feedback infor- 263

mation to predict the draft model for the next draft 264

stage. Specifically, we denote the input tokens to a 265

Transformer model as X , with an embedding layer 266

that maps the token indices to token embeddings 267

h0. The transformer model has L transformer lay- 268

ers, where the l-th transformer layer evolves the 269

transformation fl: hl+1 = fl(hl). 270

Let D(i, j) represent the maximum cosine sim- 271

ilarity between hi and the optimal hidden state 272

g(i, j) obtained by skipping j layers among the 273

first i transformer layers. So we design a dynamic 274

programming transition equation defined as: 275

D(i, j) = max{cosine(hi, g(i− 1, j − 1)),

cosine(hi, fi−1(g(i− 1, j)))}
(2) 276

where cosine is used to calculate the cosine sim- 277

ilarity between two vectors. The CLaSp skip layer 278

algorithm process is shown in Algorithm 1. A com- 279

plete CLaSp process is elaborated in Figure 2. 280

3.5 Approximate Markov Property 281

A crucial prerequisite for dynamic programming 282

algorithms is the ’no aftereffect’ property, meaning 283

that current decisions and state transitions are in- 284

dependent of previous states. However, when com- 285

puting the optimal hidden states g(i, j), CLaSp 286
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Figure 3: (a) Observation of Sparse Persistence: the skipped layer sets selected for adjacent tokens have high
similarity, and this similarity gradually decreases as the gap increases. Therefore, layer optimization can be
performed on the current token to guide the subsequent draft process. (b) Approximate Markov Property: comparing
the cosine similarity of hidden states obtained from Brute Force, Random, and CLaSp’s dynamic programming
settings with the full forward pass demonstrates the approximate Markov property of CLaSp. (c) Efficiency
Optimization Strategies: the latency breakdown per query indicates that the additional delay introduced by Layer
Optimization accounts for only 4.8% of the total latency.

clearly does not have the Markov property, mak-287

ing it impossible to find an exact optimal solution288

using the Algorithm 1. Fortunately, due to the fa-289

vorable property of slowly changing embeddings290

across layers, we find that CLaSp’s approximate291

algorithm is very similar to the brute force selected292

skipped layer set. we fix the first and last 10 lay-293

ers of the 32-layer LLaMA3-8B model. Then, We294

compare the outcomes of a brute force search for295

the optimal solution, random layer selection, and296

CLaSp across the remaining 12 layers. As shown297

in Figure 3b, we find that the hidden states ob-298

tained by skipping the layers selected by CLaSp299

exhibit remarkable consistency with those obtained300

through brute force search. Both demonstrate a301

high cosine similarity with the hidden states from302

the original LLM. In contrast, the results from skip-303

ping randomly selected layers are relatively poor.304

Therefore, we can assume that CLaSp has the ap-305

proximate markov property, finding the optimal306

solution within an acceptable error range.307

3.6 Sequence Parallel308

Unlike previous methods, CLaSp requires multi-309

ple layer optimizations during a single inference310

process. Therefore, the optimization must be effi-311

cient enough to avoid additional delays while ensur-312

ing accurate drafting in subsequent decoding steps.313

Specifically, we use some parallel strategies to re-314

duce the additional delay caused by the dynamic315

programming process. When CLaSp performs dy-316

namic programming, the updates for D(i, j) and317

g(i, j) are obtained through a double loop, result-318

ing in a time complexity of O(LM). When com-319

puting the state at (i, j), only the state at (i−1, ·) is 320

needed. Therefore, the computations for different 321

j values with the same i are independent, allowing 322

us to parallelize the second loop. 323

To reduce GPU memory footprint, we do not sim- 324

ply concatenate these states into a batch. Instead, 325

we designed a special mask matrix that allows these 326

states to parallelize like a sequence, reusing the 327

same KV Cache without needing to duplicate it 328

multiple times. 329

3.7 Lower Optimization Frequency 330

CLaSp needs to update the optimal skipped layer 331

set after each verification based on the last accepted 332

token, but the time cost of updating once is nearly 333

the same as performing a verification, which be- 334

comes a bottleneck for the inference latency of 335

CLaSp. Fortunately, we observe the phenomenon 336

of Sparse Persistence: The set of skipped layers 337

needed by adjacent tokens tends to be similar, so 338

we calculate the Jaccard similarity between the sets 339

of layers selected for skipping by adjacent tokens. 340

As shown in Figure 3a, it can be observed that the 341

similarity of the selected layer skipping sets only 342

significantly decreases when the distance between 343

two tokens exceeds a certain range. Based on the 344

observation of Sparse Persistence, we further found 345

that the optimal skipped layer set does not change 346

drastically after each update. Therefore, we ad- 347

justed the update frequency, opting to update after 348

accumulating several verification steps rather than 349

after every single verification step. After adopt- 350

ing a lower update frequency, although the average 351

acceptance rate of draft tokens decreased slightly, 352
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Models Methods MT-bench WMT14 CNN/DM NQ GSM8K DPR Overall
Speedup

τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup

Greedy Setting: Temperature=0

LLaMA-3-70B

AUTOREGRESSIVE 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00×
SELF-SD 2.57 1.38× 4.10 1.55× 5.46 1.57× 2.60 1.42× 3.10 1.49× 3.59 1.43× 1.47×
SWIFT 3.13 1.26× 2.90 1.27× 3.93 1.35× 3.21 1.29× 2.86 1.27× 3.31 1.26× 1.28×
CLASP 4.55 1.64× 5.81 1.69× 7.19 1.66× 5.37 1.72× 6.77 1.75× 4.05 1.56× 1.67×

LLaMA-3-70B
-Chat

AUTOREGRESSIVE 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00×
SELF-SD 1.40 1.23× 2.27 1.33× 1.50 1.24× 1.59 1.26× 3.00 1.40× 2.56 1.37× 1.31×
SWIFT 4.41 1.15× 5.54 1.27× 4.52 1.22× 4.83 1.20× 6.19 1.31× 5.97 1.33× 1.25×
CLASP 2.61 1.35× 4.72 1.51× 3.48 1.39× 3.32 1.39× 5.28 1.53× 5.61 1.54× 1.45×

LLaMA-3-8B

AUTOREGRESSIVE 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00×
SELF-SD 1.28 1.07× 1.35 1.13× 1.73 1.17× 1.45 1.13× 1.44 1.15× 2.33 1.21× 1.14×
SWIFT 2.75 1.07× 2.51 1.09× 2.76 1.13× 2.91 1.13× 2.72 1.10× 2.96 1.11× 1.11×
CLASP 3.68 1.24× 4.14 1.23× 6.22 1.22× 4.03 1.27× 5.26 1.26× 4.17 1.22× 1.24×

Non-Greedy Setting: Temperature=1

LLaMA-3-70B

AUTOREGRESSIVE 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00×
SELF-SD 1.64 1.23× 2.53 1.39× 3.61 1.43× 1.53 1.24× 2.01 1.33× 2.17 1.24× 1.31×
SWIFT 2.06 1.10× 1.96 1.08× 1.97 1.09× 1.97 1.08× 1.98 1.09× 2.01 1.07× 1.09×
CLASP 3.13 1.49× 3.33 1.50× 5.38 1.54× 3.56 1.54× 4.32 1.59× 2.51 1.36× 1.50×

LLaMA-3-70B
-Chat

AUTOREGRESSIVE 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00×
SELF-SD 1.15 1.14× 2.01 1.23× 1.19 1.15× 1.21 1.17× 1.97 1.34× 1.71 1.26× 1.22×
SWIFT 2.68 0.96× 2.64 0.99× 2.67 0.98× 2.62 0.99× 2.79 1.01× 2.76 1.04× 1.00×
CLASP 1.96 1.28× 3.90 1.45× 2.32 1.29× 2.28 1.30× 4.40 1.47× 4.03 1.43× 1.37×

LLaMA-3-8B

AUTOREGRESSIVE 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00 1.00× 1.00×
SELF-SD 0.98 0.89× 1.01 0.94× 1.36 1.02× 1.09 0.92× 1.09 0.96× 1.82 1.03× 0.96×
SWIFT 1.90 0.80× 1.92 0.85× 1.85 0.83× 1.97 0.84× 1.95 0.83× 1.90 0.80× 0.83×
CLASP 2.62 1.11× 2.78 1.08× 4.26 1.11× 2.70 1.08× 3.76 1.10× 2.35 1.02× 1.08×

Table 1: Comparison between CLaSp and prior plug-and-play methods. We report the average acceptance length τ
and speedup ratio under greedy (Temperature=0) and non-greedy (Temperature=1) settings. Bold numbers denotes
the best Speedup.

the overall benefits from reduced update latency353

resulted in a significant increase in the speedup354

ratio.355

4 Experiments356

This section focuses on evaluating CLaSp on var-357

ious text generation tasks to demonstrate the effi-358

ciency and effectiveness of CLaSp.359

Model and testbed. We use four different sizes360

of LLaMA models (Dubey et al., 2024), includ-361

ing LLaMA3-8B, LLaMA2-13B, LLaMA3-70B362

and LLaMA3.1-405B, on NVIDIA A800 GPUs363

with 80GB of memory. The 8B and 13B model364

is deployed on a single A800, while the 70B and365

405B models utilize 2 and 8 A800 GPUs respec-366

tively, with pipeline parallelism supported by Ac-367

celerate (Gugger et al., 2022). All models use FP16368

precision except for LLaMA3.1-405B, which uses369

INT8 quantization. And for all models, if not spec-370

ified, the batch size is 1.371

Datasets. We benchmarked the performance of372

CLaSp on Spec-Bench (Xia et al., 2024b), which373

includes a wide range of datasets and tasks, cov-374

ering six subtasks: multi-turn conversation, trans-375

lation, summarization, question answering, mathe-376

matical reasoning, and retrieval-augmented gen-377

eration. Specifically, Spec-Bench consists of378

80 randomly selected instances from each of 379

MT-bench (Zheng et al., 2023), WMT14 DE- 380

EN, CNN/Daily Mail (Nallapati et al., 2016), 381

Natural Questions (Kwiatkowski et al., 2019), 382

GSM8K (Cobbe et al., 2021), and DPR (Karpukhin 383

et al., 2020). To control generation length in above 384

tasks, we set the maximum sequence length to 385

1024, aligned with prior setups (Xia et al., 2024b). 386

Comparison. In our main experiments, we use 387

vanilla autoregressive decoding as the baseline, 388

which serves as the benchmark for speedup ratios 389

(1.00x). We compare CLaSp to existing training- 390

free layer skip methods: Self-Speculative Decod- 391

ing (Zhang et al., 2024) and SWIFT (Xia et al., 392

2024a). We exclude other SD methods from our 393

comparison as they necessitate additional modules 394

or extensive training, which limits their generaliz- 395

ability. The speedup ratio is hardware-dependent, 396

so we tested different methods on the same devices 397

to ensure fairness. 398

Performance Metrics. CLaSp is essentially still 399

speculative sampling, which has been proven to 400

be a lossless acceleration method (Leviathan et al., 401

2023). Therefore, we do not evaluate the genera- 402

tion quality and instead use the following metrics 403

to assess acceleration performance: Speedup Ra- 404

tio: The actual test speedup ratio relative to vanilla 405

6
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Figure 4: The impact of key hyper-parameters on speedup: (a) Number of Skipped Layers; (b) Layer Optimization
Interval; (c) Draft-Existing Threshold.

autoregressive decoding. Average Acceptance406

Length τ : The average number of tokens gener-407

ated per drafting-verification cycle, corresponding408

to the number of tokens accepted from the draft.409

The advantage of average acceptance length is that410

it is independent of hardware and runtime envi-411

ronment, while its disadvantage is that it does not412

reflect the overhead of the draft model.413

4.1 Experimental Result414

As shown in Table 1, we report the performance415

of CLaSp and previous plug-and-play methods416

on text generation tasks from Spec-Bench under417

greedy (Temperature=0) and non-greedy (Temper-418

ature=1) settings. The experimental results reveal419

the following findings: (1) CLaSp shows superior420

efficiency over prior methods, achieving consis-421

tent speedups of 1.3× ∼ 1.7× over vanilla au-422

toregressive decoding across various models and423

tasks. Prior methods rely on Bayesian optimiza-424

tion, exhibiting lower performance when the data425

volume is limited. (2) CLaSp consistently demon-426

strates significant improvements across average427

acceptance length, acceptance rate and speedups.428

This efficiency is primarily due to CLaSp’s ability429

to utilize the model’s layer sparsity effectively. By430

skipping 50% to 60% of the layers during the ex-431

periments, CLaSp still maintains both a high aver-432

age acceptance length and acceptance rate, which433

contributes to its superior acceleration. In most434

experimental settings, greater acceptance lengths435

generally lead to higher speedups. However, there436

are instances where the speedup ratio remains low437

despite having a long average acceptance length.438

This occurs because more time is spent drafting439

additional tokens, resulting in a lower acceptance440

rate and thus reducing the speedups. (3) In par-441

ticular, the performance advantage of CLaSp is442

more pronounced on the LLaMA3-70B compared443

to LLaMA2-13B and LLaMA3-8B, which indi- 444

cates that CLaSp can better leverage the greater 445

layer sparsity present in larger models, enhancing 446

its adaptability and efficiency. 447

Overall, the robust performance of CLaSp 448

across different models highlights its effectiveness 449

as a plug-and-play solution, offering a versatile 450

method to enhance inference speed in a range of 451

LLMs. 452

5 Analysis 453

We present extensive analysis of CLaSp, focus- 454

ing on three key points: the influence of parallel 455

strategy (Section 5.1), the compatibility with dif- 456

ferent LLMs (Section 5.2) and the impact of key 457

hyper-parameters (Section 5.3). 458

5.1 Sequence Parallel 459

As mentioned in Section 3.6, our dynamic program- 460

ming (DP) algorithm requires O(LM) layer for- 461

ward passes. We conduct experimental analysis on 462

the LLaMA3-70B using two NVIDIA A800 GPUs 463

(80GB memory) to assess the actual time overhead. 464

Without any parallel strategy, a single DP run to 465

filter half of the layers takes about 2.5 seconds, 466

whereas a single round of verification takes only 467

about 0.1 seconds. After implementing our paral- 468

lel strategy, the time for a single DP is reduced to 469

0.14 seconds, approximately equal to the time for 470

a single verification, significantly reducing the in- 471

troduced additional latency. We perform per-query 472

experiments to analyze the latency distribution of 473

each stage, as illustrated in Figure 3c. The latency 474

proportion of layer optimization is significantly re- 475

duced with the parallel strategies. Additionally, 476

with a lower update frequency, the extra update 477

latency of CLaSp is almost negligible. 478
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Figure 5: Model Size Scaling Laws of CLaSp.

5.2 Model Size Scaling Laws479

Beyond LLaMA3-8B and LLaMA3-70B, we also480

assess the performance of CLaSp on other model481

sizes for text generation tasks, including LLaMA2-482

13B and LLaMA3.1-405B, to obeserve the impact483

of model size on acceleration performance. For484

LLaMA2-13B, we deploy it on a A800 GPU using485

float16 precision. While for LLaMA3.1-405B, we486

use int8 quantization (Dettmers et al., 2022) to487

deploy it on a single node with 8 A800 GPUs.488

As illustrated in Figure 5, the speedup increases489

with model size across various tasks. Specifically,490

on the MT-bench, speedups range from 1.24x for491

LLaMA3-8B to 1.73x for LLaMA3.1-405B. For492

the GSM8K benchmark, speedups increase from493

1.26x to 1.81x, while on the Natural Questions494

benchmark, speedups increase from 1.27x to 1.82x.495

These results indicate that larger models exhibit en-496

hanced layer sparsity, allowing CLaSp to leverage497

its potential more effectively and achieve greater498

speedup.499

5.3 Key Hyper-Parameters500

5.3.1 Number of Skipped Layers501

Since we utilize layer sparsity to skip the inter-502

mediate layers, it’s important to assess how the503

number of skipped layers affects performance. Ad-504

justing this number involves a trade-off between505

draft quality and draft efficiency, both of which sig-506

nificantly impact speedup. As shown in Figure 4a,507

for LLaMA3-70b which consists of 80 layers, the508

speedup increases with the number of skipped lay-509

ers, reaching an optimal value of 1.64× where num-510

ber of skipped layers is 44. However, beyond this511

point, the advantages of a longer average accep-512

tance length are offset by the increased cost of gen-513

erating a high-quality draft, resulting in a decline514

in speedup.515

5.3.2 Layer Optimization Interval 516

As mentioned in Section 3.7, performing layer op- 517

timization after each verification is prohibitively 518

costly. By extending the update interval, additional 519

delay introduced by DP can be significantly re- 520

duced with a minor impact on the average accep- 521

tance length. Figure 4b illustrates that the speedup 522

initially rises and then falls as the Layer Optimiza- 523

tion Interval (LOI) increases. Once the LOI sur- 524

passes 128, the substantial drop in τ leads to a 525

notable decrease in speedup. 526

5.3.3 Draft-Exiting Threshold 527

As noted in Section 5.3.1, skipping 40% to 60% of 528

layers achieves an optimal balance between draft ef- 529

ficiency and cost, resulting in an improved speedup. 530

However, the cost of a single draft remains high, 531

necessitating a sufficiently high acceptance rate for 532

optimal speedup. Fortunately, EAGLE-2 (Li et al., 533

2024a) suggests using the draft model’s confidence 534

score to approximate the acceptance rate. By ad- 535

justing the Draft-Exiting Threshold (DET), we can 536

control the acceptance rate to achieve optimal ac- 537

celeration. Figure 4c shows the impact of the DET 538

on speedup and the average acceptance length τ . 539

The figure shows that setting the DET around 0.7 540

results in the highest speedup. Even as the DET 541

increases, a high speedup can still be maintained. 542

6 Conclusion 543

In this paper, we propose CLaSp, a self-speculative 544

decoding framework that adaptively adjusts the 545

layer skip strategy based on context. We discover 546

the potential of context-aware layer sparsity for 547

generating high-quality drafts. Leveraging this in- 548

sight, CLaSp performs layer optimization before 549

each draft stage with minimal additional latency, 550

significantly increasing the speedup. We conduct 551

extensive experiments across various tasks, demon- 552

strating that CLaSp achieves over a 1.3× ∼ 1.7× 553

speedup. Furthermore, detailed analysis reveals 554

that CLaSp generalizes well to different models 555

and tasks. Additionally, an in-depth discussion of 556

the hyper-parameters facilitates CLaSp’s adapta- 557

tion to different LLM backbones. For future work, 558

we aim to explore ways to better leverage the layer 559

sparsity of LLMs to further reduce inference la- 560

tency in larger models. 561
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Limitations562

The CLaSp framework dynamically adjusts the563

layer skip strategy based on context, making the564

self-speculative decoding process of LLMs more565

efficient. However, certain limitations exist. Our566

experiments are conducted solely on NVIDIA567

A800 GPUs with 80GB of memory and limited568

to LLaMA series models, leaving the potential of569

more powerful hardware and other models unex-570

plored. Additionally, while CLaSp can function571

alongside many existing speculative decoding in-572

novations, we do not investigate these integrations.573

We believe that addressing these limitations and ex-574

ploring such combinations in future research could575

lead to significant advancements.576
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