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Abstract

We present a zero-shot algorithm for build-
ing decision trees with large language models
(LLMs) based on CART principles. Unlike tra-
ditional methods, which require labeled data,
our approach uses the pretrained knowledge of
LLMs to perform key operations such as fea-
ture discretization, probability estimation, and
Gini-based split selection without training data.
We also introduce a few-shot calibration step
that refines the zero-shot tree with a small set
of labeled examples. The resulting trees are
interpretable, achieve competitive performance
on tabular datasets, and outperform existing
zero-shot baselines while approaching super-
vised models in low-data regimes. Our method
provides a transparent, knowledge-driven alter-
native for decision tree induction in settings
with limited data.

1 Introduction

Tabular data is central to decision-making in
fields like healthcare, finance, and climate sci-
ence. While traditional models—such as logistic
regression, gradient-boosted trees, and neural net-
works—perform well in these settings (Grinsztajn
et al., 2022), they require large labeled datasets,
which are often scarce or costly. In high-stakes do-
mains, interpretability is also critical—a strength of
decision trees due to their transparent, rule-based
structure (Rudin, 2019; Lipton, 2018). This paper
introduces a zero-shot framework for inducing de-
cision trees using LLMs, relying solely on feature
and target descriptions. Our method produces in-
terpretable trees that generalize well in low-data
settings by leveraging the pretrained knowledge of
the LLM.

Decision trees are the most widely used machine
learning models, valued for their interpretabil-
ity, simplicity, and effectiveness in classification
tasks (Grinsztajn et al., 2022). Traditional algo-
rithms for constructing decision trees, such as

CART and C4.5, require access to labeled datasets
to recursively partition the feature space using crite-
ria like information gain or the Gini index (Quinlan,
2014). However, these approaches face limitations
when data is scarce or entirely unavailable, prompt-
ing the need for alternative methodologies.

LLMs have demonstrated a remarkable abil-
ity to perform complex tasks in diverse domains
by leveraging knowledge encoded during pre-
training (Brown et al., 2020). LLMs excel in zero-
shot and few-shot learning paradigms, where min-
imal or no labeled examples are provided (Raffel
et al., 2020; Sanh et al., 2022), making them ideal
candidates for addressing data-scarce challenges.
This paper introduces a zero-shot method for build-
ing decision trees with an LLM.

Our method leverages the contextual reasoning
capabilities of LLMs to carry out the core op-
erations required for decision tree construction.
Specifically, the LLM is prompted to discretize
continuous attributes and estimate conditional class
probabilities—key steps in evaluating potential
splits. Using this information, we recursively build
the tree by selecting splits that minimize the Gini
index. Our approach shows that LLMs can emu-
late the logic of traditional decision tree algorithms
without access to labeled training data.

Our contributions are summarized as follows:

* Zero-Shot Tree Induction. We introduce an
algorithm for constructing decision trees in a
zero-shot and few-shot setting.

* Effectiveness in Data-Scarce Environments.
We show that our LLM-based approach per-
forms competitively in low-data regimes.

* Few-Shot Calibration. We introduce a few-
shot refinement procedure that adjusts the tree
using a small number of labeled examples.



2 Related Work
2.1 Classification with LLMs

Transformer models (Vaswani, 2017), which form
the backbone of most large language models, are
pre-trained on vast amounts of text data and demon-
strate remarkable versatility in generalizing to new
tasks with minimal or no labeled examples. The
architecture’s ability to effectively leverage prior
knowledge encoded within its parameters makes
LLMs particularly attractive for few-shot learning
scenarios (Brown et al., 2020; Sanh et al., 2022).

Zero-Shot Classification Zero-shot learning has
emerged as a promising approach for scenarios
where labeled data is scarce or unavailable. This
method leverages pre-trained models to predict
new, unseen tasks without task-specific training
data. Recent studies have shown the potential of
zero-shot learning in various domains. Hegselmann
et al. (Hegselmann et al., 2023) demonstrated that
prompting LLMs with zero-shot or few-shot exam-
ples yields performance comparable to fine-tuned
models in specific classification tasks. Similarly,
pre-training on large tabular datasets further en-
hances an LLM’s ability to generalize to unseen
data, as shown by work in supervised tabular learn-
ing (Wen et al., 2024), unified table representa-
tion (Yang et al., 2024), and tabular Transform-
ers (Wang and Sun, 2022). Recent work has demon-
strated that LLLMs can generate decision trees with-
out data (Knauer et al., 2024). Our approach is
closest to this line but differs in that we construct
the tree iteratively, inspired by the CART algo-
rithm, prompting the model step by step for splits
and conditional probabilities.

Supervised Learning Deep learning for tabu-
lar data has gained attention recently, resulting in
new transformer-based architectures. (Yin et al.,
2020) introduced TabERT, a self-supervised model
that improves learning from structured datasets
through goals such as masked cell prediction and
contrastive losses. Building on this, (Arik and
Pfister, 2021) proposed TabNet, an attention-based
framework specifically designed to capture sparse
and meaningful feature interactions in tabular data.
Similarly, (Somepalli et al., 2021; Chen et al., 2023)
developed SAINT and ExcelFormer, respectively,
both of which propose novel self-attention mech-
anisms to model interactions in tabular datasets.
MetaTree (Zhuang et al., 2024) uses transform-
ers and meta-learning to construct decision trees,

mirroring classical greedy algorithms recursively.
Other approaches, such as (Hollmann et al., 2022),
introduced 7abPFN, a Bayesian neural network
pre-trained on synthetic tabular datasets, demon-
strating strong generalization capabilities across
diverse tabular tasks.

Fine-Tuning Another approach for classification
is fine-tuning an LLLM with a serialized represen-
tation of the tabular data and a description of the
classification problem (Dinh et al., 2022; Hegsel-
mann et al., 2023). TapTap employs pre-training
on a large corpus of tabular data and can generate
high-quality synthetic tables to improve the perfor-
mance of prediction models (Zhang et al., 2023a).
To achieve this, TableGPT2 (Su et al., 2024) cre-
ates a dataset that includes various tabular datasets
and tasks, such as classifications, for fine-tuning
LLMs. TableLlama (Zhang et al., 2023b) shows the
potential of fine-tuning with multimodal models to
address the challenges of table-based tasks.

Interpretable Classification Despite advances
in classification with machine learning methods,
gradient-boosted tree ensembles remain the dom-
inant choice for many practical applications due
to their robustness, interpretability, and consistent
performance across various tabular datasets. Clas-
sic methods such as XGBoost (Chen and Guestrin,
2016) and LightGBM (Ke et al., 2017) continue to
set the standard, often outperforming deep learn-
ing models in real-world scenarios (Shwartz-Ziv
and Armon, 2022; Grinsztajn et al., 2022; Borisov
et al., 2022; McElfresh et al., 2024). Studies have
highlighted the unique challenges deep learning
models face with tabular data, including feature
representation, small sample sizes, and overfitting,
further reinforcing the advantages of traditional
ensemble methods (Borisov et al., 2022). This
persistent superiority emphasizes the need for hy-
brid approaches that combine the strengths of deep
learning with the efficiency and interpretability of
tree-based models (McElfresh et al., 2024).

3 Methodology

We propose a zero-shot, recursive algorithm for
constructing binary decision trees using a LLM.
The process is composed of four core steps: (1)
proposing feature splits, (2) estimating class proba-
bilities, (3) selecting optimal splits using the Gini
index, and (4) few-shot calibration. The tree is
built recursively without supervised training data,
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Figure 1: Overview of Zero-Shot Decision Tree Construction with LLMs. Given only feature descriptions, the
model selects split nodes and estimates class probabilities. The constraint imposed by the branch is added to a list
of constraints, and it iterates again, thus going down one level in the tree.

relying solely on the names and descriptions of
the input features and target variable. An optional
few-shot calibration step allows the model to re-
fine node probabilities using limited supervision.
Figure 1 illustrates the full process.

This recursive framework produces a hierarchi-
cal structure with decision nodes representing at-
tribute splits and leaf nodes corresponding to high-
confidence prediction probabilities.

3.1 Overview of the Process

The algorithm takes as input the names, types, and
descriptions of the features and target variable. For
example, when predicting whether a patient has
diabetes based on attributes like age, BMI, and glu-
cose, the LLLM leverages its pretrained knowledge
to drive the construction process.

First, the Feature Split Proposer suggests candi-
date splits (e.g., “age > 50”) based on the semantics
of the features. Next, the Feature Probability Es-
timator evaluates each split by estimating class
probabilities for the resulting branches (e.g., 85%
probability of diabetes for “glucose > 140”).

The Gini Impurity Selector scores these splits
using the Gini index and selects the one that maxi-
mizes label homogeneity. The selected split parti-
tions the input space, and the algorithm recursively
proceeds on each resulting branch. This contin-
ues until a stopping condition is met: a confidence
threshold 7 = 0.9 or a maximum tree depth.

Although the core tree is constructed without
labeled data, we optionally apply a few-shot cal-
ibration step to refine class probabilities using a
small labeled set. This improves predictive perfor-

mance without altering the structure of the tree.

3.2 Attribute Splitting

The first step to build the decision tree is to gen-
erate splits for each feature based on the target
variable (e.g., probability of diabetes). To do this,
the LLM is provided with the feature names, their
types (numerical or categorical, along with possible
categories), and any contextual constraints or prior
probabilities from the current subtree. Using this
information, the LLM proposes semantically valid
and context-aware partitions, such as “glucose >
140” or “age > 507, that aim to divide the input
space in a way that reflects the problem context.

All this information is passed to the language
model via prompting, asking it to deliver a value
or groupings that allow the data to be divided into
2 groups. The detailed prompts can be found in
Appendix Section D.1.1.

3.2.1 Numerical Attributes

For numerical features, the LLM proposes a thresh-
old to split the data into two groups: values
< threshold and values > threshold. These
thresholds are guided by the model’s contextual
knowledge and aim to improve label separation.
For instance, for the feature “age,” the LLM might
suggest a split at 35. The feature’s data type (e.g.,
float or integer) is also provided for validation. A
typical prompt is:

Your role is to propose a single numeric
value to divide the data into two groups
based on the attribute {feature}...



3.2.2 Categorical Attributes

For categorical features, the LLM proposes
splits by dividing the categories into two dis-
joint, semantically meaningful groups that aim
to separate target labels effectively. For ex-
ample, given the feature ‘“color” with cate-
gories {red,blue, green,yellow}, it might re-
turn {red, blue} vs. {green,yellow}. A typical
prompt is:

Your task is to propose two disjoint
groups of categories based on the cat-
egorical attribute {feature} with possi-
ble categories: {possible values}...

3.3 Probability Estimation

For each proposed split, the LLM estimates the
conditional probabilities of the target labels for the
resulting branches (e.g., “values < threshold”
vs. “> threshold”). These estimates incorporate
the split condition, feature descriptions, and prior
probabilities from the parent node. By considering
the context of the current subtree, the LLM pro-
vides class distributions that guide the selection of
the most informative split. A typical prompt is:

Estimate the probabilities for each tar-
get class based on the previous node and
the new split. Avoid overconfident pre-
dictions.

The LLM uses its pretrained knowledge to in-
fer label distributions without access to data, rely-
ing on patterns and contextual cues (Brown et al.,
2020). To prevent overestimation, which is com-
mon in early splits, we refined the prompts to in-
struct the LLM to avoid overconfidence and ensure
more balanced probability estimates. These esti-
mated probabilities are then used to evaluate split
quality via Gini impurity.

3.4 Gini Impurity Minimization

To guide tree construction, each candidate split is
evaluated using Gini impurity, which quantifies
label homogeneity within the resulting branches.
The split with the lowest impurity, indicating the
best class separation, is selected. Gini impurity is
defined as:

C
Gini=1->pj,
=1

where p; is the predicted probability of the i-th
class, and C' is the number of target labels.

Since our approach lacks access to instance-
level data, we aggregate the impurities of the two
branches using the harmonic mean:

S 2. Gini; - Ginig
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Unlike CART (Breiman, 2017), which uses a
weighted average based on instance counts, the
harmonic mean favors balanced splits by penaliz-
ing uneven impurity distributions. This encourages
the selection of splits that are effective for both
branches, improving overall tree quality and pro-
moting label purity across the structure.

Branch Creation. Once the optimal split is se-
lected, the input context is partitioned into two
branches corresponding to the left and right child
nodes. Each branch inherits the current constraints
and incorporates the new condition imposed by the
split (e.g., “glucose > 140). These updated con-
texts are treated as independent subproblems, and
the decision tree construction procedure is recur-
sively applied to each.

Constraint Propagation. As the tree expands,
feature constraints are dynamically maintained to
ensure valid and non-redundant splits. For numeri-
cal features, the upper or lower bounds are adjusted
based on previous split conditions, effectively nar-
rowing the feature’s valid range. For categorical
features, selected categories are removed from con-
sideration; if only one category remains, the feature
is excluded from future splits. This mechanism en-
sures that subsequent decisions are consistent with
earlier ones and helps prevent logically invalid or
redundant partitions.

Stopping Criteria. Recursion continues until a
stopping condition is met: either the maximum tree
depth is reached, or the predicted probability of a
single class exceeds a confidence threshold (e.g.,
> 0.9). At that point, a leaf node is created, storing
the most probable class label and the final class
probabilities.

3.4.1 Few-Shot Tree Calibration

Once the zero-shot tree has been constructed, we
apply a calibration step to refine the class probabili-
ties at the leaf nodes using a small labeled set. This
post hoc adjustment improves predictive accuracy
without altering the tree structure. For each labeled
example, the tree is traversed to the corresponding
leaf, and the probability assigned to the true label is



incrementally updated. Let L P denote the current
probability of the correct class; it is updated using
the following rule:

LP « LP+p(1—LP), (1)

where p is a learning rate that controls the strength
of the adjustment. This formula increases the true
label’s probability by a fraction p of the remaining
mass, gradually reinforcing correct predictions as
more examples are processed.

3.5 Prompt Design

The prompts used for feature splitting and probabil-
ity estimation required careful refinement to ensure
valid and balanced outputs. Early challenges in-
cluded overlapping groupings, biased probabilities,
and invalid splits. To address these issues, prompts
were iteratively adjusted with explicit constraints
and examples. See Appendix D for prompt details.

4 Experimental Design and Evaluation

To evaluate the proposed methodology for zero-
shot decision trees, we conducted a compara-
tive analysis with two baseline approaches: (1)
TabLLM (Hegselmann et al., 2023), a state-of-
the-art method for tabular data classification using
LLMs, and (2) traditional supervised Decision
Trees. These methods were selected as bench-
marks to assess the strengths and limitations of
our approach, focusing on ROC-AUC and accuracy
scores across diverse classification tasks.

For the traditional Decision Tree models, we var-
ied the max_depth parameter (set to 7, 5, and 3) to
analyze its impact on predictive accuracy and inter-
pretability. For the zero-shot methods, we test two
LLMs: GPT-40-mini (closed-weight) and L1ama
4-70B (open-source).

To assess performance under different data
regimes, we trained the supervised models us-
ing subsets of 0,4,8,16,32,64, 128,256 exam-
ples, and the full training set. For each shot size
k, we extracted multiple independent support sets
to obtain statistically robust metrics: 50 random
samples for those of the classical decision tree, 10
for the LLM tree (due to the higher inference cost),
and 4 for TabLLM (the more expensive variant).
Each model was trained/evaluated at each repeti-
tion, and the ROC-AUC and accuracy scores shown
correspond to the mean of those repetitions. This
design enables a direct comparison of our method’s
generalization ability and data efficiency in both

low- and high-resource scenarios. Additionally, for
our method, the same labeled subsets were used to
apply the few-shot calibration step.

Given that our approach is designed for low-
data settings, we selected datasets from diverse do-
mains—health, finance, environment, and politics
to evaluate its adaptability across real-world sce-
narios. Notably, we included two recent political
datasets: Presidential Approval and Judgment on
Abortion from September 2024, which fall beyond
the training cutoffs of GPT-4 (October 2023) (Ope-
nAl, 2023) and Llama 4 Maverick (August 2024).
This offered a unique opportunity to test the robust-
ness and generalization of our zero-shot method on
truly out-of-sample data.

Each dataset was split into training and testing
sets to compare across methods. Training data was
used to train supervised models and apply few-shot
calibration, while test sets were used to evaluate all
methods, including zero-shot.

4.1 Baseline Methods

TabLLM zero-shot This baseline leverages the
ability of LLMs to perform zero-shot classification
directly on tabular data. TabLLM is designed to
encode tabular data into text prompts, referred to as
serialization, and combine it with a concise descrip-
tion of the classification problem. This enables the
model to perform classification without training,
relying solely on its prior knowledge.

Traditional Decision Trees Decision trees were
trained using Scikit-learn (Pedregosa et al.,
2012) to serve as a supervised learning baseline.
These models rely on access to labeled training
data and were evaluated using varying amounts of
data to understand the impact of data availability
on model performance. In our experiments, we
used the max_depth parameter of the decision tree
model to control the maximum depth of the tree.

4.2 Data

We selected datasets from health, finance, environ-
ment, and politics to evaluate the adaptability of
our method across diverse real-world tasks. The
datasets used are:

Diabetes (National Institute of Diabetes and Di-
gestive and Kidney Diseases, 2016) A health-
related dataset focused on predicting the onset of
diabetes based on individual measurements.



Credit (UCI Machine Learning Repository,
1994) A financial dataset containing information
on past loans. The target variable predicts whether
an individual is likely to repay the loan.

Weather (Kumar, 2023) A binary weather pre-
diction dataset (sunny vs. rainy) based on envi-
ronmental features like temperature and humidity,
derived from a multiclass dataset by selecting two
contrasting climates.

Hepatic Damage (Soriano, 2022) This dataset
was binarized to answer: Is there liver damage?
Patients with Hepatitis C, Fibrosis, or Cirrhosis
were labeled True, healthy individuals False, and
suspected cases were excluded.

Presidential Approval (Centro de Estudios
Publicos, 2024) A binary classification task pre-
dicting whether individuals approve or disapprove
of the Chilean government, based on demographic
features such as age, religion, and education. The
dataset is drawn from a 2024 public survey, beyond
the training cutoffs of the LLMs used (OpenAl,
2023), providing a robust test of generalization to
unseen contexts.

Abortion Opinion (Centro de Estudios Piblicos,
2024) Also sourced from the same 2024 public
survey, this task predicts views on abortion using
the same input features. The original five-point
question was binarized by retaining only the most
polarized responses: full support vs. total prohibi-
tion.

5 Results

Table 1 summarizes the ROC-AUC scores for each
method. For tree-based methods, we selected the
tree max depth that yielded the strongest perfor-
mance on average across datasets and shot con-
figurations; the distribution of ROC-AUC scores
is shown in Figure 2. The compared methods
include TabLLM, LLM-generated decision trees
(LLM Trees), and traditional decision trees trained
with the CART algorithm (DT). Full results, in-
cluding accuracy scores and performance across all
depths and shot counts, are provided in Tables 3
and 4 in the Appendix.

Performance of TabLLM Zero-Shot TabLLM
demonstrated moderate performance, excelling in
simpler datasets like Weather, where best score
achieved is 91% with only 8 shots. However, it

struggled with datasets such as Presidential Ap-
proval and Credit, achieving lower scores, around
55%.

Performance of Zero-Shot LLLM Tree Our
LLM-Tree outperformed both TabLLLM and tradi-
tional DT on three of the six datasets. In Abortion,
the Llama-4 variant (max depth = 5) achieved a
ROC-AUC of 77%, outperforming all other com-
petitors. In Diabetes, the GPT-40-mini model (max
depth = 3) obtained 76 % ROC-AUC—surpassed
only by the traditional DT trained with all train-
ing data. Performance on Presidential Approval
was similarly competitive: the Llama-4 tree de-
livered around 58% ROC-AUC for each of shots,
outperforming TabLLM, but still behind the tra-
ditional DT trained on the full data. In contrast,
performance is weaker on the remaining datasets:
in Weather, the best configuration (256 shots with
Llama 4) reached 88% ROC-AUC but remained
below TabLLM, while in Credit and Hepatic dam-
age, scores are around 52%. The results indicate
that there is no best LLM in all cases to build the
tree via LLMs. Also, in some cases, incorporating
more shots into the LLM Trees can be negative.

Traditional Decision Trees with Full Data Tra-
ditional DTs trained on full datasets outperformed
almost all cases the zero- or few-shot methods. The
performance of these trees in the Weather and Hep-
atic damage sets stands out, where for 128 and 256
shots it already possesses over 80% roc-auc. How-
ever, it’s surprising that in the Abortion dataset,
where the traditional trees have their best roc-auc
of 73% using all the data, the method of Trees con-
structed via LLMs outperforms it, even when using
very few shots.

Low-Data Scenarios. In low-data scenarios (e.g.,
4—32 shots), traditional DTs exhibited limitations,
highlighting the competitive performance of LLM-
based zero- and few-shot approaches in resource-
constrained environments. For example, with less
than 32 shots, traditional DTs are outperformed by
DT constructed via LLM method in datasets such
as Abortion, Presidential Approval, and Diabetes,
demonstrating the potential of LLM-based methods
in handling limited data scenarios.

5.1 Interpretability Analysis

A key advantage of our approach is its ability to
combine the interpretability of decision trees with
zero-shot learning, making it well-suited for low-



| Number of Shots

Dataset Method

| O 4 8 16 32 64 128 256 all
DT (max depth=3) — 52 53 58 59 66 .69 73 .73
LLM Tree Llama 4 (max depth=5) 77 76 75 7S 73 73 72 73 —
Abortion LLM Tree gpt-40-mini (max depth=3) 63 .63 .62 62 62 .64 63 .64 —
TabLLM Llama 4 66 62 .64 65 64 .64 69 .69 —
TabLLM gpt-40-mini 63 62 .65 .61 .66 .67 .63 .66 —
DT (max depth=3) — 52 52 52 52 54 57 58 .63
Presidential LLM Tree Llama-4 (max depth=5) 58 58 56 55 56 58 .60 59 0 —
A 1 LLM Tree gpt-40-mini (max depth=3) 56 .56 56 56 57 57 57 56 0 —
pprova TabLLM Llama-4 58 52 .53 51 .51 52 50 51 —
TabLLM gpt-40-mini 51 56 55 55 52 54 53 54 —
DT (max depth=3) — 50 53 55 56 60 .63 .68 .70
LLM Tree Llama-4 (max depth=5) 50 50 50 50 .50 .50 510 52 —
Credit LLM Tree gpt-40-mini (max depth=3) 50 50 50 50 50 50 50 50 —
TabLLM Llama-4 51 54 57 61 58 59 63 .65 —
TabLLM gpt-4o0-mini 55 55 54 55 54 51 53 53 —
DT (max depth=3) — 55 60 62 .64 66 70 .72 .79
LLM Tree Llama-4 (max depth=5) 59 61 62 64 .66 .68 .67 .69 —

Diabetes LLM Tree gpt-4o0-mini (max depth=3) 70 .68 .69 .68 .71 .74 74

TabLLM Llama-4
TabLLM gpt-4o0-mini

DT (max depth=3)

LLM Tree Llama-4 (max depth=5)
Hepatic damage

TabLLM Llama-4

TabLLM gpt-40-mini

LLM Tree gpt-40-mini (max depth=3)

DT (max depth=3)

LLM Tree Llama-4 (max depth=5)
Weather

TabLLM Llama-4

TabLLM gpt-4o0-mini

LLM Tree gpt-4o-mini (max depth=3)

Table 1: ROC-AUC results for traditional decision trees, TabLLM, and the method presented in this paper, trees
created with LLMs. For the tree-based models, the scores shown correspond to the configuration with a fixed
maximum depth that produced the most robust performance.

resource scenarios. Figure 3 in the Appendix il-
lustrates a zero-shot tree generated for the Dia-
betes dataset and compares it with a traditional tree
trained on the full dataset. Despite using no labeled
examples, the zero-shot tree achieves comparable
predictive performance.

The zero-shot decision tree model, with a max-
imum depth of 5, offers a straightforward and in-
terpretable structure, making it accessible to non-
technical users. Its feature selection emphasizes
domain-relevant variables like Age, Glucose, and
Insulin, which aligns with user expectations and
enhances trust in the model’s decisions. The use
of simple, intuitive decision thresholds, such as
Age < 25 or Glucose < 140, further supports the
interpretability of the model.

However, this approach sacrifices fine-grained
distinctions in favor of simplicity, which may re-
duce accuracy and limit the model’s ability to
capture subtler patterns that traditional decision
trees can identify. The zero-shot tree, with less
nodes compared to the fully trained tree, reflects
this trade-off. Additionally, the exclusion of fea-

tures such as Pregnancies, Blood Pressure, and
Diabetes Pedigree Function highlights a bal-
ance between interpretability and comprehensive-
ness in feature selection.

Overall, the zero-shot decision tree excels in in-
terpretability but may lack robustness due to its sim-
plified decision-making process, making it better
suited for applications where ease of understanding
takes precedence over detailed accuracy.

6 Discussion and Conclusion

This method leverages the LLMs’ pre-trained
knowledge to generate interpretable models with-
out requiring labeled data. Our approach mimics
the CART algorithm via iterative prompting to pro-
duce decision trees that rival traditional supervised
models in low-data settings. This section discusses
the method’s advantages and limitations and sug-
gests directions for future work.

6.1 Advantages

Efficiency and Deployment Although construct-
ing the tree is computationally demanding, the re-
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Figure 2: Boxplot of ROC-AUC scores for each method across all dataset—shot combinations. Each box represents
the distribution of 56 scores (6 datasets x 7 shot counts) for a given method: TabLLM, LLM Trees, and traditional
decision trees. This visualization guided the choice of the max_depth used in Table 1.

sulting model is lightweight and efficient at infer-
ence time. Unlike prompt-based zero-shot classi-
fiers like TabLLM, our decision trees incur no ad-
ditional runtime cost per prediction, making them
well-suited for deployment in real-time or resource-
constrained environments.

Interpretability The use of decision trees en-
sures model transparency, a key requirement in
domains such as healthcare, law, or finance. Our
method preserves this advantage while replacing
data-driven splits with LLM-inferred structure, en-
abling users to inspect the reasoning behind each
decision path.

Performance in Low-Data Settings By rely-
ing on the semantic and statistical knowledge en-
coded in LLMs, our method performs competi-
tively where traditional methods fail due to lack of
data. This makes it a promising tool for early-stage
modeling, hypothesis generation, or deployment
in domains with expensive or sensitive data collec-
tion.

6.2 Future Work

Interactive Refinement Introducing a human-in-
the-loop refinement process could improve contex-
tual relevance and mitigate LL.Ms biases. Experts
might refine or validate the tree structure iteratively
during its construction, combining automation with
expert oversight.

Domain-Specific Fine-Tuning Fine-tuning the
model on domain-specific data could enhance the
accuracy and relevance of the constructed trees.
Future work could explore techniques for targeted
adaptation of LLLMs to specific fields, ensuring
alignment with the nuances of specialized datasets.

Bias Mitigation Biases embedded in the LLM
can influence the construction of decision trees.
Future research could integrate fairness-aware al-
gorithms into the tree-building process, ensuring
that attribute selection, discretization, and splitting
decisions account for fairness considerations and
regulatory requirements.

6.3 Final Remarks

Our findings suggest that zero-shot decision trees
built via LLMs are a viable alternative to super-
vised models in data-scarce environments. The
method combines interpretability, simplicity, and
generalization from pretraining, defining a new
baseline for interpretable classification without la-
beled data. Future work should address the lim-
itations of model bias, opacity in reasoning, and
domain misalignment to make this framework suit-
able for broader adoption.
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Limitations

The use of LLMs in the zero-shot model introduces
inherent risks related to bias and discrimination, as
these models are trained on vast amounts of data
that may contain historical and systemic biases.
This may result in models that not only reflect but
also reinforce these biases.

LLM Bias LLMs are trained on vast amounts
of text data from diverse sources, inevitably in-
cluding societal biases. These biases can be en-
coded into the knowledge base of the LLM and
may inadvertently affect its outputs. When used for
decision tree construction, these biases could man-
ifest in selecting attributes, discretizing attribute
values, or the computation of probabilities, poten-
tially leading to models that reflect and perpetuate
these biases. For example, the LLM might pri-
oritize certain features based on its training data
rather than their relevance to the problem domain,
inadvertently embedding stereotypical or unfair as-
sumptions into the model. Careful monitoring of
the LLM’s outputs and evaluation of resulting mod-
els are needed to detect and correct this bias. Tech-
niques such as auditing the generated trees for fair-
ness, analyzing the distributions of decisions across
sensitive attributes, and leveraging fairness-aware
metrics can help identify and address bias. Addi-
tionally, incorporating domain expertise to cross-
validate the model’s decisions can provide a safe-
guard against unintentional perpetuation of harmful
biases (Mehrabi et al., 2021).

Dependency on Pre-trained Knowledge The
proposed method relies heavily on the pre-trained
knowledge embedded in the LLM. While this al-
lows for zero-shot decision tree construction, it also
means that the quality and accuracy of the trees are
inherently limited by the breadth and depth of the
LLM’s training data (Bommasani et al., 2021). If
the LLM lacks sufficient knowledge about a particu-
lar domain or exhibits inaccuracies in its responses,
this could compromise the performance of the re-
sulting decision tree. One potential mitigation strat-
egy is fine-tuning the LLM on domain-specific data
by tailoring the model’s knowledge to the specific
problem context.

Interpretability vs. LLM Complexity One of
the key advantages of decision trees is their inter-
pretability. However, the involvement of an LLM
introduces a layer of complexity that may not be

fully transparent. For instance, the rationale be-
hind the LLM’s decisions during attribute selection
or probability assignment might not always be ex-
plainable, potentially reducing the model’s overall
transparency. Achieving a balance between the clar-
ity of decision trees and the inherent complexity of
LLM operations is essential and raises important
research questions.
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A Statistics for Data

Table 2 shows that class imbalance varies con-
siderably across corpora. WEATHER is perfectly
balanced, whereas HEPATIC DAMAGE is highly
skewed (= 9:1), and PRESIDENTIAL APPROVAL
presents a moderate 2:1 ratio.

Pre-processing. All column names were nor-
malised to short, descriptive English tokens to
improve LLM comprehension. For categorical
variables, categories representing < 5% of the
data were merged into an OTHER label. Multi-
class corpora were binarised by keeping the two
most extreme categories (e.g. rainy vs. sunny in
WEATHER). No additional filtering or resampling
was performed.

B Model Size and Budget

This section details the models used, their parame-
ters, and the computational and financial resources
required for running the experiments. We focus
on inference-only usage of LLMs via cloud APIs,
alongside local experiments for traditional decision
trees. Cost estimates reflect real-world deployment
conditions and highlight the accessibility of our
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zero-shot approach in terms of both model size and
compute budget.

Models

* GPT-40-mini (2024-07-18, OpenAl API). Pa-
rameter count not publicly disclosed'.

e Llama 4 Maverick 17B Instruct (128E) via
OpenRouter. 17 B parameters.

* CART baselines. Depths 3/5/7; each tree
< 29 leaves, trained with scikit-learn.

Compute.
* LLM inference only (no fine-tuning).

* GPT-40-mini: 41.735M input tokens,
2.812M output tokens — USD $ 63 (TabLLM
evaluation) + $ 12 (our LLM Tree generation)
=$75.

e Llama 4 17B: 314 k tokens total — USD $
60.06 (evaluation + tree construction).

* Hardware. All LLM calls executed via cloud
APIs from Santiago, Chile. Local experi-
ments (data prep, CART training, evaluation
scripts) ran on an HP Victus notebook with an
NVIDIA RTX 3060 6 GB GPU and 16 GB
RAM (Python 3.12.1, scikit-learn 1.4.2).

Budget summary. Total cloud spend: $ 135.06.
No additional GPU hours beyond API usage were
incurred; local GPU utilization was solely for fea-
ture engineering, plotting, and traditional decision
tree training.

C Construted Trees

The left panel in Figure 3 shows a tree produced by
the LLM-Tree method (GPT-40-mini, zero-shot),
while the right panel displays a traditional CART
decision tree constrained to a maximum depth of
5. These visualizations highlight structural differ-
ences between language-model—-generated splits
and those obtained through conventional impurity
minimization.

"Industry estimates place the model in the 15-25B range;
we report no official figure.



Dataset Rows Cols Train Test Class balance

Class 0 Class 1
Diabetes (PIMA) 768 9 614 154 500 268
German Credit 1,000 21 800 200 700 (good) 300 (bad)
Weather (Rain/Sun) 6,600 11 5280 1,320 3,300 (rainy) 3,300 (sunny)
Hepatic Damage 582 13 466 116 526 (no) 56 (yes)
Presidential Approval 628 13 502 126 428 (disapprove) 200 (approve)
Abortion Opinion 334 14 267 67 219 (pro-choice) 115 (anti)

Table 2: Final dataset sizes after cleaning. Splits are 80/20 stratified train—test. No separate dev set; hyperparameters
were fixed a priori.

Traditional DT
max_depth=5 (trained with all data)
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Figure 3: Comparison of decision trees: (Left) Zero-shot method with LLMs and (Right) CART algorithm for the
Diabetes dataset. These trees are simplified versions where branches leading to unanimous outcomes (Yes or No)
are condensed to single nodes.
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D Prompts imagining that you have data to answer
it. You must respect the restrictions
given to you. If there is more than one
restriction for the same attribute you

must respect all restrictions.

This section presents the prompts in each step re-
quiring an LLM call. Notably, two prompts are
used for the three steps involving LLMs: one in-
structs the LLM to perform a task, and the other
extracts its response, the parser. The approach was
refined to request direct, concise answers instead of
detailed analysis to improve efficiency and reduce
computational costs.

Each prompt consists of three parts: the system
message, the assistant’s response, and the user’s
request.

Assistant message:

Understood. I will reason and provide
a numerical value based solely on my
knowledge, ensuring the value of the at-
tribute {feature} meets ALL the con-
straints: {branch context?}. I will pro-
vide a single numeric value to divide the
data into two groups in a short response.
If there is more than one restriction for
the same attribute, all restrictions must
be respected.

D.1 Attribute Splitting Proposals
D.1.1 Get Numerical Features Splits

System message:

. e User message:
You are an expert in classifying g

{problem} without data. Your role is to
propose a single numeric value to divide
the data into two groups based on the

What value of the attribute {feature}
(that meets the constraints: {branch
context?}) should I use to divide the data

attribute {feature}, don’t analyze or
reason too much, delivers the numerical
value directly. You must choose the value

12

into two groups? Choose a single nu-
meric value, and answer only with the
value, without any other text.



D.1.2 Parse Numerical Features Splits

System message:

You are an expert in extracting informa-
tion from responses. Your task is to ex-
tract the numeric value suggested for di-
viding data into two groups based on a
specific feature. Don’t analyze or reason
too much, delivers the numerical value
directly.

Assistant message:

Understood. 1 will receive your re-
sponse in the following format: In-
put:<response>. Then, I will extract and
provide the numeric value after the prefix
"Output:’<numeric value>. For example:
Input: ’For the numeric feature age, the
best division is 15.5°, I will respond ’Out-
put: 15.5° without adding anything else.
If no numeric value or grouping can be
extracted, I will respond with the string
"Nothing’.

User message:

For the numeric feature '{feature}’, ex-
tract the numeric value indicating the
cutoff point to divide the data into two
groups. Input: {response text}. I will
answer only with the numeric value and
the text ’Output:’, and nothing else.

D.1.3 Get Categoric Features Splits

System message:

You are an expert in {problem}. Your
task is to use your knowledge to propose
two disjoint groups of categories based
on the categorical attribute {feature?}
with possible categories: {possible
values}, don’t analyze or reason too
much, delivers the groupings directly..
You have to try to make the groups
formed as homogeneous as possible ac-
cording to the problem variable that has
as labels { target labels}.

Assistant message:

Understood. I will reason and provide
two disjoint grpups of categories based
solely on my knowledge, ensuring the

13

groupings meet the constraints: {branch
context}. I will provide two disjoint
groupings of categories to divide the data
in a short response. 1 will try to to make
the groups as homogeneous as possible.

User message:

For the categorical attribute {feature}
(that meets the constraints: {branch
context}) with possible values:
{possible values}, what two groups
of categories should I use to divide the
data into two groups as homogeneously
as possible according to the {problem}
variable with labels { target labels}?
Choose two disjoint groupings, and
answer only with the groupings, without
any other text.

D.1.4 Parse Categoric Features Splits

System message:

You are an expert in extracting informa-
tion from responses. Your task is to ex-
tract the two disjoint groupings of cate-
gories suggested for dividing data into
two groups based on a specific feature.

Assistant message:

Understood. I will receive your
response in the following format:
Input:<response>. Then, I will ex-
tract and provide the two disjoint
groupings after the prefix ’Out-
put:’<grouping_1>;:<grouping_2>.
For example: Input: "For the categorical
feature color, the best division is to
create a group of colors [red, green]
and another group of colors [blue]’, 1
will respond ’Output: red, green;;blue’
without adding anything else. If no
groupings can be extracted, 1 will
respond with the string 'Nothing .

User message:

For the categorical feature "{feature}’
with possible values: {possible
values}, extract the two disjoint
groupings of categories suggested for
dividing the data into two groups. Input:
{response text}



D.1.5 Get Probabilities Estimation

System message:

You are an expert in estimating the la-
bels probabilities at the nodes of a de-
cision tree. Your task is to provide a
rough estimate of the probabilities that
a given instance belongs to the possible
target classes based on: the character-
istics, probabilities of the previous node
and the information from the new node
split. Use only your general knowledge,
since you do not have specific data. Re-
member that splits usually improve node
purity. Remember also when there is lit-
tle information do not give high proba-
bilities (equal or higher than 0.9), unless
you are very sure of them, because you
may be overestimating. Don’t analyze or
reason too much, delivers the numerical
value directly.

Assistant message:

Understood. Although it is difficult to
provide exact probabilities for a partic-
ular individual, I will reason based on
the information provided and my general
knowledge to provide rough estimates of
specific probabilities. 1 will provide prob-
ability values between 0 and 1 for each
label, for each possible new division. In
case there is little information, I will give
low probabilities (< 0.9) unless I am very
sure. On the other hand, I will not give
high probabilities (>= 0.9) unless I am
very sure, as I could be overestimating.

User message:

Considering a classification problem
of {problem}, estimate the probabil-
ity that a {instance type}instance
type has the target variable {target
feature} for each of the possible
values: {classes}, based on the
characteristics of the previous node:
{previous context} where the proba-
bility of the target variable is {previous
probabilities}, and the possible new
divisions are: {division 1} or
{division 2}.
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D.1.6 Parse Probabilities Estimation

System message:

You are an expert in extracting informa-
tion from responses. Your task is to ex-
tract the label probability suggested for
a classification problem to a specific la-
bel and new information. Do not provide
anything other than the Output. Adhere
to the format. Don’t analyze or reason
too much, delivers the numerical value
directly.

Assistant message:

Understood. I will extract the label
probability to a new information from
the given response and provide it after
the prefix ’Output:’<probability>. If no
probability can be extracted, I will re-
spond with ’Nothing’. For example: In-
put: "The probability that a {instance
type} has the target variable with the
value {class 1} is 0.8 Output: 0.8.
Other example: Input: *The probability
that a {instance type} has the target
variable with the value {class 2} is 0.3’
Output: 0.3.

User message:

For the classification problem with the
label {1abel} and the following new in-
formation {new information}, extract
the probability suggested for the prob-
lem. The given response is: {response
text]}.

E Detailed Results Tables

Tables 3 and 4 provide the full evaluation results for
all methods across datasets and shot configurations.
Table 3 reports ROC-AUC scores, while Table 4
presents accuracy scores. Results are shown for
all model variants, including traditional decision
trees (with varying depths), LLM-generated trees,
and TabLLM baselines, enabling a comprehensive
comparison across methods and settings.



| Number of Shots

Dataset Method
| O 4 8 16 32 64 128 256 all
DT (max depth=3) — 52 53 58 59 66 .69 .73 .73
DT (max depth=5) — 52 53 58 59 62 .67 .66 .63
DT (max depth=7) — 52 53 57 58 .61 .65 .67 .65
LLM Tree Llama 4 (max depth=3) 59 59 60 60 56 58 55 56 —
LLM Tree Llama 4 (max depth=5) a7 96 75 7S 73 73 72 73 —
Abortion LLM Tree Llama 4 (max depth=7) J20073 072 71 70 73 714 7T —
LLM Tree gpt-40-mini (max depth=3) | .63 .63 .62 .62 .62 .64 .63 .64 —
LLM Tree gpt-40-mini (max depth=5) | .57 .58 .59 59 .60 .62 .62 .63 —
LLM Tree gpt-40-mini (max depth=7) | .61 .62 .63 62 .63 .63 .63 .65 —
TabLLM Llama 4 66 62 64 65 64 64 69 69 —
TabLLM gpt-4o0-mini 63 62 65 61 .66 .67 .63 .66 —
DT (max depth=3) — 52 52 52 52 54 57 58 .63
DT (max depth=5) — 52 52 53 52 53 56 .56 .57
DT (max depth=7) — 52 52 53 52 52 55 53 53
LLM Tree Llama-4 (max depth=3) .66 .62 .61 .60 .60 .60 .61 59 —
Presidential LLM Tree Llama-4 (max depth=5) S8 58 56 55 56 58 .60 59 0 —
A 1 LLM Tree Llama-4 (max depth=7) S5 57 55 54 56 59 61 .60 —
pprova LLM Tree gpt-4o-mini (max depth=3) | .56 .56 .56 .56 .57 .57 .57 .56 —
LLM Tree gpt-40-mini (max depth=5) | .58 .59 .59 59 59 60 59 .57 —
LLM Tree gpt-40-mini (max depth=7) | .58 .59 .59 59 .60 .60 .59 .57 —
TabLLM Llama-4 S8 52 53 51 51 52 50 51 —
TabLLM gpt-4o0-mini S1 .56 55 55 52 54 53 54 —
DT (max depth=3) — 50 53 55 56 .60 .63 .68 .70
DT (max depth=5) — 50 53 55 57 59 61 .65 .67
DT (max depth=7) — 50 53 55 56 58 .59 .63 .68
LLM Tree Llama-4 (max depth=3) S350 51 .51 50 .51 52 53 —
LLM Tree Llama-4 (max depth=5) S50 50 50 50 50 500 51 52 —
Credit LLM Tree Llama-4 (max depth=7) S50 .50 50 50 50 50 51 52 —
LLM Tree gpt-40-mini (max depth=3) | .50 .50 .50 .50 .50 .50 50 .50 —
LLM Tree gpt-40-mini (max depth=5) | .50 .50 .50 .50 .50 .50 50 .50 —
LLM Tree gpt-40-mini (max depth=7) | .50 .50 .50 .50 .50 .50 50 .50 —
TabLLM Llama-4 S .54 57 61 58 59 63 65 —
TabLLM gpt-4o0-mini S5 55 54 55 54 51 53 53 —
DT (max depth=3) — 55 60 62 .64 66 70 72 .79
DT (max depth=>5) — 55 60 62 62 65 69 72 .79
DT (max depth=7) — 55 60 62 62 64 66 .69 .77
LLM Tree Llama-4 (max depth=3) S50 54 58 63 68 .69 .68 710 —
LLM Tree Llama-4 (max depth=5) 59 61 62 64 66 .68 .67 .69 —
Diabetes LLM Tree Llama-4 (max depth=7) 61 63 65 67 68 .69 .69 .70 —
LLM Tree gpt-40-mini (max depth=3) | .70 .68 .69 .68 .71 74 74 76 —
LLM Tree gpt-40-mini (max depth=5) | .67 .67 .69 .69 71 .72 74 76 —
LLM Tree gpt-40-mini (max depth=7) | .64 .64 .65 .64 .66 .69 .71 .74 —
TabLLM Llama-4 .67 68 .68 .69 71 71 72 73 —
TabLLM gpt-40-mini .67 .68 .66 .65 .66 .64 65 .66 —
DT (max depth=3) — 52 59 67 70 75 81 84 95
DT (max depth=5) — 52 59 67 70 75 80 .85 .95
DT (max depth=7) — 52 59 67 70 75 .80 .85 .95
LLM Tree Llama-4 (max depth=3) S5 55 55 55 55 55 55 55 —
LLM Tree Llama-4 (max depth=5) 56 55 56 55 55 55 54 54 —
Hepatic damage LLM Tree Llama-4 (max depth=7) 53 54 54 54 55 54 54 54 —
LLM Tree gpt-40-mini (max depth=3) | .52 .52 52 53 53 54 53 53 —
LLM Tree gpt-40-mini (max depth=5) | .52 .52 52 53 53 54 53 53 —
LLM Tree gpt-40-mini (max depth=7) | .52 .52 52 53 53 54 53 53 —
TabLLM Llama-4 76 81 .79 78 82 86 .86 86 —
TabLLM gpt-40-mini 69 73 .71 79 82 83 83 83 —
DT (max depth=3) — 66 84 B84 89 92 94 95 98
DT (max depth=5) — 66 84 B84 8 92 93 95 99
DT (max depth=7) — 66 84 84 8 92 93 94 98
LLM Tree Llama-4 (max depth=3) 59 58 61 75 80 .81 81 .82 —
LLM Tree Llama-4 (max depth=5) 62 62 64 70 76 82 86 .88 —
Weather LLM Tree Llama-4 (max depth=7) 67 68 70 72 74 80 .84 88 —
LLM Tree gpt-40-mini (max depth=3) | .68 .77 79 .77 79 80 82 83 —
LLM Tree gpt-40-mini (max depth=5) | .64 .74 .75 75 77 .79 80 .82 —
LLM Tree gpt-40o-mini (max depth=7) | .65 .76 .76 .77 .79 80 .81 .83 —
TabLLM Llama-4 87 91 91 93 93 94 95 95 —
TabLLM gpt-4o-mini 83 8 91 91 91 91 91 90 —

Table 3: ROC-AUC results obtained for each method on the six datasets, for different numbers of shots.

15



| Number of Shots

Dataset Method
| O 4 8 16 32 64 128 256 all
DT (max depth=3) — 58 59 63 63 69 .72 .76 .76
DT (max depth=5) — 58 59 63 63 67 71 73 72
DT (max depth=7) — 58 59 63 63 66 .69 .70 .66
LLM Tree Llama-4 (max depth=3) 36 56 64 64 64 63 64 65 —
LLM Tree Llama-4 (max depth=5) 66 69 69 71 69 70 71 71 @ —
Abortion LLM Tree Llama-4 (max depth=7) 66 69 70 71 69 72 72 74 —
LLM Tree gpt-40-mini (max depth=3) | .49 60 .61 .63 .65 .64 .65 .65 —
LLM Tree gpt-40-mini (max depth=5) | .51 52 .53 54 58 .61 .64 .65 —
LLM Tree gpt-40-mini (max depth=7) | .51 52 52 .53 55 59 .62 .66 —
TabLLM Llama-4 .61 64 66 .68 68 .70 75 15 —
TabLLM gpt-4o-mini S52 .57 66 .62 .65 .68 .63 .65 —
DT (max depth=3) — 57 60 59 60 .63 .64 .67 .69
DT (max depth=5) — 57 60 59 59 60 .63 .65 .70
DT (max depth=7) — 57 60 59 58 58 .62 .62 .63
LLM Tree Llama-4 (max depth=3) J3 .73 .70 70 .67 .65 .68 .66 —
Presidential LLM Tree Llama-4 (max depth=5) .68 .68 .67 .68 .66 .66 .68 .67 —
A 1 LLM Tree Llama-4 (max depth=7) 70 .70 .68 .69 .67 .67 70 .69 —
pprova LLM Tree gpt-4o-mini (max depth=3) | .64 .64 .63 .64 .66 .64 .65 .63 —
LLM Tree gpt-40o-mini (max depth=5) | .62 .62 .63 .62 .62 .63 .64 .63 —
LLM Tree gpt-40o-mini (max depth=7) | .61 .61 .61 .60 .61 .60 .61 .61 —
TabLLM Llama-4 S54 51 51 56 55 52 56 57T —
TabLLM gpt-4o0-mini 69 .62 .64 62 62 63 65 .65 —
DT (max depth=3) — 58 61 62 .62 66 .66 .68 .70
DT (max depth=5) — 58 61 62 .62 65 .65 .68 .68
DT (max depth=7) — 58 61 62 .62 64 64 67 .69
LLM Tree Llama-4 (max depth=3) 70 .69 .66 .65 .66 .66 .64 .66 —
LLM Tree Llama-4 (max depth=5) 0 69 .66 65 .66 .66 .64 66 —
Credit LLM Tree Llama-4 (max depth=7) 70 .69 66 .65 .66 .66 .64 .66 —
LLM Tree gpt-4o-mini (max depth=3) | .70 .67 .65 .64 .65 .64 .64 .66 —
LLM Tree gpt-4o-mini (max depth=5) | .70 .67 .65 .64 .65 .64 .64 .66 —
LLM Tree gpt-40o-mini (max depth=7) | .70 .67 .65 .64 .65 .64 .64 .66 —
TabLLM Llama-4 .60 .52 50 .60 .60 62 65 70 —
TabLLM gpt-4o0-mini 41 41 40 42 42 40 41 46 —
DT (max depth=3) — 59 64 65 66 67 70 .70 .69
DT (max depth=>5) — 59 64 66 65 67 .69 71 .79
DT (max depth=7) — 59 64 66 .65 67 .68 70 .77
LLM Tree Llama-4 (max depth=3) 34 50 56 64 68 .69 70 .70 —
LLM Tree Llama-4 (max depth=5) 52 54 57 62 65 .67 .68 .69 —
Diabetes LLM Tree Llama-4 (max depth=7) 58 58 60 .63 .66 .67 .68 .70 —
LLM Tree gpt-4o-mini (max depth=3) | .56 .58 .62 .66 .70 .69 .70 .69 —
LLM Tree gpt-40-mini (max depth=5) | .61 .61 .62 .63 .65 .67 .70 .70 —
LLM Tree gpt-40-mini (max depth=7) | .62 .61 .62 .62 .62 .65 .66 .68 —
TabLLM Llama-4 65 64 65 70 .69 70 71 73 —
TabLLM gpt-40-mini S8 .65 .62 .64 65 .63 .66 .66 —
DT (max depth=3) — 87 89 92 92 94 95 96 .97
DT (max depth=>5) — 87 89 92 92 94 95 97 98
DT (max depth=7) — 87 89 92 92 94 95 97 98
LLM Tree Llama-4 (max depth=3) 91 9 91 91 91 91 91 91 —
LLM Tree Llama-4 (max depth=5) 91 91 91 91 91 91 91 91 —
Hepatic damage LLM Tree Llama-4 (max depth=7) 91 91 91 91 91 91 91 91 —
LLM Tree gpt-40-mini (max depth=3) | .42 86 .86 91 91 91 91 91 —
LLM Tree gpt-40-mini (max depth=5) | .42 55 82 90 91 91 91 91 —
LLM Tree gpt-40-mini (max depth=7) | 42 55 .82 90 91 91 91 91 —
TabLLM Llama-4 .86 .85 91 93 94 96 97 97 —
TabLLM gpt-40-mini .67 58 56 .70 75 77 77 160 —
DT (max depth=3) — 66 84 B84 89 92 93 94 95
DT (max depth=5) — 66 84 84 89 92 93 94 95
DT (max depth=7) — 66 84 84 89 92 93 94 94
LLM Tree Llama-4 (max depth=3) 42 50 56 717 77 77 77 18 —
LLM Tree Llama-4 (max depth=5) 42 48 54 66 71 74 77 80 —
Weather LLM Tree Llama-4 (max depth=7) 61 62 63 67 70 74 76 79 —
LLM Tree gpt-40-mini (max depth=3) | .59 59 .61 .64 .69 .75 77 .78 —
LLM Tree gpt-40-mini (max depth=5) | .60 .61 .63 .65 .69 .73 .76 77 —
LLM Tree gpt-40-mini (max depth=7) | .65 .65 .67 .69 .72 .75 .77 .78 —
TabLLM Llama-4 87 91 91 93 93 94 95 95 —
TabLLM gpt-4o0-mini 83 8 91 91 91 91 91 90 —

Table 4: Accuracy obtained by each method on the six datasets, for different numbers ofshots.
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