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Abstract001

We present a zero-shot algorithm for build-002
ing decision trees with large language models003
(LLMs) based on CART principles. Unlike tra-004
ditional methods, which require labeled data,005
our approach uses the pretrained knowledge of006
LLMs to perform key operations such as fea-007
ture discretization, probability estimation, and008
Gini-based split selection without training data.009
We also introduce a few-shot calibration step010
that refines the zero-shot tree with a small set011
of labeled examples. The resulting trees are012
interpretable, achieve competitive performance013
on tabular datasets, and outperform existing014
zero-shot baselines while approaching super-015
vised models in low-data regimes. Our method016
provides a transparent, knowledge-driven alter-017
native for decision tree induction in settings018
with limited data.019

1 Introduction020

Tabular data is central to decision-making in021

fields like healthcare, finance, and climate sci-022

ence. While traditional models—such as logistic023

regression, gradient-boosted trees, and neural net-024

works—perform well in these settings (Grinsztajn025

et al., 2022), they require large labeled datasets,026

which are often scarce or costly. In high-stakes do-027

mains, interpretability is also critical—a strength of028

decision trees due to their transparent, rule-based029

structure (Rudin, 2019; Lipton, 2018). This paper030

introduces a zero-shot framework for inducing de-031

cision trees using LLMs, relying solely on feature032

and target descriptions. Our method produces in-033

terpretable trees that generalize well in low-data034

settings by leveraging the pretrained knowledge of035

the LLM.036

Decision trees are the most widely used machine037

learning models, valued for their interpretabil-038

ity, simplicity, and effectiveness in classification039

tasks (Grinsztajn et al., 2022). Traditional algo-040

rithms for constructing decision trees, such as041

CART and C4.5, require access to labeled datasets 042

to recursively partition the feature space using crite- 043

ria like information gain or the Gini index (Quinlan, 044

2014). However, these approaches face limitations 045

when data is scarce or entirely unavailable, prompt- 046

ing the need for alternative methodologies. 047

LLMs have demonstrated a remarkable abil- 048

ity to perform complex tasks in diverse domains 049

by leveraging knowledge encoded during pre- 050

training (Brown et al., 2020). LLMs excel in zero- 051

shot and few-shot learning paradigms, where min- 052

imal or no labeled examples are provided (Raffel 053

et al., 2020; Sanh et al., 2022), making them ideal 054

candidates for addressing data-scarce challenges. 055

This paper introduces a zero-shot method for build- 056

ing decision trees with an LLM. 057

Our method leverages the contextual reasoning 058

capabilities of LLMs to carry out the core op- 059

erations required for decision tree construction. 060

Specifically, the LLM is prompted to discretize 061

continuous attributes and estimate conditional class 062

probabilities—key steps in evaluating potential 063

splits. Using this information, we recursively build 064

the tree by selecting splits that minimize the Gini 065

index. Our approach shows that LLMs can emu- 066

late the logic of traditional decision tree algorithms 067

without access to labeled training data. 068

Our contributions are summarized as follows: 069

• Zero-Shot Tree Induction. We introduce an 070

algorithm for constructing decision trees in a 071

zero-shot and few-shot setting. 072

• Effectiveness in Data-Scarce Environments. 073

We show that our LLM-based approach per- 074

forms competitively in low-data regimes. 075

• Few-Shot Calibration. We introduce a few- 076

shot refinement procedure that adjusts the tree 077

using a small number of labeled examples. 078
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2 Related Work079

2.1 Classification with LLMs080

Transformer models (Vaswani, 2017), which form081

the backbone of most large language models, are082

pre-trained on vast amounts of text data and demon-083

strate remarkable versatility in generalizing to new084

tasks with minimal or no labeled examples. The085

architecture’s ability to effectively leverage prior086

knowledge encoded within its parameters makes087

LLMs particularly attractive for few-shot learning088

scenarios (Brown et al., 2020; Sanh et al., 2022).089

Zero-Shot Classification Zero-shot learning has090

emerged as a promising approach for scenarios091

where labeled data is scarce or unavailable. This092

method leverages pre-trained models to predict093

new, unseen tasks without task-specific training094

data. Recent studies have shown the potential of095

zero-shot learning in various domains. Hegselmann096

et al. (Hegselmann et al., 2023) demonstrated that097

prompting LLMs with zero-shot or few-shot exam-098

ples yields performance comparable to fine-tuned099

models in specific classification tasks. Similarly,100

pre-training on large tabular datasets further en-101

hances an LLM’s ability to generalize to unseen102

data, as shown by work in supervised tabular learn-103

ing (Wen et al., 2024), unified table representa-104

tion (Yang et al., 2024), and tabular Transform-105

ers (Wang and Sun, 2022). Recent work has demon-106

strated that LLMs can generate decision trees with-107

out data (Knauer et al., 2024). Our approach is108

closest to this line but differs in that we construct109

the tree iteratively, inspired by the CART algo-110

rithm, prompting the model step by step for splits111

and conditional probabilities.112

Supervised Learning Deep learning for tabu-113

lar data has gained attention recently, resulting in114

new transformer-based architectures. (Yin et al.,115

2020) introduced TabERT, a self-supervised model116

that improves learning from structured datasets117

through goals such as masked cell prediction and118

contrastive losses. Building on this, (Arik and119

Pfister, 2021) proposed TabNet, an attention-based120

framework specifically designed to capture sparse121

and meaningful feature interactions in tabular data.122

Similarly, (Somepalli et al., 2021; Chen et al., 2023)123

developed SAINT and ExcelFormer, respectively,124

both of which propose novel self-attention mech-125

anisms to model interactions in tabular datasets.126

MetaTree (Zhuang et al., 2024) uses transform-127

ers and meta-learning to construct decision trees,128

mirroring classical greedy algorithms recursively. 129

Other approaches, such as (Hollmann et al., 2022), 130

introduced TabPFN, a Bayesian neural network 131

pre-trained on synthetic tabular datasets, demon- 132

strating strong generalization capabilities across 133

diverse tabular tasks. 134

Fine-Tuning Another approach for classification 135

is fine-tuning an LLM with a serialized represen- 136

tation of the tabular data and a description of the 137

classification problem (Dinh et al., 2022; Hegsel- 138

mann et al., 2023). TapTap employs pre-training 139

on a large corpus of tabular data and can generate 140

high-quality synthetic tables to improve the perfor- 141

mance of prediction models (Zhang et al., 2023a). 142

To achieve this, TableGPT2 (Su et al., 2024) cre- 143

ates a dataset that includes various tabular datasets 144

and tasks, such as classifications, for fine-tuning 145

LLMs. TableLlama (Zhang et al., 2023b) shows the 146

potential of fine-tuning with multimodal models to 147

address the challenges of table-based tasks. 148

Interpretable Classification Despite advances 149

in classification with machine learning methods, 150

gradient-boosted tree ensembles remain the dom- 151

inant choice for many practical applications due 152

to their robustness, interpretability, and consistent 153

performance across various tabular datasets. Clas- 154

sic methods such as XGBoost (Chen and Guestrin, 155

2016) and LightGBM (Ke et al., 2017) continue to 156

set the standard, often outperforming deep learn- 157

ing models in real-world scenarios (Shwartz-Ziv 158

and Armon, 2022; Grinsztajn et al., 2022; Borisov 159

et al., 2022; McElfresh et al., 2024). Studies have 160

highlighted the unique challenges deep learning 161

models face with tabular data, including feature 162

representation, small sample sizes, and overfitting, 163

further reinforcing the advantages of traditional 164

ensemble methods (Borisov et al., 2022). This 165

persistent superiority emphasizes the need for hy- 166

brid approaches that combine the strengths of deep 167

learning with the efficiency and interpretability of 168

tree-based models (McElfresh et al., 2024). 169

3 Methodology 170

We propose a zero-shot, recursive algorithm for 171

constructing binary decision trees using a LLM. 172

The process is composed of four core steps: (1) 173

proposing feature splits, (2) estimating class proba- 174

bilities, (3) selecting optimal splits using the Gini 175

index, and (4) few-shot calibration. The tree is 176

built recursively without supervised training data, 177
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Figure 1: Overview of Zero-Shot Decision Tree Construction with LLMs. Given only feature descriptions, the
model selects split nodes and estimates class probabilities. The constraint imposed by the branch is added to a list
of constraints, and it iterates again, thus going down one level in the tree.

relying solely on the names and descriptions of178

the input features and target variable. An optional179

few-shot calibration step allows the model to re-180

fine node probabilities using limited supervision.181

Figure 1 illustrates the full process.182

This recursive framework produces a hierarchi-183

cal structure with decision nodes representing at-184

tribute splits and leaf nodes corresponding to high-185

confidence prediction probabilities.186

3.1 Overview of the Process187

The algorithm takes as input the names, types, and188

descriptions of the features and target variable. For189

example, when predicting whether a patient has190

diabetes based on attributes like age, BMI, and glu-191

cose, the LLM leverages its pretrained knowledge192

to drive the construction process.193

First, the Feature Split Proposer suggests candi-194

date splits (e.g., “age > 50”) based on the semantics195

of the features. Next, the Feature Probability Es-196

timator evaluates each split by estimating class197

probabilities for the resulting branches (e.g., 85%198

probability of diabetes for “glucose > 140”).199

The Gini Impurity Selector scores these splits200

using the Gini index and selects the one that maxi-201

mizes label homogeneity. The selected split parti-202

tions the input space, and the algorithm recursively203

proceeds on each resulting branch. This contin-204

ues until a stopping condition is met: a confidence205

threshold τ = 0.9 or a maximum tree depth.206

Although the core tree is constructed without207

labeled data, we optionally apply a few-shot cal-208

ibration step to refine class probabilities using a209

small labeled set. This improves predictive perfor-210

mance without altering the structure of the tree. 211

3.2 Attribute Splitting 212

The first step to build the decision tree is to gen- 213

erate splits for each feature based on the target 214

variable (e.g., probability of diabetes). To do this, 215

the LLM is provided with the feature names, their 216

types (numerical or categorical, along with possible 217

categories), and any contextual constraints or prior 218

probabilities from the current subtree. Using this 219

information, the LLM proposes semantically valid 220

and context-aware partitions, such as “glucose > 221

140” or “age > 50”, that aim to divide the input 222

space in a way that reflects the problem context. 223

All this information is passed to the language 224

model via prompting, asking it to deliver a value 225

or groupings that allow the data to be divided into 226

2 groups. The detailed prompts can be found in 227

Appendix Section D.1.1. 228

3.2.1 Numerical Attributes 229

For numerical features, the LLM proposes a thresh- 230

old to split the data into two groups: values 231

≤ threshold and values > threshold. These 232

thresholds are guided by the model’s contextual 233

knowledge and aim to improve label separation. 234

For instance, for the feature “age,” the LLM might 235

suggest a split at 35. The feature’s data type (e.g., 236

float or integer) is also provided for validation. A 237

typical prompt is: 238

Your role is to propose a single numeric 239

value to divide the data into two groups 240

based on the attribute {feature}... 241
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3.2.2 Categorical Attributes242

For categorical features, the LLM proposes243

splits by dividing the categories into two dis-244

joint, semantically meaningful groups that aim245

to separate target labels effectively. For ex-246

ample, given the feature “color” with cate-247

gories {red, blue, green, yellow}, it might re-248

turn {red, blue} vs. {green, yellow}. A typical249

prompt is:250

Your task is to propose two disjoint251

groups of categories based on the cat-252

egorical attribute {feature} with possi-253

ble categories: {possible values}...254

3.3 Probability Estimation255

For each proposed split, the LLM estimates the256

conditional probabilities of the target labels for the257

resulting branches (e.g., “values ≤ threshold”258

vs. “> threshold”). These estimates incorporate259

the split condition, feature descriptions, and prior260

probabilities from the parent node. By considering261

the context of the current subtree, the LLM pro-262

vides class distributions that guide the selection of263

the most informative split. A typical prompt is:264

Estimate the probabilities for each tar-265

get class based on the previous node and266

the new split. Avoid overconfident pre-267

dictions.268

The LLM uses its pretrained knowledge to in-269

fer label distributions without access to data, rely-270

ing on patterns and contextual cues (Brown et al.,271

2020). To prevent overestimation, which is com-272

mon in early splits, we refined the prompts to in-273

struct the LLM to avoid overconfidence and ensure274

more balanced probability estimates. These esti-275

mated probabilities are then used to evaluate split276

quality via Gini impurity.277

3.4 Gini Impurity Minimization278

To guide tree construction, each candidate split is279

evaluated using Gini impurity, which quantifies280

label homogeneity within the resulting branches.281

The split with the lowest impurity, indicating the282

best class separation, is selected. Gini impurity is283

defined as:284

Gini = 1−
C∑
i=1

p2i ,285

where pi is the predicted probability of the i-th286

class, and C is the number of target labels.287

Since our approach lacks access to instance- 288

level data, we aggregate the impurities of the two 289

branches using the harmonic mean: 290

Score =
2 · Gini1 · Gini2
Gini1 + Gini2

. 291

Unlike CART (Breiman, 2017), which uses a 292

weighted average based on instance counts, the 293

harmonic mean favors balanced splits by penaliz- 294

ing uneven impurity distributions. This encourages 295

the selection of splits that are effective for both 296

branches, improving overall tree quality and pro- 297

moting label purity across the structure. 298

Branch Creation. Once the optimal split is se- 299

lected, the input context is partitioned into two 300

branches corresponding to the left and right child 301

nodes. Each branch inherits the current constraints 302

and incorporates the new condition imposed by the 303

split (e.g., “glucose > 140”). These updated con- 304

texts are treated as independent subproblems, and 305

the decision tree construction procedure is recur- 306

sively applied to each. 307

Constraint Propagation. As the tree expands, 308

feature constraints are dynamically maintained to 309

ensure valid and non-redundant splits. For numeri- 310

cal features, the upper or lower bounds are adjusted 311

based on previous split conditions, effectively nar- 312

rowing the feature’s valid range. For categorical 313

features, selected categories are removed from con- 314

sideration; if only one category remains, the feature 315

is excluded from future splits. This mechanism en- 316

sures that subsequent decisions are consistent with 317

earlier ones and helps prevent logically invalid or 318

redundant partitions. 319

Stopping Criteria. Recursion continues until a 320

stopping condition is met: either the maximum tree 321

depth is reached, or the predicted probability of a 322

single class exceeds a confidence threshold (e.g., 323

≥ 0.9). At that point, a leaf node is created, storing 324

the most probable class label and the final class 325

probabilities. 326

3.4.1 Few-Shot Tree Calibration 327

Once the zero-shot tree has been constructed, we 328

apply a calibration step to refine the class probabili- 329

ties at the leaf nodes using a small labeled set. This 330

post hoc adjustment improves predictive accuracy 331

without altering the tree structure. For each labeled 332

example, the tree is traversed to the corresponding 333

leaf, and the probability assigned to the true label is 334
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incrementally updated. Let LP denote the current335

probability of the correct class; it is updated using336

the following rule:337

LP ← LP + p(1− LP ), (1)338

where p is a learning rate that controls the strength339

of the adjustment. This formula increases the true340

label’s probability by a fraction p of the remaining341

mass, gradually reinforcing correct predictions as342

more examples are processed.343

3.5 Prompt Design344

The prompts used for feature splitting and probabil-345

ity estimation required careful refinement to ensure346

valid and balanced outputs. Early challenges in-347

cluded overlapping groupings, biased probabilities,348

and invalid splits. To address these issues, prompts349

were iteratively adjusted with explicit constraints350

and examples. See Appendix D for prompt details.351

4 Experimental Design and Evaluation352

To evaluate the proposed methodology for zero-353

shot decision trees, we conducted a compara-354

tive analysis with two baseline approaches: (1)355

TabLLM (Hegselmann et al., 2023), a state-of-356

the-art method for tabular data classification using357

LLMs, and (2) traditional supervised Decision358

Trees. These methods were selected as bench-359

marks to assess the strengths and limitations of360

our approach, focusing on ROC-AUC and accuracy361

scores across diverse classification tasks.362

For the traditional Decision Tree models, we var-363

ied the max_depth parameter (set to 7, 5, and 3) to364

analyze its impact on predictive accuracy and inter-365

pretability. For the zero-shot methods, we test two366

LLMs: GPT-4o-mini (closed-weight) and Llama367

4-70B (open-source).368

To assess performance under different data369

regimes, we trained the supervised models us-370

ing subsets of 0, 4, 8, 16, 32, 64, 128, 256 exam-371

ples, and the full training set. For each shot size372

k, we extracted multiple independent support sets373

to obtain statistically robust metrics: 50 random374

samples for those of the classical decision tree, 10375

for the LLM tree (due to the higher inference cost),376

and 4 for TabLLM (the more expensive variant).377

Each model was trained/evaluated at each repeti-378

tion, and the ROC-AUC and accuracy scores shown379

correspond to the mean of those repetitions. This380

design enables a direct comparison of our method’s381

generalization ability and data efficiency in both382

low- and high-resource scenarios. Additionally, for 383

our method, the same labeled subsets were used to 384

apply the few-shot calibration step. 385

Given that our approach is designed for low- 386

data settings, we selected datasets from diverse do- 387

mains—health, finance, environment, and politics 388

to evaluate its adaptability across real-world sce- 389

narios. Notably, we included two recent political 390

datasets:Presidential Approval and Judgment on 391

Abortion from September 2024, which fall beyond 392

the training cutoffs of GPT-4 (October 2023) (Ope- 393

nAI, 2023) and Llama 4 Maverick (August 2024). 394

This offered a unique opportunity to test the robust- 395

ness and generalization of our zero-shot method on 396

truly out-of-sample data. 397

Each dataset was split into training and testing 398

sets to compare across methods. Training data was 399

used to train supervised models and apply few-shot 400

calibration, while test sets were used to evaluate all 401

methods, including zero-shot. 402

4.1 Baseline Methods 403

TabLLM zero-shot This baseline leverages the 404

ability of LLMs to perform zero-shot classification 405

directly on tabular data. TabLLM is designed to 406

encode tabular data into text prompts, referred to as 407

serialization, and combine it with a concise descrip- 408

tion of the classification problem. This enables the 409

model to perform classification without training, 410

relying solely on its prior knowledge. 411

Traditional Decision Trees Decision trees were 412

trained using Scikit-learn (Pedregosa et al., 413

2012) to serve as a supervised learning baseline. 414

These models rely on access to labeled training 415

data and were evaluated using varying amounts of 416

data to understand the impact of data availability 417

on model performance. In our experiments, we 418

used the max_depth parameter of the decision tree 419

model to control the maximum depth of the tree. 420

4.2 Data 421

We selected datasets from health, finance, environ- 422

ment, and politics to evaluate the adaptability of 423

our method across diverse real-world tasks. The 424

datasets used are: 425

Diabetes (National Institute of Diabetes and Di- 426

gestive and Kidney Diseases, 2016) A health- 427

related dataset focused on predicting the onset of 428

diabetes based on individual measurements. 429

5



Credit (UCI Machine Learning Repository,430

1994) A financial dataset containing information431

on past loans. The target variable predicts whether432

an individual is likely to repay the loan.433

Weather (Kumar, 2023) A binary weather pre-434

diction dataset (sunny vs. rainy) based on envi-435

ronmental features like temperature and humidity,436

derived from a multiclass dataset by selecting two437

contrasting climates.438

Hepatic Damage (Soriano, 2022) This dataset439

was binarized to answer: Is there liver damage?440

Patients with Hepatitis C, Fibrosis, or Cirrhosis441

were labeled True, healthy individuals False, and442

suspected cases were excluded.443

Presidential Approval (Centro de Estudios444

Públicos, 2024) A binary classification task pre-445

dicting whether individuals approve or disapprove446

of the Chilean government, based on demographic447

features such as age, religion, and education. The448

dataset is drawn from a 2024 public survey, beyond449

the training cutoffs of the LLMs used (OpenAI,450

2023), providing a robust test of generalization to451

unseen contexts.452

Abortion Opinion (Centro de Estudios Públicos,453

2024) Also sourced from the same 2024 public454

survey, this task predicts views on abortion using455

the same input features. The original five-point456

question was binarized by retaining only the most457

polarized responses: full support vs. total prohibi-458

tion.459

5 Results460

Table 1 summarizes the ROC-AUC scores for each461

method. For tree-based methods, we selected the462

tree max depth that yielded the strongest perfor-463

mance on average across datasets and shot con-464

figurations; the distribution of ROC-AUC scores465

is shown in Figure 2. The compared methods466

include TabLLM, LLM-generated decision trees467

(LLM Trees), and traditional decision trees trained468

with the CART algorithm (DT). Full results, in-469

cluding accuracy scores and performance across all470

depths and shot counts, are provided in Tables 3471

and 4 in the Appendix.472

Performance of TabLLM Zero-Shot TabLLM473

demonstrated moderate performance, excelling in474

simpler datasets like Weather, where best score475

achieved is 91% with only 8 shots. However, it476

struggled with datasets such as Presidential Ap- 477

proval and Credit, achieving lower scores, around 478

55%. 479

Performance of Zero-Shot LLM Tree Our 480

LLM-Tree outperformed both TabLLM and tradi- 481

tional DT on three of the six datasets. In Abortion, 482

the Llama-4 variant (max depth = 5) achieved a 483

ROC–AUC of 77%, outperforming all other com- 484

petitors. In Diabetes, the GPT-4o-mini model (max 485

depth = 3) obtained 76 % ROC–AUC—surpassed 486

only by the traditional DT trained with all train- 487

ing data. Performance on Presidential Approval 488

was similarly competitive: the Llama-4 tree de- 489

livered around 58% ROC–AUC for each of shots, 490

outperforming TabLLM, but still behind the tra- 491

ditional DT trained on the full data. In contrast, 492

performance is weaker on the remaining datasets: 493

in Weather, the best configuration (256 shots with 494

Llama 4) reached 88% ROC–AUC but remained 495

below TabLLM, while in Credit and Hepatic dam- 496

age, scores are around 52%. The results indicate 497

that there is no best LLM in all cases to build the 498

tree via LLMs. Also, in some cases, incorporating 499

more shots into the LLM Trees can be negative. 500

Traditional Decision Trees with Full Data Tra- 501

ditional DTs trained on full datasets outperformed 502

almost all cases the zero- or few-shot methods. The 503

performance of these trees in the Weather and Hep- 504

atic damage sets stands out, where for 128 and 256 505

shots it already possesses over 80% roc-auc. How- 506

ever, it’s surprising that in the Abortion dataset, 507

where the traditional trees have their best roc-auc 508

of 73% using all the data, the method of Trees con- 509

structed via LLMs outperforms it, even when using 510

very few shots. 511

Low-Data Scenarios. In low-data scenarios (e.g., 512

4−32 shots), traditional DTs exhibited limitations, 513

highlighting the competitive performance of LLM- 514

based zero- and few-shot approaches in resource- 515

constrained environments. For example, with less 516

than 32 shots, traditional DTs are outperformed by 517

DT constructed via LLM method in datasets such 518

as Abortion, Presidential Approval, and Diabetes, 519

demonstrating the potential of LLM-based methods 520

in handling limited data scenarios. 521

5.1 Interpretability Analysis 522

A key advantage of our approach is its ability to 523

combine the interpretability of decision trees with 524

zero-shot learning, making it well-suited for low- 525
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Dataset Method Number of Shots
0 4 8 16 32 64 128 256 all

Abortion

DT (max depth=3) — .52 .53 .58 .59 .66 .69 .73 .73
LLM Tree Llama 4 (max depth=5) .77 .76 .75 .75 .73 .73 .72 .73 —
LLM Tree gpt-4o-mini (max depth=3) .63 .63 .62 .62 .62 .64 .63 .64 —
TabLLM Llama 4 .66 .62 .64 .65 .64 .64 .69 .69 —
TabLLM gpt-4o-mini .63 .62 .65 .61 .66 .67 .63 .66 —

Presidential
Approval

DT (max depth=3) — .52 .52 .52 .52 .54 .57 .58 .63
LLM Tree Llama-4 (max depth=5) .58 .58 .56 .55 .56 .58 .60 .59 —
LLM Tree gpt-4o-mini (max depth=3) .56 .56 .56 .56 .57 .57 .57 .56 —
TabLLM Llama-4 .58 .52 .53 .51 .51 .52 .50 .51 —
TabLLM gpt-4o-mini .51 .56 .55 .55 .52 .54 .53 .54 —

Credit

DT (max depth=3) — .50 .53 .55 .56 .60 .63 .68 .70
LLM Tree Llama-4 (max depth=5) .50 .50 .50 .50 .50 .50 .51 .52 —
LLM Tree gpt-4o-mini (max depth=3) .50 .50 .50 .50 .50 .50 .50 .50 —
TabLLM Llama-4 .51 .54 .57 .61 .58 .59 .63 .65 —
TabLLM gpt-4o-mini .55 .55 .54 .55 .54 .51 .53 .53 —

Diabetes

DT (max depth=3) — .55 .60 .62 .64 .66 .70 .72 .79
LLM Tree Llama-4 (max depth=5) .59 .61 .62 .64 .66 .68 .67 .69 —
LLM Tree gpt-4o-mini (max depth=3) .70 .68 .69 .68 .71 .74 .74 .76 —
TabLLM Llama-4 .67 .68 .68 .69 .71 .71 .72 .73 —
TabLLM gpt-4o-mini .67 .68 .66 .65 .66 .64 .65 .66 —

Hepatic damage

DT (max depth=3) — .52 .59 .67 .70 .75 .81 .84 .95
LLM Tree Llama-4 (max depth=5) .56 .55 .56 .55 .55 .55 .54 .54 —
LLM Tree gpt-4o-mini (max depth=3) .52 .52 .52 .53 .53 .54 .53 .53 —
TabLLM Llama-4 .76 .81 .79 .78 .82 .86 .86 .86 —
TabLLM gpt-4o-mini .69 .73 .71 .79 .82 .83 .83 .83 —

Weather

DT (max depth=3) — .66 .84 .84 .89 .92 .94 .95 .98
LLM Tree Llama-4 (max depth=5) .62 .62 .64 .70 .76 .82 .86 .88 —
LLM Tree gpt-4o-mini (max depth=3) .68 .77 .79 .77 .79 .80 .82 .83 —
TabLLM Llama-4 .87 .91 .91 .93 .93 .94 .95 .95 —
TabLLM gpt-4o-mini .83 .89 .91 .91 .91 .91 .91 .90 —

Table 1: ROC-AUC results for traditional decision trees, TabLLM, and the method presented in this paper, trees
created with LLMs. For the tree-based models, the scores shown correspond to the configuration with a fixed
maximum depth that produced the most robust performance.

resource scenarios. Figure 3 in the Appendix il-526

lustrates a zero-shot tree generated for the Dia-527

betes dataset and compares it with a traditional tree528

trained on the full dataset. Despite using no labeled529

examples, the zero-shot tree achieves comparable530

predictive performance.531

The zero-shot decision tree model, with a max-532

imum depth of 5, offers a straightforward and in-533

terpretable structure, making it accessible to non-534

technical users. Its feature selection emphasizes535

domain-relevant variables like Age, Glucose, and536

Insulin, which aligns with user expectations and537

enhances trust in the model’s decisions. The use538

of simple, intuitive decision thresholds, such as539

Age ≤ 25 or Glucose ≤ 140, further supports the540

interpretability of the model.541

However, this approach sacrifices fine-grained542

distinctions in favor of simplicity, which may re-543

duce accuracy and limit the model’s ability to544

capture subtler patterns that traditional decision545

trees can identify. The zero-shot tree, with less546

nodes compared to the fully trained tree, reflects547

this trade-off. Additionally, the exclusion of fea-548

tures such as Pregnancies, Blood Pressure, and 549

Diabetes Pedigree Function highlights a bal- 550

ance between interpretability and comprehensive- 551

ness in feature selection. 552

Overall, the zero-shot decision tree excels in in- 553

terpretability but may lack robustness due to its sim- 554

plified decision-making process, making it better 555

suited for applications where ease of understanding 556

takes precedence over detailed accuracy. 557

6 Discussion and Conclusion 558

This method leverages the LLMs’ pre-trained 559

knowledge to generate interpretable models with- 560

out requiring labeled data. Our approach mimics 561

the CART algorithm via iterative prompting to pro- 562

duce decision trees that rival traditional supervised 563

models in low-data settings. This section discusses 564

the method’s advantages and limitations and sug- 565

gests directions for future work. 566

6.1 Advantages 567

Efficiency and Deployment Although construct- 568

ing the tree is computationally demanding, the re- 569
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Figure 2: Boxplot of ROC–AUC scores for each method across all dataset–shot combinations. Each box represents
the distribution of 56 scores (6 datasets × 7 shot counts) for a given method: TabLLM, LLM Trees, and traditional
decision trees. This visualization guided the choice of the max_depth used in Table 1.

sulting model is lightweight and efficient at infer-570

ence time. Unlike prompt-based zero-shot classi-571

fiers like TabLLM, our decision trees incur no ad-572

ditional runtime cost per prediction, making them573

well-suited for deployment in real-time or resource-574

constrained environments.575

Interpretability The use of decision trees en-576

sures model transparency, a key requirement in577

domains such as healthcare, law, or finance. Our578

method preserves this advantage while replacing579

data-driven splits with LLM-inferred structure, en-580

abling users to inspect the reasoning behind each581

decision path.582

Performance in Low-Data Settings By rely-583

ing on the semantic and statistical knowledge en-584

coded in LLMs, our method performs competi-585

tively where traditional methods fail due to lack of586

data. This makes it a promising tool for early-stage587

modeling, hypothesis generation, or deployment588

in domains with expensive or sensitive data collec-589

tion.590

6.2 Future Work591

Interactive Refinement Introducing a human-in-592

the-loop refinement process could improve contex-593

tual relevance and mitigate LLMs biases. Experts594

might refine or validate the tree structure iteratively595

during its construction, combining automation with596

expert oversight.597

Domain-Specific Fine-Tuning Fine-tuning the 598

model on domain-specific data could enhance the 599

accuracy and relevance of the constructed trees. 600

Future work could explore techniques for targeted 601

adaptation of LLMs to specific fields, ensuring 602

alignment with the nuances of specialized datasets. 603

Bias Mitigation Biases embedded in the LLM 604

can influence the construction of decision trees. 605

Future research could integrate fairness-aware al- 606

gorithms into the tree-building process, ensuring 607

that attribute selection, discretization, and splitting 608

decisions account for fairness considerations and 609

regulatory requirements. 610

6.3 Final Remarks 611

Our findings suggest that zero-shot decision trees 612

built via LLMs are a viable alternative to super- 613

vised models in data-scarce environments. The 614

method combines interpretability, simplicity, and 615

generalization from pretraining, defining a new 616

baseline for interpretable classification without la- 617

beled data. Future work should address the lim- 618

itations of model bias, opacity in reasoning, and 619

domain misalignment to make this framework suit- 620

able for broader adoption. 621
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Limitations624

The use of LLMs in the zero-shot model introduces625

inherent risks related to bias and discrimination, as626

these models are trained on vast amounts of data627

that may contain historical and systemic biases.628

This may result in models that not only reflect but629

also reinforce these biases.630

LLM Bias LLMs are trained on vast amounts631

of text data from diverse sources, inevitably in-632

cluding societal biases. These biases can be en-633

coded into the knowledge base of the LLM and634

may inadvertently affect its outputs. When used for635

decision tree construction, these biases could man-636

ifest in selecting attributes, discretizing attribute637

values, or the computation of probabilities, poten-638

tially leading to models that reflect and perpetuate639

these biases. For example, the LLM might pri-640

oritize certain features based on its training data641

rather than their relevance to the problem domain,642

inadvertently embedding stereotypical or unfair as-643

sumptions into the model. Careful monitoring of644

the LLM’s outputs and evaluation of resulting mod-645

els are needed to detect and correct this bias. Tech-646

niques such as auditing the generated trees for fair-647

ness, analyzing the distributions of decisions across648

sensitive attributes, and leveraging fairness-aware649

metrics can help identify and address bias. Addi-650

tionally, incorporating domain expertise to cross-651

validate the model’s decisions can provide a safe-652

guard against unintentional perpetuation of harmful653

biases (Mehrabi et al., 2021).654

Dependency on Pre-trained Knowledge The655

proposed method relies heavily on the pre-trained656

knowledge embedded in the LLM. While this al-657

lows for zero-shot decision tree construction, it also658

means that the quality and accuracy of the trees are659

inherently limited by the breadth and depth of the660

LLM’s training data (Bommasani et al., 2021). If661

the LLM lacks sufficient knowledge about a particu-662

lar domain or exhibits inaccuracies in its responses,663

this could compromise the performance of the re-664

sulting decision tree. One potential mitigation strat-665

egy is fine-tuning the LLM on domain-specific data666

by tailoring the model’s knowledge to the specific667

problem context.668

Interpretability vs. LLM Complexity One of669

the key advantages of decision trees is their inter-670

pretability. However, the involvement of an LLM671

introduces a layer of complexity that may not be672

fully transparent. For instance, the rationale be- 673

hind the LLM’s decisions during attribute selection 674

or probability assignment might not always be ex- 675

plainable, potentially reducing the model’s overall 676

transparency. Achieving a balance between the clar- 677

ity of decision trees and the inherent complexity of 678

LLM operations is essential and raises important 679

research questions. 680
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A Statistics for Data858

Table 2 shows that class imbalance varies con-859

siderably across corpora. WEATHER is perfectly860

balanced, whereas HEPATIC DAMAGE is highly861

skewed (≈9:1), and PRESIDENTIAL APPROVAL862

presents a moderate 2:1 ratio.863

Pre-processing. All column names were nor-864

malised to short, descriptive English tokens to865

improve LLM comprehension. For categorical866

variables, categories representing < 5% of the867

data were merged into an OTHER label. Multi-868

class corpora were binarised by keeping the two869

most extreme categories (e.g. rainy vs. sunny in870

WEATHER). No additional filtering or resampling871

was performed.872

B Model Size and Budget873

This section details the models used, their parame-874

ters, and the computational and financial resources875

required for running the experiments. We focus876

on inference-only usage of LLMs via cloud APIs,877

alongside local experiments for traditional decision878

trees. Cost estimates reflect real-world deployment879

conditions and highlight the accessibility of our880

zero-shot approach in terms of both model size and 881

compute budget. 882

Models 883

• GPT-4o-mini (2024-07-18, OpenAI API). Pa- 884

rameter count not publicly disclosed1. 885

• Llama 4 Maverick 17B Instruct (128E) via 886

OpenRouter. 17 B parameters. 887

• CART baselines. Depths 3/5/7; each tree 888

<2d leaves, trained with scikit-learn. 889

Compute. 890

• LLM inference only (no fine-tuning). 891

• GPT-4o-mini: 41.735M input tokens, 892

2.812M output tokens→ USD $ 63 (TabLLM 893

evaluation) + $ 12 (our LLM Tree generation) 894

= $ 75. 895

• Llama 4 17B: 314 k tokens total→ USD $ 896

60.06 (evaluation + tree construction). 897

• Hardware. All LLM calls executed via cloud 898

APIs from Santiago, Chile. Local experi- 899

ments (data prep, CART training, evaluation 900

scripts) ran on an HP Victus notebook with an 901

NVIDIA RTX 3060 6 GB GPU and 16 GB 902

RAM (Python 3.12.1, scikit-learn 1.4.2). 903

Budget summary. Total cloud spend: $ 135.06. 904

No additional GPU hours beyond API usage were 905

incurred; local GPU utilization was solely for fea- 906

ture engineering, plotting, and traditional decision 907

tree training. 908

C Construted Trees 909

The left panel in Figure 3 shows a tree produced by 910

the LLM-Tree method (GPT-4o-mini, zero-shot), 911

while the right panel displays a traditional CART 912

decision tree constrained to a maximum depth of 913

5. These visualizations highlight structural differ- 914

ences between language-model–generated splits 915

and those obtained through conventional impurity 916

minimization. 917

1Industry estimates place the model in the 15–25B range;
we report no official figure.
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Dataset Rows Cols Train Test Class balance

Class 0 Class 1

Diabetes (PIMA) 768 9 614 154 500 268
German Credit 1,000 21 800 200 700 (good) 300 (bad)
Weather (Rain/Sun) 6,600 11 5,280 1,320 3,300 (rainy) 3,300 (sunny)
Hepatic Damage 582 13 466 116 526 (no) 56 (yes)
Presidential Approval 628 13 502 126 428 (disapprove) 200 (approve)
Abortion Opinion 334 14 267 67 219 (pro-choice) 115 (anti)

Table 2: Final dataset sizes after cleaning. Splits are 80/20 stratified train–test. No separate dev set; hyperparameters
were fixed a priori.

Figure 3: Comparison of decision trees: (Left) Zero-shot method with LLMs and (Right) CART algorithm for the
Diabetes dataset. These trees are simplified versions where branches leading to unanimous outcomes (Yes or No)
are condensed to single nodes.

D Prompts918

This section presents the prompts in each step re-919

quiring an LLM call. Notably, two prompts are920

used for the three steps involving LLMs: one in-921

structs the LLM to perform a task, and the other922

extracts its response, the parser. The approach was923

refined to request direct, concise answers instead of924

detailed analysis to improve efficiency and reduce925

computational costs.926

Each prompt consists of three parts: the system927

message, the assistant’s response, and the user’s928

request.929

D.1 Attribute Splitting Proposals930

D.1.1 Get Numerical Features Splits931

System message:932

You are an expert in classifying933

{problem} without data. Your role is to934

propose a single numeric value to divide935

the data into two groups based on the936

attribute {feature}, don’t analyze or937

reason too much, delivers the numerical938

value directly. You must choose the value939

imagining that you have data to answer 940

it. You must respect the restrictions 941

given to you. If there is more than one 942

restriction for the same attribute you 943

must respect all restrictions. 944

Assistant message: 945

Understood. I will reason and provide 946

a numerical value based solely on my 947

knowledge, ensuring the value of the at- 948

tribute {feature} meets ALL the con- 949

straints: {branch context}. I will pro- 950

vide a single numeric value to divide the 951

data into two groups in a short response. 952

If there is more than one restriction for 953

the same attribute, all restrictions must 954

be respected. 955

User message: 956

What value of the attribute {feature} 957

(that meets the constraints: {branch 958

context}) should I use to divide the data 959

into two groups? Choose a single nu- 960

meric value, and answer only with the 961

value, without any other text. 962
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D.1.2 Parse Numerical Features Splits963

System message:964

You are an expert in extracting informa-965

tion from responses. Your task is to ex-966

tract the numeric value suggested for di-967

viding data into two groups based on a968

specific feature. Don’t analyze or reason969

too much, delivers the numerical value970

directly.971

Assistant message:972

Understood. I will receive your re-973

sponse in the following format: In-974

put:<response>. Then, I will extract and975

provide the numeric value after the prefix976

’Output:’<numeric value>. For example:977

Input: ’For the numeric feature age, the978

best division is 15.5’, I will respond ’Out-979

put: 15.5’ without adding anything else.980

If no numeric value or grouping can be981

extracted, I will respond with the string982

’Nothing’.983

User message:984

For the numeric feature ’{feature}’, ex-985

tract the numeric value indicating the986

cutoff point to divide the data into two987

groups. Input: {response text}. I will988

answer only with the numeric value and989

the text ’Output:’, and nothing else.990

D.1.3 Get Categoric Features Splits991

System message:992

You are an expert in {problem}. Your993

task is to use your knowledge to propose994

two disjoint groups of categories based995

on the categorical attribute {feature}996

with possible categories: {possible997

values}, don’t analyze or reason too998

much, delivers the groupings directly..999

You have to try to make the groups1000

formed as homogeneous as possible ac-1001

cording to the problem variable that has1002

as labels {target labels}.1003

Assistant message:1004

Understood. I will reason and provide1005

two disjoint grpups of categories based1006

solely on my knowledge, ensuring the1007

groupings meet the constraints: {branch 1008

context}. I will provide two disjoint 1009

groupings of categories to divide the data 1010

in a short response. I will try to to make 1011

the groups as homogeneous as possible. 1012

User message: 1013

For the categorical attribute {feature} 1014

(that meets the constraints: {branch 1015

context}) with possible values: 1016

{possible values}, what two groups 1017

of categories should I use to divide the 1018

data into two groups as homogeneously 1019

as possible according to the {problem} 1020

variable with labels {target labels}? 1021

Choose two disjoint groupings, and 1022

answer only with the groupings, without 1023

any other text. 1024

D.1.4 Parse Categoric Features Splits 1025

System message: 1026

You are an expert in extracting informa- 1027

tion from responses. Your task is to ex- 1028

tract the two disjoint groupings of cate- 1029

gories suggested for dividing data into 1030

two groups based on a specific feature. 1031

Assistant message: 1032

Understood. I will receive your 1033

response in the following format: 1034

Input:<response>. Then, I will ex- 1035

tract and provide the two disjoint 1036

groupings after the prefix ’Out- 1037

put:’<grouping_1>;;<grouping_2>. 1038

For example: Input: ’For the categorical 1039

feature color, the best division is to 1040

create a group of colors [red, green] 1041

and another group of colors [blue]’, I 1042

will respond ’Output: red, green;;blue’ 1043

without adding anything else. If no 1044

groupings can be extracted, I will 1045

respond with the string ’Nothing’. 1046

User message: 1047

For the categorical feature ’{feature}’ 1048

with possible values: {possible 1049

values}, extract the two disjoint 1050

groupings of categories suggested for 1051

dividing the data into two groups. Input: 1052

{response text} 1053

13



D.1.5 Get Probabilities Estimation1054

System message:1055

You are an expert in estimating the la-1056

bels probabilities at the nodes of a de-1057

cision tree. Your task is to provide a1058

rough estimate of the probabilities that1059

a given instance belongs to the possible1060

target classes based on: the character-1061

istics, probabilities of the previous node1062

and the information from the new node1063

split. Use only your general knowledge,1064

since you do not have specific data. Re-1065

member that splits usually improve node1066

purity. Remember also when there is lit-1067

tle information do not give high proba-1068

bilities (equal or higher than 0.9), unless1069

you are very sure of them, because you1070

may be overestimating. Don’t analyze or1071

reason too much, delivers the numerical1072

value directly.1073

Assistant message:1074

Understood. Although it is difficult to1075

provide exact probabilities for a partic-1076

ular individual, I will reason based on1077

the information provided and my general1078

knowledge to provide rough estimates of1079

specific probabilities. I will provide prob-1080

ability values between 0 and 1 for each1081

label, for each possible new division. In1082

case there is little information, I will give1083

low probabilities (< 0.9) unless I am very1084

sure. On the other hand, I will not give1085

high probabilities (>= 0.9) unless I am1086

very sure, as I could be overestimating.1087

User message:1088

Considering a classification problem1089

of {problem}, estimate the probabil-1090

ity that a {instance type}instance1091

type has the target variable {target1092

feature} for each of the possible1093

values: {classes}, based on the1094

characteristics of the previous node:1095

{previous context} where the proba-1096

bility of the target variable is {previous1097

probabilities}, and the possible new1098

divisions are: {division 1} or1099

{division 2}.1100

D.1.6 Parse Probabilities Estimation 1101

System message: 1102

You are an expert in extracting informa- 1103

tion from responses. Your task is to ex- 1104

tract the label probability suggested for 1105

a classification problem to a specific la- 1106

bel and new information. Do not provide 1107

anything other than the Output. Adhere 1108

to the format. Don’t analyze or reason 1109

too much, delivers the numerical value 1110

directly. 1111

Assistant message: 1112

Understood. I will extract the label 1113

probability to a new information from 1114

the given response and provide it after 1115

the prefix ’Output:’<probability>. If no 1116

probability can be extracted, I will re- 1117

spond with ’Nothing’. For example: In- 1118

put: ’The probability that a {instance 1119

type} has the target variable with the 1120

value {class 1} is 0.8’ Output: 0.8. 1121

Other example: Input: ’The probability 1122

that a {instance type} has the target 1123

variable with the value {class 2} is 0.3’ 1124

Output: 0.3. 1125

User message: 1126

For the classification problem with the 1127

label {label} and the following new in- 1128

formation {new information}, extract 1129

the probability suggested for the prob- 1130

lem. The given response is: {response 1131

text}. 1132

E Detailed Results Tables 1133

Tables 3 and 4 provide the full evaluation results for 1134

all methods across datasets and shot configurations. 1135

Table 3 reports ROC-AUC scores, while Table 4 1136

presents accuracy scores. Results are shown for 1137

all model variants, including traditional decision 1138

trees (with varying depths), LLM-generated trees, 1139

and TabLLM baselines, enabling a comprehensive 1140

comparison across methods and settings. 1141
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Dataset Method Number of Shots
0 4 8 16 32 64 128 256 all

Abortion

DT (max depth=3) — .52 .53 .58 .59 .66 .69 .73 .73
DT (max depth=5) — .52 .53 .58 .59 .62 .67 .66 .63
DT (max depth=7) — .52 .53 .57 .58 .61 .65 .67 .65
LLM Tree Llama 4 (max depth=3) .59 .59 .60 .60 .56 .58 .55 .56 —
LLM Tree Llama 4 (max depth=5) .77 .76 .75 .75 .73 .73 .72 .73 —
LLM Tree Llama 4 (max depth=7) .72 .73 .72 .71 .70 .73 .74 .77 —
LLM Tree gpt-4o-mini (max depth=3) .63 .63 .62 .62 .62 .64 .63 .64 —
LLM Tree gpt-4o-mini (max depth=5) .57 .58 .59 .59 .60 .62 .62 .63 —
LLM Tree gpt-4o-mini (max depth=7) .61 .62 .63 .62 .63 .63 .63 .65 —
TabLLM Llama 4 .66 .62 .64 .65 .64 .64 .69 .69 —
TabLLM gpt-4o-mini .63 .62 .65 .61 .66 .67 .63 .66 —

Presidential
Approval

DT (max depth=3) — .52 .52 .52 .52 .54 .57 .58 .63
DT (max depth=5) — .52 .52 .53 .52 .53 .56 .56 .57
DT (max depth=7) — .52 .52 .53 .52 .52 .55 .53 .53
LLM Tree Llama-4 (max depth=3) .66 .62 .61 .60 .60 .60 .61 .59 —
LLM Tree Llama-4 (max depth=5) .58 .58 .56 .55 .56 .58 .60 .59 —
LLM Tree Llama-4 (max depth=7) .55 .57 .55 .54 .56 .59 .61 .60 —
LLM Tree gpt-4o-mini (max depth=3) .56 .56 .56 .56 .57 .57 .57 .56 —
LLM Tree gpt-4o-mini (max depth=5) .58 .59 .59 .59 .59 .60 .59 .57 —
LLM Tree gpt-4o-mini (max depth=7) .58 .59 .59 .59 .60 .60 .59 .57 —
TabLLM Llama-4 .58 .52 .53 .51 .51 .52 .50 .51 —
TabLLM gpt-4o-mini .51 .56 .55 .55 .52 .54 .53 .54 —

Credit

DT (max depth=3) — .50 .53 .55 .56 .60 .63 .68 .70
DT (max depth=5) — .50 .53 .55 .57 .59 .61 .65 .67
DT (max depth=7) — .50 .53 .55 .56 .58 .59 .63 .68
LLM Tree Llama-4 (max depth=3) .53 .50 .51 .51 .50 .51 .52 .53 —
LLM Tree Llama-4 (max depth=5) .50 .50 .50 .50 .50 .50 .51 .52 —
LLM Tree Llama-4 (max depth=7) .50 .50 .50 .50 .50 .50 .51 .52 —
LLM Tree gpt-4o-mini (max depth=3) .50 .50 .50 .50 .50 .50 .50 .50 —
LLM Tree gpt-4o-mini (max depth=5) .50 .50 .50 .50 .50 .50 .50 .50 —
LLM Tree gpt-4o-mini (max depth=7) .50 .50 .50 .50 .50 .50 .50 .50 —
TabLLM Llama-4 .51 .54 .57 .61 .58 .59 .63 .65 —
TabLLM gpt-4o-mini .55 .55 .54 .55 .54 .51 .53 .53 —

Diabetes

DT (max depth=3) — .55 .60 .62 .64 .66 .70 .72 .79
DT (max depth=5) — .55 .60 .62 .62 .65 .69 .72 .79
DT (max depth=7) — .55 .60 .62 .62 .64 .66 .69 .77
LLM Tree Llama-4 (max depth=3) .50 .54 .58 .63 .68 .69 .68 .70 —
LLM Tree Llama-4 (max depth=5) .59 .61 .62 .64 .66 .68 .67 .69 —
LLM Tree Llama-4 (max depth=7) .61 .63 .65 .67 .68 .69 .69 .70 —
LLM Tree gpt-4o-mini (max depth=3) .70 .68 .69 .68 .71 .74 .74 .76 —
LLM Tree gpt-4o-mini (max depth=5) .67 .67 .69 .69 .71 .72 .74 .76 —
LLM Tree gpt-4o-mini (max depth=7) .64 .64 .65 .64 .66 .69 .71 .74 —
TabLLM Llama-4 .67 .68 .68 .69 .71 .71 .72 .73 —
TabLLM gpt-4o-mini .67 .68 .66 .65 .66 .64 .65 .66 —

Hepatic damage

DT (max depth=3) — .52 .59 .67 .70 .75 .81 .84 .95
DT (max depth=5) — .52 .59 .67 .70 .75 .80 .85 .95
DT (max depth=7) — .52 .59 .67 .70 .75 .80 .85 .95
LLM Tree Llama-4 (max depth=3) .55 .55 .55 .55 .55 .55 .55 .55 —
LLM Tree Llama-4 (max depth=5) .56 .55 .56 .55 .55 .55 .54 .54 —
LLM Tree Llama-4 (max depth=7) .53 .54 .54 .54 .55 .54 .54 .54 —
LLM Tree gpt-4o-mini (max depth=3) .52 .52 .52 .53 .53 .54 .53 .53 —
LLM Tree gpt-4o-mini (max depth=5) .52 .52 .52 .53 .53 .54 .53 .53 —
LLM Tree gpt-4o-mini (max depth=7) .52 .52 .52 .53 .53 .54 .53 .53 —
TabLLM Llama-4 .76 .81 .79 .78 .82 .86 .86 .86 —
TabLLM gpt-4o-mini .69 .73 .71 .79 .82 .83 .83 .83 —

Weather

DT (max depth=3) — .66 .84 .84 .89 .92 .94 .95 .98
DT (max depth=5) — .66 .84 .84 .89 .92 .93 .95 .99
DT (max depth=7) — .66 .84 .84 .89 .92 .93 .94 .98
LLM Tree Llama-4 (max depth=3) .59 .58 .61 .75 .80 .81 .81 .82 —
LLM Tree Llama-4 (max depth=5) .62 .62 .64 .70 .76 .82 .86 .88 —
LLM Tree Llama-4 (max depth=7) .67 .68 .70 .72 .74 .80 .84 .88 —
LLM Tree gpt-4o-mini (max depth=3) .68 .77 .79 .77 .79 .80 .82 .83 —
LLM Tree gpt-4o-mini (max depth=5) .64 .74 .75 .75 .77 .79 .80 .82 —
LLM Tree gpt-4o-mini (max depth=7) .65 .76 .76 .77 .79 .80 .81 .83 —
TabLLM Llama-4 .87 .91 .91 .93 .93 .94 .95 .95 —
TabLLM gpt-4o-mini .83 .89 .91 .91 .91 .91 .91 .90 —

Table 3: ROC-AUC results obtained for each method on the six datasets, for different numbers of shots.
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Dataset Method Number of Shots
0 4 8 16 32 64 128 256 all

Abortion

DT (max depth=3) — .58 .59 .63 .63 .69 .72 .76 .76
DT (max depth=5) — .58 .59 .63 .63 .67 .71 .73 .72
DT (max depth=7) — .58 .59 .63 .63 .66 .69 .70 .66
LLM Tree Llama-4 (max depth=3) .36 .56 .64 .64 .64 .63 .64 .65 —
LLM Tree Llama-4 (max depth=5) .66 .69 .69 .71 .69 .70 .71 .71 —
LLM Tree Llama-4 (max depth=7) .66 .69 .70 .71 .69 .72 .72 .74 —
LLM Tree gpt-4o-mini (max depth=3) .49 .60 .61 .63 .65 .64 .65 .65 —
LLM Tree gpt-4o-mini (max depth=5) .51 .52 .53 .54 .58 .61 .64 .65 —
LLM Tree gpt-4o-mini (max depth=7) .51 .52 .52 .53 .55 .59 .62 .66 —
TabLLM Llama-4 .61 .64 .66 .68 .68 .70 .75 .75 —
TabLLM gpt-4o-mini .52 .57 .66 .62 .65 .68 .63 .65 —

Presidential
Approval

DT (max depth=3) — .57 .60 .59 .60 .63 .64 .67 .69
DT (max depth=5) — .57 .60 .59 .59 .60 .63 .65 .70
DT (max depth=7) — .57 .60 .59 .58 .58 .62 .62 .63
LLM Tree Llama-4 (max depth=3) .73 .73 .70 .70 .67 .65 .68 .66 —
LLM Tree Llama-4 (max depth=5) .68 .68 .67 .68 .66 .66 .68 .67 —
LLM Tree Llama-4 (max depth=7) .70 .70 .68 .69 .67 .67 .70 .69 —
LLM Tree gpt-4o-mini (max depth=3) .64 .64 .63 .64 .66 .64 .65 .63 —
LLM Tree gpt-4o-mini (max depth=5) .62 .62 .63 .62 .62 .63 .64 .63 —
LLM Tree gpt-4o-mini (max depth=7) .61 .61 .61 .60 .61 .60 .61 .61 —
TabLLM Llama-4 .54 .51 .51 .56 .55 .52 .56 .57 —
TabLLM gpt-4o-mini .69 .62 .64 .62 .62 .63 .65 .65 —

Credit

DT (max depth=3) — .58 .61 .62 .62 .66 .66 .68 .70
DT (max depth=5) — .58 .61 .62 .62 .65 .65 .68 .68
DT (max depth=7) — .58 .61 .62 .62 .64 .64 .67 .69
LLM Tree Llama-4 (max depth=3) .70 .69 .66 .65 .66 .66 .64 .66 —
LLM Tree Llama-4 (max depth=5) .70 .69 .66 .65 .66 .66 .64 .66 —
LLM Tree Llama-4 (max depth=7) .70 .69 .66 .65 .66 .66 .64 .66 —
LLM Tree gpt-4o-mini (max depth=3) .70 .67 .65 .64 .65 .64 .64 .66 —
LLM Tree gpt-4o-mini (max depth=5) .70 .67 .65 .64 .65 .64 .64 .66 —
LLM Tree gpt-4o-mini (max depth=7) .70 .67 .65 .64 .65 .64 .64 .66 —
TabLLM Llama-4 .60 .52 .50 .60 .60 .62 .65 .70 —
TabLLM gpt-4o-mini .41 .41 .40 .42 .42 .40 .41 .46 —

Diabetes

DT (max depth=3) — .59 .64 .65 .66 .67 .70 .70 .69
DT (max depth=5) — .59 .64 .66 .65 .67 .69 .71 .79
DT (max depth=7) — .59 .64 .66 .65 .67 .68 .70 .77
LLM Tree Llama-4 (max depth=3) .34 .50 .56 .64 .68 .69 .70 .70 —
LLM Tree Llama-4 (max depth=5) .52 .54 .57 .62 .65 .67 .68 .69 —
LLM Tree Llama-4 (max depth=7) .58 .58 .60 .63 .66 .67 .68 .70 —
LLM Tree gpt-4o-mini (max depth=3) .56 .58 .62 .66 .70 .69 .70 .69 —
LLM Tree gpt-4o-mini (max depth=5) .61 .61 .62 .63 .65 .67 .70 .70 —
LLM Tree gpt-4o-mini (max depth=7) .62 .61 .62 .62 .62 .65 .66 .68 —
TabLLM Llama-4 .65 .64 .65 .70 .69 .70 .71 .73 —
TabLLM gpt-4o-mini .58 .65 .62 .64 .65 .63 .66 .66 —

Hepatic damage

DT (max depth=3) — .87 .89 .92 .92 .94 .95 .96 .97
DT (max depth=5) — .87 .89 .92 .92 .94 .95 .97 .98
DT (max depth=7) — .87 .89 .92 .92 .94 .95 .97 .98
LLM Tree Llama-4 (max depth=3) .91 .90 .91 .91 .91 .91 .91 .91 —
LLM Tree Llama-4 (max depth=5) .91 .91 .91 .91 .91 .91 .91 .91 —
LLM Tree Llama-4 (max depth=7) .91 .91 .91 .91 .91 .91 .91 .91 —
LLM Tree gpt-4o-mini (max depth=3) .42 .86 .86 .91 .91 .91 .91 .91 —
LLM Tree gpt-4o-mini (max depth=5) .42 .55 .82 .90 .91 .91 .91 .91 —
LLM Tree gpt-4o-mini (max depth=7) .42 .55 .82 .90 .91 .91 .91 .91 —
TabLLM Llama-4 .86 .85 .91 .93 .94 .96 .97 .97 —
TabLLM gpt-4o-mini .67 .58 .56 .70 .75 .77 .77 .76 —

Weather

DT (max depth=3) — .66 .84 .84 .89 .92 .93 .94 .95
DT (max depth=5) — .66 .84 .84 .89 .92 .93 .94 .95
DT (max depth=7) — .66 .84 .84 .89 .92 .93 .94 .94
LLM Tree Llama-4 (max depth=3) .42 .50 .56 .71 .77 .77 .77 .78 —
LLM Tree Llama-4 (max depth=5) .42 .48 .54 .66 .71 .74 .77 .80 —
LLM Tree Llama-4 (max depth=7) .61 .62 .63 .67 .70 .74 .76 .79 —
LLM Tree gpt-4o-mini (max depth=3) .59 .59 .61 .64 .69 .75 .77 .78 —
LLM Tree gpt-4o-mini (max depth=5) .60 .61 .63 .65 .69 .73 .76 .77 —
LLM Tree gpt-4o-mini (max depth=7) .65 .65 .67 .69 .72 .75 .77 .78 —
TabLLM Llama-4 .87 .91 .91 .93 .93 .94 .95 .95 —
TabLLM gpt-4o-mini .83 .89 .91 .91 .91 .91 .91 .90 —

Table 4: Accuracy obtained by each method on the six datasets, for different numbers ofshots.
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