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ABSTRACT

Federated Learning (FL) allows distributed model training across multiple clients
while preserving data privacy, but it remains vulnerable to Byzantine clients that
exhibit malicious behavior. While existing Byzantine-robust FL methods provide
strong convergence guarantees (e.g., to a stationary point in expectation) under
Byzantine attacks, they typically assume full client participation, which is un-
realistic due to communication constraints and client availability. Under partial
participation, existing methods fail immediately after the sampled clients contain
a Byzantine majority, creating a fundamental challenge for sparse communica-
tion. First, we introduce delayed momentum aggregation, a novel principle where
the server aggregates the most recently received gradients from non-participating
clients alongside fresh momentum from active clients. Our optimizer D-Byz-
SGDM (Delayed Byzantine-robust SGD with Momentum) implements this de-
layed momentum aggregation principle for Byzantine-robust FL with partial par-
ticipation. Remarkably, experiments on deep learning tasks showed our method
not only maintained stable convergence under various Byzantine attacks, but also
outperformed standard FL methods with partial participation in non-Byzantine
settings.

1 INTRODUCTION

Federated Learning (FL) enables collaborative training across many clients without centralizing
raw data, and has become a standard approach when privacy, bandwidth, or governance constraints
prevent data pooling (Kairouz et al., 2021; McMahan et al., 2017). Its central idea is to transmit gra-
dients rather than raw data. Specifically, each client computes the gradient using their local dataset
and sends it to the central server. Then, the central server computes the average of the gradients
and updates the parameters. Since its proposal, FL has attracted many optimization researchers and
has been widely studied in areas such as communication compression (Mishchenko et al., 2024;
Khirirat et al., 2018; Horváth et al., 2023; Stich et al., 2018; Alistarh et al., 2017; Albasyoni et al.,
2020; Li et al., 2021; Fatkhullin et al., 2023), data heterogeneity (Karimireddy et al., 2020b; Pu &
Nedić, 2021; Takezawa et al., 2022; Cheng et al., 2024; Li et al., 2020; Yang et al., 2021; Wang
et al., 2020; Zhang et al., 2021; Haddadpour et al., 2021; Alghunaim, 2024), accelerated methods
(Kovalev et al., 2022; Jiang et al., 2024; d’Aspremont et al., 2021; Güler, 1992; Nesterov, 2018; Lin
et al., 2015; Monteiro & Svaiter, 2013), and Byzantine-robust FL, including defenses for homoge-
neous data (Blanchard et al., 2017a; Mhamdi et al., 2018; Damaskinos et al., 2019; Yin et al., 2018;
Pillutla et al., 2022; Bernstein et al., 2019; Alistarh et al., 2018; Mhamdi et al., 2021; Karimireddy
et al., 2021) and heterogeneous data (Sattler et al., 2020; Xie et al., 2019b; Chen et al., 2018; Rajput
et al., 2019; Data & Diggavi, 2021a;b; Li et al., 2019; Acharya et al., 2022; El-Mhamdi et al., 2021;
Yang & Li, 2021; Allouah et al., 2023).

Due to the nature of FL, where a large number of clients participate in the training process, it is
vulnerable to clients that behave incorrectly, commonly referred to as Byzantine clients (Kairouz
et al., 2021; Lamport et al., 2019). For instance, some clients may be faulty, while others may act
maliciously to disrupt training. Under Byzantine failures, naive averaging is notoriously brittle:
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even a single Byzantine client can significantly skew the aggregated model updates. To address this
issue, a large body of work has proposed Byzantine-robust FL methods (Blanchard et al., 2017a;b;
Allouah et al., 2023; Karimireddy et al., 2021), which replace simple averaging with robust aggrega-
tion rules at the central server. A robust aggregator guarantees that, as long as the majority of inputs
come from honest clients, the aggregation output remains close to the true average of the honest
clients’ parameters, regardless of the values sent by malicious clients. Thanks to these robust aggre-
gation techniques, Byzantine-robust FL can maintain convergence guarantees, despite the presence
of Byzantine clients.

However, most of these existing Byzantine-robust FL methods rely on the assumption that all clients
participate in every round, which is unrealistic. Some clients may be temporarily unavailable, for
example, due to unreliable connections or competing computational tasks (Kairouz et al., 2021;
Bonawitz et al., 2017; Niu et al., 2020; Yan et al., 2024; Gu et al., 2021; Wang & Ji, 2022). Even if
all clients were available, it is common practice to sample only a subset of the clients to reduce the
communication overhead between the central server and the clients (Karimireddy et al., 2020b;a;
Patel et al., 2022). When only a subset of clients participates, most existing Byzantine-robust FL
methods fail to remain robust against Byzantine clients. Specifically, in the partial participation
setting, the majority of the sampled clients can be malicious. In such a case, a robust aggregator may
no longer provide a good estimation of the average of the honest clients’ parameters. Only a few
papers have studied Byzantine-robust FL with partial participation (Allouah et al., 2024; Malinovsky
et al., 2024). Malinovsky et al. (2024) proposed a MARINA-style (SVRG/SAGA-family) optimizer
with a specialized clipping strategy, showing tolerance even in rounds with a Byzantine majority.
However, such MARINA/SVRG/SAGA or periodic full-gradient / large-minibatch schemes perform
poorly for deep learning models (Defazio & Bottou, 2019). Allouah et al. (2024) proposed replacing
the naive averaging in FedAvg (McMahan et al., 2017) with a Byzantine-robust aggregator. Their
algorithm, however, relies on vanilla (non-momentum) SGD, which is vulnerable to time-coupled
attacks (Baruch et al., 2019; Karimireddy et al., 2021), and it offers no mitigation when Byzantine
clients form a majority.

In this paper, we tackle the challenge of Byzantine-robust FL with partial participation, aiming for
a simple and practical solution. Our proposed method, D-Byz-SGDM (Delayed Byzantine-robust
SGD with Momentum), is strikingly simple: at each aggregation step, the central server aggregates
not only the gradients sent from the sampled clients but also the most recently received gradients
from the non-sampled clients. As a result, this effectively aggregates the entire set of clients, thereby
ensuring that the aggregation in which Byzantine clients constitute a majority never occurs during
the training. Experiments on deep learning tasks show stable and robust training under both partial
participation and Byzantine attacks.

We provide a comprehensive discussion of related work in Section 2 and proceed with the formal
problem setup.

2 RELATED WORK

Byzantine-robust FL under full participation. Classical defenses replace naive averaging by
robust aggregation rules such as Krum (Blanchard et al., 2017a), coordinate-wise median and
trimmed-mean (Blanchard et al., 2017b), and geometric–median–based RFA (Pillutla et al., 2022);
meta-rules like Bulyan further reduce adversarial leverage (Mhamdi et al., 2018). Yet these
per-round defenses can be vulnerable to time-coupled attacks that inject small, undetectable bi-
ases which accumulate across rounds (Baruch et al., 2019; Xie et al., 2019a). A key development is
to leverage history: Karimireddy et al. (2021) formalize such time-coupled failures and prove that
momentum (together with robust aggregation) provably restores convergence; subsequent works re-
fine the momentum view and resilient averaging (Farhadkhani et al., 2022). Heterogeneity (non-IID
client data) exacerbates the problem: bucketing (Karimireddy et al., 2022) and nearest-neighbor
mixing (NNM) (Allouah et al., 2023) are pre-aggregation mechanisms that systematically adapt
IID-optimal rules (e.g., Krum, median, RFA) to the heterogeneous regime, closing gaps between
achievable rates and lower bounds. Beyond aggregation, algorithmic alternatives include coding-
theoretic redundancy (DRACO) (Chen et al., 2018) and filtering for non-convex objectives (Allen-
Zhu et al., 2021; Alistarh et al., 2018). Complementing these meta-aggregation approaches that
assume full participation, Dahan & Levy (2024b) propose an efficient Centered Trimmed Meta-
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Aggregator (CTMA) that upgrades base robust aggregators to order-optimal performance at near-
averaging cost, and couple it with a double-momentum estimator to establish theoretical guarantees
within the stochastic convex optimization (SCO) framework for synchronous (full-participation)
training.

Partial participation, and local updates. Partial participation makes robustness strictly harder
because the sampled set occasionally contains a Byzantine majority. Early theory coupling Byzan-
tine robustness with local steps shows that convergence can be ensured only when the sampled cohort
has a sufficiently large honest fraction at each synchronization, e.g., ε ≤ 1/3 corrupted among the
K active clients (Data & Diggavi, 2021b, Thm. 1), an assumption strained by client sampling. The
interaction between client sampling, multiple local steps, and robust aggregation has since been an-
alyzed in detail by Allouah et al. (2024), who quantifies how client sampling reshapes the effective
number of Byzantine clients and shows regimes where standard robust aggregators suffice; however,
these schemes omit momentum and do not mitigate time-coupled drift. Another concurrent line
uses explicit MARINA/SVRG/SAGA periodic full-gradient/reference-gradient steps: by coupling
robust aggregation with gradient-difference clipping and periodic full-gradient steps, Malinovsky
et al. (2024) proves tolerance even when a sampled round is entirely Byzantine, at the cost of peri-
odic heavier steps. From a statistical-efficiency angle, protocols with near-optimal rates under full
participation have been derived via modern robust statistics (Zhu et al., 2023), and recent work ex-
plores communication compression jointly with robustness (Rammal et al., 2024; Gorbunov et al.,
2023).

Connection to MIFA. MIFA (Gu et al., 2021) tackles arbitrary client unavailability by caching
each client’s latest update and substituting this surrogate when the client is absent, followed by
naive averaging. Within our framework this is the instantiation where the robust aggregator is re-
placed by the mean and the client-side momentum weight is fixed at α = 1, i.e., cached updates are
used without attenuation. In our analysis this corresponds to a robustness constant c = ∞, making
our generic upper bound vacuous and reflecting that naive averaging cannot deliver Byzantine guar-
antees. Moreover, MIFA omits momentum; even if paired with a robust aggregator, the lower bound
of Karimireddy et al. (2021) would still apply, as momentum is necessary to overcome time-coupled
Byzantine drift.

Asynchrony, delayed gradients, and relevance to our staleness mechanism. Analysis of asyn-
chronous SGD (ASGD) formalizes delayed/stale gradients and shows that delays can be controlled
via delay-aware stepsizes (Koloskova et al., 2022; Mishchenko et al., 2022). In the Byzantine
asynchronous regime, recent work Dahan & Levy (2024a) develops a weighted robust-aggregation
framework and, combined with a double-momentum estimator, proves optimal convergence in the
smooth convex homogeneous (i.i.d.) setting (Dahan & Levy, 2024a). Importantly for assumptions,
Dahan & Levy (2024a;b)’s analysis (both asynchronous and synchronous) operates over a compact
feasible set (bounded diameter), which is stricter than the bounded-gradient conditions commonly
adopted in FL theory.

Our setting is not asynchronous; nevertheless, partial participation induces server-side staleness
because non-sampled clients contribute historical (per-client) gradients. This places our analysis
close to the ASGD toolbox while tackling a distinct failure mode (occasional Byzantine-majority
samples under subsampling) without trusted validation data. Technically, we leverage per-client
stale gradients to preserve a history-coupled (global) momentum across rounds, complementing
weighted robust aggregation in the asynchronous literature (Dahan & Levy, 2024a).

Relative to prior momentum-based defenses (Karimireddy et al., 2021; Farhadkhani et al., 2022)
and heterogeneity fixes (Karimireddy et al., 2022; Allouah et al., 2023), we study the regime
where clients refresh stochastically and Byzantine clients can transiently comprise the sampled
majority. Compared to MARINA/SVRG/SAGA-style periodic full-gradient/reference-gradient ap-
proaches (Malinovsky et al., 2024), our method avoids periodic full-batch gradient computations,
making it more practical and scalable for real federated learning deployments.
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3 PRELIMINARY

Notations. Our notation largely follows (Koloskova et al., 2020; Karimireddy et al., 2022). We
denote by n the total number of clients, and for any positive integer k, let [k] := {1, 2, . . . , k}.
The set of good (non-Byzantine) clients is represented by G ⊆ [n] with cardinality G := |G|. The
Byzantine ratio is defined as δ := (n − G)/n, and throughout this paper we assume δ < 1/2. For
each client i, let Di denote the distribution of local data ξi over parameter space Ωi. The local loss
function is given by fi : Rd → R, defined as fi(x) := Eξi [Fi(x; ξi)] where Fi : Rd × Ωi → R is
the sample loss.

Problem Definition. We formalize the problem as follows:

min
x∈Rd

{
f(x) :=

1

G

∑
i∈G

fi(x)

}

where x ∈ Rd denotes the model parameters and Di represents the dataset distribution of client i.
In general, Di ̸= Dj , reflecting data heterogeneity across clients.

Byzantine-robust Learning under Full-Participation The full participation setting serves as the
theoretical foundation for Byzantine-robust federated learning, where the fundamental challenge is
designing aggregation mechanisms that maintain convergence guarantees despite adversarial behav-
ior. This setting provides clean theoretical analysis by eliminating client sampling complexities,
establishing design principles for robust aggregation rules and performance benchmarks that inform
practical algorithm design. The case of full client participation has been extensively studied in the
literature (Karimireddy et al., 2022; Allouah et al., 2023; Gorbunov et al., 2023).

In this setting, robustness is typically achieved by replacing the simple average with a robust aggre-
gation rule. While the precise definition of such aggregators may vary across works, we adopt the
following notion from Karimireddy et al. (2022) and use it throughout this paper.

Assumption 1 ((δ, c)-Robust Aggregator (Karimireddy et al., 2022; Malinovsky et al., 2024)). Let
{X1, X2, . . . , Xn} be a set of random vectors. Suppose there exists a “good” subset G ⊆ [n] of size
G = |G| > n/2 such that

E∥Xi −Xj∥2 ≤ ρ2, ∀i, j ∈ G.

Then the output X̂ of a Byzantine-robust aggregator Agg satisfies

E∥Agg(X1, . . . , Xn)− X̄∥2 ≤ cδρ2, where X̄ = 1
G

∑
i∈G

Xi.

Importantly, this definition is not merely abstract. Karimireddy et al. (2022) prove (in Theorem 1)
that well-known aggregation rules such as KRUM (Blanchard et al., 2017a), RFA (Pillutla et al.,
2022), and the coordinate-wise median, when combined with their proposed bucketing technique,
indeed satisfy Assumption 1. Thus, concrete and practical instantiations of robust aggregators are
available within this framework. In addition, momentum-based or explicit MARINA/SVRG/SAGA
periodic full-gradient (or large-minibatch) techniques (Gorbunov et al., 2023; Rammal et al., 2024)
are necessary to achieve robustness against sophisticated attacks. While heavy-ball momentum it-
self can be interpreted as a form of variance reduction (Cutkosky & Orabona, 2019), throughout
this paper we refer to heavy-ball-style updates simply as momentum. Without such techniques,
Karimireddy et al. (2021) showed a fundamental lower bound demonstrating that learning fails when
stochastic gradient noise is not properly controlled, making these methods essential for countering
time-coupled attacks (Baruch et al., 2019).

Federated Learning with Partial Participation Federated learning with partial participation is
a fundamental characteristic of practical federated learning systems. Real-world deployments in-
herently involve clients with heterogeneous capabilities and intermittent availability due to device
constraints, battery limitations, and network connectivity variations (McMahan et al., 2017; Kairouz
et al., 2021). This participation pattern directly impacts communication efficiency and system scal-
ability, making it a critical consideration for algorithm design.
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In the usual partial participation setting, all clients are assumed to be non-Byzantine, i.e., G = [n].
The classical FEDAVG algorithm (McMahan et al., 2017) samples a subset of active clients, denoted
by St ⊆ [n], uniformly at random at each round t, and aggregates their local updates by naive
averaging: 1

|St|
∑

i∈St
gti , where gti denotes the local gradient estimator of client i (e.g., a stochastic

gradient).

Failure of Byzantine-robust Learning with Partial Participation A natural extension of the full
participation setting is to replace the naive averaging step

1
|St|

∑
i∈St

gti −→ Agg({gti}i∈St
).

While appealing, this strategy fails with partial participation: in some rounds, the sampled set
may contain a Byzantine majority, despite the global condition δ < 1/2. Under the (standard)
model where the server only receives the gradients/momentum submitted in that round and has no
additional side information, no (per-round) robust aggregator can reliably distinguish adversarial
updates from honest updates when the sampled set contains a Byzantine majority. Furthermore, if
we consider i.i.d. Bernoulli sampling, the likelihood of the existence of at least one round containing
a Byzantine-majority grows exponentially with time.

Recent work has sought to address this issue. Allouah et al. (2024) provided lower bounds on the
subsample size. However, due to a lack of momentum or large-minibatch sampling, their method
collapses under time-coupled attacks such as ALIE (Baruch et al., 2019). Malinovsky et al. (2024)
established convergence guarantees tolerating Byzantine-majority rounds via gradient-difference
clipping, but their analysis relies on MARINA/SVRG/SAGA-style periodic full-gradient optimizers,
which are known to be ineffective in deep learning (Defazio & Bottou, 2019).

4 PROPOSED METHOD

In this section, we propose delayed momentum aggregation, which is to apply the robust aggrega-
tor not only to the momentum of sampled clients but also to the cached momentum of non-sampled
clients. Then, we propose a delayed momentum aggregation-based optimizer D-Byz-SGDM, which
is Byzantine-robust even if only a subset of clients participate in each round. Formally, let xt denote
the global model parameter maintained by the server at round t. The server then updates it using
delayed momentum aggregation as follows:

xt = xt−1 − η Agg
(
{mt

i}i∈St ∪ {m
t−τ(i,t)
i }i∈[n]\St

)
, (delayed momentum aggregation)

where each mt
i represents a local momentum estimate, and τ(i, t) denotes the (possibly stochastic)

delay since client i’s last update was received. This design maintains that Agg(·) consistently sees
the global Byzantine fraction δ < 1/2, ensuring robustness even with partial participation.

As a concrete special case of the main idea, we propose a new method, D-Byz-SGDM, whose
update rule is given in Algorithm 1. In each round t, the server independently samples each client
with probability p (i.e., zt ∼ Ber(p)⊗n and St = {i : zti = 1}). The selected clients refresh their
momentum, while non-selected clients retain their cached value:

mt
i =

{
(1− α)mt−1

i + α∇fi(xt−1, ξt−1
i ), i ∈ St,

mt−1
i , i /∈ St,

where α ∈ (0, 1] is the client momentum parameter. Note that each client i is included in St
with probability p. Importantly, D-Byz-SGDM introduces no extra communication overhead. The
server simply maintains one vector mt

i per client while reusing cached momentum for non-sampled
clients, resulting in a memory requirement matching the full participation setting. As a possible
mitigation for extreme cross-device regimes, one could explore streaming robust mean estimators
(e.g., the streaming-based robust aggregator of Diakonikolas et al. (2022)) to shrink the server-side
memory footprint, though such techniques are not yet compatible with our current robust aggregation
definition, and we leave this integration for future work.
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Algorithm 1: Optimizer with delayed momentum aggregation: D-Byz-SGDM
Require: initial vectors x0,m0, stepsize η, momentum parameter α, robust aggregator Agg,

client sampling probability p ∈ (0, 1]
Initialize m0

i and τ(i, 0)← 0 for all i ∈ [n];
for t = 1, 2, . . . do

Sample St ⊆ [n] by including each i ∈ [n] independently with prob. p
Server broadcasts xt−1 to all i ∈ St
foreach i ∈ St in parallel do

Draw ξt−1
i ∼ Di and compute

mt
i ← (1− α)mt−1

i + α∇Fi(x
t−1; ξt−1

i )

Send mt
i to server

end
foreach i /∈ St (on server) do

Update mt
i ← mt−1

i
end
mt ← Agg

(
{mt

i}i∈St
∪ {mt

i}i/∈St

)
// delayed momentum aggregation

xt ← xt−1 − ηmt

end

5 EXPERIMENTS

We evaluated D-Byz-SGDM under various Byzantine attacks with partial participation (p = 0.5)
by training a convolutional network on MNIST and a ResNet-18 on CIFAR-10 across IID and non-
IID data partitions. We compared four optimizers (FedAvg, FedAvgM, D-Byz-SGDM, and the
heuristic momentum extension of Byz-VR-MARINA-PP from Malinovsky et al. (2024)) with five
robust aggregators under six Byzantine attacks. FedAvg (McMahan et al., 2017) performed single-
step SGD per client followed by server-side aggregation, while FedAvgM (Cheng et al., 2024)
extended this with client-side momentum (β = 0.9). In our setting, the standard averaging step in
four optimizers was replaced by robust aggregation rules, allowing us to assess performance under
Byzantine attacks. Our implementation extended Karimireddy et al. (2022)’s codebase1 with attacks
from the ByzFL framework (González et al., 2025) and additional support for CIFAR-10/ResNet-18
training. Appendix C provided complete experimental details.

Hyperparameter selection. For each optimizer (FedAvg, FedAvgM, D-Byz-SGDM) we tuned
a global learning rate η over the grid {0.1, 0.01, 0.001}. Byz-VR-MARINA-PP required tuning
both η and the clipping radius λ ∈ {10.0, 1.0, 0.1}. Every configuration was evaluated over seeds
{0, 1, 2}, and we selected the setting with the highest mean validation accuracy for reporting in both
the non-Byzantine and Byzantine settings.

5.1 BYZANTINE ROBUSTNESS WITH PARTIAL PARTICIPATION (MAIN RESULT)

We analyzed partial participation (p = 0.5) with n = 25 total clients of which 20% were Byzantine
(δ = 0.2). All plots in this subsection used centered clipping (CCLIP) (Karimireddy et al., 2021) as
the server-side aggregator.

Key findings. Figures 1a and 1b demonstrate the performance of algorithms with the CCLIP
aggregator under Byzantine attacks with partial participation (p = 0.5). Our experiments reveal
three critical insights: (1) D-Byz-SGDM consistently achieved the highest final accuracy across
all settings. On MNIST IID (upper half of Fig. 1a), both D-Byz-SGDM and Byz-VR-MARINA-
PP achieved near-perfect accuracy, while FedAvg and FedAvgM diverged after three epochs. On
CIFAR-10 with ResNet-18 (upper half of Fig. 1b), D-Byz-SGDM sustained 80–85% accuracy
across all attack types. (2) Non-IID data exposed critical algorithmic differences. On non-IID

1https://github.com/epfml/byzantine-robust-noniid-optimizer
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(b) CIFAR-10 (ResNet-18) under centered clipping (CCLIP). The top row reports IID splits and the bottom
row reports non-IID splits with bucketing s = 2; moving left to right the columns correspond to ALIE, Bit-
Flipping, INFINITY, IPM, Label-Flipping, and Mimic attacks. Observation: D-Byz-SGDM sustains 80–85%
accuracy across attacks, whereas FedAvg/FedAvgM often collapse by epoch ≈ 4 when a Byzantine majority
is sampled.

Figure 1: Byzantine-robust training with CCLIP and partial participation (p = 0.5). D-Byz-SGDM
is consistently the most accurate and stable curve.

MNIST (lower half of Fig. 1a), Byz-VR-MARINA-PP exhibited high variance and unstable con-
vergence, while D-Byz-SGDM maintained consistent performance. The disparity was dramatic on
non-IID CIFAR-10 (lower half of Fig. 1b): Byz-VR-MARINA-PP catastrophically failed (20–35%
accuracy), whereas D-Byz-SGDM maintained 80–85% accuracy. The delayed momentum aggre-
gation principle proved crucial. While standard methods failed when a Byzantine majority was
sampled,2 D-Byz-SGDM maintained stable convergence. (3) The approach generalizes across ag-
gregators. Similar trends held across other aggregators (avg, krum, cm, rfa) and both datasets,
with FedAvg and FedAvgM performing poorly in both IID and non-IID settings (FedAvgM showed
marginal improvements only in specific attacks like Bit-Flipping); see Appendix D for the full set
of figures.

5.2 BASELINE PERFORMANCE WITHOUT BYZANTINE CLIENTS

We also examined the non-Byzantine setting (δ = 0) to establish baseline performance. The setup
used n = 20 clients with the avg aggregator. The results were summarized in Figures 2a and 2b.

Key findings. Across both IID and non-IID settings on MNIST (Fig. 2a), Byz-VR-MARINA-PP
achieved the worst validation accuracy and highest loss throughout training. Surprisingly, D-Byz-
SGDM consistently outperformed FedAvgM in the non-Byzantine setting (δ = 0), despite the risk
that reusing momentum across rounds could degrade performance. The advantage persisted on the

2With p = 0.5, if many Byzantines were sampled together, they could overwhelm the aggregation.
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(a) MNIST without Byzantine clients (δ = 0) using the avg aggregator. The left panel reports the IID partition
and the right panel reports the non-IID partition. Observation: performance is saturated in IID; D-Byz-SGDM
retains a clear margin in non-IID, showing delayed momentum aggregation mitigates heterogeneity even with-
out attacks.
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(b) CIFAR-10 / ResNet-18 without Byzantine clients (δ = 0) using the avg aggregator. The left panel shows
the IID partition and the right panel shows the non-IID partition. Observation: D-Byz-SGDM converges faster
and finishes 5–10 points higher on both partitions, while Byz-VR-MARINA-PP remains well below momentum
baselines.

Figure 2: Baseline training with partial participation (p = 0.5) and no Byzantine clients (δ =
0). Delayed momentum aggregation (D-Byz-SGDM) remains strongest in non-IID even without
adversaries.

deeper model (ResNet-18) on CIFAR-10 (Fig. 2b), underscoring that delayed momentum aggre-
gation scaled beyond vision tasks with shallow networks. The curves suggested that with partial
participation (p = 0.5) and heterogeneity (non-IID), the delayed momentum aggregation mecha-
nism in D-Byz-SGDM mitigated heterogeneity-induced drift, acting as an implicit regularizer even
without attacks. We further examined Byz-VR-MARINA-PP in the non-Byzantine regime. Some-
what unexpectedly, applying clipping to momentum differences introduced a bias detrimental to
performance unless the clipping hyperparameter λ was chosen with extreme care. This sensitivity
highlighted a trade-off: while clipping was essential to defend against Byzantine behaviors, it could
significantly distort gradient estimates in non-Byzantine settings.

6 CONCLUSION

We proposed delayed momentum aggregation, a novel principle where servers aggregate fresh
momentum from participating clients with the most recently received momentum from non-
participating clients. Our D-Byz-SGDM optimizer maintains Byzantine-robustness under partial
participation while remaining lightweight to deploy. Experiments showed consistent improvements
over existing methods across various attacks and data distributions. The delayed momentum aggre-
gation principle opens promising avenues for extension to other client selection schemes (Fraboni
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et al., 2022; Cho et al., 2020; Fraboni et al., 2021; Li et al., 2020; Chen et al., 2022) beyond Bernoulli
sampling.

ETHICS STATEMENT

This work addresses robustness in federated learning against adversarial participants. We use
“Byzantine” following established distributed systems nomenclature to denote arbitrary failures,
with no cultural reference intended. Our proposed method is defensive, designed to enhance the
reliability and safety of collaborative training.
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Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Gar-
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and partial participation can be achieved at once: Just clip gradient differences. In Advances in
Neural Information Processing Systems, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
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In accordance with ICLR 2026 guidelines, we disclose the use of Large Language Models (LLMs)
in preparing this submission:

• Writing assistance: Yes, LLMs were used to aid and polish writing. Specifically, we
employed LLMs to improve clarity, correct grammar, and enhance the overall presentation
of technical content throughout the manuscript. The authors take full responsibility for all
content, including any LLM-assisted portions.

• Literature retrieval and discovery: Yes, LLMs were used for finding related work. We
utilized LLMs to help identify relevant papers, understand connections between differ-
ent research areas, and ensure comprehensive coverage of the Byzantine-robust federated
learning literature. All citations were independently verified for accuracy.

We emphasize that all research ideas, algorithm design, experimental design, and results analysis
were conducted by the authors without LLM involvement. The LLMs served solely as auxiliary
tools for improving presentation and literature discovery.

B ALGORITHM DETAILS

We present the detailed algorithm for D-Byz-SGDM (Delayed Byzantine-robust SGD with Momen-
tum), which implements our delayed momentum aggregation principle. The key idea is to apply the
robust aggregator not only to the momentum of sampled clients but also to the cached momentum
of non-sampled clients, ensuring that the aggregator consistently sees the global Byzantine fraction
δ < 1/2 even under partial participation.

In each round t, the server independently samples each client with probability p (i.e., zt ∼ Ber(p)⊗n

and St = {i : zti = 1}). The selected clients refresh their momentum using:

mt
i =

{
(1− α)mt−1

i + α∇fi(xt−1, ξt−1
i ), i ∈ St,

mt−1
i , i /∈ St,

where α ∈ (0, 1] is the client momentum parameter. Non-selected clients retain their cached mo-
mentum values from previous rounds.

The server then performs delayed momentum aggregation by applying the robust aggregator Agg
to the union of fresh momentum from sampled clients and cached momentum from non-sampled
clients:

mt = Agg
(
{mt

i}i∈St
∪ {mt

i}i/∈St

)
This design ensures that even when partial participation might lead to a Byzantine majority among
sampled clients, the aggregator always operates on the full set of clients (fresh and cached), main-
taining robustness.

To see how this corresponds to the delayed momentum aggregation principle, note that the delay
function τ(i, t) represents the number of rounds since client i’s momentum was last updated. For-
mally:

τ(i, t) = min{s ≥ 0 : i ∈ St−s}
This is a random variable that depends on the sampling history. When i ∈ St, we have τ(i, t) = 0
(fresh update), and when i /∈ St, we have τ(i, t) > 0 (stale update). The algorithm effectively
implements:

xt = xt−1 − η Agg
(
{mt

i}i∈St
∪ {mt−τ(i,t)

i }i∈[n]\St

)
where for non-sampled clients, mt−τ(i,t)

i is their most recent momentum update, which is exactly
what we store as mt

i in the algorithm.

Importantly, D-Byz-SGDM does not incur additional communication costs compared to standard
partial participation methods: the server only queries sampled clients and stores one momentum
vector mt

i per client, matching the memory requirements of full participation settings.
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 COMMON EXPERIMENTAL SETTINGS

All experiments covered two vision workloads: MNIST with a convolutional neural network archi-
tecture (CONV-CONV-DROPOUT-FC-DROPOUT-FC) and CIFAR-10 with a standard ResNet-18.
Training employed cross-entropy (negative log-likelihood) loss with batch size 32 per client and
client participation probability p = 0.5. We evaluated both IID and non-IID data partitions, with
the latter following the class-based approach of Karimireddy et al. (2022). Four optimizers were
compared: FedAvg, FedAvgM, D-Byz-SGDM, and the heuristic momentum extension of Byz-
VR-MARINA-PP (with λ ∈ {10.0, 1.0, 0.1}) introduced in (Malinovsky et al., 2024), all using
momentum parameter α = 0.9 where applicable. Training ran for 10 epochs (300 iterations total)
for MNIST and 200 epochs for CIFAR-10, with results averaged over seeds {0, 1, 2}. For each
optimizer we tuned the learning rate η ∈ {0.1, 0.01, 0.001}; additionally Byz-VR-MARINA-PP
tuned the clipping radius λ ∈ {10.0, 1.0, 0.1}. We selected the configuration with the highest mean
validation accuracy across the three seeds for both the non-Byzantine and Byzantine experiments.
Tables 1–4 provided complete configuration details.

C.2 BASELINE PERFORMANCE EVALUATION

This experiment established baseline performance under partial participation without Byzantine
clients across both MNIST (ConvNet) and CIFAR-10 (ResNet-18). We used n = 20 clients with no
Byzantine clients (δ = 0) and naive averaging aggregation. The objective was to validate that D-
Byz-SGDM maintains competitive performance in non-Byzantine settings and to establish reference
performance levels for subsequent robustness comparisons. Results in Figs. 2a and 2b demonstrated
that D-Byz-SGDM outperformed standard momentum methods on both MNIST and CIFAR-10
even without adversaries, suggesting that delayed momentum aggregation provided implicit regu-
larization benefits under heterogeneous data distributions.

C.3 BYZANTINE ROBUSTNESS ASSESSMENT

This experiment evaluated robustness against Byzantine attacks under partial participation on both
datasets (MNIST with the ConvNet backbone and CIFAR-10 with ResNet-18). We configured
n = 25 clients with 5 Byzantine clients (20%). Five robust aggregators were evaluated: Krum,
coordinate-wise median, CCLIP (centered clipping), RFA, and naive averaging as baseline. The
experimental design included both IID and non-IID data partitions, with bucketing applied in
the Byzantine non-IID setting to mitigate extreme heterogeneity. This comprehensive evaluation
spanned 6,480 total experimental runs across all combinations of attacks, aggregators, optimizers,
data partitions, and random seeds (3,240 runs per dataset).

C.4 NON-IID DATA PARTITION

We constructed the non-IID split following Karimireddy et al. (2022) in the balanced case: (i)
sorted the training sets by label; (ii) split it into G equal, contiguous shards (where G is the number
of good/honest clients); (iii) assigned one shard to each honest client and shuffle examples within
each client. We partitioned the test set analogously.

C.5 COMPUTING ENVIRONMENT

Experiments ran on NVIDIA A100-SXM4-80GB GPUs (CUDA 12.2) and AMD EPYC 7763 CPUs.
Table 5 provides detailed hardware and software specifications.

D EXTENDED RESULTS

Per-aggregator curves with Byzantine clients. This section complemented Figs. 1a and 1b by
showing training dynamics for the other robust aggregators across the same attacks, data partitions,
and optimizers on MNIST (ConvNet) and CIFAR-10 (ResNet-18).
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Table 1: MNIST (non-Byzantine) configuration used in Fig. 2a.

Dataset MNIST (IID and non-IID partitions)
Model CONV-CONV-DROPOUT-FC-DROPOUT-FC
Clients n = 20 (all honest)
Participation p = 0.5 (partial participation)
Aggregator avg
Batch size 32 per client
Training horizon 10 epochs (300 rounds)
Optimizers FedAvg, FedAvgM, D-Byz-SGDM, Byz-VR-MARINA-PP
Learning-rate tuning grid search on {0.1, 0.01, 0.001}
Byz-VR-MARINA-PP tuning joint grid search η ∈ {0.1, 0.01, 0.001}, λ ∈ {10.0, 1.0, 0.1}
Seeds {0, 1, 2}
Attacks none

Table 2: MNIST (Byzantine) configuration used in Fig. 1a.

Dataset MNIST (IID and non-IID with bucketing s = 2)
Model CONV-CONV-DROPOUT-FC-DROPOUT-FC
Clients n = 25 (20 honest, 5 Byzantine; δ = 0.2)
Participation p = 0.5 (partial participation)
Aggregators avg, krum, cm, CCLIP, rfa
Batch size 32 per client
Training horizon 10 epochs (300 rounds)
Attacks BF, LF, mimic, IPM, ALIE, INF
Optimizers FedAvg, FedAvgM, D-Byz-SGDM, Byz-VR-MARINA-PP
Learning-rate tuning grid search on {0.1, 0.01, 0.001}
Byz-VR-MARINA-PP tuning joint grid search η ∈ {0.1, 0.01, 0.001}, λ ∈ {10.0, 1.0, 0.1}
Seeds {0, 1, 2}

Notation: avg=naive average, krum=Krum (Blanchard et al., 2017a), cm=coordinate-wise median,
CCLIP=centered clipping (Karimireddy et al., 2021), rfa=geometric median (RFA) (Pillutla et al., 2022).
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Table 3: CIFAR-10 (non-Byzantine) configuration used in Fig. 2b.

Dataset CIFAR-10 (IID and non-IID partitions)
Model ResNet-18
Clients n = 20 (all honest)
Participation p = 0.5 (partial participation)
Aggregator avg
Batch size 32 per client
Training horizon 200 epochs
Optimizers FedAvg, FedAvgM, D-Byz-SGDM, Byz-VR-MARINA-PP
Learning-rate tuning grid search on {0.1, 0.01, 0.001}
Byz-VR-MARINA-PP tuning joint grid search η ∈ {0.1, 0.01, 0.001}, λ ∈ {10.0, 1.0, 0.1}
Seeds {0, 1, 2}
Attacks none

Table 4: CIFAR-10 (Byzantine) configuration used in Fig. 1b.

Dataset CIFAR-10 (IID and non-IID with bucketing s = 2)
Model ResNet-18
Clients n = 25 (20 honest, 5 Byzantine; δ = 0.2)
Participation p = 0.5 (partial participation)
Aggregators avg, krum, cm, CCLIP, rfa
Batch size 32 per client
Training horizon 200 epochs
Attacks BF, LF, mimic, IPM, ALIE, INF
Optimizers FedAvg, FedAvgM, D-Byz-SGDM, Byz-VR-MARINA-PP
Learning-rate tuning grid search on {0.1, 0.01, 0.001}
Byz-VR-MARINA-PP tuning joint grid search η ∈ {0.1, 0.01, 0.001}, λ ∈ {10.0, 1.0, 0.1}
Seeds {0, 1, 2}

Notation: avg=naive average, krum=Krum (Blanchard et al., 2017a), cm=coordinate-wise median,
CCLIP=centered clipping (Karimireddy et al., 2021), rfa=geometric median (RFA) (Pillutla et al., 2022).
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Table 5: Runtime hardware and software.

CPU
Model name AMD EPYC 7763 64-Core Processor
# CPU(s) 128

GPU
Product Name NVIDIA A100-SXM4-80GB
CUDA Version 12.2

PyTorch
Version 2.7.1
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Figure 3: avg (naive average) under Byzantine attacks (p = 0.5). The top row presents MNIST and
the bottom row presents CIFAR-10; within each row the first strip is IID and the second strip is non-
IID with bucketing s = 2. Columns proceed left to right through ALIE, Bit-Flipping, INFINITY,
IPM, Label-Flipping, and Mimic.
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Figure 4: cm (coordinate-wise median) under Byzantine attacks (p = 0.5). The layout matches
Fig. 3: top row MNIST, bottom row CIFAR-10; within each row an IID strip is followed by a
non-IID strip (s = 2); columns move left to right through ALIE, Bit-Flipping, INFINITY, IPM,
Label-Flipping, and Mimic.
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Figure 5: krum / Multi-Krum under Byzantine attacks (p = 0.5). The top row shows MNIST and
the bottom row shows CIFAR-10; each row contains an IID strip followed by a non-IID strip with
bucketing s = 2. Columns list ALIE, Bit-Flipping, INFINITY, IPM, Label-Flipping, and Mimic.
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Figure 6: rfa (Robust Federated Averaging) under Byzantine attacks (p = 0.5). The top row covers
MNIST and the bottom row covers CIFAR-10; within each row an IID strip precedes a non-IID strip
with bucketing s = 2. Columns run left to right through ALIE, Bit-Flipping, INFINITY, IPM,
Label-Flipping, and Mimic.
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