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A B S T R A C T

Graph convolutional networks (GCNs) enable end-to-end learning on graph struc-
tured data. However, many works begin by assuming a given graph structure. As
the ideal graph structure is often unknown, this limits applicability. To address
this, we present a novel end-to-end differentiable graph-generator which builds
the graph topology on the fly. Our module can be readily integrated into existing
pipelines involving graph convolution operations, replacing the predetermined or
existing adjacency matrix with one that is learned, and optimised, as part of the
general objective. As such it is applicable to any GCN. We show that integrating our
module into both node classification and trajectory prediction pipelines improves
accuracy across a range of datasets and backbones.

1 I N T R O D U C T I O N

The success of Graph Neural Networks (GNNs) (Duvenaud et al., 2015; Bronstein et al., 2017; Monti
et al., 2017), has led to a surge in the use of graph-based representation learning. GNNs provide
an efficient framework to learn from graph-structured data, making them widely applicable in any
domain where data can be represented as a relation or interaction system. They have been successfully
applied in a wide range of tasks including particle physics (Choma et al., 2018), protein science
(Gainza et al., 2020) and many others (Monti et al., 2019), (Stokes et al., 2020).

In a GNN, each node iteratively updates its state by interacting with its neighbors, typically through
message passing. However, a fundamental limitation of such architectures is the assumption that
the underlying graph is provided. While node or edge features may be updated during message
passing, the graph topology remains fixed, and its choice may be suboptimal for various reasons. For
instance, when classifying nodes on a citation network, an edge connecting nodes of different classes
can diminish classification accuracy. These edges can degrade performance by causing irrelevant
information to be propagated across the graph. When no graph is explicitly provided, one common
practice is to generate a k-nearest neighbor (k-NN) graph. In such cases, k is a hyperparameter and
tuned to find the model with the best performance. For many applications, fixing k is overly restrictive
as the optimal choice of k may vary for each node in the graph. While there has been an emergence
of approaches which learn the graph structure for use in downstream GNNs (Zheng et al., 2020; Kazi
et al., 2020; Kipf et al., 2018), all of them treat the node degree k as a fixed hyperparameter.

We propose a general differentiable graph-generator (DGG) module for learning graph topology
with or without an initial edge structure. This module can be placed within any graph convolutional
network, and jointly optimized with the rest of the network’s parameters, learning topologies which
favor the downstream task without hyperparameter selection or indeed any additional training signal.
The primary contributions of this paper are as follows:

1. We propose a novel, differentiable graph-generator (DGG) module which jointly optimizes both
the neighbourhood size, and the edges that should belong to each neighbourhood. Note that
existing approaches (Zheng et al., 2020; Kipf et al., 2018; Kazi et al., 2020) do not allow for
learnable neighbourhood sizes.

2. Our DGG module is directly integrable into any pipeline involving graph convolutions, where
either the given adjacency matrix is noisy, or is not explicitly provided and must be determined
heuristically. In both cases, our DGG generates the adjacency matrix as part of the GNN training
and can be trained end-to-end to optimize performance on the downstream task. Should a good
graph structure be known, the generated adjacency matrix can be learned to remain close to it
while optimizing performance.
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3. To demonstrate the power of the approach, we integrate our DGG within a range of SOTA pipelines
— without modification — across different datasets in trajectory prediction and node classification
and demonstrate improvements in model accuracy.

2 R E L AT E D W O R K

Graph Representation Learning: GNNs (Bronstein et al., 2017) provide a powerful class of neural
architectures for modelling data which can be represented as a set of nodes and relations (edges).
Most use message-passing to build node representations by aggregating neighborhood information. A
common formulation is the Graph Convolution Network (GCNs) which generalizes the convolution
operation to graphs (Kipf & Welling, 2017; Defferrard et al., 2016; Wu et al., 2018; Hamilton
et al., 2017). More recently, the Graph Attention Network (GAT) (Veličković et al., 2018) utilizes a
self-attention mechanism to aggregate neighborhood information. However, these works assumed
that the underlying graph structure is predetermined, with the graph convolutions learning features
that describe preexisting nodes and edges. In contrast, we simultaneously learn the graph structure
while using our generated adjacency matrix in downstream graph convolutions. The generated graph
topology of our module is jointly optimized alongside other network parameters with feedback signals
from the downstream task.

Graph Structure Learning: In many applications, the optimal graph is unknown, and a graph is
constructed before training a GNN. One question to ask is: “Why isn’t a fully-connected graph
suitable?” Constructing adjacency matrices weighted by distance or even an attention mechanism
(Veličković et al., 2018) over a fully-connected graph incorporates many task-irrelevant edges, even if
their weights are small. While an attention mechanism can zero these out — i.e., discover a subgraph
within the complete graph — discovering this subgraph is challenging given the combinatorial
complexity of graphs. A common remedy is to sparsify a complete graph by selecting the k-nearest
neighbors (k-NN). Although this can prevent the propagation of irrelevant information between nodes,
the topology of the constructed graph may have no relation to the downstream task. Not only can
irrelevant edges still exist, but pairs of relevant nodes may remain unconnected and can lead GCNs to
learn representations with poor generalization (Zheng et al., 2020).

This limitation has led to works which learn a graph’s structure within a deep learning framework.
Some methods (Shi et al., 2019; Liu et al., 2020) take a fixed adjacency matrix as input and then learn
a residual mask over it. Since these methods directly optimize the residual adjacency by treating each
element as a learnable parameter, the learned adjacency matrix is not linked to the representation
space and only works in tasks where the training nodes are the same as that at test time. To overcome
this, recent approaches (Zheng et al., 2020; Kipf et al., 2018; Luo et al., 2021; Kazi et al., 2020)
generate a graph structure by sampling from discrete distributions. As discrete sampling is not directly
optimizable using gradient descent, these methods use the Gumbel-Softmax reparameterization trick
(Jang et al., 2016) to generate differentiable graph samples. The Gumbel-Softmax approximates an
argmax over the edges for each node, and sampling in these approaches is typically performed k
times to obtain the top-k edges. Here, k is a specified hyperparameter that controls the node degree
for the entire graph/dataset. Unlike these works, we generate edge samples by selecting the top-k in a
differentiable manner, where we learn a distribution over the edges and over the node degree k. This
allows the neighborhood and its size to be individually selected for each node. Additionally, a known
‘ideal’ graph structure can be used as intermediate supervision to further constrain the latent space.

3 M E T H O D

In this section, we provide details of our differentiable graph generation (DGG) module. We begin
with notation and the statistical learning framework guiding its design, before describing the module,
and how it is combined with graph convolutional backbone architectures.

Notation We represent a graph of N nodes as G = (V,E): where V is the set of nodes or vertices,
and E the edge set. A graph’s structure can be described by its adjacency matrix A, with aij = 1 if
an edge connects nodes i and j and aij = 0 otherwise. This binary adjacency matrix A is directed,
and potentially asymmetrical.

Problem definition. We reformulate the baseline prediction task based on a fixed graph with an
adaptive variant where the graph is learned. Typically, such baseline tasks make learned predictions
Y given a set of input features X and a graph structure A of node degree k:

Y = Qϕ(X,A), (1)
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Figure 1: (Left) A typical prediction task using graphs Y = Qϕ(X,A) where A and k are prede-
termined. (Right) Our reformulation P (Y |X) ≈

∑
A

∑
k Qϕ(X,A)Qθ(A|X, k)Qρ(k|X) which

learns a distribution over A and k alongside the downstream task.

where Qϕ is an end-to-end neural network parameterized by learnable weights ϕ. These formulations
require a predetermined graph-structure A, typically based on choice of node degree k, and take A as
additional input to the model. In contrast, we learn both A and k in an end-to-end manner, and use
them to make predictions Y . As graphs are inherently binary, with edges either present or absent,
they are not directly optimizable using gradient descent. Instead, we consider a distribution of graphs,
G, which then induce a distribution of labels, Y , in the downstream task. This distribution takes the
factorized form:

P (Y |X) =
∑
A∈G

∑
k∈N|V |

Qϕ(X,A)P (A|X, k)P (k|X), (2)

where P (k|X) is the distribution of node degree k given X (i.e., the choice of k in k−NN), P (A|X, k)
the distribution of graph structures A conditioned on the learned k and input X , and P (Y |X) is the
downstream distribution of labels conditioned on data X . For clarity, the adjacency A represents a
subgraph of a complete graph over X , and k is a multidimensional variable controlling the number of
top-k neighbors for each node individually. To avoid learning individual probabilities for each possible
graph A in an exponential state space, we further assume that P (A|X, k) has a factorized distribution
where each neighborhood is sampled independently, i.e. P (A|X, k) =

∏
i∈V P (ai|X, k).

We approximate the distributions over adjacencies A and k with tractable functions:

P (Y |X) ≈
∑
A

∑
k

Qϕ(X,A)Qθ(A|X, k)Qρ(k|X), (3)

where Qθ and Qρ are functions parameterized by θ and ρ to approximate P (A|X, k) and P (k|X),
respectively. In Fig. 1, we illustrate the functions of our method compared to the typical prediction
task in Eq. 1.

Using this formulation, we train the entire system end-to-end to minimize the expected loss when
sampling Y . This can be efficiently performed using stochastic gradient descent. In the forward
pass, we first sample a subgraph/set of nodes X from the space of datapoints, and conditioning on X
we sample A and compute the associated label Y . When computing the gradient step, we update
Qϕ(X,A) as normal and update the distributions using two standard reparametrization tricks: one for
discrete variables (Jang et al., 2016) such that Qθ(A|X, k) can generate differentiable graph samples
A′, and another for continuous variables (Kingma & Welling, 2013) of k′ drawn from Qρ(k|X):

P (Y |X) ≈
∑
A′

∑
k′

Qϕ(X,A′),where A′ ∼ Qθ(A|X, k′) and k′ ∼ Qρ(k|X). (4)

As both the graph structure A′ and variable k′ samplers are differentiable, our DGG module can be
readily integrated into pipelines involving graph convolutions and jointly trained end-to-end.

3 . 1 D I F F E R E N T I A B L E G R A P H G E N E R AT I O N

Our differentiable graph-generator (DGG) takes a set of nodes V = {v1, ..., vN} with d-dimensional
features X ∈ RN×d and generates an asymmetric adjacency matrix A ∈ RN×N . This adjacency
matrix can be used directly in any downstream graph convolution operation (see Module Instatiation
below). As illustrated by Fig. 2, the DGG module consists of four components:

1. Encoder: this component projects the input node features X ∈ RN×d to a latent representation
X̂ ∈ RN×d′

, and forms the primary representation space for the model.
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Figure 2: Our differentiable graph-generator (DGG) takes input nodes X and generates an adjacency
matrix A. It consists of: (1) Degree-estimator: generates samples of ki for each node, (2) Edge-
ranker: generates edge samples ei for each node and (3) Top-k selector: takes ki and edge samples
ei and selects top-k elements in a differentiable manner to output a final adjacency A.

2. Edge ranking: this takes the latent node features X̂ ∈ RN×d′
and generates a matrix representing

a stochastic ordering of edges E ∈ RN×N drawn from a learned distribution over the edge-
probabilities (A′ ∼ Qθ(A|X, k′) from Eq. 4).

3. Degree estimation: this component estimates the number of neighbors each individual node is
connected to. It takes as input the latent node features X̂ ∈ RN×d′

and generates random samples
k ∈ RN drawn from a learned distribution over the node degree (k′ ∼ Qρ(k|X) from Eq. 4).

4. Differentiable top-k edge selector: takes k and the edge-samples e and performs a soft thresh-
olding that probabilistically selects the most important elements, based on the output of the
Edge-ranking to output an adjacency matrix A ∈ RN×N .

We describe each component below.
Encoder. We construct a single latent space from the input node features, and use it for edge ranking
and degree estimation. We first map input node features X ∈ RN×d into latent features X̂ ∈ RN×d′

using a multi-layer perceptron (MLP) fϕ with weights ϕ: X̂ = fϕ(X). These latent features form the
input for the rest of the module. Furthermore, they are output by the DGG and passed to the GCN
downstream to prevent vanishing gradients.

Edge ranking. The edge ranking returns an implicit distribution of edge orderings, from which we
sample the neighborhood for each node. For each node vi, it draws a set of scores ei = {eij}Nj
quantifying its relevance to all nodes vj ∈ V , including itself. To generate differentiable edge samples
ei, we use the Gumbel-Softmax (Jang et al., 2016).

Without loss of generality, we focus on a single node vi ∈ V , with latent features x̂i ∈ Rd. We
implement the approximation function Qθ(A|X, k) of the Edge-ranker as follows:

1. Using latent node features x̂i ∈ X̂, calculate pairwise edge probabilities pi ∈ RN between pairs
of auxiliary node features (x̂i, x̂j):

pi = {exp(−||ĉij ||1)|∀j ∈ N}, (5)
where ĉij = x̂i − x̂j is the difference between node features. Each element pij ∈ pi represents a
similarity measure between the latent features of node vi and vj . In practice, any distance measure
can be used here, including learnable approaches.

2. Using Gumbel-Softmax over the edge probabilities pi ∈ RN , we generate differentiable samples
ei ∈ RN with Gumbel noise g:

ei =

{
exp((log(pij) + gi) + τ)∑
j exp((log(pij) + gi) + τ)

∣∣∣∣∀j ∈ N

}
, g ∼ Gumbel(0, 1) (6)

where τ is a temperature hyperparameter controlling the interpolation between a discrete one-hot
categorical distribution and a continuous categorical density. When τ → 0, the edge energies
eij ∈ ei approach a degenerate distribution. The temperature τ is important for inducing sparsity,
but given the exponential function, this results in a single element in ei given much more weighting
than the rest, i.e., it approaches a one-hot argmax over ei. Instead, we want a variable number of
edges to be given higher importance, and others to be close to zero. Hence, we select a higher
temperature and use the top-k selection procedure (detailed below) to induce sparsity. This has the
added benefit of avoiding the high-variance gradients induced by lower temperatures.

4



Under review as a conference paper at ICLR 2023

Degree estimation. A key limitation of existing graph generation methods (Kazi et al., 2020; Kipf
et al., 2018; Zheng et al., 2020) is their use of a fixed node degree k across the entire graph. This can
be suboptimal as mentioned previously. In our approach, rather than fixing k for the entire graph, we
sample it per node from a learned distribution. Focusing on a single node as before, the approximation
function Qρ(k|X) of the Degree-estimator works as follows:

1. We approximate the distribution of latent node features x̂i ∈ Rd following the a VAE-like
formulation (Kingma & Welling, 2013). We encode its mean µi ∈ Rd and variance σi ∈ Rd using
two MLPs Mρ and Sρ, and then reparametrize with noise ϵ to obtain latent variable zi ∈ Rd:

µi,σi = Mρ(x̂i), Sρ(x̂i),

zi = µi + ϵiσi, ϵi ∼ N (0, 1).
(7)

2. Finally, we concatenate each latent variable zi ∈ Rd with the L1-norm of the edge samples
hi = ||eij ||1 and decode it into a scalar ki ∈ R with another MLP Dρ, representing a continuous
relaxation of the neighborhood size for node vi:

ki = Dρ(zi + hi). (8)

Since hi is a summation of a node’s edge probabilities, it can be understood as representing an
initial estimate of the node degree which is then improved by combining with a second node
representation zi based entirely on the node’s features. Using the edge samples to estimate the
node degree links these representation spaces back to the primary latent space of node features X̂.

Top-k Edge-Selector. Having sampled edge weights, and node degrees k, this function selects
the top-k edges for each node. The top-k operation, i.e. finding the indices corresponding to the
k largest elements in a set of values, is a piecewise constant function and cannot be directly used
in gradient-based optimization. Previous work (Xie et al., 2020) frames the top-k operation as an
optimal transport problem, providing a smoothed top-k approximator. However, as their function is
only defined for discrete values of k it cannot be optimized with gradient descent. As an alternative
that is differentiable with respect to k, we relax the discrete constraint on k, and instead use it to
control the x-axis value of the inflection point on a smoothed-Heaviside function (Fig. 3). For a
node vi ∈ V , of smoothed degree ki ∈ R and edges ei ∈ RN , our Top-k Edge Selector outputs an
adjacency vector ai ∈ RN where the k largest elements from ei are close to 1, and the rest close to 0.
Focusing on a single node vi as before, the implementation is as follows:

1. Draw 1D input points di = {1, ..., N} where N is the number of nodes in V .

2. Pass di through a hyperbolic tangent (tanh) which serves as a smooth approximation of the
Heaviside function:

hi = 1− 0.5 ∗
{
1 + tanh(λ−1di − λ−1ki)

}
, (9)

here λ > 0 is a temperature parameter controlling the gradient of the function’s inflection point.
As λ → 0, the smooth function approaches the Heaviside step function. The first-k values in
hi = {hij}Nj will now be closer to 1, while the rest closer to 0.

3. Finally, for each node i we sort its edge-energies ei = {eij}Nj in descending order, multiply by
hi = {hij}Nj and then restore the original order to obtain the final adjacency vector ai = {aij}Nj .
Stacking ai over all nodes vi ∈ V then creates the final adjacency matrix A ∈ RN×N .

Straight through Top-k Edge Selector. To make our final adjacency matrix A ∈ RN×N discrete,
we follow the trick used in the Straight-Through Gumbel Softmax (Jang et al., 2016): we output the
discretized version of A in the forward pass and the continuous version in the backwards pass. For
the discretized version in the forward pass, we simply replace the smooth-Heaviside function in Eq. 9
with a step function.

Module Instantiation: The DGG module can be easily combined with any graph convolution
operation. A typical graph convolution (Kipf & Welling, 2017) is defined as follows: X′ =

D̂−1/2ÂD̂−1/2XΘ. Here, Â = A+ I denotes the adjacency matrix with inserted self-loops, D̂ its
diagonal degree matrix and Θ its weights. To use this graph convolution with the DGG, we simply
use our module to generate the adjacency matrix Â.
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Figure 3: The differentiable Top-k Edge Selector. This component uses the node degree ki output by
the Degree Estimator to control the inflection point on a smooth-Heaviside function and uses it to
select the top edges from ei output by the Edge Ranker. This produces an adjacency vector ai for
each node, and stacking ai across all nodes produces the final adjacency matrix A.

4 E X P E R I M E N T S

We evaluate our DGG on node classification and trajectory prediction tasks. We chose these tasks as
the former has an input graph structure, while the latter does not, demonstrating the flexibility of our
module. Furthermore, we integrate our module into a variety of GCN baselines, not only for their
state-of-the-art (SOTA) performance, but as they all use different graph convolution operations.

4 . 1 N O D E C L A S S I F I C AT I O N

Beginning with node classification, we conduct ablations examining the behaviour of different parts
of the DGG, followed by comparisons to other state-of-the-art graph-topology learning approaches. In
the appendix we include experiments investigating the effect of the DGG on downstream models under
the addition of noisy edges to input graphs. We perform these experiments under both transductive
and inductive scenarios, as well as semi-supervised and fully-supervised settings.

Transductive datasets. We evaluate on the three citation benchmark datasets Cora, Citeseer
and Pubmed (NLM 2022) introduced by Yang et al. (2016). Each citation graph contains nodes
corresponding to documents and edges indicating citations. Node features are bag-of-words features
and node labels are categorized by topic. We follow the semi-supervised setting in Yang et al. (2016)
and Kipf & Welling (2017) along with their train/test splits. Inductive datasets. In an inductive
setting, we evaluate our approach on three datasets: 1. Flickr (Zeng et al., 2020) — categorizing
images based on their descriptions; 2. Reddit (Zeng et al., 2020) — predicting the communities
of online posts from user comments. 3. PPI (Hamilton et al., 2017) — classifying protein-protein
interactions. Further dataset details can be found in the appendix.

Baselines. We integrate our DGG into four representative GNN backbones: GCN (Kipf & Welling,
2017), GraphSage (Hamilton et al., 2017), GAT (Veličković et al., 2018) and GCNII (Chen et al.,
2020). On these backbones, we compare the effectiveness of DGG against other state-of-the-art graph
sampling and sparsification methods: DropEdge (Rong et al., 2020), NeuralSparse (Zheng et al.,
2020) and PTDNet (Luo et al., 2021).

Implementation details. We integrate our DGG into the official publicly available code of all
baselines, without architectural modification. Models are trained and evaluated as their original
implementation. See appendix for further details.

Training details. A node classification model partitions the latent space of node embeddings into
separate classes. However, when message-passing, there is one phenomenon of the input graph that
can limit classification accuracy: two nodes with different classes but similar features and an edge
connecting them. Classifying these nodes is challenging as their feature similarity can be compounded
by passing messages between them. The goal of the DGG is to move such nodes apart in the latent
space such that there is no edge and communication between them. However, traversing the loss
landscape from the initial random initialization of the network to one where the model is able to
discriminate between these nodes can take several iterations using only the downstream classification
loss. To speed up training, we add an intermediate loss to further partition the latent space. We do this
by supervising the adjacency matrix generated by the DGG to remove all edges between classes and
only maintain those within a class. We then anneal this loss over the training cycle, eventually leaving
only the downstream classification loss. We provide more details in the appendix.
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4 . 1 . 1 A B L AT I O N S
In Table 1, we explore the effect of disabling different components of our DGG module when
integrated into a GCN (Kipf & Welling, 2017) for node classification: 1. DGG without Degree
Estimation and Differentiable Top-k Edge Selection — we remove the Degree Estimator and instead
fixe k to select the top-k stochastically ordered edges. 2. DGG with deterministic Edge Ranking —
we remove the noise in Eq. 6 of the Edge Ranker. 3. DGG with deterministic Degree Estimation
— we remove the noise in Eq. 7 of the Degree Estimator. We perform this under the transductive,
semi-supervised setting on Cora and omit the annealed intermediate loss during training.

Table 1: Ablation study. DGG integrated into a GCN for node classification on Cora.
Model Accuracy

Fixed node degree, k = {1, 5, 10, 100} {49.7, 78.9, 55.0, 37.0}
With deterministic Edge Ranking and Degree Estimation 82.4

With deterministic Edge Ranking 82.7
With deterministic Degree Estimation 82.8

DGG 83.2

Table 1 shows the benefit of learning a distribution over the node degree. When learning it determinis-
tically, the accuracy decreases by 0.5%. This becomes significantly worse when the node degree
is fixed for the entire graph rather than learned per node. Note also, the sensitivity with respect to
choice of k. A fixed node degree of k = 10 or k = 1 reduces accuracy by almost 30% vs a graph
of 5. This is due to the graph convolution operation: as it has no adaptive weighting mechanism
for a node’s neighborhood, each of the neighbors is given the same weight. Naturally, this leads
to information sharing between unrelated nodes, reducing the quality of node representation after
message-passing. In contrast, by learning a distribution over the node degree we are able to select only
the most relevant neighbors, even though these are then weighted equally in the graph convolution.
Finally, the inclusion of noise in any of the DGG components does increase accuracy, but only by
about 0.5% — demonstrating both its benefit and the robustness of the DGG without it.

4 . 1 . 2 C O M PA R I S O N T O S TAT E - O F - T H E - A R T

In Table 2 we compare our method to DropEdge (Rong et al., 2020)), which randomly sparsifies the
input graph, and those which learn better graph structures (NeuralSparse (Zheng et al., 2020) and
PTDNet Luo et al. (2021)). For fair comparison with the literature, we present two versions of our
method: DGG-wl trained with the downstream loss only and DGG* trained with both the downstream
and intermediate loss.

DGG improves performance over the original model across all baselines and datasets. Against other
approaches, DGG-wl generally outperforms the state-of-the-art NeuralSparse and PTDNet-wl (both
trained with only the downstream loss). The accuracy difference can be attributed to our method for
modelling sparsity, which explicitly lets each node to select the size of its neighborhood based on the
downstream training signal. This training signal helps partition the node representation space, while
the estimated node-degree additionally prevents communication between distant nodes. Although
PTDNet-wl does this implicitly through its attention mechanism, discovering this sparse subgraph of
the input graph is challenging given its complexity. NeuralSparse on the other hand selects k for its
entire generated subgraph, which is both suboptimal and requires additional hyperparameter tuning.

Comparing methods which enforce additional constraints on the adjacency matrix, DGG* demon-
strates larger accuracy gains than PTDNet*. PTDNet* regularizes its adjacency matrix to be of
low-rank, as previous work (Savas & Dhillon, 2011) has shown that the rank of an adjacency matrix
can reflect the number of clusters. This regularizer reasons about the graph’s topology globally. While
this may aid generalization, the accuracy difference may then be attributed to our intermediate loss
providing stronger signals to discriminate between nodes with similar features but different classes
(and therefore remove the edges between them). Furthermore, their regularizer uses the sum of
the top-k singular values during training, where k again is a hyperparameter tuned to each dataset
individually. Our method requires no additional parameters to be chosen.

We observe that there may be cases where tuning the node degree k can assist accuracy, as seen by
NeuralSparse’s performance on Reddit. However this requires a hyperparameter search over Reddit’s
large graph, and is ultimately outperformed when intermediate supervision is applied to the DGG’s
adjacency matrix (shown by the DGG* method).
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Table 2: Semi-supervised node classification compared to other SOTA graph-topology learning
methods. We compare against prior methods reported in (Luo et al., 2021; Zheng et al., 2020; Chen
et al., 2020), using the official results where available.

Backbone Method Cora Citeseer Pubmed Reddit PPI
GCN Original 81.1 70.3 79.0 92.2 53.2

DropEdge 80.9 72.2 78.5 96.1 54.8
NeuralSparse 82.1 71.5 78.8 96.6 65.1
PTDNet-wl 82.4 71.7 79.1 - 75.2
DGG-wl 82.7 72.4 80.1 96.5 76.7
PTDNet-wl + low rank 82.8 72.7 79.8 - 80.3
DGG* 83.9 74.9 83.9 97.2 81.5

GraphSage Original 79.2 67.6 76.7 93.8 61.8
DropEdge 78.7 67.0 74.8 96.3 61.0
NeuralSparse 79.3 67.4 75.1 96.7 62.6
PTDNet-wl 79.4 67.8 77.0 - 64.5
DGG-wl 79.4 68.2 77.6 96.7 65.1
PTDNet-wl + low rank 80.3 67.9 77.1 - 64.8
DGG* 80.4 70.6 80.1 96.9 67.3

GAT Original 83.0 72.1 79.0 - 97.3
DropEdge 83.2 70.9 77.9 - 85.1
NeuralSparse 83.4 72.4 78.0 - 92.1
PTDNet-wl 83.7 72.3 79.2 - 97.8
DGG-wl 84.2 73.0 79.5 - 97.3
PTDNet-wl + low rank 84.4 73.7 79.3 - 98.0
DGG* 85.1 76.3 81.8 - 97.5

GCNII Original 85.3 73.2 80.2 - 99.5
DropEdge 84.9 73.4 79.4 - 99.0
DGG-wl 86.8 74.4 81.2 - 99.5
DGG* 87.7 75.8 81.9 - 99.7

Table 3: Adjacency matrix constraints: our intermediate annealed loss vs. PTDNet’s low rank
regularizer Luo et al. (2021) for semi-supervised node classification with a GCN backbone.

Method Cora Citeseer Pubmed Reddit PPI
Ours-wl 82.7 72.4 80.1 96.1 76.7
Ours-wl + low rank 83.3 73.1 81.0 96.1 80.6
Ours-wl + int. loss 83.9 74.9 83.9 97.2 81.5
Ours-wl + int. loss + low rank 84.0 75.1 84.2 97.2 81.8

Finally in Table 3 we compare the low-rank constraint of PTDNet with our intermediate annealed loss.
Our intermediate loss (‘Ours-wl + int. loss’) outperforms the low-rank constraint (‘Ours-wl + low
rank’). However, using both constraints (‘Ours-wl + int. loss + low rank’) increases classification
accuracy further, suggesting the edges removed by both methods are complementary.

4 . 2 T R A J E C T O RY P R E D I C T I O N

We consider four datasets covering a range of scenarios from baseketball to crowded urban envi-
ronments. On each, we integrate our DGG into a state-of-the-art trajectory prediction method and
compare results to another state-of-the-art graph-topology learning approach DGM (Kazi et al., 2020).

Datasets. We evaluate on four trajectory prediction benchmarks. 1. ETH (Pellegrini et al., 2009) and
UCY (Lerner et al., 2007) — 5 subsets of widely used real-world pedestrian trajectories . 2. STATS
SportVU (SportVU) — multiple NBA seasons tracking trajectories of basketball players over a game.
Stanford Drone Dataset (SDD) (Robicquet et al., 2016) — top-down scenes across multiple areas at
Stanford University, consisting of different agents from pedestrians to cars. Further details on these
datasets can be found in the appendix.

Baselines. We integrate our DGG module into two state-of-the-art trajectory prediction pipelines:
Social-STGCNN (Mohamed et al., 2020) built upon a spatio-temporal convolutional network using
graphs to represent pedestrian trajectories and DAGNet (Monti et al., 2021) built upon a VAE

8
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Table 4: ADE/FDE metrics on the ETH & UCY datasets using Social-STGCNN. For DGM, k = 2.

Dataset Original DGM DGM Gain Ours Our Gain
ADE↓ FDE ↓ ADE ↓ FDE ↓ ADE ↑ FDE↑ ADE ↓ FDE ↓ ADE ↑ FDE ↑

ETH 0.64 1.11 0.62 1.04 2.4% 6.4% 0.60 0.89 6.3% 20%
Hotel 0.49 0.85 0.42 0.69 14.2% 18.9% 0.38 0.54 22.4% 36.5%
Univ 0.44 0.79 0.41 0.76 6.2% 3.5% 0.40 0.70 9.1% 11.3%
Zara1 0.34 0.53 0.33 0.46 3.8% 13.7% 0.32 0.42 5.9% 20.8%
Zara2 0.30 0.48 0.29 0.43 5.0% 5.0% 0.27 0.40 10.0% 16.7%
Mean 0.44 0.75 0.41 0.68 6.3% 10.6% 0.39 0.59 11.4% 21.3%

Table 5: ADE/FDE metrics on the SportVU Basketball dataset using DAGNet. For DGM, k = 3.

Original DGM DGM Gain Ours Our Gain
Split Team ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE
10-40 ATK 2.74 4.29 2.75 4.30 -0.4% -0.2% 2.62 4.11 4.4% 4.2%

DEF 2.09 2.97 2.10 2.97 -0.5% -0.1% 1.95 2.87 6.8% 3.3%
20-30 ATK 2.03 3.98 2.03 3.98 0.1% 0.1% 1.92 3.75 5.6% 5.8%

DEF 1.53 3.07 1.53 3.06 0.2% 0.3% 1.24 2.56 18.7% 16.6%
40-10 ATK 0.81 1.71 0.80 1.69 1.3% 0.9% 0.70 1.48 13.6% 13.5%

DEF 0.72 1.49 0.71 1.48 0.8% 0.8% 0.66 1.29 8.3% 13.4%
Mean 1.65 2.92 1.7 2.9 0.3% 0.3% 1.51 2.68 9.6% 9.5%

backbone (Kingma & Welling, 2013) with a graph attention network modelling agent interactions
across a fully-connected graph. Our DGG is placed within both networks to generate the adjacency
matrix on the fly and forms part of its forward and backward pass. To integrate the DGG with
DAGNet’s attention mechanism, the adjacency generated is multiplied by the attention weights.

Implementation details. We integrate DGG into the publicly available code of each method, without
any architectural modification. We use the same DGG hyperparameters as for node classification
except the intermediate loss is disabled and the training signal is entirely from the downstream task.
Evaluation metrics. Model performance is measured with Average Displacement Error (ADE) and
Final Displacement Error (FDE). ADE measures the average Euclidean distance along the entire
predicted trajectory, while the FDE is that of the last timestep only.

4 . 2 . 1 R E S U LT S
In Table 4, the integration of our DGG into Social-STGCNN reduces ADE/FDE compared to both the
baseline and the integration of DGM. In Table 5 and 6 our DGG displays similar gains over DGM
when integrated into DAGNet. First, this shows the benefit of inducing sparsity when message-passing
over a distance weighted adjacency matrix like Social-STGCNN or even an attention-mechanism like
DAGNet. The larger error reduction of our DGG compared to DGM may be attributed to DGM’s
use of a fixed node-degree k across its learned graph. While this can prevent the propagation of
irrelevant information across the graph in some cases, in others it might limit the context available
to certain nodes. On the other hand, trying to discover the subgraph entirely through attention
makes optimization a challenge. Instead, constraining the model by allowing each node to select its
neighborhood and size eases optimization and can still be done entirely from the downstream training
signal. We provide further qualitative analysis for these results in the appendix.

5 C O N C L U S I O N

We have presented a novel approach for learning graph topologies, and shown how it obtains state-
of-the-art performance across multiple baselines and datasets for node classification and trajectory
prediction. The principal advantage of our approach is that it can be combined with any existing
approach using graph convolutions on an automatically generated graph, such as a k−nearest neighbor
graph.

Table 6: ADE/FDE metrics on the Stanford Drone Dataset using DAGNet. For DGM, k = 2.

Split Original DGM DGM Gain Ours Our Gain
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

8-12 0.53 1.04 0.52 1.01 1.9% 3.0% 0.48 0.96 10.4% 8.3%
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A N O D E C L A S S I F I C AT I O N E X P E R I M E N T S

A . 1 D ATA S E T D E TA I L S

In Table 7 we provide dataset statistics on the node classification datasets used in this paper.

Table 7: Dataset statistics. ‘s’ stands for single class classification and ‘m’ for multi-class.

Dataset Nodes Edges Features Classes Train / Val / Test
Cora 2,708 5,429 1,433 7 (s) 140 / 500 / 1,000
Citeseer 3,327 4,732 3,703 6 (s) 120 / 500 / 1,000
PubMed 19,717 44,338 500 3 (s) 100 / 500 / 1,000
PPI 56,944 81,8716 50 121 (m) 44,906 / 6,514 / 5,524
Flickr 89,250 899,756 500 7 (s) 44,760 / 22,312 / 22,312
Reddit 232,965 11,606,919 602 41 (s) 153,756 / 23,295 / 55,911

A . 2 I M P L E M E N TAT I O N D E TA I L S

In our DGG, all MLPs use a signle fully-connected layer of dimension 64. In our DGG, all MLPs
use a single fully-connected layer of dimension 64. We use a Gumbel-Softmax temperature of 2.5.
When adding Gumbel noise to the edge log-probabilities, we do not add any to the self-loops (i.e. the
diagonal of the edge probability matrix). During training, we keep the Gaussian and Gumbel noise on,
but turn it off during inference. While in practice it can be left on, we found it does not significantly
impact the results.

A . 3 T R A I N I N G D E TA I L S

We train the entire network end-to-end using the classification loss from the downstream model and
an annealed MSE loss on the adjacency matrix generated by the DGG:

Ltotal = Lclass +
α

M

M∑
i=1

(yi − ŷi)
2, (10)

where the first term is the classification loss from the downstream GCN, the second term is the MSE
loss applied to every element ŷi of the adjacency matrix ˆA ∈ RN×N for which we have a node label,
and α is loss weight. The model can be trained by annealing α smoothly or in a step-wise manner. In
practice we keep α constant for the first 100 epochs and then set it to zero for the rest of the training
schedule (where the total number of epochs is determined by schedule of the downstream GCN).
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A . 4 R O B U S T N E S S T O N O I S E

We test the effect of the DGG when the input graph has random edges added across it. We do this by
adding edges between previously unconnected nodes. Broadly, the results in Fig. 4 demonstrate the
detrimental effects of noisy edges on classification accuracy, but the inclusion of the DGG can mitigate
this. Interestingly, the state-of-the-art GCNII Chen et al. (2020) demonstrates the largest drops in
accuracy as the noise increases, which may be attributed to the depth of their graph convolution layers.
In such deeper message-passing models, the edge structure is even more significant, highlighting the
importance of learning a structure that prevents the propagation of irrelevant information.

Figure 4: Node classification accuracy with noisy edges added to the input graph of different datasets.

B T R A J E C T O RY P R E D I C T I O N E X P E R I M E N T S

B . 1 D ATA S E T D E TA I L S

ETH and UCY. ETH (Pellegrini et al., 2009) and UCY (Lerner et al., 2007) are two common
benchmarks for pedestrian trajectory prediction. These datasets consist of 5 subsets of widely used
real-world pedestrian trajectories (Alahi et al., 2016; Gupta et al., 2018; Mohamed et al., 2020;
Salzmann et al., 2020). The primary challenge in these datasets are the frequent interactions of agents
in very crowded scenes. Furthermore, the number of pedestrians varies considerably. Some frames
contain only 2 pedestrians, while many have over 50.

SportVU. The STATS SportVu (SportVU) is a tracking dataset composed of multiple NBA seasons.
Each scene consists of two teams of 5 players, with each team categorized as either making an
offensive or defensive play in a particular game. Each play contains 50 timesteps sampled at 5Hz,
with the player trajectories expressed in (x, y, z) coordinates.

Stanford Drone. The Stanford Drone Dataset (SDD) (Robicquet et al., 2016) is a large dataset with
20 different top-down scenes across multiple areas at Stanford University. Each scene consists of
agents of different types, from pedestrians and skaters to cars and buses. Trajectories are recorded at
2.5Hz and expressed in (x, y) world coordinates. Despite the heterogeneity of agents, the maximum
number of agents in any one scene is 21.
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B . 2 Q U A L I TAT I V E R E S U LT S

In Fig. 5 we plot the node-degree distribution learned by our DGG across multiple datasets. While on
average, a pedestrian may only look at their 2 nearest neighbors in crowded scenes such as Zara1
and Univ, this can increase to almost 5 nearest neighbors in some cases. This suggests that both
a fully-connected graph, or one with a fixed node-degree like DGM (Kazi et al., 2020) are both
suboptimal.

Figure 5: Distribution of the learned node degree k over the test split for different trajectory prediction
datasets.

Figure 6 compares our predicted trajectories to DGM (Kazi et al., 2020), on the SportVU dataset. As
shown, our trajectories are closer to the ground truth. We illustrate this further in Fig. 7, which shows
the graph generated by our DGG for 3 different basketball players in a game. The figure demonstrates
how our DGG lets each player look at a different number of neighbours, while DAGNet Monti et al.
(2021) forces each player to look at all others in the game.

Figure 6: Qualitative results for trajectory prediction on the SportVU dataset. Orange: ground truth;
Blue: DGM prediction; Red: our prediction.
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Figure 7: Graph topology visualisation in basketball players on the SportVU dataset: ours vs. DAGNet
(Monti et al., 2021). We display the selected neighborhood for 3 different players and a histogram of
the node-degree k accumulated over the dataset/scene. First row: DAGNet’s fully-connected graph,
second row: our DGG.
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