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Abstract

We rigorously discuss the commonly asserted failures of the AIXI rein-
forcement learning agent as a model of embedded agency. We attempt to
formalize these failure modes and prove that they occur within the frame-
work of universal artificial intelligence, focusing on very simple variants
of AIXI. We introduce joint AIXI, which models the joint action/percept
history as drawn from the universal distribution, and hardened AIXI,
which recovers from side-channel attacks by recalculating its own previ-
ous actions. We also evaluate the progress that has been made towards
a successful theory of embedded agency based on variants of the AIXI
agent.
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1 Introduction

The original AIXI reinforcement learning agent, intended as a nearly parameter-
free formal gold standard for artificial general intelligence (AGI), is a Cartesian
dualist that believes it is interacting with an environment from the outside, in
the sense that its policy is fixed and not overwritten by anything that hap-
pens in the environment, though its actions can certainly adapt based on the
percepts it receives. This is frequently compared to a person playing a video
game, who certainly does not believe he is being simulated by the game but
rather interacts with it only by observing the screen and pressing buttons. In
contrast, it would presumably be important for an AGI to be aware that it
exists within its environment (the universe) and its computations are therefore
subject to the laws of physics. With this in mind, we investigate versions of
the AIXI agent [Hut00] that treat the action sequence a on a similar footing to
the percept sequence e, meaning that the actions are considered as explainable
by the same rules generating the percepts. The most obvious idea is to use
the universal distribution to model the joint (action/percept) distribution (even
though actions are selected by the agent). Although this is the most direct way
to transform AIXI into an embedded agent, it does not appear to have been
analyzed in detail; in particular, it is usually assumed (but not proven) to fail
(often implicitly, without distinguishing the universal sequence and environment
distributions, e.g. [FST15]).

Outline. First, we discuss the more sophisticated approaches to embedded
AIXI-like agents as points of reference. Then we give a highly compressed
introduction to the notions of algorithmic information theory (AIT) and partic-
ularly universal artificial intelligence (UAI) needed to model universal mixtures
of sequence distributions and environments, followed by some mappings that
relate sequence and environment distributions. We introduce some positive and
some negative results for our embedded AIXI variant (called joint AIXI), each
of which is perhaps a little surprising, but follows easily from recent progress
in AIT. Next, we argue that joint AIXI does not capture all problems of em-
bedded agency, and introduce hardened AIXI to deal with side-channel action
corruption.

Terminology for the problem setting. AIXI has a harder incomputability
level than the environments in its hypothesis class, since its actions are not
sampled from its belief distribution. This means that we are analyzing an
unrealizable situation, where the interaction history is generated by a process
outside the hypothesis class. For the purposes of learning the joint distribution,
it is hard to find any useful guarantees on the action sequence, so we will treat
it as adversarially chosen and consider the worst case.

2 Related Work

Several sophisticated embedded versions of AIXI have been proposed.
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Reflective oracles. By expanding AIXI’s hypothesis class to include machines
with access to a special type of “reflective” oracle [FTC15], researchers at the
Machine Intelligence Research Institute (MIRI) were able to construct a version
of AIXI that is at the same incomputability level as the environments in its hy-
pothesis class [FST15]. This reflective AIXI faces a realizable learning problem,
so there is no reason to view its own actions as adversarially chosen. In fact,
reflective oracle machines can directly compute the conditional probabilities of
actions and percepts (not just their joint distributions) so that the perspec-
tive change between sequence and environment distribution becomes trivial.
We believe that reflective AIXI is an excellent (and perhaps underappreciated)
approach to embeddedness, primarily because there is a limit-computable reflec-
tive oracle [LTF16], which means that reflective AIXI has a stochastic anytime
algorithm. This is a better computability result than has been demonstrated
for AIXI, which may be as hard as ∆0

3 without ε-approximation [LH18], mean-
ing that reflective AIXI not only addresses embeddedness concerns but actually
suggests an effective AIXI approximation. The main (serious) limitation of re-
flective AIXI is that it is still a computationally unbounded model of intelligence,
so it is not clear how it treats recursive self-improvement (this is an interesting
research question).

Self-AIXI. The Self-AIXI agent [CGMH23] functions in a similar way to re-
flective AIXI, but it is uncertain of its own policy as well as its environment.
The framework in the paper does not specify particular belief distributions for
either of these, but asks for choices that make an optimal policy lie in the pol-
icy class, a realizability assumption. It is easy to find such a choice by taking
advantage of reflective oracles (this is proven in a forthcoming paper of ours,
[WHLT25]). Self-AIXI plans only one step ahead to locally maximize its action-
value function; the variation of our joint AIXI based on this strategy can easily
be analyzed by the same methods introduced in this paper, though our focus
on percept prediction becomes less justifiable.

Space-time embedded intelligence. Orseau and Ring depart more drasti-
cally from the original AIXI model but continue to take advantage of the tools
of UAI by proposing various degrees of embeddedness of an agent inside the
universe’s computation [OR12]. In their most extreme model, the agent is only
a collection of bits on the environment machine’s tape. Although this seems to
capture all problems of embeddedness, it also makes so few assumptions that
we are not convinced that it is a useful theory of intelligence.

Embedded decision theories. More extreme departures from the UAI frame-
work such as Infra-Bayesian Physicalism [Kos21], pancomputational enactivism
[Ben24], and updateless decision theory [Dai09] are beyond the scope of this
paper. Our focus is on the most direct modifications of AIXI for embedded
agency, which seems seriously neglected in the literature.
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3 Mathematical Preliminaries

Notation. For any finite alphabet Σ, we denote the set of finite strings over
Σ as Σ∗ and the set of infinite sequences over Σ as Σ∞. If s∈Σ∗ or s∈Σ∞,
then si∈Σ is the ith symbol of s, indexing from 1. Similarly si:j for i≤j is the
substring from indices i to j. Particular alphabets we will discuss are the set of
actions A available to an agent and the set of percepts E that the environment
ν might produce and send to the agent. A percept consists of an observation
in O and a reward in R⊂ R. The action/percept at time t will be denoted
at/et, and the history of actions and observations before time t will be written
æ<t=a1e1...at−1et−1.

Definition 1 (lower semicomputable) A function f is lower semicom-
putable (l.s.c.) if there is a computable function ϕ(x,k) monotonically increasing
in its second argument with limk→∞ϕ(x,k)= f(x). That is, f can be approxi-
mated from below.

In AIT the history distribution often has a probability gap because interaction
may terminate at a finite time. For this reason, it is modeled by a “semimea-
sure,” not a proper probability measure.

Definition 2 (semimeasure) A semimeasure1 ν is a function Σ∗→R+ sat-
isfying ν(x)≥

∑
a∈Σν(xa).

For our purposes, semimeasures always assign probability ≤ 1 to the empty
string ϵ. The set of such l.s.c. semimeasures is denoted Msemi

lsc .

Definition 3 (ξU) The universal distribution ξU is defined as

ξU (æ1:t) :=
∑

νi∈Msemi
lsc

wiνi(æ1:t) (1)

for æ ∈ (A×E)∞, where i 7→ wi > 0 is a l.s.c. function with
∑

iwi ≤ 1, e.g.
wi :=[i(i+1)]−1. An alternative construction is

ξU (x)
×
=

∑
p:U(p)=x∗

2−l(p) (2)

with monotone UTM U (a “joint” distribution producing sequences which are
NOT action contextual).

For simplicity of exposition we assume A=E by expanding the smaller alphabet.

Chronological semimeasures. We write ν·(e1:t||a1:t) to denote the prob-
ability that the environment ν· produces percepts e1:t when the agent takes
actions a1:t. Formally, this notation is used whenever ν·(·||·) is a two-argument

1Technically, this only defines a pre-semimeasure, but a unique sensible extension to the
generated σ-algebra exists [WH25].
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function satisfying the chronological semimeasure condition ν·(e1:t||a1:t) ≥∑
et+1

ν·(e1:t+1||a1:t+1). Despite the name, when the two arguments are treated
as forming one interaction history æ1:t, this is actually a weaker requirement
than ordinary semimeasures must satisfy. Usually, the superscript · is replaced
by some index or identifying symbol, distinguishing environments from sequence
distributions, which use subscripts when any adornment is required.

Semimeasure representation. It is clear that for any semimeasure ν·, the
map e1:t,a1:t →

∏t
i=1ν·(ei|æ<iai) defines a chronological semimeasure that we

will write as ν·(e1:t||a1:t). Conversely, if ν· is a chronological semimeasure, we
can choose ν· so that ν·(ai|æ<i)=1/|A| (or any arbitrary element of ∆A) and
ν·(ei|æ<iai) = ν·(e1:i||a1:i)/ν·(e<i||a<i) (and ν· has 0 probability of producing
a percept in an action position or vice versa). Then ν· obviously satisfies the
semimeasure property at action positions and satisfies the semimeasure prop-
erty at percept positions by the chronological semimeasure property of ν·, and it
is easy to see that ν·(e1:t||a1:t)=

∏t
i=1ν·(ei|æ<iai). Satisfying the chronological

semimeasure property is equivalent to having such a semimeasure representa-
tion; unfortunately, this representation result does not seem to hold when we
restrict to l.s.c. (chronological) semimeasures2.

Definition 4 (ξAI) The universal chronological semimeasure ξAI is defined by

ξAI(e1:t||a1:t) :=
∑

νi∈Mccs
lsc

wiν
i(e1:t||a1:t) (3)

with wi as in Definition 3. Alternatively, we can obtain ξAI by

ξAI(e1:t||a1:t)
×
=

∑
p:UC(p,a1:t)=e1:t

2−l(p) (4)

where “chronological” UTM UC only reads actions up to time t before producing
et.

Note that when ξAI is viewed as a function of æ1:t, it is not a semimeasure
because it is not subadditive at action indices.

Definition 5 (domination) A semimeasure ν (multiplicatively) dominates a

semimeasure µ, written ν
×
≥ µ, if ∃c∈R+ such that ∀x∈Σ∗, ν(x)≥cµ(x).

For chronological semimeasures dominance requires the above to hold for each
action sequence. Multiplicative dominance is stronger than absolute continuity,
which is the usual criterion for merging-of-opinions style results [BD62].

For our purposes, chronological semimeasures will represent either an envi-
ronment or an agent’s policy. An agent’s goal is to maximize its cumulative

2The related fact that the conditionals of an l.s.c. semimeasure may not be l.s.c. follows
easily from a diagonalization argument for ξU . It seems harder to find a clean example that
clearly shows the chronological semimeasure on half of the bit positions, induced by env of an
l.s.c. semimeasure, is not l.s.c.
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(often discounted) reward by choosing an optimal sequence of actions. The
optimal policy is defined as

π∗
ν=argmaxπV

π
ν

:=argmaxπ

m∑
t=1

∑
æ1:t

γtrtπ(a1:t||e1:t−1)ν(e1:t||a1:t)
(5)

where γt is a discount function (γt≥0, usually
∑m

t γt=1) and m may be infinite.
When π is deterministic, we can abuse notation by treating it as a function

from histories to actions. Then, in the case that ν is a measure and m is finite,
we can write the constraint3 on the optimal policy’s action choice explicitly as

π∗
ν(æ1:t)∈argmaxat+1

∑
et+1

...max
am

∑
em

ν(e1:m||a1:m)

m∑
i=t+1

γtrt (6)

With discounting, this can also be extended to infinite horizons, but the dis-
tinction will not be important for us.

4 The Dualistic Mixture

We introduce maps env and dual that (respectively) convert a (semimeasure)
history distribution to an environment and combine a policy and environment
to get a history distribution, then apply these ideas to introduce joint AIXI in
the next section.

An observation we will find useful is that given any pair of l.s.c. chronolog-
ical semimeasures ν generating percepts and π generating actions, the history
distribution νπ that they induce is an l.s.c. semimeasure. To avoid interfering
with (super/sub)scripts, we usually write dual(ν,π) :=νπ. There is a semimea-
sure that encodes the assumption that actions are generated by a l.s.c. agent
and percepts by an l.s.c. environment:

ξdual :=
∑

ν,π∈Msemi
lsc

wπ
ν dual(ν,π)

We will assume that wπ
ν = ωπwν = 2−K(π)2−K(ν) (agent and environment are

independent). This is the assumption made by Self-AIXI which makes it less
general than our joint AIXI. It is immediate that ξU

×
≥ ξdual. Let

env(ν)(e1:t||a1:t) :=
t∏

i=1

ν(ei|æ<iai)

To be well-defined, this requires ν > 0, which holds for ξU . When wπ
ν =ωπwν ,

factoring yields ξdual=dual(
∑

πωππ
·,
∑

νwνν
·) so env(ξdual)=

∑
νwνν

· ×
= ξAI.

3Technically this constraint may be ignored off-policy.
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5 Joint AIXI

Now we introduce our joint AIXI model which uses the environment version of
ξU to model the joint distribution. In particular we investigate its relationship
to the conventional ξAI. Let ξU :=env(ξU ). Then

ξU (et|æ<tat)=ξU (et|æ<tat)

=

∑
iwiνi(æ<tatet)

ξU (æ<tat)

=
∑
ν

wi(æ<tat)νi(et|h<tat)

=
∑
ν

wi(æ<tat)ν
i(et|h<tat)

(7)

where

wi(æ<tat) :=
νi(æ<tat)

ξU (æ<tat)
(8)

so ξU is not a linear combination of νi because of the way that the actions
control the weights; ξU encodes a kind of sequential action evidential decision
theory [ELH15], because semimeasures that prefer the action sequence a are
weighted more heavily as environments in ξU . Joint AIXI is defined as a Bayes-
optimal policy for this belief distribution4:

πJAIXI :=π∗
ξU (9)

An aside. An arguably more natural definition is

ξenv(U)(e1:t||a1:t) :=
∑
ν

wνenv(ν)(e1:t||a1:t)
×
≥ env(ξU )(e1:t||a1:t)

Another way of writing this is

ξenv(U)(et|æ<tat)=
∑
ν

wν(e<t||a<t)ν(et|h<tat)

where wν(e<t||a<t)=env(ν)(e<t||a<t)/ξ
env(U)(e<t||a<t). Note that w(·||·) is not

a strictly correct use of the || notation, but only indicates a ratio of chronological
semimeasures. ξenv(U) is not the same as env(ξU ), but in fact dominates env(ξU ).
Also, for any l.s.c. policy π, dual(ξAI,π) is an l.s.c. semimeasure, so

ξenv(U)(e1:t||a1:t)
×
≥ env(dual(ξAI,π))(e1:t||a1:t)=ξAI(e1:t||a1:t)

4Arguably, this decision rule is somewhat short-sighted: despite planning ahead, it does
not condition on its intended future decisions - that is, ξU (et|æ<tat) does not depend on
at+1:∞. In contrast ξAI

alt of [Hut05], when paired with the iterative value function, can be
viewed as attempting to update on intended actions in advance, but actually fails to meet the
conditions of a chronological semimeasure (our unpublished result).
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so ξenv(U) also dominates the explicitly causal ξAI! This makes it a rather
fascinating mixture, which seems to give some weight to both CDT and EDT,
but to judge them by the standards of CDT when updating those weights.

Adversarial learning. We can adapt results on the prediction of selected
bits directly from [LHG11] to understand the relationship between ξU and ξAI.
The authors investigated whether computable structure at certain computable
indices of a sequence can be learned by the universal distribution even when
the rest of the sequence is adversarially chosen. They were motivated by super-
vised learning, where the distribution of examples may be much more compli-
cated/unpredictable than the distribution of labels. Our motivation is different:
we expect the even = percept indices to come from a l.s.c. environment distri-
bution (given the odd = action indices as context), but this simple partition of
the indices matches the example case in [Hut05, Problem 2.9].

Failure to learn a simple environment. According to [LHG11, Theorem 12],
it is possible for ξU to fail to predict a binary sequence at even indices despite
even bits exactly matching the preceding bits at odd indices. For example,
such a sequence might begin something like 00 11 11 00 11..., where the odd
values cannot be predicted by any computable rule. Formally (translated to our
notation),

Theorem 6 (Adversarial non-convergence of ξU) There exists ω ∈ B∞

with ω2n=ω2n−1 but lim infnξU (ω2n|ω1:2n−1)<1.

Such ω must not be computable, but the theorem is still surprising since the
even bits are very easy to predict for a human. Now consider the simplest
possible environment µid with binary action space, empty observation space,
and binary reward space, defined by

µid(et|æ<tat)=[[et=at]] (10)

Clearly, this is a l.s.c. chronological semimeasure.

Theorem 7 (Adversarial non-convergence of ξU) There exists a ∈ B∞

such that ξU (a1:t||a1:t)→0 as t→∞.

Proof. This is a direct result of Theorem 6.

Theorem 8 ξU
×
≱ ξAI

Proof. ξAI(a1:t||a1:t)
×
≥ µid(a1:t||a1:t)=1, while ξU (a1:t||a1:t)→0.

We expect that domination fails in the other direction as well because ξU ’s
posteriors (as in Eq. (8)) treat a much differently than ξAI’s posteriors, which
should sometimes be advantageous for prediction.

Conjecture 9 ξAI
×
≱ ξU
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Normalization allows learning computable environments. Recall that
ξU is only a semimeasure and not a proper probability measure. The most
common “normalization” or completion of ξU to a measure is called Solomonoff
normalization:

ξ̂U (ωt|ω<t)=
ξU (ωt|ω<t)∑

ω′
t∈ΣξU (ω

′
t|ω<t)

(11)

Surprisingly, applying this normalization allows a type of learning in the adver-
sarial case. We translate [LHG11, Theorem 10] as follows:

Theorem 10 (Adversarial learning for ξ̂U) Let f :B∗ →B∪{ϵ} be a total
recursive function and consider ω∈B∞ satisfying ωn=f(ω<n) when f(ω<n) ̸=ϵ.

Then for any infinite sequence n1,n2,... with f(ωni) ̸=ϵ, limi→∞ξ̂U (ωni |ω<ni)=1.

In other words, if the bits at certain recursively checkable indices are a
recursive function of the preceding sequence, ξ̂U will eventually learn to make
good predictions at those indices. Unfortunately, this positive result seems
unlikely to generalize to the stochastic case (though this is an open problem).

Theorem 11 (Adversarially learning environments) If µ· ∈Mccs
lsc is de-

terministic and e∼µ·(·|a) with l(e)=∞, then limt→∞env(ξ̂U )(et|æ<tat)=1.

Proof. A deterministic environment that is l.s.c. must also be recursive
in the sense that the next percept is finitely computable from the history
(it must also be a measure given this action sequence for the history to
be infinite). If the action or percept spaces are not binary, choose a fixed
binary encoding, and these statements also apply at the bit level. Observe
that env(ξ̂U )(et|æ<tat)= ξ̂U (et|æ<tat) by definition and apply Theorem 10.

We have shown (in forthcoming work) that this result is not too sensitive to
the specific normalization chosen.

Implications. As a corollary of Theorem 11, in deterministic environments,
πnJAIXI :=π∗

ξ̂U
learns to predict the percepts produced in response to its chosen

action sequence. For simplicity assume πnJAIXI is chosen to be deterministic
itself. This means that it correctly predicts the rewards that will be obtained
on-policy. From this, it is easy to see that πnJAIXI will not perform in extremely
suboptimal ways, such as indefinitely picking an action that yields minimal
reward. Note that this is the reason we chose a sequential-planning-based de-
cision rule for πnJAIXI. As an alternative more in the spirit of embeddedness,
we could have instead defined it to maximize the one-step-ahead action-value
function, selecting a∗t = argmaxat

Eξ̂U
[
∑∞

i=tγiri|æ<tat], which takes advantage

of the learned action conditionals.5 Sadly, our results do not yield any (even
weak) performance guarantees for that alternative policy, since action condi-
tionals have not been shown to converge to any reasonable value.

5This decision rule can also be expressed as a Self-AIXI policy with appropriately chosen
policy and environment mixtures.
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6 Hardened AIXI

Now we will assess joint AIXI as an embedded agent and introduce hardened
AIXI as an alternative that addresses a different aspect of the problem: action
corruption through side channels.

Learning from action selection. Though we formulated joint AIXI as plan-
ning ahead sequentially in Eq. (9), in a certain sense, it is ignorance of its own
policy. It updates every time that it takes an action, affecting its percept pre-
dictions and therefore its planning. This is arguably desirable, because it means
that joint AIXI learns about the world through observing its own behavior - a
type of anthropic reasoning.

Side-channel effects on action selection. However, though it makes sense
to ask about joint AIXI’s action predictions, they are not used for planning.
This means that joint AIXI does not seem to solve one of the core challenges
of embedded agency: it does not take advantage of the knowledge that the
environment may corrupt its action choices through side channels. For instance,
if (an approximation of) the joint AIXI policy operates a welding robot, and
sustained welding causes its processor to overheat and select random actions,
joint AIXI may learn this but still plans as if action selection were unaffected.

Hardening against action corruption. We will now introduce a simple
variant of AIXI that directly solves this problem. The motivating idea is that if
the environment corrupts AIXI’s action selection process, this can be detected
through a recursive recalculation of AIXI’s true actions, and the corruption
process can be viewed as part of the environment6. This variant will be called
hardened AIXI (inspired by radiation-hardened algorithms, which are similarly
robust to adversarial bit flips through hardware side channels).

Select a deterministic AIXI policy πAIXI, and recursively define

a∗(ϵ) :=πAIXI(ϵ)

a∗(e<t) :=πAIXI(a∗(ϵ)e1...a
∗(e<t−1)et−1)

(12)

and let
πHAIXI(æ<t)=a∗(e<t) (13)

Note that πHAIXI ignores whatever actions appear on its “action tape”
(which can be considered as part of the input to the policy) and simply re-
calculates the actions that the πAIXI policy would have taken. This means that
it only acts differently from AIXI off-policy. Hardened AIXI has stronger self-
knowledge than AIXI: it assumes that it has always followed the AIXI policy.

Do humans even have an action tape? It is worth reflecting here on which
version of AIXI best describes humans. In particular, what is the meaning of
our action sequence, and do we remember it? This discussion requires that

6This trick is somewhat similar to Alexander et. al’s “reality check transformation”
[ACCM22].
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we are careful about drawing the lines between a person and her environment.
Certainly we observe and recall our own external actions (at some level of ab-
straction); we hear the words we say and we see our hands grasping and picking
up objects. However, these events and even the feeling of performing them are
actually a part of our percept stream, which both AIXI and hardened AIXI
maintain similar access to. We can call these self-observations which make up
a part of our percepts im(a) to stand for the image of our actions (say, in our
own eyes). Perhaps the “true” actions are the internal conscious decisions that
precede physical acts. The difficulty of locating a suggests that perhaps mem-
ory only represents im(a), and the illusion of access to a is created online by
retrospection - this is a much closer match to hardened AIXI than AIXI, though
of course this argument is far from rigorous.

Formal equivalence with uncorrupted AIXI. Now we will formally under-
stand the behavior of hardened AIXI under action corruption in terms of AIXI.
Let f :∪n≥0(An+1×En)→∆A be a function that “corrupts” a policy by con-
verting an action/percept history and a next action chosen by the policy into
a probability distribution describing the next action that is actually taken. We
will use a to refer to the chosen action sequence and a′ to refer to the actual
action sequence, with æ′ as shorthand for a′1e1a

′
2e2.... Then the f -corrupted

version of a policy π is defined as

(f ◦π)(at|æ′
<t) :=

∑
at

f(a′t|a′<tat,e<t)π(at|æ′
<t) (14)

That is, the probability that f ◦π takes action a′t given that it has so far
chosen actions a′<t and received percepts e<t is the sum over the conditional
probabilities of f on a′t when π takes each possible action at.

Alternatively, we can consider the action corruption as part of the envi-
ronment. Given “base” environment µ, we can incorporate action corruption
as

(µ◦f)(e1:t||a1:t) :=
∑
a′
1:t

µ(e1:t||a′1:t)
t∏

i=1

f(a′i|a′<iai,e<i) (15)

We must introduce a little more shorthand notation: æ∗ :=a∗(ϵ)e1a
∗(e1)e2...,

that is, the action/percept history generated when AIXI receives the percept
stream e, and a∗(e) denotes just the resulting action stream. With that under-
standing, we have the fairly elegant “theorem” (really just a direct consequence
of our definitions) that follows:

Theorem 12 The hardened AIXI policy corrupted by f and facing environment
µ “acts like” the AIXI policy in the environment µ◦f that silently corrupts all
actions by f . Formally,∑

a′
1:t

dual(µ,f ◦πHAIXI)(æ′
1:t)=dual(µ◦f,πAIXI)(æ∗

1:t) (16)
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Proof.

dual(µ,f ◦πHAIXI)(æ′
1:t)=µ(e1:t||a′1:t)

t∏
i=1

(f ◦πHAIXI)(a′i|æ′
<i)

=µ(e1:t||a′1:t)
t∏

i=1

∑
at

f(a′i|a′<iai,e<i)π
HAIXI(ai|æ′

<i)

=µ(e1:t||a′1:t)
t∏

i=1

∑
at

f(a′i|a′<iai,e<i)[[at=πAIXI(æ∗
<i)]]

=µ(e1:t||a′1:t)
t∏

i=1

f(a′i|a′<ia
∗(e<i),e<i)

(17)

Taking the sum of a′1:t, we obtain (µ◦f)(e1:t||a∗(e)1:t) by Eq. (15). Because
πAIXI is deterministic, this is equal to dual(µ◦f,πAIXI)(æ∗

1:t) and we are
finished.

As a clarifying special case, the percepts may contain an image of the cor-
rupted action that was actually taken. For instance, the agent’s cameras may
record the movements of its actuators, or perhaps the agent is equipped with
memory of its past corrupted action choices which is simply appended to the
percept stream. Slightly informally, we can write a′=im−1(e). Then the sum
can be eliminated, yielding

Corollary 13 When µ is chosen so that the percept bits e contain im(a) and
a′= im−1(e) uniquely identifies the corrupted actions which are actually taken,
then

dual(µ,f ◦πHAIXI)(æ′
1:t)=dual(µ◦f,πAIXI)(æ∗

1:t) (18)

In this sense, hardened AIXI learns to respond to action corruption like AIXI
learns to respond to any feature of its environment.7

7 Discussion

The presumed failure of πJAIXI was the motivation for studying reflective AIXI,
which neatly resolves most of the problems in this paper at the cost of taking
an arbitrary fixed point. We might expect joint AIXI’s learning to sometimes
fail because the history is not sampled from its belief distribution. Though we
prove in this paper that it fails to converge to the correct answer in a simple
case, we assume adversarially selected action bits. For a deployed agent, the
action bits would be selected by the policy πJAIXI which may never produce

7Wyeth has argued that this may solve the “anvil problem”: https://www.lesswrong.com/
posts/WECqiLtQiisqWvhim/free-will-and-dodging-anvils-aixi-off-policy

12

https://www.lesswrong.com/posts/WECqiLtQiisqWvhim/free-will-and-dodging-anvils-aixi-off-policy
https://www.lesswrong.com/posts/WECqiLtQiisqWvhim/free-will-and-dodging-anvils-aixi-off-policy


these adversarial action sequences, so we do not know whether πJAIXI learns
to behave well in reasonable environments. On the other hand, we prove that
normalizing the joint distribution allows learning deterministic environments.
To match the results for AIXI, we would actually like (on-policy) fast conver-
gence results against all l.s.c. chronological semimeasures. Both our positive and
our negative results leave interesting open problems. The technical difficulties
involved in establishing anything about joint AIXI justify Hutter’s nontrivial
choice to invent a universal mixture for l.s.c. chronological semimeasures as a
basis for studying Cartesian agents. Hardened AIXI captures the advantages
of this choice, since its belief distribution is still a chronological semimeasure,
only introducing a method for tracking its own actions. In fact, hardened AIXI
can be considered as extending AIXI’s behavior off-policy in one natural way.
Future work might investigate any limitations of hardened AIXI as an embed-
ded agent. In particular, it would be interesting to understand the behavior of
an approximation to hardnened AIXI which gains computational resources over
time.
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A List of Notation

Symbol Explanation

i,j,k∈N index for natural numbers

[[bool]] =1 if bool=True, =0 if bool=False

|X |≡#X size of set X .

A finite alphabet like {a,...,z} or ASCII or {0,1}.
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A∗,A∞ set of all (finite, infinite) strings over alphabet A
B the binary set {0,1}
A×B Cartesian product of sets A and B

t,n∈N time index, e.g. x1:n or x<t

x1:n∈An string of length n

x<t∈At−1 string of length t−1

ϵ empty string

end of proof

R,N,... set of real,natural numbers

ν,ν· semimeasure, chronological semimeasure

µ,µ· true distribution/environment

ξ,ξ· mixture of distributions/environments

ξU Solomonoff’s universal mixture distribution

ξAI Hutter’s universal mixture environment
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