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Abstract

Modern artificial intelligence and machine learning workflows rely on efficient
tensor libraries. However, tuning tensor libraries without considering the actual
problems they are meant to execute can lead to a mismatch between expected
performance and the actual performance. Einsum libraries are tuned to efficiently
execute tensor expressions with only a few, relatively large, dense, floating-point
tensors. But, practical applications of einsum cover a much broader range of tensor
expressions than those that can currently be executed efficiently. For this reason,
we have created a benchmark dataset that encompasses this broad range of tensor
expressions, allowing future implementations of einsum to build upon and be
evaluated against. In addition, we also provide generators for einsum expressions
and converters to einsum expressions in our repository, so that additional data can
be generated as needed. The benchmark dataset, the generators and converters are
released openly and are publicly available at https://benchmark.einsum.org.

1 Introduction

Einsum is a powerful interface for describing tensor expressions in a clear and concise way. Al-
though the underlying notation has existed for over a century, einsum itself only gained mainstream
recognition in 2011 with its implementation in NumPy [24]. Hence, the idea of using einsum as a
computational backend for tensor expressions is relatively new, and mapping computations to einsum
is a field with many applications yet to be found. As it turns out, einsum naturally allows serving
inference queries on Boolean, semantic, and probabilistic AI models [9]. Moreover, computations
involving tensor networks [14, 19, 27, 48, 74] can be easily ported to einsum, because a single
einsum expression can describe the contraction of an entire tensor network. The expressive power
of einsum led to its growing popularity. Einsum is now part of the most important frameworks
for machine learning and artificial intelligence [1, 12, 52] as well as numerous array computing
libraries [38, 47]. Einsum is heavily used in deep learning [62, 64], and its notation can serve to
describe or even enable new AI models [31, 53, 54]. Einsum backends are also a popular choice for
simulating quantum circuits [15], because an arbitrary quantum circuit can be mapped directly to a
tensor network contraction problem [36] and thus to einsum.

However, describing a tensor computation succinctly with einsum notation does not mean that it is
executed efficiently on the backend that performs the actual computation. For einsum expressions
involving more than two tensors, an evaluation order, that is the contraction path, must first be
computed so that the expression can be executed with low computational cost. Yet, even an efficient
contraction path does not ensure fast execution. The actual performance of an einsum expression
heavily relies also on efficiently executing the individual tensor operations using the full potential
of the available hardware. This dichotomy, first, finding an efficient contraction path, and second,
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performing the actual computation, is what makes implementing efficient einsum engines challenging.
According to our experimental measurements on the benchmark data, both parts, finding a contraction
path and executing the individual tensor operations, need to be tuned to support future einsum
workloads.

When NumPy introduced einsum, it was designed for operations involving just one or two tensors,
using a single-threaded, nested loop approach without contraction paths. However, the current
common practice in Python programming environments is to use cotengra [20, 22] for finding
contraction paths for challenging problems and opt_einsum [66, 68] coupled with a backend such as
PyTorch [52] for executing individual tensor operations. Both cotengra and opt_einsum provide
functions to generate random einsum problems, but these randomly generated problems only reflect a
small range of practical einsum applications. The number of tensors in these generated problems
tends to be rather small if the problems are meant to be executed. Many structures that are common in
real-world einsum expressions, such as tensor networks with hyperedges, Hadamard products, tensor
diagonals, or traces, are missing in the generated expressions. The same limitations are even more
apparent in existing benchmark datasets [39, 70], which predominantly feature structurally simple
expressions composed of only two input tensors. However, there are also generators for specific
problem classes, such as quantum circuits [16, 35] or tree tensor networks [72, 73], that are capable
of generating larger and more complex problems. Nonetheless, the results of these generators must
first be converted to einsum expressions. In addition to the generators, there is also benchmark data
for quantum supremacy circuits [26, 37], graphical models [75, 76], model counting problems and
weighted model counting problems [43, 44, 45, 46]. This benchmark data must also first be converted
before it can be executed in einsum.

Our contributions are as follows: First, we introduce a comprehensive einsum benchmark dataset that
encapsulates a broad spectrum of real-world and generated problems. Second, we provide generators
and converters to create new problem instances. And third, we use instances from our benchmark
dataset to demonstrate performance pitfalls of current einsum engines.

2 Background

2.1 Notation

In 1916, Einstein introduced a notation with which operations involving summations over several
tensor indices can be expressed concisely [17]. Hence, the term einsum, a blend of Einstein and
summation. However, the notational convention shifted. Originally, Einstein assumed an implicit
summation over pairs of identical indices in a tensor expression. In its modern form, the notation
explicitly specifies the indices of the output tensor, and the indices that are not part of the output
tensor are used for summation [49]. For example, consider the tensor expression AB>v, where
A is a matrix in RI×K , B is a matrix in RJ×K , and v is a vector in RJ . In Einstein’s original
notation, the example tensor expression is AikBjkvj , where the indices j and k appear twice and
are thus implicitly used as summation indices. The latter expression is therefore a short form of∑

j

∑
k AikBjkvj . In modern einsum notation, the example tensor expression is AikBjkvj → i,

where i is the index of the output tensor. Modern einsum notation is more powerful than the classical
one, because in modern einsum notation, expressions like AikBjkvj→or AikBjkvj→ ijk are also
possible. The first expression evaluates to a scalar, the second to a third order tensor.

Common einsum APIs support both the modern way of specifying tensor expressions using an arrow
and the classical one, where summation over repeated indices is implicit. In this work, we stick to
the modern way with the arrow. When tensor names are not crucial, the key information of a tensor
expression can be succinctly captured using only the indices of the tensors in a simple format string.
We use a format string similar to that of the einsum function in the NumPy library [8]. The format
string representing the example expression AikBjkvj→ i is "ik,jk,j->i". Table 1 provides further
examples of format strings that illustrate the expressive power of modern einsum notation.

2.2 Contraction path

Einsum expressions can contain dozens, thousands or even hundreds of thousands of tensors. It
is therefore essential to find an efficient evaluation order for a given einsum expression. Usually,
an einsum expression is evaluated in pairs of tensors, that is, only two tensors are contracted, that
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Table 1: Examples of einsum format strings for tensor expressions.

Operation Format string
Matrix trace ii->
Matrix diagonal ii->i
Vector outer product i,j->ij
Mahalanobis distance i,ij,j->
Triplestore query [9] ij,i,jk->k
Marginalization (sum over multiple axes) ijklmnop->m
Batch matrix multiplication bik,bkj->bij
Bilinear transformation [40] ik,klj,il->ij
Hadamard product (element-wise product) ijkl,ijkl->ijkl
Matrix chain multiplication ik,kl,lm,mn,nj->ij
2×3-tensor network [29] ij,iml,lo,jk,kmn,no->
Tucker decomposition [61] ijkl,ai,bj,ck,dl->abcd
Weighted model counting [44] b,c,d,e,f,ef,eg,bc,cdc->
Graphical model query [60] a,ab,bcd,defg,fhi,hj,ik,l->
Tensor regression network [31] abcde,fghij,bf,cg,dh,ei,kj->ak
Tensor network language model query [54] ab,acd,bef,degh,lk,lci,kjf,ijgh->fh
Max-Cut quantum circuit [16] a,b,c,da,eb,fc,ghde,ijgf,klhj,i,k,l->

is merged, at a time [55]. Finding an optimal contraction path—a sequence of pairwise tensor
contractions that executes an einsum expression at the lowest possible computational cost—is an
NP-hard problem [34]. In our example expression AikBjkvj →i, there are two potential sequences
for contracting over common indices. Contracting over k first followed by j entails a matrix-matrix
multiplication between A and B, after which the resulting matrix is multiplied by the vector v.
Alternatively, contracting j first and then k involves a matrix-vector multiplication between B and v,
followed by the multiplication of matrix A with the resulting vector. The contraction sequence j, k is
the more favorable one here, as it avoids the costly matrix-matrix multiplication.

Representing a contraction path as a sequence of indices is feasible when each index in the path is
part of exactly two tensors [42]. However, an index in an einsum expression may be part of more than
two tensors, or a pairwise operation may involve outer products where tensors do not share indices.
Consequently, einsum libraries adopt a position-based format for the contraction path. In our example,
contracting over index j involves contracting the second tensor with the third tensor. Subsequently,
contracting over k means contracting the first tensor with the intermediate tensor, which occupies the
fourth position, because each intermediate tensor is assigned to the next free position. Assuming we
start numbering positions from zero, the contraction path j, k can be represented as a list of position
tuples: [(1, 2), (0, 3)]. Note that each initial tensor and each intermediate tensor has a unique position.
Therefore, this position-based format is referred to as the static single assignment (SSA) format.
In SSA format, each tensor occupies a static, single position that does not change throughout the
computation. An alternative position-based format is the linear format, where the positions of tensors
change during computation [66, 67]. The linear format, however, is less efficient.

3 The benchmark

In this section, we outline the composition of the benchmark dataset and its associated metadata.
We provide detailed information about the actual problems that the respective einsum expressions
solve and discuss what makes these einsum expressions particularly interesting for inclusion in a
benchmark dataset.

3.1 Problem categories

The benchmark dataset consists of 168 einsum problems divided into seven categories. Table 2 shows
the categories, the number of problems within each category, the range of tensor counts for problems
in each category, and additional details on whether the einsum problems in a given category may
include hyperedges, Hadamard products, or repeating indices within a single tensor. Hyperedges
means that an einsum problem contains contraction indices that are shared by more than two tensors.

3



Hadamard products are element-wise multiplication operations performed between two tensors of
identical dimensions. And, repeating indices within a single tensor represent either tensor traces or
tensor diagonals, as indicated by the indices of the output tensor. Due to their presence, modern
einsum libraries should support hyperedges, Hadamard products and traces or diagonals in tensor
expressions, both in searching for contraction paths and in executing the actual expressions. However,
contraction path algorithms [42, 73] and tensor libraries [56, 70] frequently overlook these features
for the sake of simplicity.

Table 2: Benchmark categories with respective problem counts, tensor count ranges, and presence of
hyperedges, Hadamard products, and repeating indices within a single tensor (referred to as traces).

Category Problems Tensors Hyperedges Hadamards Traces
Graphical models 10 125–3 692 3 7 7
Tensor network language models 25 38–178 7 7 7
Model counting 50 331–579 972 3 3 3
Quantum computing 32 202–17 136 3 3 7
Random problems 16 53–1 668 3 3 3
Structural problems 21 26–2 000 7 7 7
Weighted model counting 14 358–230 848 3 3 3

In the following, we present the individual categories according to which we divide the einsum
problems.

Graphical models: Graphical models are sparse representations of multivariate probability distribu-
tions. Graphical models are highly valued for their flexibility in answering inference queries, such
as computing probabilities like P (X=x|E= e), where X represents a set of query variables and
E denotes a set of evidence variables. Such inference queries are used for prediction, classification,
and decision-making across diverse fields such as bioinformatics, social science, and artificial in-
telligence [30, 41, 79]. Graphical models with discrete variables are dual to tensor networks [60].
Therefore einsum is a viable backend for answering inference queries on these type of models. For
the einsum benchmark, we convert ten challenging computations from the UAI 2022 Competition,
which focuses on inference tasks on graphical models [75, 76].

Tensor network language models: Systems with long distance correlations such as natural languages
can be modeled via quantum pure states, which describe a probability distribution over a fixed-size
context of tokens [54]. These quantum pure states can be represented by a tensor network, where
the structure of the tensor network determines the pairwise correlations of different positions in the
context. What sets this architecture apart from transformer-based models is that inference queries
can be fully expressed using einsum. For the benchmark, we include seven inference queries, which
compute the joint probability distribution of two tokens in the context, and 18 queries used in the
learning process, which compute the likelihoods for a batch of given contexts.

Model counting: Counting the number of solutions, or satisfying assignments of truth values, to
a given Boolean satisfiability problem (SAT) in conjunctive normal form is called model counting.
Model counting is also known as the #SAT problem, which is #P-complete [77, 78]. Note that,
solving a #SAT problem not only determines the solvability of the corresponding SAT problem but
also facilitates solving the MAJ-SAT problem, which asks whether the majority of assignments
satisfy the formula [3, 28]. For the benchmark, we use 36 model counting problems from four model
counting competitions [43, 44, 45, 46], 15 of which we simplify using Arjun [6, 69]. Additionally,
we include 14 model counting problems from a benchmark originally designed to sample satisfying
assignments of given SAT formulas [23].

Quantum computing: By leveraging quantum mechanics principles such as entanglement and
superposition, quantum computing aims to eventually achieve computational speeds that surpass
those of classical computers [7]. However, as quantum computers are still in their infancy, classical
computers are used to simulate quantum computations. Einsum is a promising backend for efficiently
simulating quantum computations [15, 36]. The benchmark dataset contains 32 quantum circuits as
einsum expressions, ranging from quantum supremacy [26, 37] and Max-Cut circuits [16] to quantum
Fourier transform and variational circuits [35].

Random problems: For generating random einsum problems, we use the function rand_equation
from opt_einsum [66] and our own generator. With opt_einsum we generate four problems, with
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our generator, eleven problems. The einsum problems created by our generator are particularly
challenging because they are completely unstructured, have different dimension sizes and always
contain hyperedges and tensor traces or tensor diagonals.

Structural problems: Structural problems are defined by their fixed, predefined tensor network
architectures [51]. For structural problems belonging to the class of tree tensor networks, an optimal
contraction path can be computed inO(n3) time, where n is the number of input tensors in an einsum
expression [73]. Tree tensor networks are well suited for approximating multivariate functions [4, 5],
or simulating high-dimensional quantum systems [18]. Tree tensor networks are represented in
our benchmark by Fork Tensor-Product State (FTPS) problems and matrix chain multiplication
problems. Additionally, the benchmark includes Multi-Scale Entanglement Renormalization Ansatz
(MERA) problems, Projected Entangled-Pair State (PEPS) problems [72], and problems involving
inner products between two Matrix Product States (MPS) [66]. Moreover, we use Cotengra’s
generators [20] to create regular graph problems and lattice problems. The benchmark data set
contains a total of 21 structural problems.

Weighted model counting: Weighted model counting extends classical model counting by weighting
the literals in propositional (SAT) formulas, allowing it to sum the weights of all satisfying assign-
ments. This capability enables handling complex probabilistic scenarios where outcomes have varying
likelihoods, making weighted model counting ideal for tasks involving probabilistic reasoning, risk
analysis, and decision-making under uncertainty [13, 63]. Also, a weighted model counting engine,
and thus einsum, can serve as a backend for probabilistic programming languages [25]. For the
benchmark we use 14 problems from four weighted model counting competitions [43, 44, 45, 46].

3.2 Metadata

The benchmark dataset includes an accompanying CSV table that provides additional metadata for
each problem in the dataset. Based on the metadata, problems can be selected according to the desired
characteristics. The metadata are also helpful in understanding which types of problems exist. In the
benchmark repository, we also include code to generate metadata for new einsum problems, allowing
users to explore the characteristics of einsum expressions that are not present in the dataset.

We present the provided metadata by using the weighted model counting einsum expression
"b,c,d,e,f,ef,eg,bc,cdc->" from Table 1. The metadata attributes and their values for this ex-
pression are shown in Table 3, with each attribute’s value supplemented by an explanation. Note that,
although the expression contains six unique indices (b, c, d, e, f, g), the index g is not a contraction
index because it only appears once in the expression. Efficient einsum libraries eliminate indices
that appear only once in an expression or indices with a dimension size of one before beginning to
contract the expression [21, 55]. The presence of such an optimization potential in an einsum expres-
sion can be derived from its metadata attributes: different indices, contraction edges, and smallest
dimension size. Note also, that an einsum expression can be split into independent components if the
components have no common contraction indices. These components can be handled separately for
finding efficient contraction paths, or for executing the expression.

Table 3: Metadata for "b,c,d,e,f,ef,eg,bc,cdc->". All indices are of dimension size two.

Metadata attributes Value Explanation
Input tensors 9 The expression contains nine input tensors.
Different indices 6 Six unique indices are utilized across all tensors.
Hadamard products 0 There are no Hadamard products in the expression.
Contraction edges 5 Five indices (b, c, d, e, f) are contraction indices.
Contraction hyperedges 2 Two contraction indices (c, e) are hyperedges.
Tensors in largest hyperedge 3 The largest hyperedge contains three tensors (c, bc, cd).
Tensors with traces or diagonals 1 One tensor (cdc) contains repeating indices.
Independent components 2 There are two components (e, f, ef, eg and b, c, d, bc, cdc).
Tensors in largest component 5 The largest component has five tensors (b, c, d, bc, cdc).
Smallest dimension size 2 The smallest dimension size across all indices is two.
Largest dimension size 2 The largest dimension size across all indices is two.
log2(output size) 0 The output is a scalar, hence log2(1) = 0.
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In addition to the twelve metadata attributes and their corresponding values, we provide two con-
traction paths for each einsum problem in the benchmark: one optimized to minimize the number
of operations, and the other to minimize the size of the largest intermediate tensor. It is generally
assumed that minimizing the number of operations leads to faster execution of the actual expres-
sion [42, 55], whereas minimizing the intermediate size reduces the amount of RAM required to
execute the expression. However, this is an oversimplification, particularly concerning the execution
time required for an einsum expression (see Section 4.2). Nevertheless, optimizing contraction paths
for the number of operations or intermediate size remains standard practice, as better alternative opti-
mization metrics are currently not available. Therefore, we compute two example contraction paths
for each problem in the benchmark: one aimed at minimizing the number of operations, and another
targeted at reducing the size of the largest intermediate tensor. For computing these paths, we use our
graph partitioning strategy [71] in conjunction with a greedy approach that incorporates multiple cost
functions [10, 50]. The code for computing contraction paths is included in our repository, enabling
users to compute paths for new einsum problems.

Each benchmark problem is stored in one pickle file [57], containing the einsum format string, the
NumPy input tensors, the sum of all values in the output tensor, and the two contraction paths.
Additionally, each contraction path is accompanied by its metadata: the base-10 logarithm of the
required number of operations, the base-2 logarithm of the largest intermediate tensor size, the lowest
intermediate density of a tensor, and the average density across all intermediate tensors. The sum
of all values in the output tensor helps to verify the accuracy of the computed result. The lowest
intermediate density reveals the sparsest tensor produced in a pairwise contraction, whereas a low
average density across all intermediate tensors suggests that a sparse einsum implementation might
be better suited to efficiently solve the problem.

4 Experiments

With a dataset comprising various einsum problems, we can evaluate the performance of current
einsum libraries. In total, we conduct five experiments to uncover performance pitfalls of current
einsum implementations. The first four experiments are carried out exclusively on the CPU, while the
fifth experiment additionally includes measurements on the GPU. All subsequent experiments are con-
ducted on a machine featuring an Intel i9-10980XE 18-core processor, running Ubuntu 20.04.6 LTS,
with 128 GB of RAM. Each core operates at a base frequency of 3.0 GHz, reaches up to 4.6 GHz in
turbo mode, and supports the AVX-512 vector instruction set. Additionally, the system is equipped
with a Quadro RTX 4000 GPU with 8 GB of GDDR6 SDRAM. For the experiments, we use Python
3.10.9 with the following packages: opt_einsum 3.3.0, numpy 1.26.4, torch 1.12.1, tensorflow
2.16.1, jax 0.4.28, jaxlib 0.4.28, cotengra 0.6.2, kahypar 1.3.5, and sqlite 3.45.3.

4.1 Scalability of processing large contraction paths

Before executing an einsum expression, a contraction path must be computed. The question we
address here is whether this path computation is scalable to large problem sizes. In the following
experiment, we compute a single contraction path using opt_einsum and its greedy algorithm. We
chose opt_einsum over cotengra because we found that opt_einsum is significantly faster at
computing a single path. We perform the path computations for five einsum expressions of varying
sizes, ranging from 653 to 579 972 tensors. Additionally, we use PyInstrument [59] to profile each
path computation, enabling us to identify the compute-intensive parts of the computation. Figure 1
shows the results of the experiment.

As einsum expressions increase in scale, surprising inefficiencies in opt_einsum become apparent.
After a contraction path is computed, generating the strings that describe the pairwise computations
emerges as a severe bottleneck as the expressions grow larger. Additionally, the conversion from the
internally used SSA path format to the less efficient linear path format, which serves as the output
format, starts to overshadow the time actually spent on computing a valid path. Such avoidable
inefficiencies result in unnecessarily long path computation times for larger einsum expressions.

Similar inefficiencies occur even when a precomputed contraction path is passed to opt_einsum
for executing an expression. Internally, opt_einsum, here also inefficiently generates the strings
that represent pairwise contractions, resulting in overhead that can dominate the execution time
for large einsum expressions. Furthermore, opt_einsum executes the expressions according to the
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Figure 1: Computations of a single contraction path for five instances of the dataset, sorted by the
number of tensors in the expressions. For each instance, the time for computing a single path is
divided into its three constituents: computing the actual path, and overhead operations such as path
conversion to the linear format and string generation. Times are shown on a logarithmic scale.

provided linear path, which involves steadily removing tensors from arbitrary positions in the list of
all tensors and appending new intermediate tensors to the list. This method of execution is particularly
inefficient for large einsum expressions. Therefore, due to inherent inefficiencies, einsum libraries
should completely avoid the linear path format and adopt the SSA format across all library levels.

4.2 Asymmetric tensor sizes in pairwise contractions

When executing an einsum expression along a specified contraction path, current libraries map
the individual pairwise tensor contractions to highly efficient linear algebra or tensor library calls.
For example, PyTorch maps pairwise tensor contractions to its tensor library, ATen [58], whereas
opt_einsum maps individual pairwise tensor contractions to standard BLAS calls [11] of the
respective backend. However, such tensor contractions only achieve peak performance when both
involved tensors are large and their shapes are not skewed [70]. For example, performing a matrix-
matrix multiplication AB, where matrix A is in R2×2 and matrix B in R2×230 , is highly inefficient
with current libraries. However, these types of contractions are abundant, particularly in quantum
computing problems. Ironically, optimizing the contraction path to minimize the number of operations
often leads to skewed tensor contractions during the execution of the expression [26]. To demonstrate
that the number of theoretical operations serves only as a relatively weak estimator of the execution
time for an einsum expression, we compute 200 contraction paths using cotengra for the quantum
computing problem qc_circuit_n49_m14_s9_e6_pEFGH_simplified. Among these contraction
paths, 100 paths are optimized to minimize the number of operations, whereas the remaining 100
paths aim to minimize the size of the intermediate tensor. Figure 2 shows the execution times for the
quantum computing problem across all computed paths using opt_einsum with a PyTorch backend.

ops. avg. exec. time: 6.37 s (SD: 2.68)

size avg. exec. time: 1.78 s (SD: 0.27)
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Figure 2: Execution times in seconds for qc_circuit_n49_m14_s9_e6_pEFGH_simplified
across 200 contraction paths, sorted by the number of operations required for running the expression.
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Minimizing the intermediate tensor size when computing contraction paths can lead to more balanced
tensor contractions and, consequently, lower average execution times compared to paths optimized to
minimize the theoretical number of operations. Therefore, focusing solely on reducing the number of
operations, without accounting for the skewness of resulting pairwise contractions, can compromise
performance. Also, neglecting to optimize linear algebra and tensor libraries for skewed contractions
is a significant oversight, given their frequent occurrence. It is important to note that optimizing
skewed tensor contractions relates to minimizing data movements across the memory hierarchy and
between processors [32, 33]. Einsum expressions involving many skewed tensor contractions can
lead to increased data movements, thereby becoming memory-bound and exhibiting poor cache
utilization. Both aspects—accounting for skewness in computing contraction paths and enhancing the
speed of skewed tensor contractions—must be addressed to reduce data movements and thus improve
execution times of einsum expressions.

4.3 Sparse intermediate tensors

Input tensors containing one or more zeros can result in highly sparse intermediate tensors. Initially,
these problems may appear dense, but they can become sparse while evaluating the expression. In
the benchmark, this phenomenon is particularly evident for model counting and weighted model
counting problems, as well as for certain quantum computing problems. For the sparse experiment,
we chose the model counting einsum problem mc_2021_036, characterized by an average density
of 5.45 × 10−4, indicating that 0.0545 % of the entries in all intermediate tensors are non-zero.
Executing this problem via opt_einsum using the PyTorch backend turns out to be slower compared
to performing the entire computation in SQLite (see Table 4).

Table 4: Average execution times in seconds and standard deviations for ten runs of the sparse model
counting einsum problem mc_2021_036 using PyTorch and SQLite.

Backend Tensor format Execution Time (seconds)
PyTorch Dense Multi-threaded 43.2 ± 0.09
SQLite Sparse Single-threaded 34.2 ± 0.04

While PyTorch’s einsum supports only dense tensors, the SQL implementation employs a sparse
tensor storage format, specifically the coordinate format [9]. However, mapping einsum problems
to SQL is rather inefficient, especially when the dimensions of the problem are small, because for
each non-zero value, all coordinates of its position must be stored explicitly. In the example model
counting problem, all dimensions are of size two. Also, note that SQLite executes the einsum query
single-threaded. Nonetheless, the fact that SQLite outperforms PyTorch in executing the example
problem clearly signals that incorporating sparsity-aware algorithms into einsum libraries could
significantly enhance their efficiency.

4.4 Data types

The tensors used in the einsum expressions of the benchmark are of various data types, including
int16, int32, int64, float32, float64, complex64, and complex128. However, all tensors
within a particular expression are always of the same data type. The AVX-512 CPU used for our
measurements is equipped with instructions for vectorized addition and multiplication for int16,
int32, int64, float32, and float64. Additionally, for float32 and float64, there are fused
multiply-add (FMA) instructions that combine multiplication and addition into a single instruction,
enhancing computational efficiency for floating-point operations. An efficient einsum library is
expected to exhibit performance variations between data types approximately proportional to the
size differences of the data types. For example, tensor computations using an int16 data type are
expected to be four times as fast as those using an int64 data type. This expectation rests on the
assumption that smaller data types consume less memory bandwidth and accommodate more values
within vector registers compared to larger data types. To investigate whether this expectation holds
true in practice, we select one int16 einsum problem (mc_rw_blockmap_05_01.net) and convert
it to all data types that are sufficiently large to retain the exact solution. Table 5 shows the execution
times for this expression across the various data types and opt_einsum backends.
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Table 5: Average execution times in seconds and standard deviations for ten runs of the einsum
problem mc_rw_blockmap_05_01.net across various data types and backends. This problem
involves 2 737 input tensors, has a maximum intermediate tensor size of 228, and requires 1011.33
operations. Entries labeled as N/A indicate that the backend is unable to compute a valid result.

Backend int16 int32 int64 float32 float64 complex64 complex128
NumPya N/A N/A N/A N/A N/A N/A N/A
PyTorchb N/A N/A 41.77 ± 0.38 5.18 ± 0.18 7.93 ± 0.29 8.16 ± 0.29 13.78 ± 0.24
TensorFlowc N/A 41.58 ± 0.17 44.45 ± 0.13 N/A 42.30 ± 0.11 43.59 ± 0.15 47.89 ± 0.09
JAXd 220.18 ± 0.91 25.27 ± 0.13 N/A 19.36 ± 0.08 N/A 31.91 ± 0.07 N/A

aError: too many subscripts in einsum, caused in NumPy by exceeding the maximum of 32 different indices.
bScalar type errors due to hidden conversions from int16 and int32 to int64 during pairwise contractions.
cNo int16 support. For float32, it only supports tensors with a rank ≤ 12, but this problem requires rank 28.
dTruncates int64 to int32, float64 to float32, and complex128 to complex64.

None of the opt_einsum backends can execute the example expression for all data types natively,
despite hardware support. For floating-point data types, including complex types, PyTorch consis-
tently demonstrates superior performance and exhibits robust performance scaling. Conversely, JAX
struggles with the int16 data type, while NumPy is unable to process any data type due to its index
limitation. TensorFlow, on the other hand, shows some degree of performance scaling across the
different data types. Nonetheless, the substantial performance gap between TensorFlow and PyTorch
indicates significant inefficiencies in TensorFlow’s execution of pairwise einsum expressions.

4.5 Hybrid CPU-GPU execution

GPUs are known for their superior performance in executing large tensor contractions compared
to CPUs [2, 65]. However, when executing many small tensor contractions, GPUs may be slower
than CPUs. In these cases, the overhead of launching GPU processes and managing resources can
outweigh the benefits for smaller tasks, and the operations may not fully utilize the GPU’s parallel
processing capabilities. Additionally, frequent data transfers and the complexity of scheduling and
synchronizing these tasks can significantly reduce the performance advantages of GPUs, making
CPUs a more efficient option for handling small tensor contractions.

Current einsum implementations require deciding upfront the execution policy between CPU and
GPU for a tensor expression. Hybrid CPU-GPU execution, such as running small contractions on the
CPU and large ones on the GPU, is not supported. In this experiment, we demonstrate that a hybrid
CPU-GPU execution for tensor contractions may outperform CPU-only and GPU-only execution
options. We chose the float64 model counting problem mc_2020_082, which involves 1010.67

theoretical operations and comprises 195 372 tensors. We set a threshold of 1024 entries in a tensor for
switching from CPU to GPU. This means that as soon as at least one tensor in the pairwise contraction
exceeds 1024 entries, the operation is performed on the GPU. If not, the operation is executed on the
CPU. Once a tensor is on the GPU, all subsequent contractions involving it also occur on the GPU to
avoid transferring the data back to the CPU. As the computational backend, we use PyTorch. We
execute the pairwise tensor contractions using a simple for-loop over the SSA path because relying
on opt_einsum alone would not allow us to test the proposed hybrid execution policy. Additionally,
using opt_einsum for large tensor expressions would be highly inefficient due to its string generation
and path conversion bottlenecks, as demonstrated in the first experiment (see Section 4.1). Table 6
shows the execution times for the three execution policies: CPU, GPU, and CPU-GPU.

Table 6: Average execution times in seconds and standard deviations for ten runs of the model
counting problem mc_2020_082 across different execution policies. The GPU (%) column shows
the percentage of tensor contractions performed on the GPU for each policy.

Execution policy GPU (%) Time (seconds) Speedup
CPU 0.00 4.71 ± 0.03 Baseline
GPU 100.00 6.48 ± 0.04 0.73x
CPU-GPU 2.62 3.28 ± 0.01 1.44x
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Using the GPU alone for the example model counting problem results in the lowest performance.
In contrast, the hybrid CPU-GPU execution policy proves to be the fastest option, indicating that
einsum could benefit from fine-grained hybrid execution strategies.

5 Limitations

We only included problems in the dataset that start small and become large in the course of evaluating
the einsum expression. Otherwise, the benchmark dataset would quickly exceed the limits of common
storage devices and require long read times for the data, which would reduce its practicability. We also
avoided including problems that are too big to compute on a single compute node, because before even
considering tuning distributed einsum implementations, shared memory einsum implementations must
be optimized first. Otherwise, the performance pitfalls of shared memory einsum implementations
propagate to distributed settings. However, as needed, such storage-hungry, compute-intensive or
RAM-hungry instances can still be created using the tools provided in our repository.

In our benchmark, we excluded tensor expressions with trivial contraction paths, specifically those
involving only a few tensors. Such expressions are abundant in current einsum workloads, and state-of-
the-art tensor libraries demonstrate satisfying performance on these expressions in achieving almost
theoretical peak performance in terms of floating-point operations per second for compute-bound
tensor contractions [39, 70].

Our benchmark dataset is also limited in terms of the data types for which we provide einsum
problems. The benchmark primarily focuses on portable primitive data types to ensure compatibility
across a wide range of devices. However, if users require specialized data types, they can convert
them from the available types, provided the conversion maintains sufficient accuracy. Additionally,
the generators in the repository can be used to create new einsum expressions, which can then be
initialized with tensors that produce valid results for specialized data types. For example, using this
approach, TensorFloat-32 einsum problems can be generated for execution on an NVIDIA GPU.

6 Conclusions

This paper introduces an einsum benchmark dataset that addresses the lack of publicly available
problems for evaluating einsum libraries. Einsum is pivotal as a computational backend in AI/ML
and physics applications. Frontend problem descriptions are usually converted into backend einsum
expressions at runtime and are lost as soon as the computation finishes. Therefore, challenging
real-world einsum expressions are rarely available for developers who are tuning their libraries. We
gathered and combined a diverse set of expressions into a single benchmark and enriched it with
additional expressions from publicly available generators or our own generators, so that library
developers have a wide range of einsum problems at their disposal. In the experiments it became clear
that such instances are needed to improve current einsum libraries. In particular, einsum libraries
face scalability issues when computing or processing long contraction paths, perform poorly with
highly asymmetric tensor sizes, ignore sparse intermediate tensors, struggle with integer data types,
and miss the opportunity for hybrid CPU-GPU execution.

Looking ahead, it is foreseeable that einsum expressions will grow increasingly complex and lengthy,
and new ML models leveraging einsum will emerge. Thus, it is crucial to start adapting einsum
libraries now to ensure that they perform well on current and future workloads. This benchmark
dataset and the tools we provide in our repository are designed to facilitate this adaptation, providing
a resource to assist developers in enhancing library capabilities to meet current and forthcoming
computational challenges. However, we believe that there are other interesting use cases of einsum in
other domains that are missing in our benchmark dataset. We encourage anyone who thinks that they
have interesting einsum problems to contact us so that we can extend the benchmark dataset.

Acknowledgments

This work was supported by the Carl Zeiss Foundation within the project Interactive Inference.

10



References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Ahmad Abdelfattah, Marc Baboulin, Veselin Dobrev, Jack J. Dongarra, Christopher W. Earl,
Joel Falcou, Azzam Haidar, Ian Karlin, Tzanio V. Kolev, Ian Masliah, and Stanimire Tomov.
High-performance tensor contractions for gpus. In International Conference on Computational
Science, ICCS, 2016.

[3] Shyan Akmal and Ryan Williams. MAJORITY-3SAT (and related problems) in polynomial
time. In IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2021.

[4] Mazen Ali and Anthony Nouy. Approximation theory of tree tensor networks: Tensorized
multivariate functions. CoRR, abs/2101.11932, 2023.

[5] Mazen Ali and Anthony Nouy. Approximation theory of tree tensor networks: Tensorized
univariate functions. Constructive Approximation, 2023.

[6] Arjun Developers. Arjun - A minimal independent set calculator and CNF minimizer. https:
//github.com/meelgroup/arjun, 2024.

[7] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak
Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum supremacy using
a programmable superconducting processor. Nature, 2019.

[8] Olexa Bilaniuk. Einstein summation in numpy. https://obilaniu6266h16.wordpress.
com/2016/02/04/einstein-summation-in-numpy/, 2016.

[9] Mark Blacher, Julien Klaus, Christoph Staudt, Sören Laue, Viktor Leis, and Joachim Giesen.
Efficient and portable einstein summation in SQL. Proc. ACM Manag. Data, 2023.

[10] Mark Blacher and Sheela Orgler. Cgreedy - a greedy contraction path algorithm using multiple
cost functions. https://github.com/sheela98/Bachelor-Thesis/tree/main/Code/
con, 2024.

[11] L. Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R. Clint Whaley, James
Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al. An updated set of
basic linear algebra subprograms (blas). ACM Trans. Math. Softw., 2002.

[12] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. http://github.
com/google/jax, 2018.

[13] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artif. Intell., 2008.

[14] Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for generative
modeling. Phys. Rev. B, 2019.

[15] NVIDIA Corporation. cuquantum sdk: A high-performance library for accelerating quantum
science. https://docs.nvidia.com/cuda/cuquantum/latest/index.html, 2024.

[16] Quimb Developers. Tensor networks and qaoa energy optimization via bayesian optimiza-
tion. https://quimb.readthedocs.io/en/latest/examples/ex_tn_qaoa_energy_
bayesopt.html, 2024.

[17] Albert Einstein. The foundation of the general theory of relativity. Annalen der Physik, 1916.

[18] Timo Felser. Tree tensor networks for high-dimensional quantum systems and beyond. PhD
thesis, Saarland University, 2021.

11

https://github.com/meelgroup/arjun
https://github.com/meelgroup/arjun
https://obilaniu6266h16.wordpress.com/2016/02/04/einstein-summation-in-numpy/
https://obilaniu6266h16.wordpress.com/2016/02/04/einstein-summation-in-numpy/
https://github.com/sheela98/Bachelor-Thesis/tree/main/Code/con
https://github.com/sheela98/Bachelor-Thesis/tree/main/Code/con
http://github.com/google/jax
http://github.com/google/jax
https://docs.nvidia.com/cuda/cuquantum/latest/index.html
https://quimb.readthedocs.io/en/latest/examples/ex_tn_qaoa_energy_bayesopt.html
https://quimb.readthedocs.io/en/latest/examples/ex_tn_qaoa_energy_bayesopt.html


[19] Ivan Glasser, Nicola Pancotti, and J. Ignacio Cirac. From probabilistic graphical models to
generalized tensor networks for supervised learning. IEEE Access, 2020.

[20] Johnnie Gray. cotengra: Hyper optimized contraction trees for large tensor networks and einsum
expressions. https://github.com/jcmgray/cotengra, 2024.

[21] Johnnie Gray. Einsum via batch matrix multiply. https://github.com/jcmgray/einsum_
bmm, 2024.

[22] Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction. Quantum,
2021.

[23] Rahul Gupta, Shubham Sharma, Subhajit Roy, and Kuldeep S. Meel. Waps: Weighted and
projected sampling. In Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2019.

[24] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
et al. Array programming with NumPy. Nature, 2020.

[25] Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. Scaling exact inference for
discrete probabilistic programs. Proc. ACM Program. Lang., 2020.

[26] Cupjin Huang, Fang Zhang, Michael Newman, Xiaotong Ni, Dawei Ding, Junjie Cai, Xun Gao,
Tenghui Wang, Feng Wu, Gengyan Zhang, Hsiang-Sheng Ku, et al. Efficient parallelization of
tensor network contraction for simulating quantum computation. Nat. Comput. Sci., 2021.

[27] William Huggins, Piyush Patil, Bradley Mitchell, K Birgitta Whaley, and E Miles Stoudenmire.
Towards quantum machine learning with tensor networks. Quantum Science and Technology,
2019.

[28] John T. Gill III. Computational complexity of probabilistic turing machines. In Proceedings of
the ACM Symposium on Theory of Computing, 1974.

[29] J Jakes-Schauer, D Anekstein, and P Wocjan. Carving-width and contraction trees for tensor
networks. CoRR, abs/1908.11034, 2019.

[30] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and Techniques.
MIT Press, 2009.

[31] Jean Kossaifi, Zachary C. Lipton, Arinbjörn Kolbeinsson, Aran Khanna, Tommaso Furlanello,
and Anima Anandkumar. Tensor regression networks. J. Mach. Learn. Res., 2020.

[32] Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu, Timo Schneider,
Alexandros Nikolaos Ziogas, Maciej Besta, and Torsten Hoefler. Pebbles, graphs, and a pinch
of combinatorics: Towards tight I/O lower bounds for statically analyzable programs. In
Symposium on Parallelism in Algorithms and Architectures, SPAA, 2021.

[33] Grzegorz Kwasniewski, Marko Kabic, Maciej Besta, Joost VandeVondele, Raffaele Solcà, and
Torsten Hoefler. Red-blue pebbling revisited: near optimal parallel matrix-matrix multiplica-
tion. In International Conference for High Performance Computing, Networking, Storage and
Analysis, SC, 2019.

[34] Chi-Chung Lam, P. Sadayappan, and Rephael Wenger. On optimizing a class of multi-
dimensional loops with reductions for parallel execution. Parallel Process. Lett., 1997.

[35] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. Yao.jl: Extensible, Efficient Framework
for Quantum Algorithm Design. Quantum, 2020.

[36] Igor L. Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor
networks. SIAM J. Comput., 2008.

[37] John M. Martinis, Sergio Boixo, Hartmut Neven, et al. Quantum supremacy using a pro-
grammable superconducting processor. https://datadryad.org/stash/dataset/doi:
10.5061/dryad.k6t1rj8, 2022.

12

https://github.com/jcmgray/cotengra
https://github.com/jcmgray/einsum_bmm
https://github.com/jcmgray/einsum_bmm
https://datadryad.org/stash/dataset/doi:10.5061/dryad.k6t1rj8
https://datadryad.org/stash/dataset/doi:10.5061/dryad.k6t1rj8


[38] Matthew Rocklin. Dask: Parallel Computation with Blocked algorithms and Task Scheduling.
In Proceedings of the 14th Python in Science Conference, 2015.

[39] Devin A. Matthews. High-performance tensor contraction without transposition. SIAM J. Sci.
Comput., 2018.

[40] Torch Contributors. Bilinear. https://pytorch.org/docs/stable/generated/torch.
nn.Bilinear.html, 2023.

[41] Marina Meila and Michael I. Jordan. Learning with mixtures of trees. J. Mach. Learn. Res.,
2000.

[42] Eli A. Meirom, Haggai Maron, Shie Mannor, and Gal Chechik. Optimizing tensor network
contraction using reinforcement learning. In International Conference on Machine Learning,
ICML, 2022.

[43] Model Counting Competition Organizers. Model counting competition 2020 description.
https://mccompetition.org/2020/mc_description, 2020.

[44] Model Counting Competition Organizers. Model counting competition 2021 description.
https://mccompetition.org/2021/mc_description, 2021.

[45] Model Counting Competition Organizers. Model counting competition 2022 description.
https://mccompetition.org/2022/mc_description, 2022.

[46] Model Counting Competition Organizers. Model counting competition 2023 description.
https://mccompetition.org/2023/mc_description, 2023.

[47] ROYUD Nishino and Shohei Hido Crissman Loomis. Cupy: A numpy-compatible library for
nvidia gpu calculations. In Workshop on machine learning systems (LearningSys) in Neural
Information Processing Systems (NeurIPS), 2017.

[48] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry P. Vetrov. Tensorizing
neural networks. In Neural Information Processing Systems (NeurIPS), 2015.

[49] NumPy Developers. numpy.einsum. https://numpy.org/doc/stable/reference/
generated/numpy.einsum.html, 2024.

[50] Sheela Orgler and Mark Blacher. Optimizing tensor contraction paths: A greedy algorithm
approach with improved cost functions. arXiv, 2024.

[51] Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics, 2019.

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Neural Information Processing Systems
(NeurIPS), 2019.

[53] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp,
Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and
scalable learning of tractable probabilistic circuits. In International Conference on Machine
Learning, ICML, 2020.

[54] Vasily Pestun and Yiannis Vlassopoulos. Tensor network language model. CoRR, 2017.

[55] Robert N. C. Pfeifer, Jutho Haegeman, and Frank Verstraete. Faster identification of optimal
contraction sequences for tensor networks. Phys. Rev. E, 2014.

[56] Christos Psarras, Lars Karlsson, and Paolo Bientinesi. The landscape of software for tensor
computations. CoRR, abs/2103.13756, 2021.

[57] Python Developers. Python object serialization. https://docs.python.org/3/library/
pickle.html, 2024.

13

https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html
https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html
https://mccompetition.org/2020/mc_description
https://mccompetition.org/2021/mc_description
https://mccompetition.org/2022/mc_description
https://mccompetition.org/2023/mc_description
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html


[58] PyTorch Developers. ATen, PyTorch’s tensor library. https://github.com/pytorch/
pytorch/tree/main/aten/src/ATen, 2024.

[59] Joe Rickerby. Pyinstrument - A Python profiler. https://github.com/joerick/
pyinstrument, 2024.

[60] Elina Robeva and Anna Seigal. Duality of graphical models and tensor networks. CoRR,
abs/1710.01437, 2017.

[61] Elina Robeva and Anna Seigal. Duality of graphical models and tensor networks. Information
and Inference: A Journal of the IMA, 2019.

[62] Tim Rocktäschel. Einsum is all you need - einstein summation in deep learning. https:
//rockt.github.io/2018/04/30/einsum, 2018.

[63] Tian Sang, Paul Beame, and Henry A. Kautz. Performing bayesian inference by weighted
model counting. In AAAI, 2005.

[64] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and
Blake A. Hechtman. Mesh-tensorflow: Deep learning for supercomputers. In Neural Informa-
tion Processing Systems (NeurIPS), 2018.

[65] Yang Shi, U. N. Niranjan, Animashree Anandkumar, and Cris Cecka. Tensor contractions with
extended BLAS kernels on CPU and GPU. In International Conference on High Performance
Computing, HiPC, 2016.

[66] Daniel G. A. Smith. opt_einsum docs. https://optimized-einsum.readthedocs.io,
2018.

[67] Daniel G. A. Smith. Optimized Einsum. https://github.com/dgasmith/opt_einsum,
2024.

[68] Daniel G. A. Smith and Johnnie Gray. opt_einsum - A python package for optimizing contraction
order for einsum-like expressions. J. Open Source Softw., 2018.

[69] Mate Soos and Kuldeep S. Meel. Arjun: An efficient independent support computation technique
and its applications to counting and sampling. In International Conference on Computer-Aided
Design, ICCAD, 2022.

[70] Paul Springer and Paolo Bientinesi. Design of a high-performance gemm-like tensor-tensor
multiplication. ACM Trans. Math. Softw., 2018.

[71] Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen. Improved
cut strategy for tensor network contraction orders. In Symposium on Experimental Algorithms,
SEA, 2024.

[72] Mihail Stoian. Netzwerk. https://github.com/stoianmihail/Netzwerk, 2023.

[73] Mihail Stoian. On the optimal linear contraction order of tree tensor networks, and beyond.
https://mediatum.ub.tum.de/doc/1709391/1709391.pdf, 2023.

[74] Edwin Miles Stoudenmire and David J. Schwab. Supervised learning with tensor networks. In
Neural Information Processing Systems (NeurIPS), 2016.

[75] UAI Benchmark Creators. UAI Inference Competition Benchmark. https://github.com/
dechterlab/uai-competitions/, 2021.

[76] UAI Competition Organizers. UAI 2022 Competition. https://uaicompetition.github.
io/uci-2022/results/benchmarks/, 2022.

[77] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 1979.

[78] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
1979.

[79] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Found. Trends Mach. Learn., 2008.

14

https://github.com/pytorch/pytorch/tree/main/aten/src/ATen
https://github.com/pytorch/pytorch/tree/main/aten/src/ATen
https://github.com/joerick/pyinstrument
https://github.com/joerick/pyinstrument
https://rockt.github.io/2018/04/30/einsum
https://rockt.github.io/2018/04/30/einsum
https://optimized-einsum.readthedocs.io
https://github.com/dgasmith/opt_einsum
https://github.com/stoianmihail/Netzwerk
https://mediatum.ub.tum.de/doc/1709391/1709391.pdf
https://github.com/dechterlab/uai-competitions/
https://github.com/dechterlab/uai-competitions/
https://uaicompetition.github.io/uci-2022/results/benchmarks/
https://uaicompetition.github.io/uci-2022/results/benchmarks/


Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] In Section 3, we introduce the benchmark dataset and
its metadata. In the benchmark repository, we provide generators and converters to
create new einsum problems. Section 4 demonstrates the performance pitfalls of current
einsum libraries using example benchmark instances, thereby solidifying the need for
this benchmark.

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Refer to

the Composition section in the supplementary material, which excludes any negative
societal impacts of our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have carefully adhered to the ethics review guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] The paper
does not contain theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] The paper does not
contain theoretical results.

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The complete
experimental setup and code are included in the repository of this paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] The experiments did not involve training.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Where appropriate, we report the average execution times
along with their corresponding standard deviations in Section 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The computational resources used
for the experiments are detailed at the beginning of Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all assets
from which we derived problem instances for the dataset and all tools used to support
the creation of the dataset. See Section 3.1.

(b) Did you mention the license of the assets? [Yes] The licenses for all assets from which
we derived problem instances are documented in our repository. The einsum benchmark
dataset developed in this paper is distributed under the CC BY 4.0 license, as detailed
in the Distribution section of the supplementary material.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We created an einsum benchmark composed of new assets and converted available
assets. See the Composition section in the supplementary material. The new assets and
converted assets are included in the repository of this paper.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Refer to the Distribution section in the supplementary material,
which confirms that consent was obtained by utilizing data under permissive licenses
compatible with the CC BY 4.0 license of our benchmark dataset.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Refer to the Composition section in the
supplementary material, which confirms that the data contains no personally identifiable
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We did not use crowdsourcing nor conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We did not use crowdsourcing nor conduct
research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We did not use crowdsourcing nor conduct
research with human subjects.
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