
Machine Learning Meets Algebraic Combinatorics: A Suite of Datasets
Capturing Research-level Conjecturing Ability in Pure Mathematics

Herman Chau * 1 Helen Jenne * 2 Davis Brown * 2 3 Jesse He 2 4 Mark Raugas 2 Sara C. Billey 1

Henry Kvinge 2 1

Abstract
With recent dramatic increases in AI system capa-
bilities, there has been growing interest in utiliz-
ing machine learning for reasoning-heavy, quan-
titative tasks, particularly mathematics. While
there are many resources capturing mathematics
at the high-school, undergraduate, and graduate
level, there are far fewer resources available that
align with the level of difficulty and open ended-
ness encountered by professional mathematicians
working on open problems. To address this, we in-
troduce a new collection of datasets, the Algebraic
Combinatorics Dataset Repository (ACD Repo),
representing either foundational results or open
problems in algebraic combinatorics, a subfield
of mathematics that studies discrete structures
arising from abstract algebra. Further differen-
tiating our dataset collection is the fact that it
aims at the conjecturing process. Each dataset in-
cludes an open-ended research level question and
a large collection of examples (up to 10M in some
cases) from which conjectures should be gener-
ated. We describe all nine datasets, the different
ways machine learning models can be applied to
them (e.g., training with narrow models followed
by interpretability analysis or program synthesis
with LLMs), and discuss some of the challenges
involved in designing datasets like these.

1. Introduction
Modern approaches to machine learning (ML) have been
shown to be capable of extracting sophisticated patterns
from large and complex datasets. At the same time, there

*Equal contribution 1University of Washington 2Pacific North-
west National Laboratory 3University of Pennsylvania 4University
of California, San Diego. Correspondence to: Herman Chau
<hchau@uw.edu>, Henry Kvinge <henry.kvinge@pnnl.gov>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

is now increasing evidence that frontier AI systems are
capable of performing tasks requiring high-level reasoning
capabilities. These trends have led to excitement around
the use of machine learning in mathematics. Much of this
research explores the use of LLMs and related models to
aid in proof writing and mathematical formalization (Song
et al., 2024; Yang et al., 2024). While this is an essential
part of the mathematician’s workflow, there is also a need
for machine assisted conjecture generation using (what we
call) ‘raw’ mathematical data. Before identifying a claim
that they want to try to prove, a mathematician needs to
work through many examples to build intuition and better
understand their object of study. For example, when trying
to better understand the coefficients of a particular family of
polynomials (e.g., Kazhdan-Lusztig polynomials in Section
4), a mathematician may search through countless examples,
looking for patterns or other features of interest that may be
the basis of future theorems.

Existing applications of machine learning to raw mathe-
matics data tend to fall into several clusters. The first are
toy problems (for which we already know many solutions),
which are used by the interpretability and science of deep
learning communities as a stand-in for more complicated
real-world tasks (Zhong et al., 2024; Nanda et al., 2023; Liu
et al., 2023; Lee et al.). Another group uses reinforcement
learning methods to search for counterexamples to conjec-
tures (Charton et al., 2024; Mehrabian et al., 2024; Wagner,
2021). There is also a growing body of work coming from
the mathematics community where off-the-shelf ML meth-
ods are just one of several tools used to make progress on a
specific problem (Coates et al., 2024; Wagner, 2021; Bao
et al., 2022; Kazalicki & Vlah, 2023; Davies et al., 2021).
Finally in a few instances, foundation models have begun
to be deployed to address specific mathematical questions
(Romera-Paredes et al., 2024).

While these works either present interesting methodological
progress in ML or valuable results in mathematics, none aim
to provide a range of datasets accessible to the broader ML
community that represent open or equivalently challenging
research-level problems. To fill this gap, we present the

1

Machine Learning Meets Algebraic Combinatoric

Algebraic Combinatorics Dataset Repository (ACD Repo)1,
a collection of 9 datasets consisting of many examples along
with an associated question(s). Our collection includes both
open problems (e.g., the combinatorial interpretation of
Schubert polynomial structure constants) and classic prob-
lems whose solution is a major result in the field (e.g., a
combinatorial method of calculating the characters of irre-
ducible symmetric group representations).

We choose to restrict ourselves to algebraic combinatorics
(an area of mathematics that studies discrete structures aris-
ing from abstract algebra) because (i) it requires less back-
ground theory to understand, making it generally more ac-
cessible to a broader range of researchers, (ii) there already
exist specialized software libraries (e.g., Sage (Stein et al.,
2024)) designed to efficiently compute many quantities of
interest in algebraic combinatorics, and (iii) by nature of
being discrete, the objects of interest in algebraic combi-
natorics tend to be more amendable to representation on a
computer.

Each dataset has both an open-ended mathematical ques-
tion and a related ML friendly task associated to it. The
idea is that a model that can effectively solve the ML task
has probably learned information that could offer insight
into the broader mathematical question. For example, the
open question may be finding a combinatorial interpretation
of Schubert polynomial structure constants (Section 4.6),
which are indexed by triples of permutations. In this case the
ML task is to predict the structure constant from the three
permutations. For each dataset, we provide context and mo-
tivation for the problem, the basic statistics of the dataset, as
well as the performance of some basic off-the-shelf models.

We note that these datasets are not designed to be bench-
marks in the traditional sense. High performance in terms
of standard metrics such as accuracy may be of little value
if one is unable to extract a mathematical insight that leads
to a fruitful conjecture. In Section 5 we give two exam-
ples illustrating how this might be done: (i) by performing
a careful interpretability analysis of a performant narrow
model (Davies et al., 2021; He et al., 2024) or (ii) by using
a LLM that can communicate its reasoning via (for exam-
ple) code (Austin et al., 2021; Romera-Paredes et al., 2024;
Novikov et al., 2025). We hope that these datasets will en-
able the development of even more effective approaches in
the future.

2. The Cast of Characters: Partitions,
Permutations, and Partial Orders

The field of combinatorics studies a broad range of problems
in mathematics centered around discrete objects (e.g, partial

1https://github.com/pnnl/ML4AlgComb and
https://huggingface.co/ACDRepo

orders, graphs, permutations, partitions) (Stanley, 2011a;b).
Ideas and tools from combinatorics play an essential role
in many other fields of mathematics and continue to have a
strong impact on computer science and physics. Algebraic
combinatorics is a subfield of combinatorics that applies
combinatorial methods to problems arising from abstract
algebra, particularly representation theory and algebraic
geometry.

Partitions: We use the word partition in this work to mean
an integer partition. An integer partition of n ∈ N is a
sequence of positive integers (n1, n2, . . . , nk) such that n =
n1 + n2 + · · ·+ nk and n1 ≥ n2 ≥ · · · ≥ nk. We use the
standard notation µ ⊢ n to denote that µ is a partition of
n. A partition (n1, . . . , nk) is often visualized as a Young
diagram, with (in English notation) n1 left justified square
cells in the first row, n2 left justified square cells in the
second row, etc. See Figure 1 (left) for an example of a
Young diagram corresponding to the partition (3, 2, 2).

Figure 1. (Left) A Young diagram for the partition (3, 2, 2). (Cen-
ter) A standard Young tableau for the partition (3, 2, 2). (Right)
A semistandard Young tableau for the partition (3, 2, 2).

Young tableaux: Including extra decorations in the cells
in a Young diagram can capture ubiquitous combinatorics
found across representation theory and other fields. A Young
tableau corresponding to a Young diagram λ ⊢ n is a label-
ing of the cells of λ by an alphabet of symbols. In this work
we will consider two types of Young tableaux. A standard
Young tableau corresponding to partition λ ⊢ n is a labeling
of the cells of λ by 1, 2, . . . , n such that the integers strictly
increase as one moves down a column or left to right across
a row (Figure 1 (center)). The definition of a semistandard
Young tableau is analogous except that the entries are only
assumed to weakly increase as one moves from left to right
along a row (see Figure 1 (right)).

Permutations: Permutations are familiar in machine learn-
ing from their central role in computer science as well as
their relevance to symmetries in data and neural networks
(Entezari et al.; Ainsworth et al., 2023; Godfrey et al., 2022;
Keriven & Peyré, 2019; Zaheer et al., 2017; Lee et al., 2019).
There are many ways to represent a permutation. In this
paper we use one-line notation, which is best illustrated
through an example. Suppose ω is the permutation of the
set of elements {1, 2, 3, 4} that swaps 1 and 2 and 3 and 4.
Then in one-line notation we write ω = 2 1 4 3. 2 is in the
first position since 1 is sent to 2, 1 is in the second position

2

https://github.com/pnnl/ML4AlgComb
https://huggingface.co/ACDRepo

Machine Learning Meets Algebraic Combinatoric

since 2 is sent to 1, 4 is in the third position since 3 is sent
to 4, and 3 is in the fourth position since 4 is sent to 3.

Permutations can also be written as sequences of transpo-
sitions of adjacent elements. For instance, the permutation
σ = 3 1 2 can be formed by first swapping 2 and 3 and then
the newly adjacent 1 and 3: 1 2 3 → 1 3 2 → 3 1 2. If we
denote a transposition of the ith and (i+ 1)st element as si
and read from right to left (as is the convention) then σ can
be written as s1s2. A sequence of adjacent transpositions
si1si2 . . . sik corresponding to a permutation σ is called a
reduced word if there is no other representation that uses
fewer than k adjacent transpositions to represent σ. Two
reduced words are considered commutation equivalent if
one can be obtained from another by swaps of the form
sisj → sjsi where |i − j| > 1. Finally, a 3412 pattern is
a quadruple (ai, aj , ak, aℓ) such that i < j < k < ℓ but
ak < aℓ < ai < aj . Patterns have deep connections to
algebra and geometry (Billey, 1998).

In the discussion above we implicitly think of permuta-
tions of n as bijective functions from {1, 2, . . . , n} →
{1, 2, . . . , n}. Using this perspective, one can define the
composition of two permutations. The symmetric group,
denoted Sn, is defined as the group of permutations on n
elements using composition as the group operation. The se-
quence of transpositions s1s2 from the previous paragraph
gave an example of the composition of two permutations.

Posets: A partially ordered set (poset) is a set P of objects
equipped with a binary relation, typically denoted “≤”, that
is reflexive, antisymmetric, and transitive. This means that
for all elements a, b, c ∈ P : (1) a ≤ a, (2) if a ≤ b and
b ≤ a, then b = a, and (3) if a ≤ b and b ≤ c, then a ≤ c.
Unlike total orders which are more familiar (e.g., Z), in a
partial order some pairs of elements may be incomparable.
An example of a partially ordered set is the set of all subsets
of {1, 2, 3, 4}, ordered by inclusion. This is a partial order
and not a total order because {1, 2} is not comparable to
{2, 3} or to {2, 3, 4}, for example. In a poset, y covers x
if y is greater than x with respect to the ordering, and for
any z such that x ≤ z ≤ y, either z = x or z = y. In this
example, {1, 2, 4} covers {1, 2}, {2, 4}, and {1, 4}, but not
{1}, {2}, or {4}.

3. Related Work
AI for Mathematics: There is a growing body of work that
uses machine learning based methods to assist in mathe-
matics research. With the growing popularity of theorem
proving languages such as Lean (Moura & Ullrich, 2021) or
Coq (Coq development team, 2004), many of these papers
focus more on the proof-creation part of the mathematician’s
workflow (Song et al., 2024; Yang et al., 2024; Azerbayev
et al.). Others aim for more structured, text-based question

and answer in non-research settings (Saxton et al., 2019).
In this work we look at large volumes of the raw mathe-
matical data associated to research-level problems. Other
work in this vein includes the search for counterexamples
in graph theory (Wagner, 2021), the search for connections
between different knot invariants (Davies et al., 2021), the
classification of Q-Fano varieties (Coates et al., 2024), and
Clifford invariants of ADE Coxeter elements (Chen et al.,
2024). Unlike these works which aim to shed light on spe-
cific problems, this paper’s goal is to introduce datasets so
that both the expert and non-expert can explore the use of
machine learning for research-level mathematics problems.

Neural Algorithmic Reasoning: This new field of machine
learning looks at applying machine learning methods to al-
gorithmic data (Veličković, 2023). Like mathematics, apply-
ing machine learning to algorithmic data provides a setting
where arbitrarily large amounts of data can be generated.
Further, as with mathematics, working with algorithmic data
allows us to manipulate certain aspects of the problem (e.g.,
complexity) in ways not possible in noisy real-world data.
The differences between our work and the primary neural
algorithmic reasoning benchmark (Veličković et al., 2022),
are substantial. Most notably, the focus of these datasets is
not on scientific discovery like the ACD Repo.

4. Dataset Descriptions
Here we describe the datasets that are currently included
in the ACD Repo. Further details, including dataset statis-
tics, additional problem context, and the methods used for
generating the datasets can be found in Appendix B.

Most approaches that use ML to accelerate mathematics
research require one to be able to train a model that in some
sense understands how to solve a version of the problem.
The second (and usually harder) step is to then extract math-
ematical insights from this model. We aim to give some
sense of the difficulty of step one by providing some initial
baselines for off-the-shelf models: both narrow (Tables 1,
3, and 4) and LLMs (Table 2 and Table 6). The details of
training and testing can be found in Appendix B.10. When
training narrow models, we use vanilla architectures as most
readers will have some intuition and familiarity with these.
It is almost certainly the case that one can do much better
by refining model architecture, training routine, data repre-
sentation, and task structure to better fit the problem. We
leave this to users of the datasets.

4.1. Computing Characters of Irreducible
Representations of the Symmetric Group
(Foundational Result)

One way to understand the algebraic structure of permuta-
tions (symmetric groups, Sn) is through their representation

3

Machine Learning Meets Algebraic Combinatoric

Dataset Logistic regression MLP Transformer Guessing largest class

Lattice paths

n = 10 66.2% 90.6% ± 0.8% 65.3% ± 0.0% 66.2%

n = 11 66.3% 95.8% ± 0.3% 69.4% ± 6.0% 66.3%

n = 12 66.5% 98.6 % ± 0.1% 86.2% ± 14.2% 66.5%

Weaving patterns

n = 6 70.4% 86.1 % ± 0.2% 85.9% ± 2.3% 63.3%

n = 7 85.8% 99.3 % ± 0.2% 99.9 % ± 0.4% 85.0%

Cluster algebra quivers 40.3 % 86.5 % ± 1.9% 92.9%± 0.5% 17.7%

Grassmanian cluster algebras

n = 6 65.7% 99.3 % ± 0.1% 99.5 %± 0.1% 50.0%

Schubert polynomials

n = 4 88.8% 93.1 % ± 2.6% 94.6% ± 1.0% 52.3%

n = 5 90.6% 97.5 % ± 0.2% 96.2% ± 1.1% 49.9%

n = 6 89.7% 99.8 % ± 0.0% 91.3% ± 8.0% 50.1%

mHeight

n = 8 91.4% 99.4 % ± 0.3% 99.7% ± 0.4% 91.4%

n = 9 93.2% 99.8 % ± 0.6% 99.9% ± 0.4% 93.2%

n = 10 94.2% 99.9 % ± 0.0% 99.9% ± 0.6% 94.2%

Table 1. Off-the-shelf model accuracy on classification datasets. Results are averaged over three random weight initializations with 95%
confidence intervals after a hyperparameter search outlined in Table B.10

theory (Sagan, 2013), which converts abstract algebraic
questions into linear algebra questions that are often eas-
ier to solve. A representation of group G on vector space
V , is a map ϕ : G → GL(V) that converts elements of
G to invertible linear maps from V to V and respects the
compositional structure of the group. A basic result in rep-
resentation theory says that all representations of a finite
group can be decomposed into atomic subspace building
blocks called irreducible representations. Amazingly, irre-
ducible representations are themselves uniquely determined
by the value of the trace on matrices, ϕ(g), where g ranges
over subsets of G called conjugacy classes. These values
are called characters.

The representation theory of symmetric groups has rich
combinatorial interpretations. Both the irreducible repre-
sentations and the conjugacy classes of Sn are indexed by
partitions of n and thus the characters of irreducible rep-
resentations of Sn are indexed by two partitions of n. For
λ, µ ⊢ n we write χλ

µ. This combinatorial connection is
not superficial; there are algorithms (e.g., the Murnaghan-
Nakayama rule (Stanley, 2011b)), which allow calcula-
tion of irreducible characters via simple manipulation of
the Young diagrams for λ and µ without any reference to
more abstract algebraic structure. We provide datasets for
n = 18, 20, 22.

ML task: Train a model that can take two partitions of n, λ
and µ, and predict the corresponding irreducible symmetric
group character χλ

µ. Does this model learn a known algo-
rithm? If it does not, what method does the model learn?
Any novel approaches to computing irreducible symmetric
group characters would be of high interest to the mathemat-
ics community. This is framed as a regression task.

Input/output: Two integer partitions 7→ an integer.

How hard is it?: As can be seen in Table 3, narrow models
struggle on this task. This may relate to the long-tail distri-
bution of characters (see Figures 3-5) or the complexity of
the problem (Ikenmeyer et al., 2024).

4.2. The mHeight Function of a Permutation (Key
Construction)

Truly challenging open problems in mathematics often re-
quire the development of new mathematical constructions
(or even entire new areas of mathematics). This dataset
represents a modest example of this. The mHeight function
is a statistic associated with a permutation that relates to
all 3412-patterns in the permutation. It was developed and
plays a crucial role in the proof by Gaetz and Gao (Gaetz
& Gao, 2024) which resolved a long-standing conjecture of
Billey and Postnikov (Billey & Postnikov, 2005) about the
coefficients on Kazhdan-Lusztig polynomials (Section 4.4).
The task of predicting the mHeight function represents an
interesting opportunity to understand whether a non-trivial
intermediate step in an important proof can be learned by
machine learning.

4

Machine Learning Meets Algebraic Combinatoric

Let σ = a1 . . . an ∈ Sn be a permutation containing at
least one occurrence of a 3412 pattern. Let (ai, aj , ak, aℓ)
be a 3412 pattern so that i < j < k < ℓ but ak < aℓ <
ai < aj (see Section 2 for more details). The height of
(ai, aj , ak, aℓ) is ai − aℓ. The mHeight of σ is then the
minimum height over all 3412 patterns in σ. We provide
datasets for n = 8, 9, 10.

ML task: Predict the mHeight of a permutation. Since
mHeight can take a limited number of values for small n,
this is framed as a classification problem.

Input/output: One permutation 7→ one of several possible
integers.

How hard is it?: Both LLMs (Table 2) and narrow models
(Table 1) achieve high accuracy (though note that the dataset
is heavily imbalanced for larger n). Understanding whether
the models actually learn some approximation of mHeight
or exploit other correlations remains to be studied.

4.3. Grassmannian Cluster Algebras and Semistandard
Young Tableaux (Open Problem)

The Grassmann manifold Gr(k, n) is the set of full-rank k×
n matrices up to equivalence of elementary row operations
(equivalently the space whose points are k-dimensional sub-
spaces in Rn). Grassmannians are of fundamental geometric
importance and are a central tool in a model of quantum
field theory known as supersymmetric Yang-Mills theory
(Golden et al., 2014).

Among the many algebraic-combinatorial properties of
Grassmannians is an algebraic structure on its coordinate
ring making it something called a cluster algebra (Scott,
2006; Williams, 2014). A recent result of Chang, Duan,
Fraser, and Li (Chang et al., 2020) parameterize cluster vari-
ables of the Grassmannian coordinate ring in terms of equiv-
alence classes of semistandard Young tableaux (SSYTs).
Not every SSYT indexes a cluster variable and a natural
question to ask is which are valid cluster variable indices.
A necessary condition is that the tableau is of rectangular
shape. We follow the set-up of (Cheung et al., 2023) who
first applied machine learning to this problem, though we
choose a different method of sampling tableaux that do not
index cluster variables. The math question is thus to find a
concise combinatorial characterization of those SSYT that
index a cluster variable. We provide a dataset for Gr(3, 12),
restricting to rank 4. This corresponds to rectangular SSYT
of shape 3× 4 with entries drawn from {1, 2, . . . , 12}.

Dataset o1-Mini GPT-4o Mini GPT-4o

In-context learning

n = 10 95.4% 89.5% 95.5%

n = 11 97.0% 97.0% 97.0%

Program synthesis

n = 10 94.2% 94.2% 94.2%

n = 11 95.5% 95.5% 95.5%

Table 2. Success of GPT-4o-mini and GPT-4o solving the mHeight
function task via either in-context learning or program synthesis.
Hyperparameters for these experiments can be found in Section
B.11.

ML task: Predict whether a Young tableau indexes a cluster
variable. This is a binary classification task.

Input/output: A SSYT of shape 3× 4 with entries drawn
from {1, 2, . . . , 12} 7→ Boolean indicating whether the
tableau indexes a cluster variable or not.

How hard is it?: Even naive methods can result in high
accuracy (Table 1), suggesting that there is something inter-
esting here to learn.

4.4. The Coefficients of Kazhdan-Lusztig Polynomials
(Open Problem)

Kazhdan-Lusztig (KL) polynomials are integer polynomials
in a variable q that (for our purposes) are indexed by a pair
of permutations (Kazhdan & Lusztig, 1979). We will write
the KL polynomial associated with permutations x and w
as Px,w(q). For example, the KL polynomial associated
with permutations x = 1 4 3 2 7 6 5 10 9 8 11 and
w = 4 6 7 8 9 10 1 11 2 3 5 is
Px,w(q) = 1+ 16q +103q

2
+337q

3
+566q

4
+529q

5
+275q

6
+66q

7
+3q

8

(this example was computed by (Warrington)). KL poly-
nomials have deep connections throughout several areas of
mathematics. For example, KL polynomials are related to
the dimensions of intersection homology in Schubert cal-
culus and the representation theory of the Hecke algebra.
They can be computed via a recursive formula (Kazhdan
& Lusztig, 1979), nevertheless, in many ways they remain
mysterious. For instance, there is no known closed formula
for the degree of Px,w(q).

Mathematicians would like a better understanding of the
coefficients on powers of q in Px,w(q). For example, one
question concerns the coefficient on term qℓ(x)−ℓ(w)−1/2

(where ℓ(x) is a statistic called the length of the permuta-
tion), which is known as the µ-coefficient. Both the constant
term and coefficient on q are well-understood. We provide
datasets for n = 5, 6, 7.

ML Tasks: Predict one or more coefficients of Px,w(q)

5

Machine Learning Meets Algebraic Combinatoric

given x and w. Empirically, for fixed n and power of q,
coefficients tend to only take a few values so we frame this
as a classification task.

Input/output: Two permutations 7→ one of several integers.

How hard is it?: We provide both accuracy (Table 4) and
F1-scores (Table 5) for these imbalanced datasets. Narrow
models perform well.

4.5. The Robinson-Schensted-Knuth Correspondence
(Foundational Result)

The Robinson-Schensted-Knuth (RSK) algorithm (Robin-
son, 1938; Schensted, 1961) gives a bijection between pairs
of semistandard Young tableaux of the same shape and
matrices with non-negative integer entries. The special
case we consider (which is sometimes called the Robinson-
Schensted algorithm) restricts to a bijection between pairs
of standard Young tableaux and permutations in Sn. This
correspondence is significant in algebraic combinatorics be-
cause it connects two of the most fundamental objects in the
field (see (Stanley, 1984) for additional history and context).

Given its fundamental importance, it would be interesting
to see whether a model learns the RSK algorithm given
enough examples of the correspondence. To this end the
dataset consists of triples: two standard Young tableaux of
size n and their corresponding permutation (obtained via
the RSK algorithm). We provide datasets for n = 8, 9.

ML task: Given a pair of standard Young tableaux, pre-
dict the corresponding permutation. The task is framed as
regression and for the permutation target we use a vector
representing its descent set (we found this to be an easier
target for regression than representing the permutation in
1-line notation).

Input/output: Two standard Young tableaux of the same
shape 7→ a permutation.

How hard is it?: None of the small, narrow models learned
this task in our experiments, achieving results similar or
worse than simply guessing the mean of all permutations
(Table 3). Like symmetric group character calculation, the
RSK algorithm has intricate combinatorial rules that may
require larger and more capable models or more elaborate
training strategies.

4.6. Schubert Polynomial Structure Constants (Open
Problem)

Schubert polynomials (Bernstein et al., 1973; Demazure,
1974; Lascoux & Schützenberger, 1982) are a family of

polynomials indexed by permutations of Sn. Developed to
study the cohomology ring of the flag variety, they have
deep connections to algebraic geometry, Lie theory, and rep-
resentation theory. Despite their geometric origins, Schubert
polynomials can be described completely combinatorially
(Billey et al., 1993; Bergeron & Billey, 1993), making them
a well-studied object in algebraic combinatorics. An impor-
tant open problem in the study of Schubert polynomials is
understanding their structure constants. When two Schubert
polynomials are multiplied, their product is a linear com-
bination of Schubert polynomials, SαSβ =

∑
γ c

γ
αβSγ .

The cγαβ are conjectured to have a combinatorial description
or formula (most likely related to permutations α, β, and
γ). To give an example of what we mean by combinatorial
description, the structure constants of Schur polynomials (a
special type of Schubert polynomial) count the number of
semistandard tableaux satisfying certain properties.

Each instance in this dataset is a triple of permutations
(α, β, γ), labeled by its coefficient cγαβ in the expansion
of the product SαSβ . Not all possible triples of permuta-
tions are included; the dataset consists of an approximately
equal number of zero and nonzero coefficients. We provide
datasets for n = 4, 5, 6.

ML task: Train a model that given three permutations
α, β, γ, can predict the associated structure constant cγα,β .
Since these structure constants only take a few values for
small permutations, we frame this as a classification task.

Input/output: Three permutations 7→ one of several inte-
gers.

How hard is it?: Both small MLPs and transformers can
achieve high accuracy (Table 1) as well as LLMs via pro-
gram synthesis (Table 6). Some of the latter is an artifact of
how we originally sampled zero-valued structure constants.

4.7. Partial Orders on Lattice Paths (Open Problem)

Consider northeast lattice paths that travel along the edges
of a grid from (0, 0) to (a, b), only taking steps north and
east and never passing through the diagonal y = b

ax, where
a and b are relatively prime. (Schiffler, 2023) defines two
order relations on such paths called the matching ordering
(≤M) and the Lagrange ordering (≤L), motivated by ques-
tions in number theory. The matching ordering assigns a
number to each lattice path based on the number of perfect
matchings of an associated snake graph, while the Lagrange
ordering assigns a number to each lattice path equal to the
Lagrange number of a certain continued fraction. These
numbers each define the respective partial order. Mathe-
maticians would be interested to better understand the rela-

6

Machine Learning Meets Algebraic Combinatoric

tionship between these orders (Apruzzese & Cong, 2023).
We provide datasets for lattice paths from zero to (10, 9),
(11, 10), (12, 11), and (13, 12).

ML task: Given a pair of lattice paths (w,w′), train a
model that can predict whether w′ covers w (see Section 2)
in either the matching or Lagrange order.

Input/output: Two lattice paths 7→ whether the pair is a
cover relation in matching or Lagrange order.

How hard is it?: MLPs achieve good performance (Ta-
ble 1). On the other hand, we found it challenging to train
performant transformers.

4.8. Mutation Equivalence of Quivers (Open Problem)

Quivers and quiver mutations are central to the combina-
torial study of cluster algebras, algebraic structures with
connections to Poisson Geometry, string theory, and Teich-
muller theory. Quivers are directed (multi)graphs, and a
quiver mutation is a local transformation centered at a cho-
sen node of the graph that involves adding, deleting and
reversing the orientation of specific edges based on a set of
combinatorial rules. A fundamental open problem in this
area is finding an algorithm that determines whether two
quivers are mutation equivalent (one can traverse from one
quiver to another by applying mutations). Currently, such
algorithms only exist for special cases, including types A
(Buan & Vatne, 2008), D (Vatne, 2010), and B̃, C̃, and
D̃ (Henrich, 2011). The B̃ and C̃ types correspond to the
classes BD and BB in our dataset, respectively. Consistent
with Sage we use the naive notation, which specifies a quiver
by indicating the two ends of the diagram, which are joined
by a path (Musiker & Stump, 2011). To our knowledge,
the remaining classes in this dataset (E, DE, BE) lack
characterizations. Recent work has explored whether deep
learning models can learn to correctly predict if two quivers
are mutation equivalent (Bao et al., 2020). (He et al., 2024)
utilized an alternative version of this dataset to re-discover
known characterization theorems. The dataset consists of
adjacency matrices for quivers drawn from 7 different mu-
tation equivalence classes (A, D, E, DE, BE, BD, and
BB).

Task: Find simple rules to determine which of 7 different
mutation equivalence classes a quiver belongs to. This is
framed as a classification task.

Input/output: An adjacency matrix 7→ one of 7 different
possible labels.

How hard is it?: Transformers and MLPs achieve reason-
able accuracy on this task (Table 1). (He et al., 2024) was
able to train a far more performant model (accuracy > 99%)
and re-discover several known characterization theorems
using a specialized graph neural network architecure.

4.9. Weaving Patterns (Open Problem)

Weaving patterns are n×n−1-matrices with {1, 2, . . . , n}-
entries introduced by Felsner (1997) to study the num-
ber of reduced decompositions of the permutation σ =
n n− 1 . . . 1 up to commutation equivalence. The number
of such objects also counts the number of parallel sorting
networks, the number of rhombic tilings of regular poly-
gons, and is connected to the study of the higher Bruhat
orders (Chau, 2024). An O(n2) algorithm for determining
if a given {1, 2, . . . , n}-matrix is a valid weaving pattern
exists but gives no additional insight into the structure of
weaving patterns and correspondingly the asymptotics of
reduced decompositions.

The enumeration of reduced decompositions up to com-
mutation equivalence has been studied by many including
Knuth and Stanley. An exact formula is likely out of reach,
so asymptotic upper and lower bounds are of great interest.
ML models that can detect necessary or sufficient conditions
for a matrix to be a valid weaving pattern have the potential
to lead to substantial improvements in the upper bound.

Each dataset is a mixture of enriched weaving patterns and
non-weaving pattern matrices with {1, 2, . . . , n}-entries.
We provide datasets for n = 6, 7.

ML task: Train a model to classify whether a {1, 2, . . . , n}-
matrix is a weaving pattern or not. This task is framed as
binary classification.

Input/output: An n×n−1, {1, 2, . . . , n}-matrix 7→ binary
label.

How hard is it?: Especially in the n = 7 regime, even small
MLPs and transformers achieve high accuracy (Table 1).

7

Machine Learning Meets Algebraic Combinatoric

5. Case Studies of Applying ML to ACD Repo
Datasets

We begin this section by providing two examples for how
conjectures can be generated using a combination of tools
from machine learning and an expert-in-the-loop. Both
utilize a dataset (or a derivative of a dataset) from the ACD
Repo. Our purpose is not to propose novel ML methods
nor to describe novel mathematics, but rather to provide
the reader with prototype examples of how the ACD Repo
can be used in practice. For a canonical instance where
machine learning assisted conjectured generation was used
to prove new mathematics see (Davies et al., 2021) (for the
conjecture) and (Blundell et al., 2022) (for the theorem).

Graph Neural Networks, XAI, and Quiver Mutation
Equivalence: (Davies et al., 2021) was one of the first
works to show that mathematical conjectures can be made
through careful analysis of a machine learning model trained
to solve a task around an open problem in mathematics. The
basic outline is (1) train a model on the ML friendly task
related to the open problem of interest, (2) analyze the
resulting performant model to understand how it is making
its predictions, and (3) generate conjectures based on this
analysis.

(He et al., 2024) applied this approach to a modified ver-
sion of the quiver mutation equivalence dataset from the
ACD Repo (Section 4.8). They showed that they could re-
discover characterization theorems for type D and type D̃
quivers. To do this, they trained a novel variant of a mes-
sage passing graph neural network specifically designed to
be able to capture the presence of subgraphs (which have
been used to determine membership to several other notable
mutation equivalence classes). Having trained a model that
achieves high accuracy, the authors used latent space clus-
tering within classes to break down the problem into distinct
cases. Then they used a graph neural network explainability
technique called PGExplainer (Luo et al., 2020) to identify
the subgraph motifs that characterize each of these clusters.
In the end they re-discovered theorems from (Vatne, 2010)
and (Henrich, 2011).

Program Synthesis for Schubert Polynomials: The pre-
vious example highlighted the use of narrow models for
conjecture generation. In our second example we describe
the use of foundation models for a less labor- but more
compute-intensive version of conjecture generation. Con-
jecture generation is a crucial component in current evo-
lutionary approaches to mathematical discovery, notably
(Romera-Paredes et al., 2024; Novikov et al., 2025) (though
note that there are other non-LLM-based approaches to con-
jecture generation (Gauthier & Urban, 2023; Raayoni et al.,
2021; Fajtlowicz, 1988)). The basic idea is that because
computer code is more interpretable than raw ML predic-
tions, one can use an LLM to generate (human-interpretable)

code that solves a mathematical task. This is often known
as program synthesis.

We applied this procedure to the Schubert polynomial struc-
ture constants dataset. There are various additional steps
that one can use in program synthesis to improve code gen-
eration (for instance, in (Romera-Paredes et al., 2024) the
authors interleave code generation with the application of
an evolutionary algorithm). For our experiments we only
performed a single round of 100 generated Python programs
with no additional steps. We were surprised to find that (if
we provided the proper mathematical context in our prompt)
o1-mini, Claude, and sometimes 4o were able to produce
Python programs that achieved 100% accuracy on the test
set. In originally generating this dataset, we subsampled
from the set of zero valued structure constants because these
are far more common than non-zero valued structure con-
stants. Interestingly, examination showed that in some cases
the LLMs had reversed engineered our sampling algorithm,
which essentially involved applying a single transposition to
one of the three permutations indexing a non-zero structure
constant to obtain a zero structure constant.

It turns out that in the cases we applied program synthesis to
(n = 4, 5), this process introduces a spurious correlation in
the training and evaluation data2: structure constant cγα,β ̸=
0 if and only if ℓ(α) + ℓ(β) + ℓ(γ) ̸= 0 mod 2 where ℓ is
a statistic on permutations called the length. We note that
the length statistic is not included in the dataset itself or in
the prompt we gave the model to initiate program synthesis.

Though this exercise did not provide any useful mathemati-
cal insights, it does show that the LLM-based approach to
conjecture generation carries the benefit that in some cases
the LLM can exploit background tools and concepts (such as
the length of a permutation) not available to narrow models.
More speculatively, it may be that program synthesis tends
to elicit such background information to a greater extent
than other methods. For comparison, asking these models
to solve this task directly using in-context learning, resulted
in only 50-60% accuracy.

6. Discussion
Narrow Model Performance: We trained small MLPs,
decoder only transformers, and logistic/linear regression
models on each dataset in the ACD Repo and measured
their test performance using either accuracy (classification
tasks) or mean squared error (regression tasks). The goal
of this exercise was to approximately measure the relative
difficulty of training a performant model (though note that a
performant model alone does not translate to mathematical
discovery). We found that MLPs tended to perform most
consistently across tasks and therefore might be a good

2This issue has since been fixed.

8

Machine Learning Meets Algebraic Combinatoric

place to start when exploring the use of smaller models.
Transformers also performed well but struggled in a few
cases (such as the lattice paths dataset).

Though we cannot prove why some dataset/architecture
pairs failed to perform well (especially for datasets cor-
responding to open problems), several factors should be
considered. Firstly, the loss landscape for tasks involving
discrete structures like permutations seems to be less fa-
vorable for architectures and training approaches that we
currently use in deep learning. For example, many proper-
ties in combinatorics are highly sensitive to small changes
to the input (e.g., the parity of a permutation). Such tasks
may be intrinsically challenging within current frameworks
(Hahn & Rofin, 2024).

Further, the representation of input data can have a large
impact on model performance. For instance, we found it
challenging to train a narrow model (MLP or transformer)
to predict the parity of a permutation represented in one-
line notation. But this was feasible when permutations
were represented via their inversion vector. While effective
representations can sometimes be found when a solution
is already known, this strategy is not available for open
problems. When designing these datasets we chose not
to optimize input or output representation, leaving this to
users.

Unsurprisingly, we found that larger datasets were generally
associated with better model performance. This is true
even in the case where generating a larger dataset required
increasing n, and thus making the problem potentially more
complex (e.g., working with partitions of n+ 1 rather than
partitions of n). There were some tasks however that seem
hard even when the dataset size is increased. As can be
seen in Table 3, performance regressing symmetric group
characters is very poor. This may relate to the complexity of
the task (calculating symmetric group characters is known
to belong to #P (Hepler, 1996)) or to the distribution of
symmetric group characters which has a very long tail.

Challenges in the generation of mathematics datasets:
Imbalance is an issue in several different respects. On the
one hand, traditional class imbalance comes up frequently
and can be quite extreme for large values of n where asymp-
totic properties begin to take hold. More broadly, the mathe-
matically interesting objects are frequently interesting pre-
cisely because they are rare. For a given task, it may be the
case that randomly sampled instances will be uninteresting
with high probability because they can be predicted or clas-
sified for straightforward reasons. One way to mitigate this
situation is to subsample for harder examples. This is what
we did for several of the datasets in the ACD Repo including
Weaving Patterns where we imposed some additional con-
straints on the non-weaving pattern {1, 2, . . . , n}-matrices
to make them harder to distinguish from true weaving pat-

terns (but care must be taken so that the model does not
simply discover one’s sampling procedure).

Unlike other domains where data is more rare, the process
of mathematical discovery using machine learning may in-
volve more directly optimization over both a model and
dataset. That is, modifying model and dataset so that the
model learns more informative, robust, and effective repre-
sentations.

Finally, there exist a near limitless number of open problems
in mathematics and finding the optimal ones for inclusion
was challenging. We aimed to find problems such that (i)
some working mathematicians care about the solution, (ii)
a significant amount of data (at least > 10k instances, but
preferably many more) could easily be generated, and (iii)
there is an ML friendly simplification of the problem (this
can be challenging with extremely abstract problems for
instance).

A Challenge to the Interpretability Community: There
are now many cases where researchers in mechanistic in-
terpretability have worked out detailed descriptions of the
ways in which models of various sizes solve tasks. For
example, reverse engineering the ways in which small trans-
formers perform mathematical tasks such as modular arith-
metic (Nanda et al., 2023). While such examples may fall
short of larger goals such as being able to audit foundation
models on fuzzy real-world tasks, they align perfectly with
the needs of AI for math where an algorithmic description
of the method by which a model has learned to solve an
open problem could easily translate into a theorem (or at
least a novel algorithm). As such, we propose these datasets
as an achievable but high impact opportunity for the field of
mechanistic interpretability.

7. Conclusion
In this paper we introduce the Algebraic Combinatorics
Dataset Repository, a collection of datasets representing
open problems or research-level foundational results that
have been structured for machine learning. With all the
advancements in model capability and model explainability,
we believe that machine learning holds the potential to dra-
matically accelerate progress in mathematics. Signs of this
are already starting to appear, e.g. (Novikov et al., 2025).
On the other hand, mathematics is a vast field and broad,
ML-fueled acceleration across sub-disciplines will require
tools that can be used by researchers across a broad range
of institutions. We hope that these datasets will fuel the
development of these tools.

9

Machine Learning Meets Algebraic Combinatoric

Acknowledgements
This research was supported by the Mathematics for Arti-
ficial Reasoning in Science (MARS) initiative at Pacific
Northwest National Laboratory. It was conducted un-
der the Laboratory Directed Research and Development
(LDRD) Program at at Pacific Northwest National Labora-
tory (PNNL), a multiprogram National Laboratory operated
by Battelle Memorial Institute for the U.S. Department of
Energy under Contract DE-AC05-76RL01830.

Impact Statement
This paper presents work whose goal is to simultaneously
advance the field of Machine Learning and Mathematics.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.

References
AI Safety Institute, U. Inspect AI: Framework for Large Lan-

guage Model Evaluations. URL https://github.
com/UKGovernmentBEIS/inspect_ai.

Ainsworth, S., Hayase, J., and Srinivasa, S. Git re-basin:
Merging models modulo permutation symmetries. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Apruzzese, P. and Cong, K. On two orderings of lattice
paths. arXiv preprint arXiv:2310.16963, 2023.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Azerbayev, Z., Schoelkopf, H., Paster, K., Dos Santos, M.,
McAleer, S. M., Jiang, A. Q., Deng, J., Biderman, S.,
and Welleck, S. Llemma: An open language model for
mathematics. In The Twelfth International Conference on
Learning Representations.

Bao, J., Franco, S., He, Y.-H., Hirst, E., Musiker, G., and
Xiao, Y. Quiver mutations, seiberg duality, and machine
learning. Physical Review D, 102(8):086013, 2020.

Bao, J., He, Y.-H., Heyes, E., and Hirst, E. Machine
learning algebraic geometry for physics. arXiv preprint
arXiv:2204.10334, 2022.

Bergeron, N. and Billey, S. Rc-graphs and schubert polyno-
mials. Experimental Mathematics, 2(4):257–269, 1993.

Bernstein, I. N., Gel’fand, I. M., and Gel’fand, S. I. Schu-
bert cells and cohomology of the spaces g/p. Russian
Mathematical Surveys, 28(3):1, 1973.

Billey, S. and Postnikov, A. Smoothness of Schubert va-
rieties via patterns in root subsystems. Adv. in Appl.
Math., 34(3):447–466, 2005. ISSN 0196-8858,1090-
2074. doi: 10.1016/j.aam.2004.08.003. URL https:
//doi.org/10.1016/j.aam.2004.08.003.

Billey, S. C. Pattern avoidance and rational smoothness
of schubert varieties. Advances in Mathematics, 139(1):
141–156, 1998.

Billey, S. C., Jockusch, W., and Stanley, R. P. Some combi-
natorial properties of schubert polynomials. Journal of
Algebraic Combinatorics, 2(4):345–374, 1993.

Blundell, C., Buesing, L., Davies, A., Veličković, P., and
Williamson, G. Towards combinatorial invariance for
kazhdan-lusztig polynomials. Representation Theory of
the American Mathematical Society, 26(37):1145–1191,
2022.

Buan, A. B. and Vatne, D. F. Derived equivalence classifi-
cation for cluster-tilted algebras of type an. Journal of
Algebra, 319(7):2723–2738, 2008.

Chang, W., Duan, B., Fraser, C., and Li, J.-R. Quantum
affine algebras and Grassmannians. Math. Z., 296(3-4):
1539–1583, 2020. ISSN 0025-5874,1432-1823. doi:
10.1007/s00209-020-02496-7. URL https://doi.
org/10.1007/s00209-020-02496-7.

Charton, F., Ellenberg, J. S., Wagner, A. Z., and Williamson,
G. Patternboost: Constructions in mathematics with a
little help from AI. arXiv preprint arXiv:2411.00566,
2024.

Chau, H. On enumerating higher bruhat orders through dele-
tion and contraction. arXiv preprint arXiv:2412.10532,
2024.

Chen, S., Dechant, P.-P., He, Y.-H., Heyes, E., Hirst, E.,
and Riabchenko, D. Machine learning clifford invariants
of ade coxeter elements. Advances in Applied Clifford
Algebras, 34(3):20, 2024.

Cheung, M., Dechant, P., He, Y., Heyes, E., Hirst, E., and
Li, J. Clustering cluster algebras with clusters. Advances
in Theoretical and Mathematical Physics, 2023.

Coates, T., Kasprzyk, A., and Veneziale, S. Machine learn-
ing detects terminal singularities. Advances in Neural
Information Processing Systems, 36, 2024.

Coq development team, T. The Coq proof assistant reference
manual. LogiCal Project, 2004. URL http://coq.
inria.fr. Version 8.0.

Davies, A., Veličković, P., Buesing, L., Blackwell, S.,
Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blun-
dell, C., Juhász, A., et al. Advancing mathematics by

10

https://github.com/UKGovernmentBEIS/inspect_ai
https://github.com/UKGovernmentBEIS/inspect_ai
https://doi.org/10.1016/j.aam.2004.08.003
https://doi.org/10.1016/j.aam.2004.08.003
https://doi.org/10.1007/s00209-020-02496-7
https://doi.org/10.1007/s00209-020-02496-7
http://coq.inria.fr
http://coq.inria.fr

Machine Learning Meets Algebraic Combinatoric

guiding human intuition with ai. Nature, 600(7887):70–
74, 2021.

Demazure, M. Désingularisation des variétés de schubert
généralisées. In Annales scientifiques de l’École Normale
Supérieure, volume 7, pp. 53–88, 1974.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The
role of permutation invariance in linear mode connectiv-
ity of neural networks. In International Conference on
Learning Representations.

Fajtlowicz, S. On conjectures of graffiti. Discrete Mathe-
matics, 72(1-3):113–118, 1988.

Felsner, S. On the number of arrangements of pseudo-
lines. volume 18, pp. 257–267. 1997. doi: 10.1007/
PL00009318. ACM Symposium on Computational Ge-
ometry (Philadelphia, PA, 1996).

Gaetz, C. and Gao, Y. On the minimal power of q in a
Kazhdan–Lusztig polynomial. Advances in Mathematics,
457:109941, 2024.

Gauthier, T. and Urban, J. Learning program synthesis for
integer sequences from scratch. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pp. 7670–7677, 2023.

Godfrey, C., Brown, D., Emerson, T., and Kvinge, H. On the
symmetries of deep learning models and their internal rep-
resentations. Advances in Neural Information Processing
Systems, 35:11893–11905, 2022.

Golden, J., Goncharov, A. B., Spradlin, M., Vergu, C., and
Volovich, A. Motivic amplitudes and cluster coordinates.
Journal of High Energy Physics, 2014(1):1–56, 2014.

Hahn, M. and Rofin, M. Why are sensitive functions hard
for transformers? In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 14973–15008, 2024.

He, J., Jenne, H., Chau, H., Brown, D., Raugas, M., Bil-
ley, S., and Kvinge, H. Machines and mathematical
mutations: Using GNNs to characterize quiver mutation
classes. arXiv preprint arXiv:2411.07467, 2024.

Henrich, T. Mutation classes of diagrams via infinite graphs.
Mathematische Nachrichten, 284(17-18):2184–2205,
2011. doi: https://doi.org/10.1002/mana.200910224.
URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/mana.200910224.

Hepler, C. T. On the complexity of computing characters of
finite groups. 1996.

Ikenmeyer, C., Pak, I., and Panova, G. Positivity of the sym-
metric group characters is as hard as the polynomial time
hierarchy. International Mathematics Research Notices,
2024(10):8442–8458, 2024.

Kazalicki, M. and Vlah, D. Ranks of elliptic curves and
deep neural networks. Research in Number Theory, 9(3):
53, 2023.

Kazhdan, D. and Lusztig, G. Representations of coxeter
groups and hecke algebras. Inventiones mathematicae,
53(2):165–184, 1979.

Keriven, N. and Peyré, G. Universal invariant and equivari-
ant graph neural networks. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Lascoux, A. and Schützenberger, M.-P. Structure de hopf de
l’anneau de cohomologie et de l’anneau de grothendieck
d’une variété de drapeaux. CR Acad. Sci. Paris Sér. I
Math, 295(11):629–633, 1982.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR,
2019.

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papail-
iopoulos, D. Teaching arithmetic to small transformers.
In The Twelfth International Conference on Learning
Representations.

Liu, Z., Gan, E., and Tegmark, M. Seeing is believing:
Brain-inspired modular training for mechanistic inter-
pretability. Entropy, 26(1):41, 2023.

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H.,
and Zhang, X. Parameterized explainer for graph neural
network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Mehrabian, A., Anand, A., Kim, H., Sonnerat, N., Balog,
M., Comanici, G., Berariu, T., Lee, A., Ruoss, A., Bu-
lanova, A., Toyama, D., Blackwell, S., Paredes, B. R.,
Veličković, P., Orseau, L., Lee, J., Naredla, A. M., Precup,
D., and Wagner, A. Z. Finding increasingly large extremal
graphs with alphazero and tabu search. In Proceedings of
the Thirty-Third International Joint Conference on Artifi-
cial Intelligence, IJCAI ’24, 2024. ISBN 978-1-956792-
04-1. doi: 10.24963/ijcai.2024/772. URL https:
//doi.org/10.24963/ijcai.2024/772.

Moura, L. d. and Ullrich, S. The lean 4 theorem prover
and programming language. In Automated Deduction –
CADE 28: 28th International Conference on Automated

11

https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.200910224
https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.200910224
https://doi.org/10.24963/ijcai.2024/772
https://doi.org/10.24963/ijcai.2024/772

Machine Learning Meets Algebraic Combinatoric

Deduction, Virtual Event, July 12–15, 2021, Proceed-
ings, pp. 625–635, Berlin, Heidelberg, 2021. Springer-
Verlag. ISBN 978-3-030-79875-8. doi: 10.1007/
978-3-030-79876-5 37. URL https://doi.org/
10.1007/978-3-030-79876-5_37.

Musiker, G. and Stump, C. A compendium on the cluster
algebra and quiver package in sage, 2011. URL https:
//arxiv.org/abs/1102.4844.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. The Eleventh International Conference
on Learning Representations, 2023.

Novikov, A., Vu, N., Eisenberger, M., Dupont, E., Huang,
P.-S., Zsolt Wagner, A., Shirobokov, S., Kozlovskii, B.,
Ruiz, F. J. R., Mehrabian, A., Kumar, M. P., See, A.,
Chaudhuri, S., Holland, G., Davies, A., Nowozin, S.,
Kohli, P., and Balog, M. Alphaevolve: A coding agent
for scientific and algorithmic discovery. Technical report,
Google DeepMind, 2025.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Raayoni, G., Gottlieb, S., Manor, Y., Pisha, G., Harris, Y.,
Mendlovic, U., Haviv, D., Hadad, Y., and Kaminer, I.
Generating conjectures on fundamental constants with
the ramanujan machine. Nature, 590(7844):67–73, 2021.

Robinson, G. d. B. On the representations of the symmetric
group. American Journal of Mathematics, pp. 745–760,
1938.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Sagan, B. E. The symmetric group: representations, com-
binatorial algorithms, and symmetric functions, volume
203. Springer Science & Business Media, 2013.

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. Analysing
mathematical reasoning abilities of neural models. arXiv
preprint arXiv:1904.01557, 2019.

Schensted, C. Longest increasing and decreasing subse-
quences. Canadian Journal of mathematics, 13:179–191,
1961.

Schiffler, R. Perfect matching problems in cluster algebras
and number theory. arXiv preprint arXiv:2302.02185,
2023.

Scott, J. S. Grassmannians and cluster alge-
bras. Proceedings of the London Mathemati-
cal Society, 92(2):345–380, 2006. doi: https:
//doi.org/10.1112/S0024611505015571. URL https:
//londmathsoc.onlinelibrary.wiley.
com/doi/abs/10.1112/S0024611505015571.

Song, P., Yang, K., and Anandkumar, A. Towards large
language models as copilots for theorem proving in lean.
arXiv preprint arXiv:2404.12534, 2024.

Stanley, R. P. On the number of reduced decompositions
of elements of Coxeter groups. European J. Combin.,
5(4):359–372, 1984. ISSN 0195-6698. doi: 10.1016/
S0195-6698(84)80039-6.

Stanley, R. P. Enumerative combinatorics volume 1 second
edition. Cambridge studies in advanced mathematics,
2011a.

Stanley, R. P. Enumerative combinatorics volume 2 second
edition. Cambridge studies in advanced mathematics,
2011b.

Stein, W. et al. Sage Mathematics Software (Ver-
sion 10.1). The Sage Development Team, 2024.
http://www.sagemath.org.

Vatne, D. F. The mutation class of Dn quivers. Communi-
cations in Algebra, 38(3):1137–1146, 2010.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Ban-
ino, A., Dashevskiy, M., Hadsell, R., and Blundell, C.
The clrs algorithmic reasoning benchmark. In Inter-
national Conference on Machine Learning, pp. 22084–
22102. PMLR, 2022.

Veličković, P. Neural algorithmic reasoning. The Gra-
dient, 2023. URL https://thegradient.pub/
neural-algorithmic-reasoning.

Wagner, A. Z. Constructions in combinatorics via neural
networks. arXiv preprint arXiv:2104.14516, 2021.

Warrington, G. Klmu & KLC - versions 1.0.
https://gswarrin.w3.uvm.edu/research/
klc/klc.html. Accessed: 2024-06-05.

Williams, L. Cluster algebras: an introduction. Bulletin of
the American Mathematical Society, 51(1):1–26, 2014.

12

https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://arxiv.org/abs/1102.4844
https://arxiv.org/abs/1102.4844
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024611505015571
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024611505015571
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024611505015571
https://thegradient.pub/neural-algorithmic-reasoning
https://thegradient.pub/neural-algorithmic-reasoning
https://gswarrin.w3.uvm.edu/research/klc/klc.html
https://gswarrin.w3.uvm.edu/research/klc/klc.html

Machine Learning Meets Algebraic Combinatoric

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation
of neural networks. Advances in Neural Information
Processing Systems, 36, 2024.

13

Machine Learning Meets Algebraic Combinatoric

Dataset Linear regression MLP Transformer Guess training label mean

Sn characters

n = 18 1.5920 × 1010 2.7447 × 109 ± 8.86015 × 108 2.4913 × 1010 ± 1.4350 × 107 1.5920 × 1010

n = 20 4.2007 × 1012 4.2254 × 1012 ± 5.1236 × 1011 5.3897 × 1012 ± 3.6464 × 1011 4.2007 × 1012

n = 22 8.0395 × 1014 1.1192 × 1014 ± 4.9321 × 1012 1.3797 × 1014 ± 6.2799 × 1012 8.0395 × 1014

RSK

n = 8 0.21 0.43 ± 0.05 1.51 ± 0.02 0.21

n = 9 0.21 0.96 ± 0.07 3.85 ± 0.09 0.21

Table 3. Off-the-shelf model MSE on regression datasets. Results are averaged over three random weight initializations with 95%
confidence intervals after a hyperparameter search outlined in Appendix B.10.

Dataset/coefficient MLP Transformer Guessing largest class

n = 5

1 99.8% ± 0.2% 99.9% ± 0.1% 73.7%

q 99.5% ± 0.4% 99.2% ± 1.0% 97.0%

q2 99.9% ± 0.1% 100.0% ± 0.0% 99.9%

n = 6

1 99.9% ± 0.0% 100.0% ± 0.0% 80.9%

q 99.9% ± 0.0% 99.9 ± 0.0 95.8%

q2 99.9% ± 0.0% 99.9 ± 0.0 99.5%

q3 99.9% ± 0.0% 99.9 ± 0.0 99.9%

Table 4. Baseline model classification accuracy for predicting KL polynomial coefficients for n = 5, 6. Results are averaged over three
random weight initializations with 95% confidence intervals. The MLPs had layer dimension 256 and depth 4 and were trained with a
learning rate of 0.0005. The transformers had dimension 256, depth 6, 8 heads, and were trained with a learning rate of 0.0005.

A. Dependence on n

Many problems in algebraic combinatorics have a natural dependence on a parameter n (e.g., permutations are parameterized
by the number of elements that they permute). We have chosen to structure datasets in the ACD Repo to reflect this, with the
majority of datasets belonging to a series {Dn}n≥1. We provide a few values of n and, in many cases, the code to generate
others. Generally, there are two properties that change as n → ∞. First, the size of Dn grows as n grows. The rate of
growth depends on the specific problem, with many |Dn| growing exponentially (such as those datasets that depend on the
number of permutations of n). On the other hand, the problems can also become harder in various ways as n grows.

Experimentally we have found that larger values of n tend to lead to better model performance regardless of this potential
increase in difficulty. For example, we ran 5 2-layer MLP models for 500 epochs on the lattice path datasets corresponding

Dataset/coefficient MLP Transformer Guessing largest class

n = 5

1 99.7% ± 0.1% 99.9% ± 0.4% 73.7%

q 93.9% ± 3.7% 92.7% ± 7.6% 97.0%

q2 50.0% ± 0.0% 100.0% ± 0.0% 99.9%

n = 6

1 99.9% ± 0.0% 100.0% ± 0.0% 80.9%

q 99.0% ± 1.5% 98.0 ± 3.7 95.8%

q2 97.4% ± 5.2% 86.2 ± 47.7 99.5%

q3 87.9% ± 4.5% 88.3 ± 17.1 99.9%

Table 5. Baseline model classification macro F1-scores (to account for class imbalance) for predicting KL polynomial coefficients for
n = 5, 6. Results are averaged over three random weight initializations with 95% confidence intervals. The MLPs had layer dimension
256 and depth 4 and were trained with a learning rate of 0.0005. The transformers had dimension 256, depth 6, 8 heads, and were trained
with a learning rate of 0.0005.

14

Machine Learning Meets Algebraic Combinatoric

Dataset Claude 3.5 Sonnet GPT-4o Mini GPT-4o

In-context learning

n = 3 76.4% 64.7% 58.8%

n = 4 59.5% 53.5% 57.0%

n = 5 58.5% 51.5% 57.0%

Program synthesis

n = 3 94.1% 82.4% 100.0%

n = 4 65.0% 100.0% 100.0%

n = 5 99.8% 64.2% 64.7%

Table 6. Success of Claude 3.5 Sonnet, GPT-4o Mini, and GPT-4o solving the Schubert polynomial structure constant task via either
in-context learning or program synthesis. Hyperparameters for these experiments can be found in Section B.11. As described in Section 5,
models that achieved 100% had effectively learned the strategy by which we subsampled zero-valued structure constants. This has now
been fixed.

Figure 2. (Left) Performance on the Lattice Path Dataset as a function of the lattice path endpoint (larger endpoint values means longer and
more paths). As n grows in n× n− 1, the training set size increases but the problem may also grow harder. (Center) Performance on the
type E versus type D quiver classification task as a function of the depth, which must be specified for type E quivers on n = 10, 11, 12
vertices, and (Right) the number of vertices n.

to grids of size 6× 5, . . . , 13× 12. We see in Figure 2 (left) that with an interesting exception of moving from 7× 6 to 8× 7,
performance across a range of dimensions improves as n grows. There are exceptions, however. We looked at sampling
from greater depth when exploring the quiver mutation equivalence dataset (Section 4.8). This effectively means allowing a
greater number of mutations to be applied to the initial quiver when generating the dataset. As shown in Figure 2 (center),
we find that performance somewhat degrades even though the size of the datasets increase. We suspect that exploration of
the complexity of these problems (where it is known) might be an avenue for shedding light on this phenomenon.

B. Dataset details
All datasets are stored as .txt files with one datum instance per line. In this section we will describe each file and explain
how to interpret it. Functions capable of loading and parsing each file are available on the GitHub page.

B.1. Computing Characters of Irreducible Representations of the Symmetric Group

Since the conjugacy classes of the symmetric group Sn are indexed by integer partitions of n, characters are constant on
conjugacy classes, and the irreducible representations of Sn are also indexed by integer partitions of n, the task is to use a
pair of integer partitions of n to predict the character of the corresponding irreducible representation of the symmetric group.

Within each file, two integer partitions are provided followed by an integer corresponding to the character. For instance, the
line

[3,1,1],[2,2,1],-2

says that the character χ3,1,1
2,2,1 = −2.

15

Machine Learning Meets Algebraic Combinatoric

In all cases the characters are heavily concentrated around 0 with very long tails. This likely contributes to the difficulty of
the task and could be overcome with some simple pre- and post-processing. We have not chosen to do this in our baselines.

Characters of S18

There are 118, 580 training examples and 29, 645 test examples. The maximum character value is 16, 336, 320. The
minimum character value is −1, 223, 040.

Figure 3. Histogram of S18 characters within the interval [−500, 500]

Characters of S20

There are 298, 661 training examples and 74, 819 test examples. The maximum character value is 249, 420, 600. The
minimum character value is −17, 592, 960.

Figure 4. Histogram of S20 characters within the interval [−500, 500]

Characters of S22

There are 763, 109 training examples and 190, 726 test examples. The maximum character value is 5, 462, 865, 408. The
minimum character value is −279, 734, 796.

Figure 5. Histogram of S22 characters within the interval [−500, 500]

16

Machine Learning Meets Algebraic Combinatoric

0 1 2 3 4

Training set 6, 716 508 78 9 1

Testing set 1, 672 136 18 3 0

Table 7. Statistics for the mHeight dataset for n = 8.

0 1 2 3 4 5

Training set 49, 092 3, 161 524 77 9 1

Testing set 12, 317 759 118 19 3 0

Table 8. Statistics for the mHeight dataset for n = 9.

Sage (Stein et al., 2024) was used to calculate character values. Data generation scripts can be found on the GitHub page.

B.2. The mHeight Function of a Permutation

This dataset contains permutations labeled by their mHeight. An example calculation of mHeight is shown in Figure 6.
Permutations are written in 1-line notation followed by the symbol ‘;’ and then the value of the mHeight function on the
permutation. So

(6, 8, 7, 5, 4, 9, 3, 0, 1, 2);1

can be read as saying that the permutation 6 8 7 5 4 9 3 0 1 2 has mHeight 1.

We provide datasets for permutations of size n = 8, 9, 10. The files are called:

• mHeight_8_train.txt

• mHeight_8_test.txt

• mHeight_9_train.txt

• mHeight_9_test.txt

• mHeight_10_train.txt

• mHeight_10_test.txt

The dataset was generated using a Python script which can be found on the GitHub page. Dataset statistics can be found in
Table 7-Table 9.

Figure 6. An example of the calculation of mHeight on a permutation.

0 1 2 3 4 5 6

Training set 352, 494 17, 952 3, 079 502 74 10 1

Testing set 88, 058 4, 503 803 140 22 2 0

Table 9. Statistics for the mHeight dataset for n = 10.

17

Machine Learning Meets Algebraic Combinatoric

Cluster variable Not cluster variable Total

Training set 74, 329 74, 329 148, 658

Testing set 18, 582 18, 582 37, 164

Table 10. Statistics of the Grassmannian cluster algebra dataset.

B.3. Grassmannian Cluster Algebras and Semistandard Young Tableaux

This dataset relates to a cluster algebra associated with the Grassmann manifold Gr(k, n). Each cluster variable is indexed
by a rectangular SSYT with k rows with entries drawn from {1, . . . , n}. The rank of these rectangular SSYT (and the rank
of the associated cluster variable) is given by their number of columns. Following (Cheung et al., 2023), in this dataset we
focus on Gr(3, 12) and hence look at rectangular SSYT with 3 rows filled with entries drawn from {1, . . . , 12}. We further
restrict to rank 4 SSYT. This leaves us with a collection of 3 × 4 arrays whose entries increase weakly across rows and
strictly down columns.

To give two examples, the SSYT in Figure 7 are valid (left) and invalid (right). Note that both are genuine SSYT of shape
3× 4 with entries from {1, . . . , 12}.

Figure 7. An example of a valid (left) and invalid (right) tableau from the Grassmannian cluster algebra dataset.

The dataset consists of a collection of rectangular SSYT each with a label indicating whether it indexes a cluster variable
or not. Those that do not index a cluster variable are labeled with a ‘0’ and those that do are labeled with a ‘1’. The
valid examples are drawn from (Cheung et al., 2023) and can be obtained from https://github.com/edhirst/
GrassmanniansML/. We generated our own negative examples because we found that the model learned some spurious
correlations as a result of the sampling strategy used in (Cheung et al., 2023). To sample random rectangular SSYT, we took
advantage of the random element method in the ‘Tableaux’ class in Sage.

The datasets, which can be found on the GitHub page, are contained in files named:

• 3_4_12_invalid_train.txt

• 3_4_12_invalid_test.txt

• 3_4_12_valid_test.txt

• 3_4_12_valid_train.txt

In the files we use braces [and] to demarcate rows of the diagram, so that

[[1, 2, 4, 7], [5, 6, 6, 11], [9, 9, 12, 12]]

corresponds to the tableau in Figure 7, left. Dataset statistics can be found in Table 10.

B.4. The Coefficients of Kazhdan-Lusztig Polynomials

Kazhdan-Lusztig polynomials are integer polynomials in a variable q which are parameterized by two permutations. The
tasks associated with this dataset are to predict the different coefficients of the polynomial (organized by monomial degree).
Thus the input is two permutations v, w and the output is a sequence of integers which are the coefficients of the polynomial.
For instance, if v = 0 2 1 3 5 4 6 9 7 8 and w = 2 3 0 5 9 6 7 8 1 4 then

Pv,w(q) = 4q4 + 12q3 + 13q2 + 6q + 1.

18

https://github.com/edhirst/GrassmanniansML/
https://github.com/edhirst/GrassmanniansML/

Machine Learning Meets Algebraic Combinatoric

Coefficient Train Test

0 8, 496 2, 123

1 3, 024 757

Table 11. Statistics for the constant term in the n = 5 KL polynomial dataset.

Coefficient Train Test

0 11, 219 2, 793

1 267 77

2 34 10

Table 12. Statistics for the coefficient on q in the n = 5 KL polynomial dataset.

and this is written as the line

0213546978 2305967814 1,6,13,12,4.

Datasets were generated using C code from Greg Warrington’s website (Warrington), computing Pv,w(q) for all pairs of
permutations of size n = 5, 6, 7.

The files we provide are:

• kl-polynomials_5_train.txt

• kl-polynomials_5_test.txt

• kl-polynomials_6_train.txt

• kl-polynomials_6_test.txt

• kl-polynomials_7_train.txt

• kl-polynomials_7_test.txt

Statistics can be found in Table 11-Table 22.

B.5. The Robinson-Schensted-Knuth Correspondence

The Robinson–Schensted-Knuth correspondence is a bijection between permutations and pairs of standard Young tableaux.
For our initial baselines we use Young tableau pairs as input and the corresponding permutation as output, but the dataset
could be used in the opposite direction.

The permutations are stored in files starting with input permutation and the pair of tableaux are stored in files labeled
by output tableau. Permutations are stored using their inversion vectors (a binary sequence). Tableau rows are
separated by ‘[’ and ‘]’. For instance,

[[[1, 3, 4], [2, 7], [5], [6]], [[1, 2, 6], [3, 4], [5], [7]]]

corresponds to the pair of Young tableau in Figure 8. In our baselines, this task is formulated as regression with the aim of
regressing the sequence of 0-1 entries in the inversion vector. We found that the inversion vector was easiest to work with
relative to other representations of permutations in this setting.

Coefficient Train Test

0 11, 514 2, 876

1 6 4

Table 13. Statistics for the coefficient on q2 in the n = 5 KL polynomial dataset.

19

Machine Learning Meets Algebraic Combinatoric

Coefficient Train Test

0 336, 071 83, 922

1 78, 649 19, 758

Table 14. Statistics for the constant term in the n = 6 KL polynomial dataset.

Coefficient Train Test

0 397, 386 99, 354

1 13, 253 3, 311

2 3, 483 883

3 535 117

4 63 15

Table 15. Statistics for the coefficient on q in the n = 6 KL polynomial dataset.

Coefficient Train Test

0 412, 707 103, 177

1 1, 705 441

2 242 46

3 40 8

4 26 8

Table 16. Statistics for the coefficient on q2 in the n = 6 KL polynomial dataset.

Coefficient Train Test

0 414, 688 103, 670

1 32 10

Table 17. Statistics for the coefficient on q3 in the n = 6 KL polynomial dataset.

Coefficient Train Test

0 17, 479, 910 4, 370, 771

1 2, 841, 370 709, 549

Table 18. Statistics for the constant term in the n = 7 KL polynomial dataset.

Coefficient Train Test

0 19, 291, 150 4, 822, 214

1 660, 600 165, 768

2 266, 591 66, 593

3 80, 173 19, 963

4 18, 834 4, 762

5 3, 221 819

6 711 201

Table 19. Statistics for the coefficient on q in the n = 7 KL polynomial dataset.

20

Machine Learning Meets Algebraic Combinatoric

Coefficient Train Test

0 20, 072, 738 5, 017, 962

1 170, 412 42, 748

2 46, 226 11, 568

3 16, 227 4, 021

4 7, 621 1, 905

5 4, 023 1, 065

6 1, 287 349

7 1, 153 287

8 785 183

9 350 86

10 152 40

11 139 37

12 121 47

13 42 22

14 4 1

Table 20. Statistics for the coefficient on q2 in the n = 7 KL polynomial dataset.

Coefficient Train Test

0 20, 291, 535 507, 2831

1 22, 094 5, 498

2 4, 779 1, 213

3 1, 660 442

4 590 146

5 195 61

6 206 50

7 115 37

8 34 14

9 26 6

10 24 8

11 18 14

15 4 1

Table 21. Statistics for the coefficient on q3 in the n = 7 KL polynomial dataset.

Coefficient Train Test

0 17, 479, 910 4, 370, 771

1 2, 841, 370 709, 549

Table 22. Statistics for the coefficient on q4 in the n = 7 KL polynomial dataset.

21

Machine Learning Meets Algebraic Combinatoric

Figure 8. The Young tableau pair that are obtained by applying the Robinson-Schensted-Knuth algorithm to the permutation 6 7 2 5 3 4 1.

We store files for n = 8, 9, 10. These are named:

• input_permutations_8_train.csv

• input_permutations_8_test.csv

• input_permutations_9_train.csv

• input_permutations_9_test.csv

• input_permutations_10_train.csv

• input_permutations_10_test.csv

• output_tableau_8_train.csv

• output_tableau_8_test.csv

• output_tableau_9_train.csv

• output_tableau_9_test.csv

• output_tableau_10_train.csv

• output_tableau_10_test.csv

Sage (Stein et al., 2024) was used to generate the tableau pairs corresponding to each permutation. The script is available on
the GitHub page.

B.6. Schubert Polynomial Structure Constants

This task involves predicting the structure constants of Schubert polynomials. These polynomials are each indexed by
permutations so structure constants are indexed by a triple of permutations. Hence, the input to the model is a triple of
permutations v, w, u and the output is an integer. For instance, since we have the relationship

S12354S12354 = S123645 + S12453

one data instance is

[1,2,3,5,4],[1,2,3,5,4],[1,2,3,6,4,5];1.

We partition the datasets so that the dataset associated with value n has structure constants for pairs of Sv with v ∈ Sn. Note
that there is some repetition since Sn−1 is a subset of Sn. We store files for n = 4, 5, 6. These are named:

• schubert_structure_coefficients_triples_4_train.txt

• schubert_structure_coefficients_triples_4_test.txt

22

Machine Learning Meets Algebraic Combinatoric

0 1

Training set 851 833

Testing set 201 220

Table 23. Statistics for the Schubert polynomial structure constants dataset for n = 4.

0 1 2

Training set 42, 831 42, 619 170

Testing set 10, 681 10, 680 44

Table 24. Statistics for the Schubert polynomial structure constants dataset for n = 5.

• schubert_structure_coefficients_triples_5_train.txt

• schubert_structure_coefficients_triples_5_test.txt

• schubert_structure_coefficients_triples_6_train.txt

• schubert_structure_coefficients_triples_6_test.txt.

Sage (Stein et al., 2024) was used to generate and multiply Schubert polynomials for each pair of permutations α and β in
Sn. The basis expansion of Sα ⋆ Sβ was obtained from this and each nonzero term in this expansion was used as an instance.
For any n, most structure constants will be zero. To generate a balanced dataset, we computed Sα ⋆ Sβ for all elements in
Sn × Sn and for each cγα,β ̸= 0, we applied a random number of transpositions (where the number of transpositions was

sampled from a geometric distribution) to γ to get γ′, checked that cγ
′

α,β = 0 and added this to the dataset. Therefore, the
dataset contains all non-zero structure constants but only a fraction of zero structure constants.

Dataset statistics can be found in Table 23-Table 25.

B.7. Partial Orders on Lattice Paths

This dataset contains pairs of lattice paths starting at (0, 0) and ending at (n, n− 1) that are only allowed to take one unit
steps either north or east, and must stay below the line y = n

n−1x. They are thus encoded by a sequence of 1’s (for steps
east) and 0’s (for steps north) of length (n+ 1) + n = 2n+ 1. Each pair of lattice paths is a covering pair in exactly one of
the two partial orders, the Lagrange order or the matching order (pairs that are covers in both are few and were removed).
The task is to predict which partial order a covering pair belongs to.

Each line in a file is the concatenation of two 0-1 sequences (one for each path) for a length 4n+ 2 row of 0’s and 1’s. The
lattice paths are separated by ‘;’.

For an 3× 2 grid, the sequence:
1, 1, 1, 0, 0; 1, 1, 0, 1, 0

corresponds to the two lattice paths in Figure 9. The first is in red and second is in blue, with segments traversed by both
paths colored red.

We store files for n = 10, 11, 12, 13. These are named:

• lagrange_covers_test_10_9.csv

0 1 2 3 4 5

Training set 4, 202, 040 4, 093, 033 109, 217 2, 262 9 9

Testing set 1, 052, 062 1, 021, 898 27, 110 568 3 0

Table 25. Statistics for the Schubert polynomial structure constants dataset for n = 6.

23

Machine Learning Meets Algebraic Combinatoric

Figure 9. An example of two lattice paths from (0, 0) to (3, 2). These do not correspond to a cover relation.

Lagrange order Matching order Total

Training set 7, 5589 3, 875 11, 433

Testing set 1, 895 968 2, 863

Table 26. Statistics for the lattice paths dataset for paths from (0, 0) to (10, 9).

• lagrange_covers_test_11_10.csv

• lagrange_covers_test_12_11.csv

• lagrange_covers_test_13_12.csv

• lagrange_covers_train_10_9.csv

• lagrange_covers_train_11_10.csv

• lagrange_covers_train_12_11.csv

• lagrange_covers_train_13_12.csv

• matching_covers_test_10_9.csv

• matching_covers_test_11_10.csv

• matching_covers_test_12_11.csv

• matching_covers_test_13_12.csv

• matching_covers_train_10_9.csv

• matching_covers_train_11_10.csv

• matching_covers_train_12_11.csv

• matching_covers_train_13_12.csv

The first word (‘Lagrange’ or ‘matching’) gives the label, the third word says whether it is train or test, and the final two
numbers give n and n− 1.

Sage (Stein et al., 2024) was used to compute the covering pairs in the Lagrange and matching ordering; the script used to
generate the data is available on the GitHub page. We removed instances that were covering pairs in both the Lagrange
partial order and the matching partial order (this was 21, 40, and 79 instances for n = 10, 11, and 12 respectively).

The dataset statistics can be found in Table 26-Table 29.

Lagrange order Matching order Total

Training set 26, 427 13, 424 39, 851

Testing set 6, 601 3, 355 9, 956

Table 27. Statistics for the lattice paths dataset for paths from (0, 0) to (11, 10).

24

Machine Learning Meets Algebraic Combinatoric

Lagrange order Matching order Total

Training set 93, 218 46, 976 140, 194

Testing set 23, 324 11, 749 35, 073

Table 28. Statistics for the lattice paths dataset for paths from (0, 0) to (12, 11).

Lagrange order Matching order Total

Training set 331, 065 166, 304 497, 369

Testing set 82, 789 41, 580 124, 369

Table 29. Statistics for the lattice paths dataset for paths from (0, 0) to (13, 12).

B.8. Mutation Equivalence of Quivers

The task associated with this dataset is matching a quiver to one of several possible mutation equivalence classes. Thus,
the input is a quiver with 11 nodes encoded by its 11× 11 adjacency matrix and the label is one of 7 different equivalence
classes: A11, BB11, BD11, BE11, D11, DE11, E11. The files are organized by train and test for each of these classes. All
mutation classes were generated using Sage (Stein et al., 2024), the code is available on the GitHub page. For the quiver
mutation classes that are not mutation finite, the datasets contain quivers generated up to a certain depth, which is the
distance from the original quiver, measured by number of mutations. The depth is specified in the filename and was chosen
to achieve as close to a balanced dataset as possible.

The file names are:

• A_11_bmatrices_test.csv

• A_11_bmatrices_train.csv

• BB_11_depth10_bmatrices_test.csv

• BB_11_depth10_bmatrices_train.csv

• BD_11_depth9_bmatrices_test.csv

• BD_11_depth9_bmatrices_train.csv

• BE_11_depth8_bmatrices_test.csv

• BE_11_depth8_bmatrices_train.csv

• D_11_bmatrices_test.csv

• D_11_bmatrices_train.csv

• DE_11_depth9_bmatrices_test.csv

• DE_11_depth9_bmatrices_train.csv

• E_11_depth9_bmatrices_test.csv

• E_11_depth9_bmatrices_train.csv

Within a file, each row is a flattened adjacency matrix encoded in row major order. The statistics of the dataset can be found
in Table 30.

25

Machine Learning Meets Algebraic Combinatoric

A11 B11 BD11 BE11 D11 DE11 E11 Total

Training set 11, 940 27, 410 23, 651 22, 615 25, 653 23, 528 28, 998 163, 795

Testing set 2, 984 6, 852 5, 912 5, 653 6, 413 5, 881 7, 249 409, 44

Table 30. Statistics of the quiver mutation equivalence dataset.

Weaving pattern Non-weaving pattern

Training set 634 1, 116

Testing set 275 467

Table 31. Statistics of the weaving pattern dataset for n = 6.

B.9. Weaving Patterns

Weaving patterns of size n × n − 1 are a special type of matrix containing entries in {1, 2, . . . , n}. They correspond to
representations of the longest word permutation of n elements (the permutation that sends 1 7→ n, 2 7→ n− 1, etc.). This
task involves trying to identify weaving patterns among matrices that look like weaving patterns but are not.

Each matrix is stored on a single line in row-major format. For instance,

(0, 1, 2, 3, 3, 2, 3, 4, 2, 3, 2, 1, 5, 4, 3, 2)

We provide files for n = 6, 7. The files are:

• weaving_patterns_6_train.txt

• weaving_patterns_7_train.txt

• weaving_patterns_6_test.txt

• weaving_patterns_7_test.txt

Positive examples were generated by a program written in Java script. Negative examples were generated by loading positive
examples and Python and perturbing them. Code for both of these can be found on the GitHub page.

Dataset statistics can be found in Table 31 and Table 32.

B.10. Small Model Hyperparameters

For our baselines, we train encoder-only transformer models, standard feedforward multi-layer perceptron (MLP) models
with ReLU non-linearities, and logistic regression on the classification tasks and the same architectures of transformers and
MLPs along with linear regression for the regression tasks.

• To optimize MLP models we performed a simple grid search across

⋄ learning rates: 0.001, 0.0005, and 0.0001,
⋄ depth: 1, 2, 3, and 4,
⋄ uniform hidden dimension: 32, 64, 128, and 256.

• To optimize the transformer models we performed a similar grid search but with hyperparameters

⋄ learning rates: 0.001, 0.0005, and 0.0001,

Weaving pattern Non-weaving pattern

Training set 17, 388 96, 012

Testing set 7, 310 41, 290

Table 32. Statistics of the weaving pattern dataset for n = 7.
26

Machine Learning Meets Algebraic Combinatoric

Dataset Learning rate Depth Hidden dimension

Lattice paths

n = 10 0.001 3 256

n = 11 0.001 3 256

n = 12 0.001 4 256

Weaving patterns

n = 6 0.001 2 256

n = 7 0.001 2 256

Cluster algebra quivers 0.001 4 256

Grassmanian cluster algebras

n = 6 0.001 4 256

Schubert polynomials

n = 4 0.0005 4 64

n = 5 0.001 4 256

n = 6 0.001 3 256

mHeight

n = 8 0.0005 2 128

n = 9 0.001 2 128

n = 10 0.001 2 256

Sn characters

n = 18 0.001 4 128

n = 20 0.0001 4 256

n = 22 0.001 4 256

RSK

n = 8 0.001 4 256

n = 9 0.001 4 256

Table 33. Optimized hyperparameters for the MLP baselines found in Table 1 and Appendix B.10.

⋄ model dimensionality: 20, 40, and 80,
⋄ depths: 2 and 4,
⋄ number of heads: 4, 6, and 8.

MLPs and transformers were all trained for 60 epochs and the best test score was recorded. The best MLP hyperparameters
for each dataset can be found in Table 33. The best transformer hyperparameters for each dataset can be found in Table 34.

All optimization was performed in Pytorch (Paszke et al., 2017) with the Adam optimizer (with Pytorch default settings
beyond the learning rate) on one Nvidia A100. After finding an optimal hyperparameter setting, we trained 3 models,
averaged their performance, and generated 95% confidence intervals to measure the variability in performance with these
hyperparameters.

Linear and logistic regression was performed with sklearn (Pedregosa et al., 2011) using default hyperparameters.

B.11. LLM Evaluation Procedure

We evaluated Claude 3.5 Sonnet, GPT-4o-mini, GPT-4o, and o1-mini on the mHeight and Schubert polynomials datasets
using a simple in-context learning setup and a simple program synthesis setup. When using in-context learning, we tried
using 0, 10, 50, and 100 examples and also tested using chain-of-thought prompting. Finally, we explored providing the
model with some background on the problem. The best setting depended on the model and task. An example template for
the in-context learning prompt when chain-of-thought is used is:

"You are tasked with solving a classification problem.
Here is high-level information about the dataset:\n{dataset_info}\n\n"
+ f"{few_shot_str}" + "Before answering with your Python code,
reason in a step-by-step manner as to get the right answer.\n\n"

27

Machine Learning Meets Algebraic Combinatoric

Dataset Learning rate Depth Hidden dimension Heads

Lattice paths

n = 10 0.001 4 80 8

n = 11 0.0005 4 80 4

n = 12 0.0005 6 40 8

Weaving patterns

n = 6 0.0001 4 80 8

n = 7 0.0001 4 80 8

Cluster algebra quivers 0.0005 6 80 4

Grassmanian cluster algebras

n = 6 0.0005 6 80 4

Schubert polynomials

n = 4 0.0001 4 80 6

n = 5 0.0005 4 40 6

n = 6 0.0005 4 80 4

mHeight

n = 8 0.0001 4 80 4

n = 9 0.001 6 20 8

n = 10 0.001 4 80 8

Sn characters

n = 18 0.001 6 80 6

n = 20 0.001 4 80 8

n = 22 4 40 8

RSK

n = 8 0.001 4 20 6

n = 9 0.001 4 80 4

Table 34. Optimized hyperparameters for the transformer baselines found in Table 1 and Appendix B.10.

28

Machine Learning Meets Algebraic Combinatoric

where ‘dataset info’ is a description of the dataset and task and ‘few shot str’ are the few-shot examples. When chain-of-
thought reasoning is not used the last component is changed to

"Do not provide any additional reasoning or explanation.
Just provide your answer at the end on its own line in the form ’ANSWER:
$ANSWER’ (without quotes) where $ANSWER is the answer to the question."

In the code synthesis version of the experiments, models were asked to write a Python program that solves the task using
only Sage (Stein et al., 2024), Numpy, and SymPy. No model ended up using either Sage or SymPy. The same prompt was
used to generate 100 examples. The best program was chosen by evaluating each on the test set.

Your job is to write a Python function that solves the classification problem.
You will be given some examples of a classification problem from the
’{dataset}’ dataset.

Write a function ’predict’ that takes an input in a Python list and returns
an integer as the classification result.

Here is information about the dataset:
{dataset_info}

Avoid using machine learning or model calls; rather, embed the logic in
Python code.
Rather than use shallow pattern matching or using simple patterns, try
to analyze the underlying combinatorial logic of the examples. Note
that the datagenerating process for this dataset is a combinatorial algorithm.
You may want to use numpy and sympy for math operations or sage for
cominatorics, however this is optional. If you do use them, *make sure
to import them within your function*.

Below are a few examples from the training set:
{training_examples}

{instructions}
Your final answer should be valid Python code enclosed in triple
backticks. This program will be evaluated on the test set.

All of our experiments with LLMs used AI Inspect (AI Safety Institute).

C. Datasheets
We provide datasheet information that holds for (almost) all datasets in the collection here and provide answers that vary
across each dataset in their relevant section.

• Who funded the creation of the datasets? This research was supported by the Mathematics for Artificial Reasoning in
Science (MARS) initiative at Pacific Northwest National Laboratory. It was conducted under the Laboratory Directed
Research and Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL), a multiprogram
National Laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract
DE-AC05-76RL01830.

• Are there recommended data splits (e.g., training, development/validation, testing)? All datasets are provided in
preset splits.

• Are there any errors, sources of noise, or redundancies in the dataset? Not that the creators are aware of.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets,
other datasets)? It is self-contained.

29

Machine Learning Meets Algebraic Combinatoric

• Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege
or by doctor– patient confidentiality, data that includes the content of individuals’ non-public communications)?
No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might
otherwise cause anxiety? No.

• Over what timeframe was the data collected? All datasets were generated between June 2024 and December 2024.

• Were any ethical review processes conducted (e.g., by an institutional review board)? N/A

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated
future uses)? No, but in most cases we supply the code to re-generate the raw data (see https://github.com/
pnnl/ML4AlgComb).

• Is the software that was used to preprocess/clean/label the data available? Yes, https://github.com/
pnnl/ML4AlgComb.

• Is there a repository that links to any or all papers or systems that use the dataset? Yes, https://github.
com/pnnl/ML4AlgComb.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

C.1. Symmetric group characters datasheet

• For what purpose was the dataset created? To study whether machine learning models can learn to predict the
characters of irreducible representations of the symmetric group.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset was created by Henry Kvinge at Pacific Northwest National Laboratory.

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Characters
of irreducible representations of the symmetric group of size n.

• How many instances are there in total (of each type, if appropriate)? See Appendix B.1.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set? It contains all possible instances for a fixed n.

• What data does each instance consist of? Each instance consists of two partitions of n and an integer.

• Is there a label or target associated with each instance? Yes, the label is the final integer.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?
N/A

• How was the data associated with each instance acquired? The creators used the open-source mathematics software
system SageMath to calculate character values.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? SageMath was used for the calculations and Python was used
to sort, format, split the data. This was all done on a consumer laptop.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? N/A

30

https://github.com/pnnl/ML4AlgComb
https://github.com/pnnl/ML4AlgComb
https://github.com/pnnl/ML4AlgComb
https://github.com/pnnl/ML4AlgComb
https://github.com/pnnl/ML4AlgComb
https://github.com/pnnl/ML4AlgComb

Machine Learning Meets Algebraic Combinatoric

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Henry Kvinge wrote the code in SageMath to generate
this dataset.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? Partitions are listed
as sequences of numbers enclosed by brackets (see Appendix B.1.

• Has the dataset been used for any tasks already? No.

• What (other) tasks could the dataset be used for? This dataset could be used in instances where the aim is to
understand the ability of machine learning to perform challenging mathematical tasks.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

C.2. mHeight datasheet

• For what purpose was the dataset created? This dataset was created to study a machine learning model’s ability to
learn the mHeight of a permutation.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset was created by Herman Chau at the University of Washington.

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Instances
are permutations (represented in one-line notation) followed by the integer corresponding to their mHeight.

• How many instances are there in total (of each type, if appropriate)? See Appendix B.2.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set? Yes, all instances are included for the values of n provided.

• What data does each instance consist of? An instance consists of a permutation and its corresponding mHeight.

• Is there a label or target associated with each instance? The label is the mHeight.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?
Individual instances are unrelated.

• How was the data associated with each instance acquired? The creators generated the data using Python scripts
which are provided at https://github.com/pnnl/ML4AlgComb.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? Python was used to generate the data on a consumer laptop.

31

https://creativecommons.org/public-domain/cc0/
https://github.com/pnnl/ML4AlgComb

Machine Learning Meets Algebraic Combinatoric

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? N/A

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Herman Chau wrote Python code to generate the data.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? No.

• Has the dataset been used for any tasks already? No.

• What (other) tasks could the dataset be used for? This dataset could be used to train a model to predict the mHeight
of permutations and as an intermediate task for predicting the smallest non-trivial zero coefficient of Kazhdan-Lusztig
polynomials.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

C.2.1. SEMISTANDARD YOUNG TABLEAU FOR GRASSMANNIAN DATASHEET

• For what purpose was the dataset created? This dataset was created to study a machine learning model’s ability to
identify whether an semistandard Young tableau indexes a valid cluster variable in the Grassmannian cluster algebra.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? The code for the positive examples in the dataset was created by an external team
consisting of Man-Wai Cheung, Pierre-Phillips Dechant, Yang-Hui He, Elli Heyes, Edward Hirst, and Jian-Rong Li
(Cheung et al., 2023). The negative dataset was created by Herman Chau at the University of Washington.

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Instances
represent semistandard young tableau.

• How many instances are there in total (of each type, if appropriate)? See Appendix B.3.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set? The positive instances are all possible instances with exceedingly high probability. An equal number of
negative instances were obtained by randomly sampling without duplicates. See Appendix B.3 for details on sampling.

• What data does each instance consist of? An instance consists of a 3× 4 SSYT.

• Is there a label or target associated with each instance? The label is given in the filename.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?
Individual instances are unrelated.

• How was the data associated with each instance acquired? The creators generated the data using Python scripts.

32

https://creativecommons.org/public-domain/cc0/

Machine Learning Meets Algebraic Combinatoric

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? Python was used to generate the data.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? Positive examples are generated probabilistically until no new instances are
generated after a large number of iterations. Negative examples are sampled uniformly at random. See Appendix B.3
for details on sampling.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Herman Chau generated this data. He developed his own
code to generate the negative examples and used code from Man-Wai Cheung, Pierre-Phillips Dechant, Yang-Hui He,
Elli Heyes, Edward Hirst, and Jian-Rong Li (Cheung et al., 2023) to generate positive examples.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-
of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? Semistandard
Young tableau were flattened to fit on a single line in the data files.

• Has the dataset been used for any tasks already? A similar dataset was used in (Cheung et al., 2023), with different
negative examples.

• What (other) tasks could the dataset be used for? This dataset could be used for any tasks around the study of the
Grassmannian cluster algebra.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

C.2.2. KAZHDAN-LUSZTIG POLYNOMIAL DATASHEET

• For what purpose was the dataset created? This dataset was created to study a machine learning model’s ability to
learn and predict the coefficients of Kazhdan-Lusztig polynomials.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? Henry Kvinge created these datasets using code from (Warrington).

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? An
instance consists of a pair of permutations followed by the Kazhdan-Lusztig polynomial corresponding to the pair of
permutations. The polynomial is listed via its coefficients (starting with the constant term) up to the largest non-zero
coefficient.

• How many instances are there in total (of each type, if appropriate)? See section Appendix B.4.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set? For a given n, all KL polynomials are included.

• What data does each instance consist of? An instance consists of a pair of permutations followed by the Kazhdan-
Lusztig polynomial corresponding to the pair of permutations.

• Is there a label or target associated with each instance? The labels can be taken to be the coefficients, the degree,
etc.

• Is any information missing from individual instances? No.

33

https://creativecommons.org/public-domain/cc0/

Machine Learning Meets Algebraic Combinatoric

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?
Individual instances are unrelated.

• How was the data associated with each instance acquired? The creators generated the data using C code from
(Warrington) and Python scripts.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? C code from (Warrington) and Python was used to generate
the data.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? N/A.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Henry Kvinge generated the data.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? Polynomials are
stored as a sequence of coefficients ending with the final non-zero coefficient.

• Has the dataset been used for any tasks already? No.

• What (other) tasks could the dataset be used for? This dataset could be used to study various properties of the
coefficients of Kazhdan-Lusztig polynomials.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

C.2.3. ROBINSON-SCHENSTED DATASHEET

• For what purpose was the dataset created? This dataset was created to study a machine learning model’s ability to
learn the Robinson-Schensted correspondence.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset was created by Henry Kvinge and Helen Jenne at Pacific Northwest National
Laboratory.

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Each
instance in the dataset is a pair of standard Young Tableaux of the same shape, along with their associated permutation
under the Robinson-Schensted-Knuth correspondence.

• How many instances are there in total (of each type, if appropriate)? See Appendix B.5.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set? The dataset contains all possible instances for n = 8, 9, and 10.

34

https://creativecommons.org/public-domain/cc0/

Machine Learning Meets Algebraic Combinatoric

• What data does each instance consist of? An instance in the dataset consists of a pair of standard young tableaux
along with its associated permutation.

• Is there a label or target associated with each instance? The target permutations are given in separate files.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?
N/A

• How was the data associated with each instance acquired? The creators used the open-source mathematics software
system SageMath to generate the tableau pairs corresponding to each permutation. (See https://doc.sagemath.
org/html/en/reference/combinat/sage/combinat/rsk.html for the relevant documentation).

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? SageMath was used to generate the data and Python was used
to sort, format, and split the data.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? N/A

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Henry Kvinge and Helen Jenne used code from SageMath
to generate this dataset. The author of the original implementation of the Robinson-Schensted-Knuth correspondence
in SageMath QuiverMutationType class is Travis Scrimshaw.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? Standard Young
tableau were flattened to fit on a single line. Permutations are written as a list of numbers.

• Has the dataset been used for any tasks already? The Robinson-Schensted correspondence is an important algorithm
in the algebraic combinatorics community, but this specific dataset has not been used before.

• What (other) tasks could the dataset be used for? This dataset could be used for any tasks involving the RSK
algorithm.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

C.2.4. SCHUBERT POLYNOMIAL STRUCTURE COEFFICIENTS DATASHEET

• For what purpose was the dataset created? This dataset was created to study machine learning model’s ability to
predict the structure constants of Schubert polynomials.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset was created by Henry Kvinge and Helen Jenne at Pacific Northwest National
Laboratory.

35

https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/rsk.html
https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/rsk.html
https://creativecommons.org/public-domain/cc0/

Machine Learning Meets Algebraic Combinatoric

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Instances
represent the structure constants that come from multiplying Schubert polynomials together. For fixed n, instance

[α, β, γ, c]

where α, β ∈ Sn, γ is another permutation (possibly in a larger or smaller symmetric group), and c ∈ Z≥0.

• How many instances are there in total (of each type, if appropriate)? See Appendix B.6.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set? For any n, most structure constants will be zero. To generate a balanced dataset, we computed Sα ⋆ Sβ for
all elements in Sn × Sn and for each cγα,β ̸= 0, we applied a random number of transpositions (where the number of

transpositions was sampled from a geometric distribution) to γ to get γ′, checked that cγ
′

α,β = 0 and added this to the
dataset. Therefore the dataset contains all non-zero structure constants but only a fraction of zero structure constants.

• What data does each instance consist of? An instance in the dataset corresponding to n consists of two permutations
from Sn, a permutation from another (possibly larger or smaller symmetric group), and an integer.

• Is there a label or target associated with each instance? The final integer in the instance is the label.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?
Instances that have the same first two permutations α, β are drawn from the same basis expansion of Sα ⋆ Sβ .

• How was the data associated with each instance acquired? The creators used the open-source mathematics software
system SageMath to generate and multiply Schubert polynomials for each pair of permutations α and β in Sn for
n = 4, 5, 6. The basis expansion of Sα ⋆ Sβ was obtained from this and each term in this expansion was used as an
instance.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? SageMath was used for the calculations and Python was used
to sort, format, split the data.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)? For any n, most structure constants will be zero. To generate a balanced dataset, we
computed Sα ⋆ Sβ for all elements in Sn × Sn and for each cγα,β ̸= 0, we applied a random number of transpositions

(where the number of transpositions was sampled from a geometric distribution) to γ to get γ′, checked that cγ
′

α,β = 0
and added this to the dataset. Therefore the dataset contains all non-zero structure constants but only a fraction of zero
structure constants.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdworkers paid)? Henry Kvinge and Helen Jenne wrote the code in
SageMath to generate this dataset.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? Permutations are
represented as lists of integers enclosed by brackets.

• Has the dataset been used for any tasks already? Schubert structure constants are an area of intense interest to the
algebraic combinatorics community, but this specific dataset has never been used before.

• What (other) tasks could the dataset be used for? This dataset could be used for any tasks around the study of
Schubert polynomial structure constants.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

36

Machine Learning Meets Algebraic Combinatoric

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

C.2.5. PARTIAL ORDERS ON LATTICE PATHS DATASHEET

• For what purpose was the dataset created? This dataset was created to study a machine learning model’s ability
to differentiate the Lagrange and matching partial orders on lattice paths from (0, 0) to (n, n− 1) which do not pass
above the diagonal.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset was created by Helen Jenne at Pacific Northwest National Laboratory.

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Instances
represent two lattice paths (p, q), where q is a cover of p in either the Lagrange ordering or the matching ordering.

• How many instances are there in total (of each type, if appropriate)? See Appendix B.7.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set? The dataset contains the vast majority of possible instances, but pairs (p, q) that were covering pairs in
both the Lagrange partial order and the matching partial order were thrown out (this was 21, 40, 79, and 183 instances
for n = 10, 11, 12, and 13, respectively)

• What data does each instance consist of? An instance in the dataset consists of two lattice paths represented as binary
sequences.

• Is there a label or target associated with each instance? The label is given in the filename; the Lagrange and
matching covers are saved in separate files.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?

Each lattice path does not necessarily have a unique cover, so there are instances in the dataset that have the same first
lattice path. This is the reason for the dataset imbalance: lattice paths have unique covers less often in the Lagrange
partial ordering.

• How was the data associated with each instance acquired? The creators used the open-source mathematics software
system SageMath to generate all lattice paths from (0, 0) to (n, n− 1) that stay below the diagonal y = n

n−1x, and
compute the Lagrange number L(p) and matching number M(p) associated to each lattice path p. The matching order
(resp. Lagrange order) dataset consists of lattice paths (p, q) such that M(q) > M(p) (resp. L(q) > L(p)) and there is
not a path r such that M(q) > M(r) > M(p) (resp. L(q) > L(r) > L(p)).

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? SageMath was used for the calculations and Python was used
to sort, format, and split the data.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)? The dataset is not a sample from a larger dataset, but we did throw out instances that
are covering pairs in both the Lagrange partial order and the matching partial order (this was 21, 40, and 79 instances
for n = 10, 11, and 12 respectively)

37

https://creativecommons.org/public-domain/cc0/

Machine Learning Meets Algebraic Combinatoric

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Helen Jenne wrote the code in SageMath to generate this
dataset.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? We converted lattice
paths to binary codes of 0’s and 1’s for storage.

• Has the dataset been used for any tasks already? The Lagrange and matching orderings are an area of recent interest
in the algebraic combinatorics community, but this specific dataset has never been used before.

• What (other) tasks could the dataset be used for? This dataset could be used for any tasks around the study of the
Lagrange and matching orderings.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

C.2.6. MUTATION EQUIVALENT QUIVERS DATASHEET

• For what purpose was the dataset created? To study the problem of determining whether two quivers are mutation
equivalent.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset was created by Helen Jenne at Pacific Northwest National Laboratory.

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? The
instances are 11× 11 adjacency matrices corresponding to 11 vertex quivers.

• How many instances are there in total (of each type, if appropriate)? See Appendix B.8.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set? For the mutation classes A and D, the dataset contains all possible instances. The other mutation classes
are not finite, so it is not possible to generate all instances. For these mutation classes, we specify a depth d and then
generate the dataset so that it contains all quivers at most d mutations away from the original quiver.

• What data does each instance consist of? Each instance consists of an 11× 11 adjacency matrix which represents an
11 vertex quiver.

• Is there a label or target associated with each instance? Yes, the label is specified in the file name in which the
instance is stored.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?
Yes

38

https://creativecommons.org/public-domain/cc0/

Machine Learning Meets Algebraic Combinatoric

• How was the data associated with each instance acquired? The creators used the open-source mathe-
matics software system SageMath to generate all quivers from each mutation class up to the specified depth.
(See https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/cluster_
algebra_quiver/quiver_mutation_type.html for the relevant documentation).

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? SageMath was used for the calculations and Python was used
to sort, format, and split the data. Computations were done on a consumer laptop.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? Sampling was done by applying 9 uniform, randomly sampled mutations of
the quiver in non-finite type cases. For finite type all examples are included.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Helen Jenne used code from SageMath to generate this
dataset. The authors of the SageMath QuiverMutationType class are Gregg Musiker and Christian Stump, and Hugh
Thomas.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-
of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? Graphs were
converted to adjacency matrices and then flattened for storage.

• Has the dataset been used for any tasks already? A similar dataset was used in (Bao et al., 2020) to study the ability
of Naive Bayes and convolutional neural networks to classify quivers according to mutation class. Their dataset also
included type A, D, and E mutation classes, but for smaller values of n (the number of vertices) and consequently,
fewer instances of each class. (Bao et al., 2020) inspired this dataset, as it seemed interesting to investigate whether
better classification performance could be achieved with larger values of n. (He et al., 2024) used a subset of this
dataset to rediscover some known characterization theorems from quiver mutation equivalence classes.

• What (other) tasks could the dataset be used for? This dataset could be used for any tasks focused on matching
quivers to their mutation equivalence class.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

C.2.7. WEAVING PATTERNS DATASHEET

• For what purpose was the dataset created? This dataset was created to study machine learning model’s ability to
illuminate properties of weaving patterns.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset was created by Herman Chau of the University of Washington (true weaving
patterns) and Davis Brown of Pacific Northwest National Laboratory (false weaving patterns).

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Instances
consist of a {1, 2, . . . , n}-valued matrix followed by a 0 if the matrix is a weaving pattern and a 1 if not.

39

https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.html
https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.html
https://creativecommons.org/public-domain/cc0/

Machine Learning Meets Algebraic Combinatoric

• How many instances are there in total (of each type, if appropriate)? See Appendix B.9.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger
set? Each dataset contains all weaving patterns. The non-weaving patterns are a sample from all {1, 2, . . . , n}-valued
matrices obtained by permuting two of the entries in the row of a weaving pattern and checking that the resulting matrix
is not a weaving pattern.

• What data does each instance consist of? Instances consist of a {1, 2, . . . , n}-valued matrix followed by a 0 if the
matrix is a weaving pattern and a 1 if not.

• Is there a label or target associated with each instance? The final 0 or 1 in the row is the label.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)?
No.

• How was the data associated with each instance acquired? All examples were generated using a Python script.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual
human curation, software programs, software APIs)? All examples were generated using a Python script.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? Each dataset contains all weaving patterns. The non-weaving patterns are a
sample from all {1, 2, . . . , n}-valued matrices obtained by permuting two of the entries in the row of a weaving pattern
and checking that the resulting matrix is not a weaving pattern.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Code was written by Herman Chau of the University
of Washington (true weaving patterns) and Davis Brown of Pacific Northwest National Laboratory (false weaving
patterns).

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-
of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? Matrices were
flattened to row-major format.

• Has the dataset been used for any tasks already? No.

• What (other) tasks could the dataset be used for? The dataset could be used for other tasks related to the study of
weaving patterns.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? If so, please provide a description. No.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? If so, please provide a description. No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital
object identifier (DOI)? All datasets will be compressed to a single .zip file and stored on Google Drive. It does not
currently have a DOI.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? CC0, https://creativecommons.org/public-domain/cc0/

• Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.

40

https://creativecommons.org/public-domain/cc0/

