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Abstract

Software defect prediction has become a sig-
nificant research direction in software testing.
The comprehensiveness of defect prediction di-
rectly impacts testing efficiency and program
execution. In practical applications, there is a
disconnect between detected software defects
and their explanations or modification sugges-
tions. Most methods stop at ranking the im-
portance of static code features and fail to pro-
vide actionable repair recommendations. To
address this issue, it is necessary to provide
the location and a description of the predicted
software defects. Therefore, this paper adopts
the Common Weakness Enumeration (CWE)
as the defect classification standard. Leverag-
ing the remarkable capabilities demonstrated
by large language models in code understand-
ing tasks, we design structured prompts based
on software engineering principles and prior de-
fect knowledge for data sampling and labeling.
Through a systematic analysis of the quality
of the synthetic data, we identify a more suit-
able specific closed-source model pool. Exper-
imental results demonstrate that our proposed
method, Handpick—which automates the con-
struction of software defect prediction datasets
using large language models—can provide de-
fect localization and repair suggestions dur-
ing software defect prediction, thereby assist-
ing developers in better rectifying software de-
fects.(For dataset access inquiries, please con-
tact us via email' at your convenience.)

1 Introduction

Software defect prediction is a crucial research area
within software engineering. Its primary objective
is to forecast potential future defects early in the de-
velopment process, guiding the optimal allocation
of testing resources, thereby reducing repair costs

'The data that support the findings of this study are avail-
able from the author, XXXXX, upon reasonable request. In-
terested readers may contact the author via email at mail
to: XXXX@XXXX.com to request access to the dataset.
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Figure 1: How Does TriCogVuln-LLM Work?

and enhancing software quality (Azam et al., 2022).
Against the backdrop of expanding open-source
project scales and the proliferation of automated
development tools, defect prediction techniques
should be integrated earlier into the entire software
development life cycle to maximize software qual-
ity.

Existing research has made progress in software
defect prediction; however, the increasing complex-
ity of models has highlighted issues of interpretabil-
ity: developers are unable to pinpoint the location
of software defects and find it difficult to under-
stand the model’s decision-making logic, which
limits trust and debugging efficiency in practical
applications (Gezici Geger and Kolukisa Tarhan,
2025).

Recently, large language models (LLMs) have
been successfully applied to various code-related
tasks (Wang et al., 2024; Zhang et al., 2023a,b).
Their exceptional ability to understand and gen-
erate natural language explanations makes them
promising candidates for automated code review.
However, the application of LLMs in code re-
view—oparticularly in automated software defect
annotation—remains insufficiently explored.



This study aims to bridge this gap by proposing
an LLM-based automated software defect annota-
tion method. Our goal is to construct a high-quality,
multilingual dataset and enhance the interpretabil-
ity of software defect prediction by introducing
CWE (Common Weakness Enumeration), thereby
advancing research in the direction of interpretable
software defect prediction results. The main contri-
butions include:

¢ First LLM-Training-Ready Multilingual
Dataset: We have compiled and released
HandPick, the open-source multilingual
dataset specifically designed for LLMs train-
ing;

* TriCogVuln-LLM Framework: We intro-
duce a novel framework, as illustrated in Fig-
ure 1, LLM-Enhanced Triple Cognitive Chain
for Multilingual Code Vulnerability Mining
with CWE Knowledge (TriCogVuln-LLM),
designed to identify and extract vulnerability
patterns in multilingual code;

* Improving Software Defect Interpretabil-
ity:By locating the position of software de-
fects and providing their CWE type, we help
developers better undertake defect repair;

» Task-Specific Evaluation Framework:We
have developed tailored evaluation methods
for various tasks, specifically designed for the
assessment of software defect prediction.

2 Related Work

This section reviews two main research areas rele-
vant to this study: software defect prediction and
the application of LLMs in software engineering.

2.1 Software Defect Prediction

Early methods relied on static code attributes (such
as McCabe complexity) and statistical models (like
logistic regression). With the advancement of ma-
chine learning (ML) and deep learning (DL), com-
plex models such as Random Forest (RF), Gra-
dient Boosting (GB), and Neural Networks (NN)
have significantly improved prediction accuracy
(Borandag, 2023; Li et al., 2021).

However, the prediction process of complex
models (such as deep neural networks) is difficult
to trace, making it impossible for developers to
determine which code features lead to the defect
prediction results. Although AST-based LSTM

models excel in semantic feature extraction, their
internal weights cannot be directly mapped to spe-
cific code logic (Ha et al., 2024). Existing expla-
nation tools (such as LIME, SHAP) provide ex-
planations through local approximations or feature
importance ranking, but they may produce incon-
sistent results across different datasets or model
settings. The explanations generated by LIME for
the same prediction result can vary significantly
under different sampling strategies, casting doubt
on its reliability (Shin et al., 2021).

Meanwhile, the CWE offers a standardized
defect classification system, facilitating efficient
identification and handling of security vulnerabil-
ities through unified terminology and classifica-
tion methods. While CWE is widely adopted in
industry, its integration with automated defect de-
tection and labeling in academic research remains
nascent, holding significant potential to enhance
the accuracy and consistency of vulnerability detec-
tion(Nguyen et al., 2023; Ashraf et al., 2019; Kim
et al., 2024).

2.2 Large Language Model

The widespread adoption of the Generative Pre-
trained Transformer (GPT) model (Ouyang et al.,
2022) has demonstrated the substantial potential of
LLMs in code-related tasks. Recent studies have
explored the capabilities of LLMs in addressing
various unique software engineering challenges
(Cheng et al., 2024; Fan et al., 2024; Hou et al.,
2024; Kulsum et al., 2024; Zhou et al., 2024b).

Prompt engineering is a critical step in inter-
acting with LLMs to influence their responses.
The characteristics of prompts, such as vocabu-
lary, style, and tone, can significantly impact the
responses generated by LLMs (Zamfirescu-Pereira
et al., 2023). Well-crafted prompts can enhance
the performance of LLMs in specific tasks. For
instance, multi-hop Chain of Thought (CoT) (Wei
et al., 2022) is a common prompt engineering tech-
nique that decomposes prompts into smaller, in-
dividual steps, thereby improving the reasoning
abilities of LLMs. Wei et al. (Wei et al., 2022) in-
troduced the CoT prompting strategy, which guides
LLMs to generate intermediate reasoning steps,
thereby enhancing their ability to solve complex
problems.

Prompt engineering has proven to be highly ef-
fective in code-related tasks, enabling LLMs to
overcome many limitations of earlier techniques
(Hou et al., 2024; Liu et al., 2023). Concurrently,



the power of LLMs has led researchers to leverage
these models for vulnerability-related tasks, with
a majority of prior work focusing on vulnerabil-
ity detection (Zhou et al., 2024a). Notably, while
the aforementioned studies focus on the applica-
tion of LLMs to existing software defect detection
datasets, our work aims to construct a model pool
using high-performance closed-source large mod-
els, achieving data synthesis for code defect pre-
diction and repair suggestions through multi-hop
CoT. This approach not only improves the diversity
and accuracy of annotations but also opens new av-
enues for code analysis as a structured information
processing task.

3 Methodology

3.1 Original Multi-Programming Language
Datasets

The original multi-programming language dataset
we collected consists of code samples from four
programming languages: Java, C (C++), Python,
and JavaScript. This datasets includes both the
original code and the corresponding fixed code. In
this study, we exclusively utilized datasets that con-
tain both pre-fix and post-fix code. For detailed
information, please refer to Appendix A. Due to
inconsistencies in data quality, the datasets under-
went preprocessing, as detailed in Section 4.2.

3.2 Three-Step Chain of Thought Prompt

Conventional software defect prediction primarily
focuses on binary classification of defective code
segments. Our initial framework adopted a two-
stage pipeline: "CWE Defect Prediction — Defect
Repair Suggestion Generation" to enhance the task
architecture. Nevertheless, code defects arise not
merely from semantic patterns but are substantially
governed by functional specifications. Given the
frequent oversight of functional requirements in
existing approaches, we propose incorporating a
preliminary phase: "Code Functional Description."
This additional step enriches contextual awareness
for subsequent defect analysis. Consequently, we
refine the workflow into three core components:
(1) Functional Description Generation, (2) CWE
Defect Prediction, and (3) Defect Repair Sugges-
tion Generation. This progressive task decompo-
sition demonstrates dual advantages in improving
predictive performance and strengthening data in-
terpretability.

3.2.1 Function Description Generation

During the first phase of our reasoning pipeline, the
model generates functional descriptions for given
code segments. The user instruction is structured
as: "Analyze the following code and concisely de-
scribe its core functionality within 30 words:" ac-
companied by target code code. This setup requires
the model to reconstruct the intended behavior from
implementation patterns. Our defect prediction
analysis reveals that the prediction scopes under
unknown(¢;) versus known functionality(¢s2) con-
ditions must conform to:

o1 N2 = P3

This constraint necessitates explicit requirement in-
tegration, directing the predictor to identify defects
within constrained operational contexts. Such tar-
geted detection enables context-aware repair gener-
ation that preserves functional specifications while
adhering to practical software engineering con-
straints.

and  ¢3 # 0 ey

3.2.2 CWE Defect Prediction

Upon completing functional description genera-
tion, the framework initiates defect detection within
the formally defined context ¢3. The system
prompt strategically configures three key elements
for the LLM: (a) simulated code inspector roles,
(b) applicable static analysis techniques, and (c)
security-focused operational constraints. Corre-
sponding user prompts deliver task-specific guid-
ance through: (i) structured domain knowledge
injection, (ii) defect pattern specifications, and
(iii) rigorous output formatting requirements. Our
prompt engineering methodology integrates em-
pirical evidence from multiple sources. We in-
terviewed several frontline developers and col-
lected insights on software testing and code re-
view. These insights, when cross-validated with
historical testing logs, form the foundation of our
diagnostic rules. Furthermore, longitudinal analy-
sis of CWE-TOP2S5 rankings (2019-2024) reveals
10 persistently prevalent vulnerability types, desig-
nated as CWE-TOP10. Their characteristic patterns
are encoded into prompt templates using security
taxonomies. The prediction workflow mandates
JSON-structured outputs.

3.2.3 Defect Repair Suggestion Generation

Based on the technical overlap between defect pre-
diction and code repair, we optimized the system
prompt for CWE defect prediction through three
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Figure 2: Flowchart of the Main Methods for Dataset Construction

key modifications: (1) contextual role specification,
(2) elimination of redundant instructional compo-
nents, and (3) integration of enhanced developmen-
tal context with technical background specifica-
tions.

3.3 Model Pool

Given the proliferation of diverse large language
models (LLMs) that all claim superior code com-
prehension capabilities, we propose employing
a model collective to generate synthetic data.
This methodology enhances distribution diver-
sity in training datasets, effectively mitigating
homogeneity-induced bias. Our initial selection
comprises five state-of-the-art closed-source LLMs,
with rigorous validation experiments conducted per
model to ensure optimal data quality during large-
scale synthesis operations.

3.4 Voting

Following small-scale annotation acquisition, we
established an evaluation framework exploring mul-
tiple approaches before adopting a minimalist LLM
consensus voting mechanism adhering to Occam’s
razor principles. Our methodology requires models
to identify underperforming peers through compar-
ative analysis. Given the absence of ground-truth
labels, we operationalized a key assumption: mod-
els exhibiting maximum distributional divergence
represent system outliers. This reduces our task to
optimal voter selection, prioritizing balanced trade-
offs between variance control, bias mitigation, and

computational costs - therefore chosen from our
initial model collective. To counter inherent self-
preference tendencies in LLM probability match-
ing, we implemented external validation through
an independent domain expert.

3.5 Evaluation

Given the synthetic nature of our final dataset —
generated through model collective sampling and
devoid of defect prediction ground-truth labels —
we employ a dual-strategy quality assessment: 1)
voting-phase optimal performer outputs as pseudo-
labels, and 2) integration with original "fix_code"
instances. To address task-specific evaluation re-
quirements across our three experimental scenarios,
we developed a multi-dimensional metric frame-
work:

1
Score = 1 (cos(sampley, pseudor)

+ Jaccard(sampley, pseudo)  (2)
+ Similarity(samples, fiz_code))

In Equation (2), let sample; and pseudo; re-
spectively represent the ith iteration results from
model collective sampling and pseudo-label gener-
ation. For the functional description task producing
concise outputs: (1) We embed both model collec-
tive outputs and p; through an embedding model,
then compute pairwise cosine similarities. The
CWE defect prediction task outputs are structured
as an mxn binary sparse matrix — with m evalua-
tion samples and n CWE taxonomy IDs — where



we compute Jaccard similarity scores. For defect
repair evaluation involving "fix_code": (2) We per-
form lexical analysis on both original fix_code and
synthetic data, defining their similarity metric as:

1
Similarity(samples, fix_code) = —
n

(Z repetition(samples, fix_code)) (3)

extra(samples, fz'x_code))

+ min (1,

n

Here, repetition() represents the code matching

rate of the matched defect repair, extra() repre-

sents the additional defect repairs by the LLMs,

and n represents the number of lines modified by
fix_code.

4 Experiments

In this section, we will present the experimental
setup, describe the data collection methodologies,
detail the implementation specifics, and assess the
quality of the synthetic datasets.

4.1 Experimental Setup

To generate high-quality software defect prediction
datasets, we selected five models including GPT-
40, DeepSeek V3, Claude-3.5-Sonnet, Gemini-1.5-
Pro-latest, and Yi-lightning. These models have
demonstrated robust performance across multiple
benchmarks and are capable of handling complex
programming tasks. (See Appendix C for detailed
model configurations.)

To enhance the quality and reliability of our
dataset, we employed a voting verification ap-
proach using annotation results from 500 data sam-
ples across different models, to select large lan-
guage models that offer a balance between per-
formance and economic cost. In addition to the
annotation models, we used Qwen-max as an ex-
ternal expert to the voting process. This inclusion
increased the diversity of the voting models and
mitigated the impact of single-model bias on the
voting results.

4.2 Data Collection

The datasets utilized in this study was compiled
from multiple publicly available datasets for soft-
ware defect identification and bug2fix(Haque et al.,
2023; Hugq et al., 2022; Tufano et al., 2018; Khan
et al., 2023; Csuvik and Vid4cs, 2022), encompass-
ing four mainstream programming languages: Java,

C/C++, Python, and JavaScript. The objective was
to construct a diversified, large-scale defect predic-
tion datasets.

Due to the presence of outliers, duplicate data,
and inconsistent code granularity in the original
code dataset, preprocessing of the dataset is essen-
tial. The preprocessing steps are as follows:

Outlier Removal: Eliminate code segments that
are excessively long or short, and verify the in-
tegrity of the remaining code.

Code Granularity Unification:Utilize regular
expressions to identify and standardize the granu-
larity of classes and functions.

Duplicate Data Removal:Remove duplicate
data entries to ensure uniqueness.

Token Calculation:Estimate the average token
size for each subset of the dataset.

Finally, all data were converted into a unified
JSON format to facilitate subsequent processing
and model input, yielding a clean, standardized
dataset suitable for defect prediction tasks. In sub-
sequent experiments, 500 data points were selected
for small-scale experiments, and 25,000 data points
were chosen for large-scale annotation.

4.3 Implementation Details

This section introduces the data annotation process
and the model voting and selection procedure.

4.3.1 Data Annotation Process

The data annotation process was divided into two
phases: small-batch data annotation by various
models, and large-scale data annotation by the
model pool.

In the small-batch annotation phase, we ran-
domly selected 500 data points from the prepro-
cessed dataset and independently annotated them
using the five LLMs described in Section 4.1. We
employed the multi-step prompting strategy out-
lined in Section 3.2: 1) identifying the code func-
tionality; 2) predicting potential vulnerabilities or
issues; and 3) modifying the code. After complet-
ing the small-batch annotation, we obtained differ-
ent annotation results from the five models for the
same batch of data, establishing the foundation for
subsequent model evaluation and selection.

In the large-scale annotation phase, we em-
ployed the model pool selected through evaluation
(detailed in Section 4.4) to annotate the remain-
ing 25,000 data points. The annotation process
remained consistent with that of the small-batch
phase.



4.3.2 Best Annotation Model Selection

To select a large-scale annotation model pool that
achieves the optimal balance between performance
and cost, we implemented a voting mechanism to
systematically eliminate underperforming annota-
tion models.

We employed the voting method proposed in
Section 3.4. Specifically, the system prompt for
the voting models was configured to simulate the
role of a "teacher" responsible for evaluating the
quality of the "students" (LLMs used in the annota-
tion phase) and identifying the "least appropriate"
item. The first task of "functionality description"
and the second task of "CWE defect prediction"
were prioritized, while the third task ("defect repair
suggestion generation") was heavily dependent on
the output of the first two tasks and therefore did
not participate in the voting process. The detailed
user prompts and system prompts can be found in
Appendix D.

Although both the first and second rounds of vot-
ing involved "semantic difference identification,"
there were subtle distinctions between them. The
output of the "functionality description” task was
relatively straightforward, with voting models be-
ing asked to select "at most one" inappropriate item
in this round. The "CWE defect prediction" task
was more challenging, as differences in model ca-
pabilities and probability distributions could lead
to significant variations in results. Consequently,
voting models were instructed to select "at least
one" inappropriate item in this round.

4.4 Voting Results and Analysis
4.4.1 First Voting

We expect a good voting model to exhibit low bias
and low variance. Due to the lack of ground truth
labels, the first round of voting will focus on the
variance metric. For the initial attempt, we selected
voting models from the model pool, favoring cost-
effective options. Therefore, we chose "DeepSeek
V3" and "Yi-lightning" for the first round of voting.
Each voting model conducted three votes, with the
results shown in Figure 3 .

Based on the analysis of Figures 3, the following
preliminary conclusions can be drawn:

Yi-lightning: The variance in the first round was
24.5333, and in the second round, it was 81.5333.

DeepSeek V3: The average variance in the first
round was 15.2, and in the second round, it was
19.15, making it more reliable than Yi-lightning.

Claude-3.5-Sonnet: Performed poorly in the
first round and was unsuitable for the "functionality
description" task.

Gemini-1.5-Pro-latest: Was deemed "inappro-
priate" by both voting models and effectively re-
jected.

GPT-40: Performed the best in evaluations by
both voting models.

Yi-lightning exhibited relatively high variance
and was often self-eliminated in the voting process,
leading to its elimination, leaving DeepSeek V3.

4.4.2 Second Voting

GPT-40 demonstrated good performance during the
evaluation process. Consequently, we used GPT-40
for the second round of voting, obtaining the results
shown in Figure 3:
GPT-40: The average variances for the two
rounds were 27.8333 and 64.1833, respectively.
DeepSeek V3: Exhibited lower variance than
GPT-40, further supporting the reliability of
DeepSeek V3’s variance. The voting trends were
similar, indicating that its bias is also acceptable.
Claude-3.5-Sonnet: Should not be entirely dis-
missed, as it performed well in "defect prediction."
Additionally, we conducted an ablation study
using Qwen-max as an external expert. The re-
sults were similar to previous findings, and further
details are provided in Appendix E.

4.4.3 Target Voting Model & Model Pool

The comprehensive voting experiments concluded
that DeepSeek V3 is a viable voting model. The
composition of the model pool for subsequent large-
scale data synthesis is as follows:

"Functionality Description'': Composed of
(GPT-40, DeepSeek V3) with a sampling ratio of
1:2.

""CWE Defect Prediction'': Composed of (GPT-
40, DeepSeek V3, Claude-3.5-Sonnet) with a ratio
of 4:3:3.

"Defect Repair Suggestion Generation'': This
task builds on the first two tasks and is less chal-
lenging. Gemini-1.5-Pro-latest is also included,
forming a model pool of (GPT-40, DeepSeek V3,
Claude-3.5-Sonnet, Gemini-1.5-Pro-latest) with a
ratio of 1:1:1:1.

Throughout the process, we adhered to the prin-
ciple of balancing performance, cost, speed, and
diversity in model selection.
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4.5 Evaluation of Synthetic Datasets Quality
4.5.1 Dataset Quality

After the voting process, we finalized the model
pool used for large-scale data synthesis, annotating
a total of 25,000 data entries. We then assessed
the models using the method outlined in Section
3.5. Throughout the voting process, GPT-40 consis-
tently outperformed the other models. Therefore, in
the "Functionality Description" and "CWE Defect
Prediction” tasks, we used the output from GPT-40
as "pseudo-labels"” for reference. Additionally, we
integrated the fix_code from the original dataset
for a third round of scoring to ensure a comprehen-
sive evaluation. From the generated dataset, we
selected 500 entries for quality assessment.

For the ""Functionality Description” task, we
utilized the "m3e" embedding model to process the
synthetic data from GPT-40 and the sampled data
from our model pool. We then calculated the cosine
similarity for 500 pairs of data entries, resulting in
an average similarity score of 0.74.

In the ""CWE Defect Prediction'' task, we ex-
tracted CWE type numbers from the outputs of
GPT-40 and our model pool. Following the evalua-
tion method in Section 3.5, we counted the occur-
rences of each CWE defect type. Both GPT-40 and
our sampled data included 34 different CWE types,
with 18 types being common between them. The
most frequently occurring CWE type was "CWE-

20 (Improper Input Validation)." Instances where
no defect was predicted were recorded as "CWE-
0." This process resulted in two binary sparse ma-
trices of shape (500, 50). We calculated the Jaccard
similarity between these matrices, which scored
0.54. Additionally, the number of "pass!" instances
in our model pool results was 75, compared to 92
for GPT-4o, further demonstrating the superiority
of our model pool strategy.

For the ""Defect Repair Suggestion'' task, we
compared the repair outputs of the LLMs at the
"line" level with the fix_code from the original
dataset and the differences from the original code,
calculating the intra-line duplication rate. The
scores for GPT-40 and our model pool were 0.6062
and 0.6190, respectively. This indicates that our
method outperformed GPT-40 compared to the
ground truth in the original dataset, resulting in
a final "Defect Repair Suggestion" task score of
1.62.

4.5.2 Dataset Quality Analysis

The overall quality assessment score for our dataset
is approximately 72.5, indicating that the dataset
is very satisfactory. We believe the quality of
the dataset exceeds the current evaluation score
for the following reasons: 1)The SDK used for
the data (including library classes, etc.) is out-
dated, and updates in subsequent versions have
resolved these issues, preventing LLMs from pre-



dicting them.2)Some defects are related to func-
tional requirements, for which we lack the nec-
essary data.3)The "CWE Defect Prediction" task
scored lower due to its inherent challenges and
exhibited high variance during the voting process,
suggesting that GPT-40 might not be suitable as a
"pseudo-label." Therefore, we consider our dataset
to be superior to the current evaluation results.

4.6 Engineering Practice

We used handpick to train Qwen2.5-14B-Instruct
through multi-turn dialogues to predict our actual
engineering code and conducted manual evalua-
tions. The feedback received was qualitative: the
model indeed has practical effects, but the current
business code is highly encapsulated, preventing
access to all code information, so some defects
exist but do not need to be considered. We fur-
ther conducted experiments using the public dataset
MegaVul; detailed experiments are provided in Ap-
pendix F. The experimental results indicate that
the Qwen2.5-14B-SFT model, when fine-tuned
with our HandPick dataset, achieved significant
improvements across key metrics for software de-
fect prediction. Its performance not only surpassed
that of the original model but also exceeded some
of the compared large language models, such as
DeepSeekV3-671B and Gemini 1.5 Pro, thereby ro-
bustly demonstrating the effectiveness of the Hand-
Pick dataset and the associated fine-tuning strategy
in enhancing the model’s software defect prediction
capabilities.

5 Conclusion

In this study, we contributed from three key
dimensions: 1) We proposed a multilingual,
LLM-trainable, and interpretable defect prediction
dataset—handpick; 2) We developed a chain-of-
thought framework specifically designed for de-
fect prediction tasks, TriCogVuln-LLM, which bal-
ances data synthesis cost, data quality, and diver-
sity; 3) We designed a corresponding evaluation
method for TriCogVuln-LLM. Notably, our dataset
scored a high 72.5 using our designed evaluation
method, highlighting its effectiveness in defect pre-
diction across different programming languages.
By addressing the lack of interpretability in exist-
ing defect prediction datasets, our work provides a
novel perspective and resources to advance defect
prediction research. To foster further collaboration,
we have made part of the HandPick dataset publicly

available on HuggingFace.? and GitHub?.

6 Limitations

Currently, our dataset only covers four common
programming languages. Given that our primary
application scenario is centered around Chinese
and Java, there is a noticeable lack of data explo-
ration in other programming languages and En-
glish. Although our experimental design and abla-
tion studies are methodologically robust, we must
acknowledge the limitation of the dataset lacking
real, manually verified labels, which remains an
unresolved issue. Additionally, the inherent limita-
tions of large language models (LLMs), including
hallucinations and limited capabilities, further im-
pair the quality of the dataset. Looking forward,
we plan to optimize our framework tasks and re-
lated prompts, expand our dataset by incorporating
a wider range of programming languages, and ad-
dress the dataset quality issue with a clear strategy:
annotating more defect data, using defect predic-
tion models in actual development environments,
collecting human feedback and more data in real
scenarios, and applying an iterative self-training
approach to gradually enhance the dataset quality
and LLM performance.
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A Data Collection

We gathered datasets from multiple programming
languages, conducted data preprocessing, and the
basic characteristics of the datasets are detailed in
Table 1:

The FixEval datasets(Haque et al., 2023) is de-
signed for evaluating program repair models, fea-
turing pairs of buggy and fixed code in Java and
Python. Data is sourced from programming compe-
tition platforms (e.g., AtCoder, Aizu Online Judge),
with high complexity and problem difficulty levels
(A-E). The extensive combinatorial search space
necessitates a thorough understanding of the task
for effective repair.

The Review4Repair datasets(Huq et al., 2022),
targeting Java programs, includes 55,060 training
and 2,961 test data points, leveraging code review
(CR) information to facilitate repair.

Proposed by Tufano et al, the BFP
datasets(Tufano et al., 2018) employs neural
machine translation (NMT) to learn vulnerability
repair models. Researchers extracted commits
with the keyword "bug fix" from GitHub Archive,
identifying around 10 million potential vulnera-
bility repairs. Manual sampling confirmed 97.6%
as genuine repairs, with the datasets focusing on
small methods (<50 tokens).

XcodeEval(Khan et al., 2023), the largest multi-
language, multi-task code benchmark, spans 17 pro-
gramming languages and includes approximately
75,000 unique problems. It supports tasks such as
code understanding, generation, translation, and
retrieval, derived from competitive programming
with a focus on advanced programming and mathe-
matics.

Introduced by Viktor Csuvik and Laszlo Vidacs
in 2022, the FixJS datasets (Csuvik and Vidacs,
2022) concentrates on JavaScript bug-fix commits.
It was curated by selecting popular JavaScript
projects from platforms like GitHub and analyz-
ing version control history (e.g., git commits) to
extract relevant bug-fix submissions.
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Prompt for Function Description

System Prompt

Role: Senior C

iew Expert
a Senior Code Review Expert, responsible for conducting manual step-by-step code reviews,
flaws, and providing specific CWE types. Dircetly deliver results in the prescribed format

without additional

User Prompt Maodel Output

Please carefully read the following code and describe its
functionality in no more than 30 words: {code}

Process the card movement message and update the card
position.

/

Figure 4: Prompt For Function Description

‘ Prompt for CWE Defect Prediction

System Prompt

Role: Senior Code Review Expert
Profile Description: Acting as a senior code review expert, responsible for manually reviewing code in sequential order, identifying
potential security flaws, specifying the exact CWE (Common Weakness Enumeration) types, and providing results in a prescribed
format without additional explanations.
Skills

User Prompt

Please analyze the provided code and information for
potential software vulnerabilities or defects. If any are
identificd. please provide a detailed description of the
causes of these vulnerabilitics, and attempt to classify them
according to the CWE (Common Weakness Enumeration)

types, focusing on the Top 10 CWESs or
CWES. These include CWE-787 (Out-of

Figure 5: Prompt For CWE Detection

B Three-Step Chain of Thought Prompt

In our approach, we designed a set of Three-Step
Chain of Thought Prompts to guide Large Lan-
guage Models (LLMs) in data sampling and anno-
tation, thereby automating the construction of soft-
ware defect prediction datasets. This set of prompts
targets three core stages: function description gen-
eration, CWE (Common Weakness Enumeration)
defect type prediction, and defect repair suggestion
generation.

The prompts for the function description gen-
eration stage are designed to guide the model to
infer the intended functionality based on the code’s
structure and content, and to generate a concise de-
scription of the code’s functionality. The detailed
prompts utilized for this task are illustrated in Fig-
ure 4 . This figure details the specific content of
the System Prompt, User Prompt, and provides an
example of the model’s response.

For the CWE defect prediction task, we devel-
oped specialized prompts by drawing upon soft-
ware engineering knowledge and software testing
experience. As shown in Figure 5, these prompts
instruct the model to act as a senior code review ex-
pert, meticulously examining the code, identifying
potential security flaws, and specifying the precise



Language Type Datasets Name Data Size Original Task Type

FixEval 43000 Bugfix
Java Review4Repair 59172 Bugfix

BFP 1190331 Program Repair

XCodeEval 574448 Program Repair

C++ (O) XCodeEval 3409220 Program Repair

Python XCodeEval 461356 Program Repair
JavaScript FixJs 55551 Bugfix

Table 1: Datasets used in the experiment

( Prompt for Defect Repair Suggestion Generation 1

System Prompt

Role: Senior Code Repair Expert
Profile Description: You are a senior code repair expert who needs to fix the identified CWE types in the provided code based on its
functionality and defects.

Skills

Proficient in various programming languages, including but not limited to C/C-++, Java, Python, JavaSeript, etc

In-depth understanding of common code defect types (CWE) and the ability to accurately identify security vulnerabilities in code.

User Prompt Model Output

Based on the above code v )
provide the modified code m anda inj n ut lengtl
s - N c=[ifori

ollowing format
2", # Complete code after repair

fo 2
rappend(afi][1])\n " repair\_method': 'Added input length
validation to ensure input data matches expectations.}]

Figure 6: Prompt for Defect Repair Suggestion Genera-
tion

CWE types. The figure also includes the detailed
System Prompt, User Prompt, and an example of
the model’s output.

Building upon the system prompt for "CWE
Defect Prediction," we designed corresponding
prompts for generating defect repair suggestions,
aiming to leverage LLMs to repair the identified
defective code. The prompts used for this task
are depicted in Figure 6 . These prompts require
the model to assume the role of a senior code re-
pair expert, providing the complete repaired code
along with a brief Chinese explanation of the repair
method.

C Large Language Model Pool

GPT-40-2024-11-20(OpenAl): GPT-40, developed
by OpenAl, represents the latest advancement
in language models, building upon GPT-4 with
enhanced reasoning capabilities, faster response
times, and improved multimodal understanding.
GPT-40 excels in various NLP and code generation
tasks.

DeepSeek V3 (DeepSeek): DeepSeek V3, the
newest model from DeepSeek, is specifically tai-
lored for code understanding and generation. It
leads in multiple code-related benchmarks, particu-
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larly in managing complex code logic and produc-
ing high-quality code.

Claude-3.5-Sonnet-20241022 (Anthropic):
Claude-3.5-Sonnet, part of Anthropic’s Claude
3 series, is renowned for its robust security and
reliability, alongside advanced natural language
understanding and generation capabilities. It
performs exceptionally in tasks demanding high
security and reliability.

Gemini-1.5-Pro-latest (Google): Gemini-1.5-
Pro, Google’s latest multimodal large model, excels
in processing and generating text, images, audio,
and other data types, offering superior performance
in cross-modal understanding tasks.

Yi-lightning (01.Al): Yi-lightning, a high-
performance variant of the Yi series by 01.Al, is cel-
ebrated for its efficient inference speed and strong
performance, with Yi-lightning pushing the bound-
aries in speed without compromising on perfor-
mance.

Qwen-Max (Alibaba): Qwen-Max, the latest it-
eration in the Qwen series developed by Alibaba,
represents a significant enhancement over its pre-
decessors. It boasts superior reasoning capabilities,
enhanced multimodal processing efficiency, and
an expanded range of applications. Qwen-Max ex-
cels in various domains, including natural language
processing, code generation, and multimodal tasks,
with notable proficiency in complex logical rea-
soning and cross-modal comprehension. Beyond
its technical superiority, Qwen-Max demonstrates
exceptional stability and reliability in practical de-
ployments, offering robust support for enterprise-
level users.

D Prompt for Expert Model Election
Voting

To select the optimal annotation model from a pool
of candidates, we designed a specialized set of
prompts for an election voting process. This vot-



ing process aims to comprehensively evaluate the
overall capabilities of candidate models in under-
standing and predicting software defects through a
two-stage assessment.

The first stage of voting focuses on the quality
of function descriptions generated by each candi-
date model, primarily assessing their consistency
and completeness. The second stage targets the
CWE (Common Weakness Enumeration) defect
type predictions made by candidate models, with a
key evaluation of the congruence between their pre-
dictions and the actual defects in the code. Through
this multi-dimensional evaluation, we aim to select
the top-performing model ensemble that reflects a
consensus.

The complete prompts for this expert model elec-
tion voting process, encompassing the role defini-
tion for the language model executing the voting
task, detailed review guidelines, specific user in-
structions for both voting rounds, and the expected
output format, are consolidated and presented in
Figure 7 .

E Ablation Experiments And The
Corresponding Analysis Of Results

Given the critical importance of determining the
voting model, we conducted extensive ablation ex-
periments and analyzed the results. This appendix
presents three ablation experiments and their con-
clusions, along with an additional related result
analysis.

1. Fairness of the Model Voting Mechanisms

The voting models currently employed are
all drawn from the initial model pool (GPT-4o,
DeepSeek V3, Claude-3.5-Sonnet, Gemini-1.5-Pro-
latest, Yi-lightning). Consequently, we are con-
cerned that models may favor data aligning with
their own probability distributions, such as knowl-
edge distribution or syntactic structure, potentially
leading to a reluctance to vote against themselves.
Although we observed that the Yi-lightning model
does not appear to favor its own data during "se-
mantic difference recognition," the risk remains
significant when a model serves as both a partic-
ipant and an evaluator. To address this, we intro-
duced an external expert, Qwen-max, to perform
the same voting task. However, we conducted only
one round of voting to assess whether the afore-
mentioned risk necessitates attention. The results,
depicted in Figure 8, suggest that concerns regard-
ing the fairness of the models are unwarranted.
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2. Effects of Including Both Pre-fix and Post-
fix Code

Our datasets includes instances with both pre-fix
and post-fix code, whereas our proposed work fo-
cuses solely on predicting the original code. There-
fore, we explored the potential utility of the post-fix
code. During the initial design of the annotation
prompt, we considered incorporating it, but this
approach poses risks. Including optimized code
might cause the model to focus more on the dif-
ferences between pre-fix and post-fix code rather
than the code itself or functional defects. This
could result in identifying more errors or eliminat-
ing fewer models, deviating from the original goal
of semantic difference recognition and potentially
compromising annotation quality. Nonetheless, we
proceeded with this ablation experiment. The re-
sults, illustrated in Figure 9, are noteworthy. When
the original code is present, Claude-3.5-Sonnet ex-
hibits a "polarization," becoming a highly "reli-
able" model. While we have speculated on the
underlying reasons, we conclude that Claude-3.5-
Sonnet warrants further exploration and considera-
tion for inclusion in the model pool.

3. Impact of the First Round on the Second
Round

In our previous task setup, models eliminated
in the first round do not participate in the second
round. Given that the voting models rarely vote
"none" in the first round, and our subjective belief
that "function description” is a relatively simple
task, we posed the question: What is the impact of
the first round on the second round? Consequently,
we bypassed the first round of voting and directly
conducted the second round, with the voting results
shown in Figure 10 . This outcome is significant
because, in prior model voting, Claude-3.5-Sonnet
was seldom voted out in the second round, with
two potential explanations: First, too many Claudes
were voted out in the first round; Second, Claude-
3.5-Sonnet is indeed "usable" in the second round.
This ablation experiment clarifies that the latter
explanation is accurate.

4. CWE Labeling by Various Models

We conducted a statistical analysis of the second
round of "CWE defect prediction” on a small batch
of annotations, as CWE-type is the only quantifi-
able label. We were particularly interested in the
number of CWE-types generated by each model,
and this statistical analysis provides an additional
perspective on the conclusions drawn by the vot-
ing model. Using regular expression matching, we



Prompt for Expert Model Election Voting J

System Prompt }

Role: Software Development Teacher

submissions.
Skills

Profile Description: Analyze the homework submissions of students. Each student's submission consists of two rounds of
answers: a function description and a CWE defect type description. Identify the most inconsistent answers among the

Semantic difference recognitionCode analysisSoftware defect detectionTeaching guidance

/

Round 1 \
User Prompt

Now evaluate the first round of students' descriptions
regarding the function's functionality. Please read the
homework answers provided by the four students and
select the one that is the most inconsistent, if any. In your
response, you need to briefly analyze the answers of the
four students. Your answer should be chosen from A, B,

C, D, or None, where None indicates that the answers
\from all four students are basically consistent...... /

Round 2 \
User Prompt

Now conducting the second round of student CWE type
description reviews. Please analyze the following
remaining students' answers in conjunction with the
information from the first round. Briefly analyze and
identify at least one of the least consistent assignment
answers. {info} The answers must be selected from \

Round 1 \

Model Output

First, let's analyze each student's answer,From these
descriptions, it can be seen that the descriptions of A, B, D,
and E all focus on certain characteristics of consecutive
identical elements in an array. While the details differ, the
overall direction is consistent. However, C not only focuses
on the function of the algorithm but also provides a detailed
analysis of the safety issues in the code, making it clearly
different from the direction of the other students'

descriptions.Therefore, my answer is: C! /
Round 2 \
Model Output

Now let's analyze the CWE type descriptions of the
remaining students:B : Identified three CWE-20 issues,
primarily focused on insufficient input validation, which
might lead to invalid input or exceptions. The descriptions
are relatively consistent, centering on input validation
problems.C : Identified three CWE issues, including CWE-
20 (insufficient input validation) and CWE-125 (array
access not checked for null)......

So my answer is: D! /

Figure 7: Prompt Details for Expert Model Election Voting
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Figure 8: Qwen-max Voting Results Round1

obtained the final statistical results, as shown in
Figure 12. The models, from inner to outer in the
figure, are: Gemini-1.5-Pro-latest, DeepSeek V3,
Yi-lightning, GPT-40, and Claude-3.5-Sonnet. This

Qwen-Max Voting Results Round 2
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Figure 9: Qwen-max Voting Results Round2

figure illustrates the overall proportion of CWE-
types labeled by each model, reflecting their pref-
erences. It is evident that the models, from inner
to outer, tend to predict a higher number of CWE-
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Figure 10: The voting results of the ablation experiment
one on DeepSeekV3

Ablation Experiment Two on DeepSeekV3 - Voting Results
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Figure 11: The voting results of the ablation experiment
two on DeepSeekV3

types and exhibit a greater focus on identifying
code defects.

S. Analysis of Voting Model Eliminations

We also examined the detailed voting patterns
of the voting model to better understand the spe-
cific behaviors of each model. Since the first round
of the voting model required the elimination of at
most one model, we similarly focused on the "CWE
defect prediction." Given the notable discrepancy
in the acceptance of claude’s synthesized data by
the GPT model compared to other models during
the second round of voting, we selected one round
of voting from GPT-40 and analyzed the number
of models eliminated in each voting round. The
results, as depicted in Figure 13, are particularly
noteworthy: (1) The highest probability was for the
model to vote for the elimination of two models,
and based on the voting results from GPT-4o, it is
most likely that Yi-lightning and Gemini-1.5-Pro-
latest were selected; (2) Interestingly, the proba-
bility of eliminating three models was also quite
high.
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The sequence from innermost to outermost is:
claude3.5-1022, gptdo, yi-lightning,deepseckv3, geminil.5-pro-latest
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Figure 12: Statistical results of the CWE-Type from the
small batch data labeling model
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Figure 13: Vulenrability Analysis Count Distribution

We further analyzed the cases where three mod-
els were eliminated and found that Claude-3.5-
Sonnet was selected in nearly half of these in-
stances. Additionally, during the analysis of
GPT-4o, it was observed that Yi-lightning and
Claude-3.5-Sonnet produced similar results, but Yi-
lightning provided additional insights, suggesting
that Yi-lightning should have been favored. How-
ever, in the actual results, Yi-lightning was elim-
inated. These results are noteworthy, and we hy-
pothesize the following reasons: (1) In ablation ex-
periment 4, Claude-3.5-Sonnet’s synthesized data
demonstrated a preference for a higher number of
CWE-types; (2) Claude-3.5-Sonnet had previously
utilized GPT-4 data for RLAIF, which may have
aligned Claude-3.5-Sonnet more closely with the
preferences of GPT models.



F Validation of Model Fine-tuning
Efficacy

F.1 Experimental Objective

This appendix details the experiments conducted to
validate the effectiveness of the HandPick dataset
in enhancing the software defect detection capa-
bilities of large language models (LLMs). We
fine-tuned the Qwen2.5-14B-SFT model and eval-
uated its performance before and after fine-tuning
(Qwen2.5-14B-SFT and Qwen2.5-14B-SFT-fine-
tuned, respectively) on the MegaVul dataset in a
zero-shot setting. Furthermore, the performance of
the fine-tuned model was benchmarked against sev-
eral other advanced LLMs, including DeepSeekV3-
671B, GPT-40, Claude 3.5 Sonnet (claude3.5-1022
version), and Gemini 1.5 Pro (gemini-1.5-pro-latest
version).

F.2 Experimental Design

The test dataset used in this experiment was de-
rived from the public MegaVul dataset. Recogniz-
ing that the original MegaVul dataset encompasses
an overly broad range of defect types, which could
reduce the specificity of the evaluation, we filtered
and restructured it. Specifically, we first extracted
all vulnerable code samples belonging to the CWE
Top 10 common defect types, totaling 861 sam-
ples. Subsequently, we randomly sampled 139 non-
vulnerable code samples. These two subsets were
combined to form a final test set of 1000 samples,
comprising 861 vulnerable and 139 non-vulnerable
samples.

The models evaluated include the Qwen2.5-14B-
SFT model before fine-tuning, the Qwen2.5-14B-
SFT model fine-tuned with the HandPick dataset,
and, as benchmarks, the DeepSeekV3-671B, GPT-
40, Claude 3.5 Sonnet, and Gemini 1.5 Pro models.

All models employed an identical inference
pipeline, analyzing the pre-fix version of each
code sample in the test set. The inference process
followed the three-step Chain-of-Thought (CoT)
prompt structure adopted in this study for construct-
ing the HandPick dataset. This structure includes
a System Prompt and three User Prompts, guid-
ing the model to: describe the code’s functionality,
analyze potential security vulnerabilities (with a
particular focus on CWE Top 10 defects and requir-
ing a specific identifier { {"CWE_Type’:’pass!’}}
for non-defective code), and generate code repair
suggestions.
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FE.3 Evaluation Metrics

The performance of the models in the defect detec-
tion task was assessed using several key metrics.
The four fundamental components of the confusion
matrix are defined as follows: TP (True Positive)
indicates that a sample is actually vulnerable, the
model correctly predicts it as vulnerable (i.e., does
not output ’pass!’), and at least one of the predicted
CWE IDs matches a true CWE ID of the sample.
FP (False Positive) indicates that a sample is ac-
tually non-vulnerable, but the model incorrectly
predicts it as vulnerable. FN (False Negative) in-
dicates that a sample is actually vulnerable, but
the model fails to identify any of its true CWE
types, potentially classifying it as non-vulnerable
(’pass!” output) or predicting entirely incorrect
CWE types. TN (True Negative) indicates that a
sample is actually non-vulnerable, and the model
correctly identifies it as such.

Based on these components, we calculated stan-
dard classification performance metrics, including
Accuracy, Precision, Recall, and Fl-score. The
formulas are as follows:

4 B TP+ TN
CUreY = TP X FPY TN + FN
P ¥
recitsion = TP + FP
TP
(P
Reca TP+ FN

Precision X Recall

F1— =2 X
seore Precision + Recall

F.4 Experimental Results

The detailed performance metrics of each model
on the curated MegaVul test set of 1000 samples
are presented in Table 2. The table lists Precision,
Recall, F1-score, and Accuracy, along with the raw
confusion matrix counts (s_TP, s_FP, s_FN, s_TN)
that constitute these metrics.

F.5 Performance Analysis

The experimental results, as presented in Table 2,
clearly demonstrate that fine-tuning with the Hand-
Pick dataset led to a significant leap in performance
for the Qwen2.5-14B-SFT-fine-tuned model com-
pared to its original version, Qwen2.5-14B-SFT.



Table 2: Performance of various models on the MegaVul test set.

Model Precision Recall F1-Score Accuracy s TP s FP s FN s T
Qwen2.5-14B-SFT 0.5088  0.1672  0.2517 0.1440 144 139 717 0
Gemini 1.5 Pro 0.5900  0.2323  0.3333 0.2000 200 139 661 0
DeepSeekV3-671B 0.6091 0.2494  0.3539 0.2150 215 138 647 0
GPT-40 0.7181 0.4116  0.5233 0.3544 354 139 507 0
Claude 3.5 Sonnet 0.7832  0.5878  0.6716 0.5055 502 139 353 0
Qwen2.5-14B-SFT (Fine-tuned) 0.7017  0.3798  0.4928 0.3270 327 139 534 0

Specifically, precision increased by 19.29 percent-
age points (from 0.5088 to 0.7017), recall substan-
tially improved by 21.26 percentage points (from
0.1672 to 0.3798), the F1-score rose by 24.11 per-
centage points (from 0.2517 to 0.4928), and accu-
racy correspondingly increased by 18.30 percent-
age points (from 0.1440 to 0.3270). These figures
robustly affirm the positive impact of the HandPick
dataset on enhancing the model’s targeted defect
detection capabilities, particularly in reducing false
negatives.

In comparison with other large language mod-
els, the performance of Qwen2.5-14B-SFT is also
noteworthy. It comprehensively outperformed
DeepSeekV3-671B (with 9.26, 13.04, 13.89, and
11.20 percentage point advantages in precision, re-
call, F1-score, and accuracy, respectively) and was
also significantly superior to Gemini 1.5 Pro in
this evaluation (F1-score higher by approximately
15.95 percentage points).

When compared to leading closed-source mod-
els, Claude 3.5 Sonnet exhibited the strongest over-
all performance in this assessment, achieving an
F1-score of 0.6716. GPT-40 also performed com-
mendably, with an Fl-score of 0.5233, slightly
higher than the fine-tuned Qwen2.5-14B-SFT (F1-
score of 0.4928). Although these leading models
demonstrate superior performance, the magnitude
of improvement achieved by Qwen2.5-14B-SFT
through fine-tuning with the specialized HandPick
dataset, along with its competitive performance
on specific metrics (such as its advantages over
DeepSeekV3-671B and Gemini 1.5 Pro), amply
showcases the substantial potential of high-quality,
domain-specific datasets for optimizing and en-
hancing the efficacy of existing models.

F.6 Experimental Conclusion

The results of this validation experiment strongly
attest to the value of the HandPick dataset in em-
powering large language models for software de-
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fect detection. By fine-tuning on this dataset, the
Qwen2.5-14B-SFT model achieved significant ad-
vancements across all key performance indicators,
especially in improving recall and F1-score, which
are directly related to the effective discovery of
actual vulnerabilities and the amelioration of false
negatives.

A noteworthy common phenomenon observed
in this testing was that all evaluated models, in-
cluding Qwen2.5-14B-SFT and other LLMs, failed
to correctly identify any of the 139 known non-
vulnerable samples (i.e., s_TN was O for all models;
s_FP was 139 for most, and 138 for DeepSeekV3-
671B, implying that all or nearly all non-vulnerable
samples were misclassified as vulnerable). This in-
dicates that, under the current experimental setup
and evaluation criteria, these models face chal-
lenges in distinguishing between genuinely defec-
tive code and harmless code. Alternatively, when
prompted to search for specific CWE defects, they
tend to report suspicious code as having some
defect rather than confidently judging it as "non-
defective."

Nevertheless, the performance advantages of the
fine-tuned Qwen2.5-14B-SFT model over its orig-
inal version, DeepSeekV3-671B, and Gemini 1.5
Pro are unequivocal. While leading models such as
Claude 3.5 Sonnet and GPT-40 demonstrate supe-
rior absolute performance, the outcomes of this re-
search highlight that fine-tuning with meticulously
constructed datasets relevant to real-world appli-
cation scenarios is a key strategy for enhancing
software defect prediction efficacy. Future research
could continue to optimize dataset construction
methodologies, explore more robust prompt engi-
neering techniques, and specifically address the
challenge of models distinguishing non-defective
code, aiming to improve overall precision and ac-
curacy while maintaining high recall.
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