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Abstract

Software defect prediction has become a sig-001
nificant research direction in software testing.002
The comprehensiveness of defect prediction di-003
rectly impacts testing efficiency and program004
execution. In practical applications, there is a005
disconnect between detected software defects006
and their explanations or modification sugges-007
tions. Most methods stop at ranking the im-008
portance of static code features and fail to pro-009
vide actionable repair recommendations. To010
address this issue, it is necessary to provide011
the location and a description of the predicted012
software defects. Therefore, this paper adopts013
the Common Weakness Enumeration (CWE)014
as the defect classification standard. Leverag-015
ing the remarkable capabilities demonstrated016
by large language models in code understand-017
ing tasks, we design structured prompts based018
on software engineering principles and prior de-019
fect knowledge for data sampling and labeling.020
Through a systematic analysis of the quality021
of the synthetic data, we identify a more suit-022
able specific closed-source model pool. Exper-023
imental results demonstrate that our proposed024
method, Handpick—which automates the con-025
struction of software defect prediction datasets026
using large language models—can provide de-027
fect localization and repair suggestions dur-028
ing software defect prediction, thereby assist-029
ing developers in better rectifying software de-030
fects.(For dataset access inquiries, please con-031
tact us via email1 at your convenience.)032

1 Introduction033

Software defect prediction is a crucial research area034

within software engineering. Its primary objective035

is to forecast potential future defects early in the de-036

velopment process, guiding the optimal allocation037

of testing resources, thereby reducing repair costs038

1The data that support the findings of this study are avail-
able from the author, XXXXX, upon reasonable request. In-
terested readers may contact the author via email at mail
to:XXXX@XXXX.com to request access to the dataset.
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Figure 1: How Does TriCogVuln-LLM Work?

and enhancing software quality (Azam et al., 2022). 039

Against the backdrop of expanding open-source 040

project scales and the proliferation of automated 041

development tools, defect prediction techniques 042

should be integrated earlier into the entire software 043

development life cycle to maximize software qual- 044

ity. 045

Existing research has made progress in software 046

defect prediction; however, the increasing complex- 047

ity of models has highlighted issues of interpretabil- 048

ity: developers are unable to pinpoint the location 049

of software defects and find it difficult to under- 050

stand the model’s decision-making logic, which 051

limits trust and debugging efficiency in practical 052

applications (Gezici Geçer and Kolukısa Tarhan, 053

2025). 054

Recently, large language models (LLMs) have 055

been successfully applied to various code-related 056

tasks (Wang et al., 2024; Zhang et al., 2023a,b). 057

Their exceptional ability to understand and gen- 058

erate natural language explanations makes them 059

promising candidates for automated code review. 060

However, the application of LLMs in code re- 061

view—particularly in automated software defect 062

annotation—remains insufficiently explored. 063
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This study aims to bridge this gap by proposing064

an LLM-based automated software defect annota-065

tion method. Our goal is to construct a high-quality,066

multilingual dataset and enhance the interpretabil-067

ity of software defect prediction by introducing068

CWE (Common Weakness Enumeration), thereby069

advancing research in the direction of interpretable070

software defect prediction results. The main contri-071

butions include:072

• First LLM-Training-Ready Multilingual073

Dataset: We have compiled and released074

HandPick, the open-source multilingual075

dataset specifically designed for LLMs train-076

ing;077

• TriCogVuln-LLM Framework: We intro-078

duce a novel framework, as illustrated in Fig-079

ure 1, LLM-Enhanced Triple Cognitive Chain080

for Multilingual Code Vulnerability Mining081

with CWE Knowledge (TriCogVuln-LLM),082

designed to identify and extract vulnerability083

patterns in multilingual code;084

• Improving Software Defect Interpretabil-085

ity:By locating the position of software de-086

fects and providing their CWE type, we help087

developers better undertake defect repair;088

• Task-Specific Evaluation Framework:We089

have developed tailored evaluation methods090

for various tasks, specifically designed for the091

assessment of software defect prediction.092

2 Related Work093

This section reviews two main research areas rele-094

vant to this study: software defect prediction and095

the application of LLMs in software engineering.096

2.1 Software Defect Prediction097

Early methods relied on static code attributes (such098

as McCabe complexity) and statistical models (like099

logistic regression). With the advancement of ma-100

chine learning (ML) and deep learning (DL), com-101

plex models such as Random Forest (RF), Gra-102

dient Boosting (GB), and Neural Networks (NN)103

have significantly improved prediction accuracy104

(Borandag, 2023; Li et al., 2021).105

However, the prediction process of complex106

models (such as deep neural networks) is difficult107

to trace, making it impossible for developers to108

determine which code features lead to the defect109

prediction results. Although AST-based LSTM110

models excel in semantic feature extraction, their 111

internal weights cannot be directly mapped to spe- 112

cific code logic (Ha et al., 2024). Existing expla- 113

nation tools (such as LIME, SHAP) provide ex- 114

planations through local approximations or feature 115

importance ranking, but they may produce incon- 116

sistent results across different datasets or model 117

settings. The explanations generated by LIME for 118

the same prediction result can vary significantly 119

under different sampling strategies, casting doubt 120

on its reliability (Shin et al., 2021). 121

Meanwhile, the CWE offers a standardized 122

defect classification system, facilitating efficient 123

identification and handling of security vulnerabil- 124

ities through unified terminology and classifica- 125

tion methods. While CWE is widely adopted in 126

industry, its integration with automated defect de- 127

tection and labeling in academic research remains 128

nascent, holding significant potential to enhance 129

the accuracy and consistency of vulnerability detec- 130

tion(Nguyen et al., 2023; Ashraf et al., 2019; Kim 131

et al., 2024). 132

2.2 Large Language Model 133

The widespread adoption of the Generative Pre- 134

trained Transformer (GPT) model (Ouyang et al., 135

2022) has demonstrated the substantial potential of 136

LLMs in code-related tasks. Recent studies have 137

explored the capabilities of LLMs in addressing 138

various unique software engineering challenges 139

(Cheng et al., 2024; Fan et al., 2024; Hou et al., 140

2024; Kulsum et al., 2024; Zhou et al., 2024b). 141

Prompt engineering is a critical step in inter- 142

acting with LLMs to influence their responses. 143

The characteristics of prompts, such as vocabu- 144

lary, style, and tone, can significantly impact the 145

responses generated by LLMs (Zamfirescu-Pereira 146

et al., 2023). Well-crafted prompts can enhance 147

the performance of LLMs in specific tasks. For 148

instance, multi-hop Chain of Thought (CoT) (Wei 149

et al., 2022) is a common prompt engineering tech- 150

nique that decomposes prompts into smaller, in- 151

dividual steps, thereby improving the reasoning 152

abilities of LLMs. Wei et al. (Wei et al., 2022) in- 153

troduced the CoT prompting strategy, which guides 154

LLMs to generate intermediate reasoning steps, 155

thereby enhancing their ability to solve complex 156

problems. 157

Prompt engineering has proven to be highly ef- 158

fective in code-related tasks, enabling LLMs to 159

overcome many limitations of earlier techniques 160

(Hou et al., 2024; Liu et al., 2023). Concurrently, 161
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the power of LLMs has led researchers to leverage162

these models for vulnerability-related tasks, with163

a majority of prior work focusing on vulnerabil-164

ity detection (Zhou et al., 2024a). Notably, while165

the aforementioned studies focus on the applica-166

tion of LLMs to existing software defect detection167

datasets, our work aims to construct a model pool168

using high-performance closed-source large mod-169

els, achieving data synthesis for code defect pre-170

diction and repair suggestions through multi-hop171

CoT. This approach not only improves the diversity172

and accuracy of annotations but also opens new av-173

enues for code analysis as a structured information174

processing task.175

3 Methodology176

3.1 Original Multi-Programming Language177

Datasets178

The original multi-programming language dataset179

we collected consists of code samples from four180

programming languages: Java, C (C++), Python,181

and JavaScript. This datasets includes both the182

original code and the corresponding fixed code. In183

this study, we exclusively utilized datasets that con-184

tain both pre-fix and post-fix code. For detailed185

information, please refer to Appendix A. Due to186

inconsistencies in data quality, the datasets under-187

went preprocessing, as detailed in Section 4.2.188

3.2 Three-Step Chain of Thought Prompt189

Conventional software defect prediction primarily190

focuses on binary classification of defective code191

segments. Our initial framework adopted a two-192

stage pipeline: "CWE Defect Prediction → Defect193

Repair Suggestion Generation" to enhance the task194

architecture. Nevertheless, code defects arise not195

merely from semantic patterns but are substantially196

governed by functional specifications. Given the197

frequent oversight of functional requirements in198

existing approaches, we propose incorporating a199

preliminary phase: "Code Functional Description."200

This additional step enriches contextual awareness201

for subsequent defect analysis. Consequently, we202

refine the workflow into three core components:203

(1) Functional Description Generation, (2) CWE204

Defect Prediction, and (3) Defect Repair Sugges-205

tion Generation. This progressive task decompo-206

sition demonstrates dual advantages in improving207

predictive performance and strengthening data in-208

terpretability.209

3.2.1 Function Description Generation 210

During the first phase of our reasoning pipeline, the 211

model generates functional descriptions for given 212

code segments. The user instruction is structured 213

as: "Analyze the following code and concisely de- 214

scribe its core functionality within 30 words:" ac- 215

companied by target code code. This setup requires 216

the model to reconstruct the intended behavior from 217

implementation patterns. Our defect prediction 218

analysis reveals that the prediction scopes under 219

unknown(ϕ1) versus known functionality(ϕ2) con- 220

ditions must conform to: 221

ϕ1 ∩ ϕ2 = ϕ3 and ϕ3 ̸= ∅ (1) 222

This constraint necessitates explicit requirement in- 223

tegration, directing the predictor to identify defects 224

within constrained operational contexts. Such tar- 225

geted detection enables context-aware repair gener- 226

ation that preserves functional specifications while 227

adhering to practical software engineering con- 228

straints. 229

3.2.2 CWE Defect Prediction 230

Upon completing functional description genera- 231

tion, the framework initiates defect detection within 232

the formally defined context ϕ3. The system 233

prompt strategically configures three key elements 234

for the LLM: (a) simulated code inspector roles, 235

(b) applicable static analysis techniques, and (c) 236

security-focused operational constraints. Corre- 237

sponding user prompts deliver task-specific guid- 238

ance through: (i) structured domain knowledge 239

injection, (ii) defect pattern specifications, and 240

(iii) rigorous output formatting requirements. Our 241

prompt engineering methodology integrates em- 242

pirical evidence from multiple sources. We in- 243

terviewed several frontline developers and col- 244

lected insights on software testing and code re- 245

view. These insights, when cross-validated with 246

historical testing logs, form the foundation of our 247

diagnostic rules. Furthermore, longitudinal analy- 248

sis of CWE-TOP25 rankings (2019-2024) reveals 249

10 persistently prevalent vulnerability types, desig- 250

nated as CWE-TOP10. Their characteristic patterns 251

are encoded into prompt templates using security 252

taxonomies. The prediction workflow mandates 253

JSON-structured outputs. 254

3.2.3 Defect Repair Suggestion Generation 255

Based on the technical overlap between defect pre- 256

diction and code repair, we optimized the system 257

prompt for CWE defect prediction through three 258
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Figure 2: Flowchart of the Main Methods for Dataset Construction

key modifications: (1) contextual role specification,259

(2) elimination of redundant instructional compo-260

nents, and (3) integration of enhanced developmen-261

tal context with technical background specifica-262

tions.263

3.3 Model Pool264

Given the proliferation of diverse large language265

models (LLMs) that all claim superior code com-266

prehension capabilities, we propose employing267

a model collective to generate synthetic data.268

This methodology enhances distribution diver-269

sity in training datasets, effectively mitigating270

homogeneity-induced bias. Our initial selection271

comprises five state-of-the-art closed-source LLMs,272

with rigorous validation experiments conducted per273

model to ensure optimal data quality during large-274

scale synthesis operations.275

3.4 Voting276

Following small-scale annotation acquisition, we277

established an evaluation framework exploring mul-278

tiple approaches before adopting a minimalist LLM279

consensus voting mechanism adhering to Occam’s280

razor principles. Our methodology requires models281

to identify underperforming peers through compar-282

ative analysis. Given the absence of ground-truth283

labels, we operationalized a key assumption: mod-284

els exhibiting maximum distributional divergence285

represent system outliers. This reduces our task to286

optimal voter selection, prioritizing balanced trade-287

offs between variance control, bias mitigation, and288

computational costs - therefore chosen from our 289

initial model collective. To counter inherent self- 290

preference tendencies in LLM probability match- 291

ing, we implemented external validation through 292

an independent domain expert. 293

3.5 Evaluation 294

Given the synthetic nature of our final dataset – 295

generated through model collective sampling and 296

devoid of defect prediction ground-truth labels – 297

we employ a dual-strategy quality assessment: 1) 298

voting-phase optimal performer outputs as pseudo- 299

labels, and 2) integration with original "fix_code" 300

instances. To address task-specific evaluation re- 301

quirements across our three experimental scenarios, 302

we developed a multi-dimensional metric frame- 303

work: 304

Score =
1

4
(cos(sample1, pseudo1) 305

+ Jaccard(sample2, pseudo2) (2) 306

+ Similarity(sample3, fix_code)) 307

In Equation (2), let samplei and pseudoi re- 308

spectively represent the ith iteration results from 309

model collective sampling and pseudo-label gener- 310

ation. For the functional description task producing 311

concise outputs: (1) We embed both model collec- 312

tive outputs and p1 through an embedding model, 313

then compute pairwise cosine similarities. The 314

CWE defect prediction task outputs are structured 315

as an m×n binary sparse matrix – with m evalua- 316

tion samples and n CWE taxonomy IDs – where 317
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we compute Jaccard similarity scores. For defect318

repair evaluation involving "fix_code": (2) We per-319

form lexical analysis on both original fix_code and320

synthetic data, defining their similarity metric as:321

Similarity(sample3, fix_code) =
1

n
322

(
∑

repetition(sample3, fix_code)) (3)323

+min (1,
extra(sample3, fix_code)

n
)324

Here, repetition() represents the code matching325

rate of the matched defect repair, extra() repre-326

sents the additional defect repairs by the LLMs,327

and n represents the number of lines modified by328

fix_code.329

4 Experiments330

In this section, we will present the experimental331

setup, describe the data collection methodologies,332

detail the implementation specifics, and assess the333

quality of the synthetic datasets.334

4.1 Experimental Setup335

To generate high-quality software defect prediction336

datasets, we selected five models including GPT-337

4o, DeepSeek V3, Claude-3.5-Sonnet, Gemini-1.5-338

Pro-latest, and Yi-lightning. These models have339

demonstrated robust performance across multiple340

benchmarks and are capable of handling complex341

programming tasks. (See Appendix C for detailed342

model configurations.)343

To enhance the quality and reliability of our344

dataset, we employed a voting verification ap-345

proach using annotation results from 500 data sam-346

ples across different models, to select large lan-347

guage models that offer a balance between per-348

formance and economic cost. In addition to the349

annotation models, we used Qwen-max as an ex-350

ternal expert to the voting process. This inclusion351

increased the diversity of the voting models and352

mitigated the impact of single-model bias on the353

voting results.354

4.2 Data Collection355

The datasets utilized in this study was compiled356

from multiple publicly available datasets for soft-357

ware defect identification and bug2fix(Haque et al.,358

2023; Huq et al., 2022; Tufano et al., 2018; Khan359

et al., 2023; Csuvik and Vidács, 2022), encompass-360

ing four mainstream programming languages: Java,361

C/C++, Python, and JavaScript. The objective was 362

to construct a diversified, large-scale defect predic- 363

tion datasets. 364

Due to the presence of outliers, duplicate data, 365

and inconsistent code granularity in the original 366

code dataset, preprocessing of the dataset is essen- 367

tial. The preprocessing steps are as follows: 368

Outlier Removal: Eliminate code segments that 369

are excessively long or short, and verify the in- 370

tegrity of the remaining code. 371

Code Granularity Unification:Utilize regular 372

expressions to identify and standardize the granu- 373

larity of classes and functions. 374

Duplicate Data Removal:Remove duplicate 375

data entries to ensure uniqueness. 376

Token Calculation:Estimate the average token 377

size for each subset of the dataset. 378

Finally, all data were converted into a unified 379

JSON format to facilitate subsequent processing 380

and model input, yielding a clean, standardized 381

dataset suitable for defect prediction tasks. In sub- 382

sequent experiments, 500 data points were selected 383

for small-scale experiments, and 25,000 data points 384

were chosen for large-scale annotation. 385

4.3 Implementation Details 386

This section introduces the data annotation process 387

and the model voting and selection procedure. 388

4.3.1 Data Annotation Process 389

The data annotation process was divided into two 390

phases: small-batch data annotation by various 391

models, and large-scale data annotation by the 392

model pool. 393

In the small-batch annotation phase, we ran- 394

domly selected 500 data points from the prepro- 395

cessed dataset and independently annotated them 396

using the five LLMs described in Section 4.1. We 397

employed the multi-step prompting strategy out- 398

lined in Section 3.2: 1) identifying the code func- 399

tionality; 2) predicting potential vulnerabilities or 400

issues; and 3) modifying the code. After complet- 401

ing the small-batch annotation, we obtained differ- 402

ent annotation results from the five models for the 403

same batch of data, establishing the foundation for 404

subsequent model evaluation and selection. 405

In the large-scale annotation phase, we em- 406

ployed the model pool selected through evaluation 407

(detailed in Section 4.4) to annotate the remain- 408

ing 25,000 data points. The annotation process 409

remained consistent with that of the small-batch 410

phase. 411
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4.3.2 Best Annotation Model Selection412

To select a large-scale annotation model pool that413

achieves the optimal balance between performance414

and cost, we implemented a voting mechanism to415

systematically eliminate underperforming annota-416

tion models.417

We employed the voting method proposed in418

Section 3.4. Specifically, the system prompt for419

the voting models was configured to simulate the420

role of a "teacher" responsible for evaluating the421

quality of the "students" (LLMs used in the annota-422

tion phase) and identifying the "least appropriate"423

item. The first task of "functionality description"424

and the second task of "CWE defect prediction"425

were prioritized, while the third task ("defect repair426

suggestion generation") was heavily dependent on427

the output of the first two tasks and therefore did428

not participate in the voting process. The detailed429

user prompts and system prompts can be found in430

Appendix D.431

Although both the first and second rounds of vot-432

ing involved "semantic difference identification,"433

there were subtle distinctions between them. The434

output of the "functionality description" task was435

relatively straightforward, with voting models be-436

ing asked to select "at most one" inappropriate item437

in this round. The "CWE defect prediction" task438

was more challenging, as differences in model ca-439

pabilities and probability distributions could lead440

to significant variations in results. Consequently,441

voting models were instructed to select "at least442

one" inappropriate item in this round.443

4.4 Voting Results and Analysis444

4.4.1 First Voting445

We expect a good voting model to exhibit low bias446

and low variance. Due to the lack of ground truth447

labels, the first round of voting will focus on the448

variance metric. For the initial attempt, we selected449

voting models from the model pool, favoring cost-450

effective options. Therefore, we chose "DeepSeek451

V3" and "Yi-lightning" for the first round of voting.452

Each voting model conducted three votes, with the453

results shown in Figure 3 .454

Based on the analysis of Figures 3, the following455

preliminary conclusions can be drawn:456

Yi-lightning: The variance in the first round was457

24.5333, and in the second round, it was 81.5333.458

DeepSeek V3: The average variance in the first459

round was 15.2, and in the second round, it was460

19.15, making it more reliable than Yi-lightning.461

Claude-3.5-Sonnet: Performed poorly in the 462

first round and was unsuitable for the "functionality 463

description" task. 464

Gemini-1.5-Pro-latest: Was deemed "inappro- 465

priate" by both voting models and effectively re- 466

jected. 467

GPT-4o: Performed the best in evaluations by 468

both voting models. 469

Yi-lightning exhibited relatively high variance 470

and was often self-eliminated in the voting process, 471

leading to its elimination, leaving DeepSeek V3. 472

4.4.2 Second Voting 473

GPT-4o demonstrated good performance during the 474

evaluation process. Consequently, we used GPT-4o 475

for the second round of voting, obtaining the results 476

shown in Figure 3: 477

GPT-4o: The average variances for the two 478

rounds were 27.8333 and 64.1833, respectively. 479

DeepSeek V3: Exhibited lower variance than 480

GPT-4o, further supporting the reliability of 481

DeepSeek V3’s variance. The voting trends were 482

similar, indicating that its bias is also acceptable. 483

Claude-3.5-Sonnet: Should not be entirely dis- 484

missed, as it performed well in "defect prediction." 485

Additionally, we conducted an ablation study 486

using Qwen-max as an external expert. The re- 487

sults were similar to previous findings, and further 488

details are provided in Appendix E. 489

4.4.3 Target Voting Model & Model Pool 490

The comprehensive voting experiments concluded 491

that DeepSeek V3 is a viable voting model. The 492

composition of the model pool for subsequent large- 493

scale data synthesis is as follows: 494

"Functionality Description": Composed of 495

(GPT-4o, DeepSeek V3) with a sampling ratio of 496

1:2. 497

"CWE Defect Prediction": Composed of (GPT- 498

4o, DeepSeek V3, Claude-3.5-Sonnet) with a ratio 499

of 4:3:3. 500

"Defect Repair Suggestion Generation": This 501

task builds on the first two tasks and is less chal- 502

lenging. Gemini-1.5-Pro-latest is also included, 503

forming a model pool of (GPT-4o, DeepSeek V3, 504

Claude-3.5-Sonnet, Gemini-1.5-Pro-latest) with a 505

ratio of 1:1:1:1. 506

Throughout the process, we adhered to the prin- 507

ciple of balancing performance, cost, speed, and 508

diversity in model selection. 509
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(A) The voting results of the first round by the Judge Models. (B) The voting results of the second round by the Judge Models.

Figure 3: Validation Results of the Voting Model on Small-Scale Datasets

4.5 Evaluation of Synthetic Datasets Quality510

4.5.1 Dataset Quality511

After the voting process, we finalized the model512

pool used for large-scale data synthesis, annotating513

a total of 25,000 data entries. We then assessed514

the models using the method outlined in Section515

3.5. Throughout the voting process, GPT-4o consis-516

tently outperformed the other models. Therefore, in517

the "Functionality Description" and "CWE Defect518

Prediction" tasks, we used the output from GPT-4o519

as "pseudo-labels" for reference. Additionally, we520

integrated the fix_code from the original dataset521

for a third round of scoring to ensure a comprehen-522

sive evaluation. From the generated dataset, we523

selected 500 entries for quality assessment.524

For the "Functionality Description" task, we525

utilized the "m3e" embedding model to process the526

synthetic data from GPT-4o and the sampled data527

from our model pool. We then calculated the cosine528

similarity for 500 pairs of data entries, resulting in529

an average similarity score of 0.74.530

In the "CWE Defect Prediction" task, we ex-531

tracted CWE type numbers from the outputs of532

GPT-4o and our model pool. Following the evalua-533

tion method in Section 3.5, we counted the occur-534

rences of each CWE defect type. Both GPT-4o and535

our sampled data included 34 different CWE types,536

with 18 types being common between them. The537

most frequently occurring CWE type was "CWE-538

20 (Improper Input Validation)." Instances where 539

no defect was predicted were recorded as "CWE- 540

0." This process resulted in two binary sparse ma- 541

trices of shape (500, 50). We calculated the Jaccard 542

similarity between these matrices, which scored 543

0.54. Additionally, the number of "pass!" instances 544

in our model pool results was 75, compared to 92 545

for GPT-4o, further demonstrating the superiority 546

of our model pool strategy. 547

For the "Defect Repair Suggestion" task, we 548

compared the repair outputs of the LLMs at the 549

"line" level with the fix_code from the original 550

dataset and the differences from the original code, 551

calculating the intra-line duplication rate. The 552

scores for GPT-4o and our model pool were 0.6062 553

and 0.6190, respectively. This indicates that our 554

method outperformed GPT-4o compared to the 555

ground truth in the original dataset, resulting in 556

a final "Defect Repair Suggestion" task score of 557

1.62. 558

4.5.2 Dataset Quality Analysis 559

The overall quality assessment score for our dataset 560

is approximately 72.5, indicating that the dataset 561

is very satisfactory. We believe the quality of 562

the dataset exceeds the current evaluation score 563

for the following reasons: 1)The SDK used for 564

the data (including library classes, etc.) is out- 565

dated, and updates in subsequent versions have 566

resolved these issues, preventing LLMs from pre- 567
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dicting them.2)Some defects are related to func-568

tional requirements, for which we lack the nec-569

essary data.3)The "CWE Defect Prediction" task570

scored lower due to its inherent challenges and571

exhibited high variance during the voting process,572

suggesting that GPT-4o might not be suitable as a573

"pseudo-label." Therefore, we consider our dataset574

to be superior to the current evaluation results.575

4.6 Engineering Practice576

We used handpick to train Qwen2.5-14B-Instruct577

through multi-turn dialogues to predict our actual578

engineering code and conducted manual evalua-579

tions. The feedback received was qualitative: the580

model indeed has practical effects, but the current581

business code is highly encapsulated, preventing582

access to all code information, so some defects583

exist but do not need to be considered. We fur-584

ther conducted experiments using the public dataset585

MegaVul; detailed experiments are provided in Ap-586

pendix F. The experimental results indicate that587

the Qwen2.5-14B-SFT model, when fine-tuned588

with our HandPick dataset, achieved significant589

improvements across key metrics for software de-590

fect prediction. Its performance not only surpassed591

that of the original model but also exceeded some592

of the compared large language models, such as593

DeepSeekV3-671B and Gemini 1.5 Pro, thereby ro-594

bustly demonstrating the effectiveness of the Hand-595

Pick dataset and the associated fine-tuning strategy596

in enhancing the model’s software defect prediction597

capabilities.598

5 Conclusion599

In this study, we contributed from three key600

dimensions: 1) We proposed a multilingual,601

LLM-trainable, and interpretable defect prediction602

dataset—handpick; 2) We developed a chain-of-603

thought framework specifically designed for de-604

fect prediction tasks, TriCogVuln-LLM, which bal-605

ances data synthesis cost, data quality, and diver-606

sity; 3) We designed a corresponding evaluation607

method for TriCogVuln-LLM. Notably, our dataset608

scored a high 72.5 using our designed evaluation609

method, highlighting its effectiveness in defect pre-610

diction across different programming languages.611

By addressing the lack of interpretability in exist-612

ing defect prediction datasets, our work provides a613

novel perspective and resources to advance defect614

prediction research. To foster further collaboration,615

we have made part of the HandPick dataset publicly616

available on HuggingFace.2 and GitHub3. 617

6 Limitations 618

Currently, our dataset only covers four common 619

programming languages. Given that our primary 620

application scenario is centered around Chinese 621

and Java, there is a noticeable lack of data explo- 622

ration in other programming languages and En- 623

glish. Although our experimental design and abla- 624

tion studies are methodologically robust, we must 625

acknowledge the limitation of the dataset lacking 626

real, manually verified labels, which remains an 627

unresolved issue. Additionally, the inherent limita- 628

tions of large language models (LLMs), including 629

hallucinations and limited capabilities, further im- 630

pair the quality of the dataset. Looking forward, 631

we plan to optimize our framework tasks and re- 632

lated prompts, expand our dataset by incorporating 633

a wider range of programming languages, and ad- 634

dress the dataset quality issue with a clear strategy: 635

annotating more defect data, using defect predic- 636

tion models in actual development environments, 637

collecting human feedback and more data in real 638

scenarios, and applying an iterative self-training 639

approach to gradually enhance the dataset quality 640

and LLM performance. 641
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A Data Collection782

We gathered datasets from multiple programming783

languages, conducted data preprocessing, and the784

basic characteristics of the datasets are detailed in785

Table 1:786

The FixEval datasets(Haque et al., 2023) is de-787

signed for evaluating program repair models, fea-788

turing pairs of buggy and fixed code in Java and789

Python. Data is sourced from programming compe-790

tition platforms (e.g., AtCoder, Aizu Online Judge),791

with high complexity and problem difficulty levels792

(A-E). The extensive combinatorial search space793

necessitates a thorough understanding of the task794

for effective repair.795

The Review4Repair datasets(Huq et al., 2022),796

targeting Java programs, includes 55,060 training797

and 2,961 test data points, leveraging code review798

(CR) information to facilitate repair.799

Proposed by Tufano et al., the BFP800

datasets(Tufano et al., 2018) employs neural801

machine translation (NMT) to learn vulnerability802

repair models. Researchers extracted commits803

with the keyword "bug fix" from GitHub Archive,804

identifying around 10 million potential vulnera-805

bility repairs. Manual sampling confirmed 97.6%806

as genuine repairs, with the datasets focusing on807

small methods (≤50 tokens).808

XcodeEval(Khan et al., 2023), the largest multi-809

language, multi-task code benchmark, spans 17 pro-810

gramming languages and includes approximately811

75,000 unique problems. It supports tasks such as812

code understanding, generation, translation, and813

retrieval, derived from competitive programming814

with a focus on advanced programming and mathe-815

matics.816

Introduced by Viktor Csuvik and Laszlo Vidács817

in 2022, the FixJS datasets (Csuvik and Vidács,818

2022) concentrates on JavaScript bug-fix commits.819

It was curated by selecting popular JavaScript820

projects from platforms like GitHub and analyz-821

ing version control history (e.g., git commits) to822

extract relevant bug-fix submissions.823

System Prompt

Role: Senior Code Review Expert
Profile Description: As a Senior Code Review Expert, responsible for conducting manual step-by-step code reviews,
identifying potential security flaws, and providing specific CWE types. Directly deliver results in the prescribed format
without additional explanations.

User Prompt

Please carefully read the following code and describe its
functionality in no more than 30 words: {code}

Model Output

Process the card movement message and update the card
position.

Prompt for Function Description

Figure 4: Prompt For Function Description

System Prompt

Role: Senior Code Review Expert
Profile Description: Acting as a senior code review expert, responsible for manually reviewing code in sequential order, identifying
potential security flaws, specifying the exact CWE (Common Weakness Enumeration) types, and providing results in a prescribed
format without additional explanations.
Skills
Proficient in common software security vulnerabilities and the CWE (Common Weakness Enumeration) list
.......

User Prompt

Please analyze the provided code and information for
potential software vulnerabilities or defects. If any are
identified, please provide a detailed description of the
causes of these vulnerabilities, and attempt to classify them
according to the CWE (Common Weakness Enumeration)
types, focusing on the Top 10 CWEs or other notable
CWEs. These include CWE-787 (Out-of-bounds Write)......

Model Output

[{{'CWE_Type': 'CWE-20', 'CWE_Code': 'n = int(input())
nb = list(map(int , input().split()))', 'CWE_Description':
'User input is not validated, which may lead to invalid input
or abnormal behavior.'}}]

Prompt for CWE Defect Prediction

Figure 5: Prompt For CWE Detection

B Three-Step Chain of Thought Prompt 824

In our approach, we designed a set of Three-Step 825

Chain of Thought Prompts to guide Large Lan- 826

guage Models (LLMs) in data sampling and anno- 827

tation, thereby automating the construction of soft- 828

ware defect prediction datasets. This set of prompts 829

targets three core stages: function description gen- 830

eration, CWE (Common Weakness Enumeration) 831

defect type prediction, and defect repair suggestion 832

generation. 833

The prompts for the function description gen- 834

eration stage are designed to guide the model to 835

infer the intended functionality based on the code’s 836

structure and content, and to generate a concise de- 837

scription of the code’s functionality. The detailed 838

prompts utilized for this task are illustrated in Fig- 839

ure 4 . This figure details the specific content of 840

the System Prompt, User Prompt, and provides an 841

example of the model’s response. 842

For the CWE defect prediction task, we devel- 843

oped specialized prompts by drawing upon soft- 844

ware engineering knowledge and software testing 845

experience. As shown in Figure 5 , these prompts 846

instruct the model to act as a senior code review ex- 847

pert, meticulously examining the code, identifying 848

potential security flaws, and specifying the precise 849
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Language Type Datasets Name Data Size Original Task Type

Java

FixEval 43000 Bugfix
Review4Repair 59172 Bugfix

BFP 1190331 Program Repair
XCodeEval 574448 Program Repair

C++ (C) XCodeEval 3409220 Program Repair
Python XCodeEval 461356 Program Repair

JavaScript FixJs 55551 Bugfix

Table 1: Datasets used in the experiment

System Prompt

Role: Senior Code Repair Expert
Profile Description: You are a senior code repair expert who needs to fix the identified CWE types in the provided code based on its
functionality and defects.
Skills
Proficient in various programming languages, including but not limited to C/C++, Java, Python, JavaScript, etc.
In-depth understanding of common code defect types (CWE) and the ability to accurately identify security vulnerabilities in code.
......

User Prompt

Based on the above code vulnerability analysis and code,
provide the modified code (mainly the complete code) and a
brief description of the repair method (indicating how you
fixed it), without needing additional explanations. Please
provide the answer in the following format:
[{{'repair_code':'', # Complete code after repair
'repair_method':'' # Explanation  }}]

Model Output

[{'repair\_code': '''\n n = int(input())\n b = list(map(int,
input().split()))\n if len(b) != n:\n print("Input length does
not match")\n exit()\n c = [i for i in range(1, n+1)]\n a = []\n
for i in range(n):\n a.append([b[i], c[i]])\n
a.sort(key=lambda x: x[0])\n s = sum(b)\n r = []\n k = 0\n
for i in range(n):\n if (s - a[i][0]) == a[n-1][0] * 2:\n
r.append(a[i][1])\n ''','repair\_method': 'Added input length
validation to ensure input data matches expectations.'}]

Prompt for Defect Repair Suggestion Generation

Figure 6: Prompt for Defect Repair Suggestion Genera-
tion

CWE types. The figure also includes the detailed850

System Prompt, User Prompt, and an example of851

the model’s output.852

Building upon the system prompt for "CWE853

Defect Prediction," we designed corresponding854

prompts for generating defect repair suggestions,855

aiming to leverage LLMs to repair the identified856

defective code. The prompts used for this task857

are depicted in Figure 6 . These prompts require858

the model to assume the role of a senior code re-859

pair expert, providing the complete repaired code860

along with a brief Chinese explanation of the repair861

method.862

C Large Language Model Pool863

GPT-4o-2024-11-20(OpenAI): GPT-4o, developed864

by OpenAI, represents the latest advancement865

in language models, building upon GPT-4 with866

enhanced reasoning capabilities, faster response867

times, and improved multimodal understanding.868

GPT-4o excels in various NLP and code generation869

tasks.870

DeepSeek V3 (DeepSeek): DeepSeek V3, the871

newest model from DeepSeek, is specifically tai-872

lored for code understanding and generation. It873

leads in multiple code-related benchmarks, particu-874

larly in managing complex code logic and produc- 875

ing high-quality code. 876

Claude-3.5-Sonnet-20241022 (Anthropic): 877

Claude-3.5-Sonnet, part of Anthropic’s Claude 878

3 series, is renowned for its robust security and 879

reliability, alongside advanced natural language 880

understanding and generation capabilities. It 881

performs exceptionally in tasks demanding high 882

security and reliability. 883

Gemini-1.5-Pro-latest (Google): Gemini-1.5- 884

Pro, Google’s latest multimodal large model, excels 885

in processing and generating text, images, audio, 886

and other data types, offering superior performance 887

in cross-modal understanding tasks. 888

Yi-lightning (01.AI): Yi-lightning, a high- 889

performance variant of the Yi series by 01.AI, is cel- 890

ebrated for its efficient inference speed and strong 891

performance, with Yi-lightning pushing the bound- 892

aries in speed without compromising on perfor- 893

mance. 894

Qwen-Max (Alibaba): Qwen-Max, the latest it- 895

eration in the Qwen series developed by Alibaba, 896

represents a significant enhancement over its pre- 897

decessors. It boasts superior reasoning capabilities, 898

enhanced multimodal processing efficiency, and 899

an expanded range of applications. Qwen-Max ex- 900

cels in various domains, including natural language 901

processing, code generation, and multimodal tasks, 902

with notable proficiency in complex logical rea- 903

soning and cross-modal comprehension. Beyond 904

its technical superiority, Qwen-Max demonstrates 905

exceptional stability and reliability in practical de- 906

ployments, offering robust support for enterprise- 907

level users. 908

D Prompt for Expert Model Election 909

Voting 910

To select the optimal annotation model from a pool 911

of candidates, we designed a specialized set of 912

prompts for an election voting process. This vot- 913
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ing process aims to comprehensively evaluate the914

overall capabilities of candidate models in under-915

standing and predicting software defects through a916

two-stage assessment.917

The first stage of voting focuses on the quality918

of function descriptions generated by each candi-919

date model, primarily assessing their consistency920

and completeness. The second stage targets the921

CWE (Common Weakness Enumeration) defect922

type predictions made by candidate models, with a923

key evaluation of the congruence between their pre-924

dictions and the actual defects in the code. Through925

this multi-dimensional evaluation, we aim to select926

the top-performing model ensemble that reflects a927

consensus.928

The complete prompts for this expert model elec-929

tion voting process, encompassing the role defini-930

tion for the language model executing the voting931

task, detailed review guidelines, specific user in-932

structions for both voting rounds, and the expected933

output format, are consolidated and presented in934

Figure 7 .935

E Ablation Experiments And The936

Corresponding Analysis Of Results937

Given the critical importance of determining the938

voting model, we conducted extensive ablation ex-939

periments and analyzed the results. This appendix940

presents three ablation experiments and their con-941

clusions, along with an additional related result942

analysis.943

1. Fairness of the Model Voting Mechanisms944

The voting models currently employed are945

all drawn from the initial model pool (GPT-4o,946

DeepSeek V3, Claude-3.5-Sonnet, Gemini-1.5-Pro-947

latest, Yi-lightning). Consequently, we are con-948

cerned that models may favor data aligning with949

their own probability distributions, such as knowl-950

edge distribution or syntactic structure, potentially951

leading to a reluctance to vote against themselves.952

Although we observed that the Yi-lightning model953

does not appear to favor its own data during "se-954

mantic difference recognition," the risk remains955

significant when a model serves as both a partic-956

ipant and an evaluator. To address this, we intro-957

duced an external expert, Qwen-max, to perform958

the same voting task. However, we conducted only959

one round of voting to assess whether the afore-960

mentioned risk necessitates attention. The results,961

depicted in Figure 8, suggest that concerns regard-962

ing the fairness of the models are unwarranted.963

2. Effects of Including Both Pre-fix and Post- 964

fix Code 965

Our datasets includes instances with both pre-fix 966

and post-fix code, whereas our proposed work fo- 967

cuses solely on predicting the original code. There- 968

fore, we explored the potential utility of the post-fix 969

code. During the initial design of the annotation 970

prompt, we considered incorporating it, but this 971

approach poses risks. Including optimized code 972

might cause the model to focus more on the dif- 973

ferences between pre-fix and post-fix code rather 974

than the code itself or functional defects. This 975

could result in identifying more errors or eliminat- 976

ing fewer models, deviating from the original goal 977

of semantic difference recognition and potentially 978

compromising annotation quality. Nonetheless, we 979

proceeded with this ablation experiment. The re- 980

sults, illustrated in Figure 9, are noteworthy. When 981

the original code is present, Claude-3.5-Sonnet ex- 982

hibits a "polarization," becoming a highly "reli- 983

able" model. While we have speculated on the 984

underlying reasons, we conclude that Claude-3.5- 985

Sonnet warrants further exploration and considera- 986

tion for inclusion in the model pool. 987

3. Impact of the First Round on the Second 988

Round 989

In our previous task setup, models eliminated 990

in the first round do not participate in the second 991

round. Given that the voting models rarely vote 992

"none" in the first round, and our subjective belief 993

that "function description" is a relatively simple 994

task, we posed the question: What is the impact of 995

the first round on the second round? Consequently, 996

we bypassed the first round of voting and directly 997

conducted the second round, with the voting results 998

shown in Figure 10 . This outcome is significant 999

because, in prior model voting, Claude-3.5-Sonnet 1000

was seldom voted out in the second round, with 1001

two potential explanations: First, too many Claudes 1002

were voted out in the first round; Second, Claude- 1003

3.5-Sonnet is indeed "usable" in the second round. 1004

This ablation experiment clarifies that the latter 1005

explanation is accurate. 1006

4. CWE Labeling by Various Models 1007

We conducted a statistical analysis of the second 1008

round of "CWE defect prediction" on a small batch 1009

of annotations, as CWE-type is the only quantifi- 1010

able label. We were particularly interested in the 1011

number of CWE-types generated by each model, 1012

and this statistical analysis provides an additional 1013

perspective on the conclusions drawn by the vot- 1014

ing model. Using regular expression matching, we 1015
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System Prompt

Role: Software Development Teacher
Profile Description: Analyze the homework submissions of students. Each student's submission consists of two rounds of
answers: a function description and a CWE defect type description. Identify the most inconsistent answers among the
submissions.
Skills
Semantic difference recognitionCode analysisSoftware defect detectionTeaching guidance
......

Round 1
User Prompt

Now evaluate the first round of students' descriptions
regarding the function's functionality. Please read the
homework answers provided by the four students and
select the one that is the most inconsistent, if any. In your
response, you need to briefly analyze the answers of the
four students. Your answer should be chosen from A, B,
C, D, or None, where None indicates that the answers
from all four students are basically consistent......

Round 1
Model Output

First, let's analyze each student's answer,From these
descriptions, it can be seen that the descriptions of A, B, D,
and E all focus on certain characteristics of consecutive
identical elements in an array. While the details differ, the
overall direction is consistent.However, C not only focuses
on the function of the algorithm but also provides a detailed
analysis of the safety issues in the code, making it clearly
different from the direction of the other students'
descriptions.Therefore, my answer is: C!

Prompt for Expert Model Election Voting

Round 2
User Prompt

Now conducting the second round of student CWE type
description reviews. Please analyze the following
remaining students' answers in conjunction with the
information from the first round. Briefly analyze and
identify at least one of the least consistent assignment
answers. {info} The answers must be selected from \
{rest_answer}......

Round 2
Model Output

Now let's analyze the CWE type descriptions of the
remaining students:B : Identified three CWE-20 issues,
primarily focused on insufficient input validation, which
might lead to invalid input or exceptions. The descriptions
are relatively consistent, centering on input validation
problems.C : Identified three CWE issues, including CWE-
20 (insufficient input validation) and CWE-125 (array
access not checked for null)......
So my answer is: D!

Figure 7: Prompt Details for Expert Model Election Voting

Figure 8: Qwen-max Voting Results Round1

obtained the final statistical results, as shown in1016

Figure 12. The models, from inner to outer in the1017

figure, are: Gemini-1.5-Pro-latest, DeepSeek V3,1018

Yi-lightning, GPT-4o, and Claude-3.5-Sonnet. This1019

Figure 9: Qwen-max Voting Results Round2

figure illustrates the overall proportion of CWE- 1020

types labeled by each model, reflecting their pref- 1021

erences. It is evident that the models, from inner 1022

to outer, tend to predict a higher number of CWE- 1023
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Figure 10: The voting results of the ablation experiment
one on DeepSeekV3

Figure 11: The voting results of the ablation experiment
two on DeepSeekV3

types and exhibit a greater focus on identifying1024

code defects.1025

5. Analysis of Voting Model Eliminations1026

We also examined the detailed voting patterns1027

of the voting model to better understand the spe-1028

cific behaviors of each model. Since the first round1029

of the voting model required the elimination of at1030

most one model, we similarly focused on the "CWE1031

defect prediction." Given the notable discrepancy1032

in the acceptance of claude’s synthesized data by1033

the GPT model compared to other models during1034

the second round of voting, we selected one round1035

of voting from GPT-4o and analyzed the number1036

of models eliminated in each voting round. The1037

results, as depicted in Figure 13, are particularly1038

noteworthy: (1) The highest probability was for the1039

model to vote for the elimination of two models,1040

and based on the voting results from GPT-4o, it is1041

most likely that Yi-lightning and Gemini-1.5-Pro-1042

latest were selected; (2) Interestingly, the proba-1043

bility of eliminating three models was also quite1044

high.1045

Figure 12: Statistical results of the CWE-Type from the
small batch data labeling model

Figure 13: Vulenrability Analysis Count Distribution

We further analyzed the cases where three mod- 1046

els were eliminated and found that Claude-3.5- 1047

Sonnet was selected in nearly half of these in- 1048

stances. Additionally, during the analysis of 1049

GPT-4o, it was observed that Yi-lightning and 1050

Claude-3.5-Sonnet produced similar results, but Yi- 1051

lightning provided additional insights, suggesting 1052

that Yi-lightning should have been favored. How- 1053

ever, in the actual results, Yi-lightning was elim- 1054

inated. These results are noteworthy, and we hy- 1055

pothesize the following reasons: (1) In ablation ex- 1056

periment 4, Claude-3.5-Sonnet’s synthesized data 1057

demonstrated a preference for a higher number of 1058

CWE-types; (2) Claude-3.5-Sonnet had previously 1059

utilized GPT-4 data for RLAIF, which may have 1060

aligned Claude-3.5-Sonnet more closely with the 1061

preferences of GPT models. 1062

14



F Validation of Model Fine-tuning1063

Efficacy1064

F.1 Experimental Objective1065

This appendix details the experiments conducted to1066

validate the effectiveness of the HandPick dataset1067

in enhancing the software defect detection capa-1068

bilities of large language models (LLMs). We1069

fine-tuned the Qwen2.5-14B-SFT model and eval-1070

uated its performance before and after fine-tuning1071

(Qwen2.5-14B-SFT and Qwen2.5-14B-SFT-fine-1072

tuned, respectively) on the MegaVul dataset in a1073

zero-shot setting. Furthermore, the performance of1074

the fine-tuned model was benchmarked against sev-1075

eral other advanced LLMs, including DeepSeekV3-1076

671B, GPT-4o, Claude 3.5 Sonnet (claude3.5-10221077

version), and Gemini 1.5 Pro (gemini-1.5-pro-latest1078

version).1079

F.2 Experimental Design1080

The test dataset used in this experiment was de-1081

rived from the public MegaVul dataset. Recogniz-1082

ing that the original MegaVul dataset encompasses1083

an overly broad range of defect types, which could1084

reduce the specificity of the evaluation, we filtered1085

and restructured it. Specifically, we first extracted1086

all vulnerable code samples belonging to the CWE1087

Top 10 common defect types, totaling 861 sam-1088

ples. Subsequently, we randomly sampled 139 non-1089

vulnerable code samples. These two subsets were1090

combined to form a final test set of 1000 samples,1091

comprising 861 vulnerable and 139 non-vulnerable1092

samples.1093

The models evaluated include the Qwen2.5-14B-1094

SFT model before fine-tuning, the Qwen2.5-14B-1095

SFT model fine-tuned with the HandPick dataset,1096

and, as benchmarks, the DeepSeekV3-671B, GPT-1097

4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro models.1098

All models employed an identical inference1099

pipeline, analyzing the pre-fix version of each1100

code sample in the test set. The inference process1101

followed the three-step Chain-of-Thought (CoT)1102

prompt structure adopted in this study for construct-1103

ing the HandPick dataset. This structure includes1104

a System Prompt and three User Prompts, guid-1105

ing the model to: describe the code’s functionality,1106

analyze potential security vulnerabilities (with a1107

particular focus on CWE Top 10 defects and requir-1108

ing a specific identifier {{’CWE_Type’:’pass!’}}1109

for non-defective code), and generate code repair1110

suggestions.1111

F.3 Evaluation Metrics 1112

The performance of the models in the defect detec- 1113

tion task was assessed using several key metrics. 1114

The four fundamental components of the confusion 1115

matrix are defined as follows: TP (True Positive) 1116

indicates that a sample is actually vulnerable, the 1117

model correctly predicts it as vulnerable (i.e., does 1118

not output ’pass!’), and at least one of the predicted 1119

CWE IDs matches a true CWE ID of the sample. 1120

FP (False Positive) indicates that a sample is ac- 1121

tually non-vulnerable, but the model incorrectly 1122

predicts it as vulnerable. FN (False Negative) in- 1123

dicates that a sample is actually vulnerable, but 1124

the model fails to identify any of its true CWE 1125

types, potentially classifying it as non-vulnerable 1126

(’pass!’ output) or predicting entirely incorrect 1127

CWE types. TN (True Negative) indicates that a 1128

sample is actually non-vulnerable, and the model 1129

correctly identifies it as such. 1130

Based on these components, we calculated stan- 1131

dard classification performance metrics, including 1132

Accuracy, Precision, Recall, and F1-score. The 1133

formulas are as follows: 1134

Accuracy =
TP + TN

TP + FP + TN + FN
1135

1136

Precision =
TP

TP + FP
1137

1138

Recall =
TP

TP + FN
1139

1140

F1− score = 2× Precision×Recall

Precision+Recall
1141

F.4 Experimental Results 1142

The detailed performance metrics of each model 1143

on the curated MegaVul test set of 1000 samples 1144

are presented in Table 2. The table lists Precision, 1145

Recall, F1-score, and Accuracy, along with the raw 1146

confusion matrix counts (s_TP, s_FP, s_FN, s_TN) 1147

that constitute these metrics. 1148

F.5 Performance Analysis 1149

The experimental results, as presented in Table 2, 1150

clearly demonstrate that fine-tuning with the Hand- 1151

Pick dataset led to a significant leap in performance 1152

for the Qwen2.5-14B-SFT-fine-tuned model com- 1153

pared to its original version, Qwen2.5-14B-SFT. 1154
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Table 2: Performance of various models on the MegaVul test set.

Model Precision Recall F1-Score Accuracy s_TP s_FP s_FN s_TN
Qwen2.5-14B-SFT 0.5088 0.1672 0.2517 0.1440 144 139 717 0
Gemini 1.5 Pro 0.5900 0.2323 0.3333 0.2000 200 139 661 0
DeepSeekV3-671B 0.6091 0.2494 0.3539 0.2150 215 138 647 0
GPT-4o 0.7181 0.4116 0.5233 0.3544 354 139 507 0
Claude 3.5 Sonnet 0.7832 0.5878 0.6716 0.5055 502 139 353 0
Qwen2.5-14B-SFT (Fine-tuned) 0.7017 0.3798 0.4928 0.3270 327 139 534 0

Specifically, precision increased by 19.29 percent-1155

age points (from 0.5088 to 0.7017), recall substan-1156

tially improved by 21.26 percentage points (from1157

0.1672 to 0.3798), the F1-score rose by 24.11 per-1158

centage points (from 0.2517 to 0.4928), and accu-1159

racy correspondingly increased by 18.30 percent-1160

age points (from 0.1440 to 0.3270). These figures1161

robustly affirm the positive impact of the HandPick1162

dataset on enhancing the model’s targeted defect1163

detection capabilities, particularly in reducing false1164

negatives.1165

In comparison with other large language mod-1166

els, the performance of Qwen2.5-14B-SFT is also1167

noteworthy. It comprehensively outperformed1168

DeepSeekV3-671B (with 9.26, 13.04, 13.89, and1169

11.20 percentage point advantages in precision, re-1170

call, F1-score, and accuracy, respectively) and was1171

also significantly superior to Gemini 1.5 Pro in1172

this evaluation (F1-score higher by approximately1173

15.95 percentage points).1174

When compared to leading closed-source mod-1175

els, Claude 3.5 Sonnet exhibited the strongest over-1176

all performance in this assessment, achieving an1177

F1-score of 0.6716. GPT-4o also performed com-1178

mendably, with an F1-score of 0.5233, slightly1179

higher than the fine-tuned Qwen2.5-14B-SFT (F1-1180

score of 0.4928). Although these leading models1181

demonstrate superior performance, the magnitude1182

of improvement achieved by Qwen2.5-14B-SFT1183

through fine-tuning with the specialized HandPick1184

dataset, along with its competitive performance1185

on specific metrics (such as its advantages over1186

DeepSeekV3-671B and Gemini 1.5 Pro), amply1187

showcases the substantial potential of high-quality,1188

domain-specific datasets for optimizing and en-1189

hancing the efficacy of existing models.1190

F.6 Experimental Conclusion1191

The results of this validation experiment strongly1192

attest to the value of the HandPick dataset in em-1193

powering large language models for software de-1194

fect detection. By fine-tuning on this dataset, the 1195

Qwen2.5-14B-SFT model achieved significant ad- 1196

vancements across all key performance indicators, 1197

especially in improving recall and F1-score, which 1198

are directly related to the effective discovery of 1199

actual vulnerabilities and the amelioration of false 1200

negatives. 1201

A noteworthy common phenomenon observed 1202

in this testing was that all evaluated models, in- 1203

cluding Qwen2.5-14B-SFT and other LLMs, failed 1204

to correctly identify any of the 139 known non- 1205

vulnerable samples (i.e., s_TN was 0 for all models; 1206

s_FP was 139 for most, and 138 for DeepSeekV3- 1207

671B, implying that all or nearly all non-vulnerable 1208

samples were misclassified as vulnerable). This in- 1209

dicates that, under the current experimental setup 1210

and evaluation criteria, these models face chal- 1211

lenges in distinguishing between genuinely defec- 1212

tive code and harmless code. Alternatively, when 1213

prompted to search for specific CWE defects, they 1214

tend to report suspicious code as having some 1215

defect rather than confidently judging it as "non- 1216

defective." 1217

Nevertheless, the performance advantages of the 1218

fine-tuned Qwen2.5-14B-SFT model over its orig- 1219

inal version, DeepSeekV3-671B, and Gemini 1.5 1220

Pro are unequivocal. While leading models such as 1221

Claude 3.5 Sonnet and GPT-4o demonstrate supe- 1222

rior absolute performance, the outcomes of this re- 1223

search highlight that fine-tuning with meticulously 1224

constructed datasets relevant to real-world appli- 1225

cation scenarios is a key strategy for enhancing 1226

software defect prediction efficacy. Future research 1227

could continue to optimize dataset construction 1228

methodologies, explore more robust prompt engi- 1229

neering techniques, and specifically address the 1230

challenge of models distinguishing non-defective 1231

code, aiming to improve overall precision and ac- 1232

curacy while maintaining high recall. 1233
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