
A MINIMALIST APPROACH FOR EXPLORING TRANSFORMER ROBUSTNESS TO IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION SAMPLES

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

010 Despite their strong performance across tasks, large language models (LLMs) still
011 have limitations in their ability to generalize. Recent studies show that even state-
012 of-the-art LLMs exhibit significant accuracy fluctuations when evaluated on su-
013 perficially modified versions of the same benchmarks, suggesting potential gaps
014 in their ability to generalize. We argue that current evaluation methods, which rely
015 heavily on large Transformer-based models trained on massive and often opaque
016 datasets, often make it difficult to disentangle whether limitations arise from ar-
017 chitecture, data coverage, or other factors. While addressing this question in full
018 requires considerable computational resources, we propose a cost-effective, pre-
019 liminary investigation. Our approach involves training a tiny Transformer-based
020 decoder-only language model (with tens of millions of parameters) from scratch
021 on a custom code reasoning task. To train this model, we generate data using
022 a synthetic data generation tool that allows precise control over data distribution
023 and volume. We perform multiple experiments using our framework to study the
024 in-distribution and out-of-distribution robustness of these models, revealing their
025 behavior under controlled settings.

1 INTRODUCTION

027 Large language models (LLMs) can be brittle to seemingly small, meaning-preserving input
028 changes. For example, Mirzadeh et al. (2024) show that state-of-the-art models, despite strong
029 scores on GSM8K (Cobbe et al., 2021), suffer sizable drops on slightly altered versions of the same
030 problems. Similar fragility to minor perturbations (typos, synonyms, rephrasings) has been widely
031 documented in NLP (Moradi & Samwald, 2021), and recent analyses indicate that even advanced
032 LLMs may rely on superficial token biases that flip decisions under semantics-preserving edits (Jiang
033 et al., 2024). In the *code* domain, related robustness limitations appear under semantics-preserving
034 mutations (renamings, refactorings, neutral insertions), where neural code models and code-specific
035 LLMs can change predictions despite unchanged program semantics (Henkel et al., 2022; Bielik &
036 Vechev, 2020; Orvalho & Kwiatkowska, 2025). Beyond in-distribution (ID) semantics-preserving
037 edits, Language Models (LMs) also struggle under out-of-distribution (OOD) shifts, especially com-
038 positional and structural changes, where scaling data and model size often yield limited gains (Key-
039 sers et al., 2020; Tsarkov et al., 2021; Anil et al., 2022).

040 While it is established that (i) LMs are sensitive to ID semantics-preserving changes and (ii) OOD
041 generalization remains challenging, key questions persist. *How far can data scaling alone improve*
042 *ID robustness?* Evidence suggests benefits, but it remains unclear whether data scaling alone can
043 fully eliminate ID brittleness, or whether architectural/training changes are required. For OOD, we
044 lack controlled studies that identify whether some axes (e.g., length increase vs. depth increase)
045 remain difficult even under extensive data scaling. And *how much data coverage is sufficient (and*
046 *necessary)* to unlock invariance and compositional generalization? Progress is hindered because
047 many studies rely on large, opaque pre-training corpora, obscuring whether failures stem from data
048 coverage, architectural limits, or other reasons. Answering these questions is difficult: it requires
049 precise knowledge of the training distribution and of train-test shifts, and modern LLMs make
controlled experimentation computationally prohibitive.

050 To address these challenges, we analyze robustness using tiny transformer-based language models
051 trained from scratch on a custom code tracing task, which we call TinyTracing. In this task, the
052 model reads a short program and writes a step-by-step *trace* of its execution, at each step indicating
053 which line is being executed and what the current variable values are (Liu et al., 2023). The task
is (1) simple enough for tiny models to learn; (2) rich in concepts (symbolic variables, arithmetic,

control flow); and (3) paired with tooling that allow data generation while controlling train/test distributions (details on the TinyTracing task and data generation tool in Sec. 2).

With this environment, we train a decoder-only transformer-based language model from scratch on synthetic TinyTracing datasets (the architecture and dataset are described in Sec. 3). We then evaluate ID/OOD robustness (Sec. 4) using a set of experiments: (i) ID robustness to semantics-preserving alterations (e.g., variable renaming, neutral line addition; Sec. 4.1); (ii) generalization to unseen samples under controlled coverage of variable-pair combinations in arithmetic expressions (Sec. 4.2); and (iii) OOD generalization to longer snippets and higher nesting depth (Sec. 4.3).

By synthesizing data, our framework gives *fine-grained control* over the training and test distributions: we can (a) isolate and hold out specific pattern classes, (b) tune coverage of those classes in the training set, and (c) orthogonally manipulate OOD axes (e.g., symbol coverage, sequence length, nesting depth) while keeping all other axes fixed. This control lets us ask questions that are hard to explore with opaque LLM pre-training. For example, we use our framework to explore the following questions, not yet explored in the literature: (i) whether increasing ID data alone eliminates brittleness to a set of semantic-preserving edits that we study; (ii) when does robustness to these semantics-preserving edits emerge during training, early in training (before loss convergence), or only later? (iii) whether some OOD axes remain difficult when increasing data alone (e.g., increasing code depth vs length); and (iv) how much coverage/minimal exposure to certain data patterns is enough to enable generalization?

Summary of findings. (1) Training on larger ID datasets largely diminishes ID brittleness to the semantics-preserving edits we study. (2) Surprisingly, robustness to these semantics-preserving edits emerges early in training, even when the accuracy of the model is still modest (at the 1st epoch). (3) Providing limited coverage of certain code patterns in the training set (e.g., variable-pair combinations used in expressions of the form `var = var1 op var2`) is enough to obtain high accuracy on unseen cases of those code patterns (e.g., new variable-pairs). (4) The same model in our tests partially extrapolates to longer sequences but fails on deeper nesting, showing qualitatively different difficulty across OOD axes. These results clarify cases when data scaling helps, where it might fall short, and quantify how limited coverage relates to certain types of compositional generalization.

In this paper, we study *decoder-only Transformer-based language models* trained from scratch on a *simple programming language* for a controlled code-tracing task. Therefore, our findings apply to this setting and do not necessarily generalize to other architectures, tasks, or ID/OOD types. Instead, they motivate the need for more *controlled* experiments where train/test distributions are known and manipulable, as a complementary path to large-scale evaluations for better understanding of LMs.

In summary, our **contributions** are as follows: **1)** We propose a cost-effective framework to study the robustness of transformer-based decoder-only language models in in-distribution and out-of-distribution settings; **2)** We show that training on larger ID datasets largely reduces ID brittleness to the semantics-preserving edits that we study; **3)** We show that robustness to the semantics-preserving edits that we study appears early in training, even when the accuracy of the model is still modest; **4)** We find that providing limited coverage of certain patterns is enough to obtain high accuracy on unseen cases of those patterns; **5)** We release the full framework, data generation, training, and evaluation scripts, along with the datasets, to the community (will be released with the camera-ready paper to keep anonymity).

2 DESIGNING THE PROBING TASK AND THE DATA GENERATION TOOL

2.1 TINYTRACING TASK

We propose a controlled experimental setup in which models are trained to perform the task of *Tiny-Tracing*. This task requires the model to take code as input and to generate its line-by-line execution steps (execution trace) by duplicating the code snippet at each execution step and annotating the duplicate with corresponding execution information, including the instruction pointer and the variable states (a depiction of the TinyTracing task in Figure 1). By adjusting the complexity of the programming language and code snippets used for tracing, the task can be adapted to fit the computational budget of users, allowing cost-effective experiments.

2.2 DATA GENERATION TOOL

To complete our experimentation setup, we need to be able to access arbitrary quantities of data with precisely controlled distributional characteristics. To this end, we propose a data generation

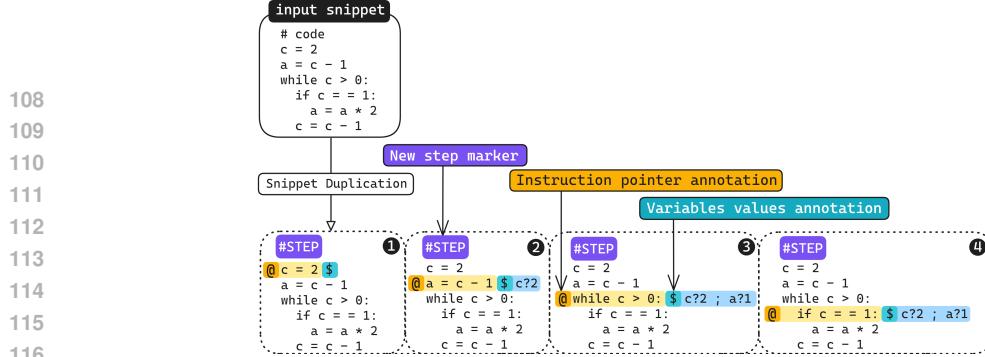


Figure 1: Illustration of the TinyTracing task. At each execution step (we show the first 4 steps), the entire input code snippet is duplicated and annotated with corresponding execution information: The instruction pointer value is represented by setting a special symbol (here `@`) to the left of the current line to be executed, and the variable states are presented as (key, value) pairs to the right of the current execution line. A special symbol (here `#STEP`) indicates the beginning of a new step (see Appendix A for a full example).

tool, referred to as **TinyTrace-Generator**. This tool enables the synthesis of random code snippets that are expressed in a subset of Python (or in Python) and that follow a certain data distribution (defined using a set of constraints on the Python language). The tool also allows the creation of the execution trace of these snippets according to the format of the TinyTracing task. TinyTrace-Generator is structured as a three-stage pipeline, as illustrated in Figure 2, and is described in greater detail in the following paragraphs.

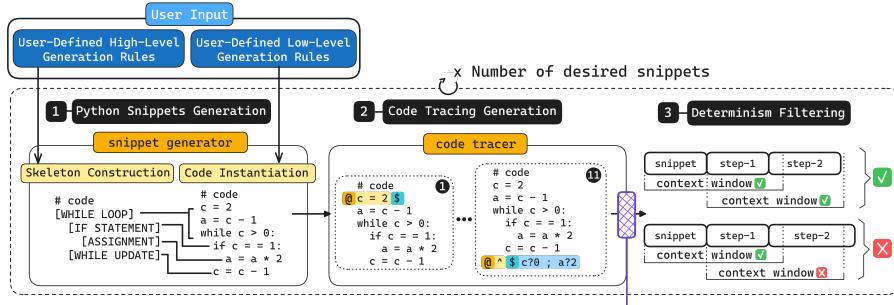


Figure 2: TinyTrace-Generator as a three-stage pipeline.

As depicted in the leftmost part of Figure 2, the first stage of TinyTrace-Generator produces code snippets for the task using an imperative, rules-based generator. It runs two coupled processes: skeleton construction (builds an abstract snippet with high-level keywords) and code instantiation (turns those keywords into concrete Python). Both are driven by user-defined procedural rules. Further details appear in Appendix B.

The second step of the pipeline involves generating the execution trace of code snippets created in the first stage. It leverages the debugging capabilities provided by the Python standard library to generate tracing. This setup not only enables straightforward access to key runtime information, such as the program counter and the state of variables, but also facilitates the implementation of runtime filtering barriers. These barriers serve to enforce constraints on runtime properties that cannot be determined during snippet generation. Depending on the specific requirements of the target experiment, such filters may include the detection of undesirable variable values during execution (e.g., excessively large integers), an unexpected number of loop iterations (including infinite loops), or simply the occurrence of runtime exceptions.

The third and final component of TinyTrace-Generator ensures that the generated tracing data allows deterministic inference. For each generated snippet, we check that every two consecutive steps (code duplicates) in its execution trace fit within the Transformer’s context window after tokenization. This guarantees that during inference, the model has full access to the preceding execution step when generating a new one, preserving determinism. The generated snippets that do not meet this condition are filtered out. The application of this last stage can be considered optional, depending on the use of the data: For instance, for training, this may not be necessary as the random sampling of token batches from the training corpus is task-unaware, while for supervised fine-tuning or model evaluation, this stage is required so that inference becomes deterministic (Appendix C.5).

162 While the code generator supports the generation of loops and complex data structures, in this paper,
163 we do not generate code that has loops or complex data structures.
164

165 3 MODEL, DATA AND EVALUATION METHODOLOGY

166 This section details the model architecture and the subset of Python that we use in our experiments.
167 It also defines the evaluation protocol and metric used to measure model performance.
168

169 3.1 MODEL ARCHITECTURE

170 For our experiments, we employ a custom, decoder-only Transformer architecture, which we train
171 from scratch. We use NanoGPT: a small-scale, open-source implementation inspired by GPT-2, de-
172 veloped by Karpathy (2022). The model is designed to be small enough for rapid experimentation
173 while being sufficiently powerful to learn the TinyTracing task. The architecture comprises 12 lay-
174 ers, 16 attention heads, and an embedding dimension of 368, resulting in approximately 20 million
175 trainable parameters. The context window is set to 512 tokens. Each Transformer block utilizes
176 a pre-Layer Normalization, employing RMSNorm for normalization before the self-attention and
177 feed-forward sub-layers. The feed-forward network uses a 4x expansion factor and a SiLU activa-
178 tion function. For tokenization, we use a custom tokenizer with a fixed 77-token vocabulary tailored
179 to the TinyTracing syntax (identifiers a–z, keywords, operators, punctuation, tracing markers), with
180 no learned subword segmentation. This keeps symbols atomic. More details about the tokenization
and hyperparameters are in Appendices C.2, and C.3.
181

182 3.2 DATASET

183 To create a controlled and reproducible experimental environment, all datasets used in our experi-
184 ments are synthesized using the TinyTrace-Generator under a set of constraints that define a subset
of Python that we use in our experiments.
185

186 Given the limited capacity of our small Transformer models (and limited computational budget),
187 we focus on a minimalist subset of the Python language, ensuring the TinyTracing task remains
188 learnable. This subset is built around the following programming constructs: variable assignments,
189 arithmetic operations, and conditionals. We enforce the following constraints to define this Python
190 subset: **1) Syntactic Constraints:** The grammar and vocabulary of the generated code are inten-
191 tionally limited. The grammar includes variable assignments, `if` conditional, and arithmetic expres-
192 sions. Variable identifiers are restricted to a fixed set of 26 single lowercase letters (a–z). Arithmetic
193 operations are limited to addition and subtraction (+, -), while conditional comparisons are limited
194 to less-than and greater-than operators (<, >). The only supported data type is integers, and integer
195 values are limited to be within the range [-99, 99]; **2) Structural Constraints:** The overall struc-
196 ture of the code snippets is also bounded. The total number of statements in any generated snippet
197 is constrained to be between 5 and 10. Furthermore, the maximum nesting depth for control flow
198 blocks (i.e., `if` statements) is limited to two; **3) Runtime Constraints:** Any generated snippet that
199 results in a variable holding an integer value outside the range of [-99, 99] at any point during its
200 execution is discarded. This filter ensures that the model only needs to learn representations for a
bounded and manageable range of integer values.
201

202 We generate a dataset of 3 million code snippets that follow the distribution described above. We
203 use this dataset (or sub-samples from this dataset sampled randomly), depending on the experi-
204 ment. Unless stated otherwise, all experiments use the dataset generated under the distribution and
205 language constraints defined previously; deviations (e.g., using longer code snippets) are explicitly
206 noted where they occur. We use a hash-based deduplication method to ensure that code snippets in
the dataset are unique across the training, validation, and test sets (detailed in Appendix C.4).
207

208 3.3 EVALUATION METHOD AND METRIC

209 We evaluate the model performance using **Exact Match Accuracy**. For each test sample, the model
210 autoregressively generates the complete execution trace given the code snippet as a prompt. A
211 generated trace is considered correct only if it is a character-for-character match to the ground truth.
212

213 3.4 MODEL TRAINING

214 We train our base model on a dataset of 3 million code snippets that follows the distribution of the
215 Python subset described in Sec. 3. The total number of tokens is 933 million. We use 4 × A100
GPUs, each with 80GB of memory, to train the model, and the training takes 1.5 hours (for 4 epochs).
The model achieved an exact match accuracy of 100% on a test set of 1024 samples that follows the
same distribution as the training set. In the experiments reported later, we intentionally vary dataset
216

216 size, training epochs, and dataset distributions depending on the experiment (e.g., smaller datasets
217 require the use of more epochs to reach convergence). The base model reported in this section (and
218 its accuracy) would help the reader contextualize the experiments and results reported later. Unless
219 otherwise stated, all experimental models are architecturally identical to the base model; only study-
220 specific knobs (e.g., dataset size, number of epochs) are varied (more details in Appendix C.1).

221 4 STUDYING IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION ROBUSTNESS

222 4.1 ROBUSTNESS TO IN-DISTRIBUTION SEMANTICS-PRESERVING ALTERATIONS

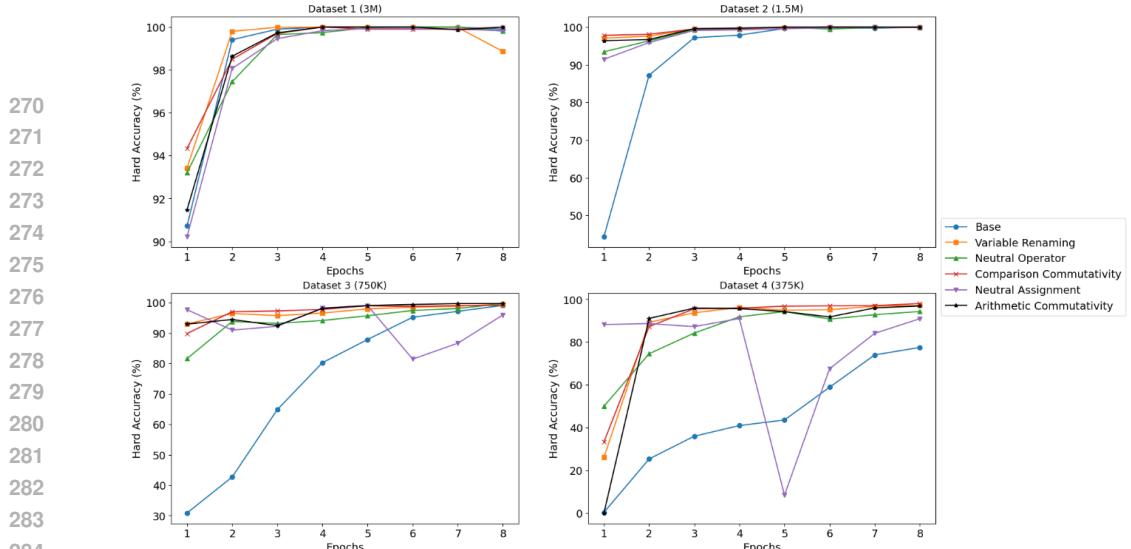
223 We first study the behavior of our model when exposed to different in-distribution semantics-
224 preserving alterations. The goal is to explore how the model reacts when exposed to altered versions
225 of code snippets that it can already execute correctly, while ensuring that these altered versions re-
226 main within the distribution of the training data. We also want to study how this in-distribution
227 robustness evolves as a function of training-set size and the amount of training.

228 Our in-distribution alteration operators are as follows: **(1) Variable renaming**: variable identi-
229 fiers are replaced with other valid identifiers from the same distribution, preserving semantics. **(2)**
230 **Comparison symmetry**: conditional comparisons are made equivalent by simultaneously swapping
231 operands and flipping to the symmetric comparator (e.g., $a < b \leftrightarrow b > a$). **(3) Addition commuta-**
232 **tivity**: swap the order of operands in addition expressions (e.g., $a + b \leftrightarrow b + a$). This transformation
233 is applied exclusively to addition, since subtraction is not commutative. **(4) Neutral operator**: a $+0$
234 or -0 is inserted in an assignment (e.g., $x = y \leftrightarrow x = y + 0$), which preserves semantics; note that
235 0 naturally occurs in the training data range $[-99, 99]$, so such edits are in-distribution. **(5) Neutral**
236 **assignment**: a new assignment is inserted at a random location, defining a fresh variable name not
237 used elsewhere, ensuring the execution trace is unaffected. An example illustrating these alterations
238 is presented in Appendix D.

239 For our experiments, we create four distinct training datasets containing code snippets that follow
240 the same distribution described in Sec. 3. These datasets include, respectively, 3M, 1.5M, 750K, and
241 375K snippets. On each of these four datasets, we train our model for eight epochs. We evaluate
242 the model at the end of each epoch on a test set composed of 1024 snippets that follow the same
243 distribution as the training dataset. We ensure that the test set snippets are not seen during training
244 (more details about deduplication in Appendix C.4). Then, for each evaluation, we isolate the code
245 snippets that were correctly executed. We then apply each of the 5 semantics-preserving operators on
246 these correctly executed snippets (we apply one at a time). We obtain 5 different new test sets. Each
247 set is the result of applying exactly one operator; operators do not co-occur within a single snippet or
248 a single test set. After applying the semantics-preserving edits, the new altered codes remain within
249 the distribution of the training set (altered codes that exceed 10 statements are discarded).

250 Figure 3 shows the results. Analyzing these plots reveals many observations: First, the trained model
251 is robust to in-distribution semantics-preserving alterations; Second, if the model can successfully
252 trace a program, it also tends to successfully trace its semantically equivalent variants produced
253 by our five operators; Third, substantial robustness to our in-distribution semantics-preserving alter-
254 ations appears in the early stages of training, while the model still has modest accuracy. Interestingly,
255 this is true even when the performance of the base accuracy of the model is relatively low, which is
256 especially visible in datasets 2 to 4. For example, at the first epoch in dataset 2, despite the accu-
257 racy on the base test set being at around 40%, the performance on the altered test sets reaches 90%.
258 Furthermore, while the different experiments display an improvement in accuracy with more train-
259 ing, we notice considerable drops for the *neutral assignment* operator, especially in the more size-
260 restricted training datasets (datasets 3 and 4). Comparable perturbations were noticed by Mirzadeh
261 et al. (2024) when they applied a similar *neutral expression addition* to the GSM8K benchmark
262 and found significant performance drops in state-of-the-art LLMs. However, no assurance could be
263 brought concerning whether their alteration operator would strictly fall into the training distribution
264 of the LLMs, contrary to our case, since neutral assignments appear in the training dataset.

265 **Robustness on the full test set (not on successfully traced snippets only)** To test whether the
266 robustness to our five semantics-preserving edits reported in the previous experiment reflects genuine
267 invariance rather than a selection artifact, we repeat the previous experiment but without *success-*
268 *only conditioning*. We instead apply the edits to every item in the held-out test set (one operator at a
269 time as we did before). Figure 12 in Appendix E shows the results. In this success-agnostic setting,
we observe that the accuracy under each edit closely matches the accuracy on the unaltered test,



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
Figure 3: Robustness on successfully traced codes to in-distribution alterations

286 indicating that the model is robust to the edits. Because this holds without filtering to already-traced
287 codes, the earlier robustness is not a by-product of selecting successfully traced snippets.
288

289 4.2 GENERALIZATION TO UNSEEN DATA SAMPLES UNDER CONTROLLED DATA COVERAGE

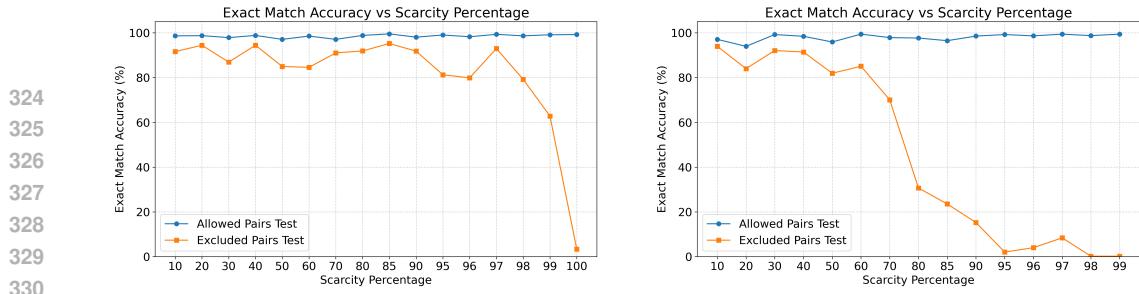
290 In this experiment, we investigate the ability of our model to handle code assignments of the form
291 $\text{var} = \text{var1 op var2}$ when a controlled subset of variable pairs is deliberately excluded from
292 the training distribution. For example, if we exclude assignments that have (a, b) on their right-
293 hand side from the training set, can the model learn to trace code snippets that have the excluded
294 assignments? Variable names in the right-hand side of assignments are drawn uniformly from the
295 26 lowercase letters, which yields a total of $26 \times 27/2 = 351$ distinct unordered pairs of variables
296 (we consider the pair (a, b) to be identical to (b, a)). If the pair (a, b) is excluded, then assignments
297 such as $\text{x} = \text{a} + \text{b}$ or $\text{y} = \text{b} - \text{a}$ will never appear in the training data. Unordered pairs are
298 taken with replacement, which means that pairs of the form (v, v) exist (e.g., (a, a)).
299

300 To enforce this systematically, we construct training datasets of 3 million TinyTracing snippets while
301 forbidding a fixed percentage of the 351 possible pairs. The exclusion percentages range over
302 $\{10, 20, 30, \dots, 90, 95, 96, 97, 98, 99, 100\}$. For example, in the 10% setting, we remove 35 pairs,
303 so the model can still observe 316 different variable pair combinations. At the extreme, in the 100%
304 setting, all 351 pairs are excluded, meaning the training data contains no assignments of the form
305 $\text{var} = \text{var1 op var2}$.
306

307 **Evaluation and test sets.** For evaluation, we generate two test sets of 1,024 snippets each. The
308 first mirrors the training distribution and contains only allowed pairs; it is used to verify that the
309 model has properly learned from its training data. The second is constructed so that every snippet
310 includes at least one excluded pair, directly testing the model’s generalization to unseen combi-
311 nations. In the test set containing the excluded pairs, we ensure that the assignment containing the
312 excluded pair is guaranteed to be executed during program flow (i.e., we make sure it will be exe-
313 cuted if the program has if-conditionals).
314

315 **Results and analysis.** Figure 4a summarizes the model’s performance across the different ex-
316 clusion percentages. Performance on the Allowed Pairs Test remains consistently high across all
317 percentages, confirming that the model has successfully learned from the training data regardless of
318 the percentage of excluded variable pairs. This rules out underfitting as a source of error and ensures
319 that any observed degradation is specific to the excluded combinations.
320

321 For the test set containing excluded variable pairs, the model demonstrates strong generalization
322 even under limited data coverage. Accuracy remains above 80% for exclusion percentages up to
323 95%, indicating that the model can successfully handle unseen variable combinations even when
324 it was trained on a training set that has only 5% of the possible pairs. Performance begins to de-
325 cline at 98% exclusion, and when all variable pairs are excluded from training (100%), accuracy
326 collapses. This setting corresponds to a regime in which the model has never encountered a single
327 $\text{var} = \text{var1 op var2}$ assignment during training, highlighting the fundamental limitations of
328 extrapolating to unseen patterns.
329



324
325
326
327
328
329
330
331 (a) Exact Match Accuracy as a function of exclusion
332 percentage. “Allowed Pairs Test” corresponds to
333 the test set containing only permitted variable pairs,
334 while “Excluded Pairs Test” corresponds to the test
335 set containing at least one assignment with an ex-
336 cluded variable pair.

337
338
339 (b) Exact Match Accuracy under global exclusion.
340 “Allowed Pairs Test” uses only permitted pairs, while
341 “Excluded Pairs Test” requires each snippet to con-
342 tain an assignment with a forbidden pair. In contrast
343 to Figure 4a, removing pairs globally eliminates indi-
344 rect exposure and causes generalization to fail.

345 Figure 4: Accuracy as a function of exclusion percentage.

346 These results suggest that even a limited coverage of variable pairs, whether directly in assignments
347 or indirectly in other program contexts, is sufficient for the model to generalize beyond its training
348 distribution. However, when all occurrences of a construct are absent, performance breaks down
349 sharply, underlining the dependence of generalization on some form of exposure.

350 4.2.1 EXCLUSION ACROSS ALL CONSTRUCTS

351 In the previous setup, exclusions applied only to the right-
352 hand side of assignments. For instance, if the pair (a, b)
353 was excluded, then training snippets would never contain
354 assignments such as case (1) in Figure 5, but the same
355 pair could still appear elsewhere in the program, for example, in conditionals or one of the variable
356 appears on the left-hand side of assignments while the other on the right as in case (2). This means
357 that although (a, b) was never observed in the restricted assignment form, the model still received
358 indirect exposure to the pair in other contexts.

359 In the stricter regime introduced here, exclusions are enforced *globally*. Once a pair is excluded, it
360 is removed from *all* syntactic constructs in the training set. Continuing the same example, if (a, b)
361 is excluded, then none of the constructs illustrated in case (3) of Figure 5 would appear. As a result,
362 the model never encounters the excluded pair, removing the possibility of indirect learning.

363 **Results and analysis.** Figure 4b presents the exact match accuracy under global exclusion. Accu-
364 racy on the Allowed Pairs Test remains consistently high. However, performance on the Excluded
365 Pairs Test now deteriorates earlier as exclusion percentages increase (compared to the previous ex-
366 periment). Unlike the earlier setting where accuracy stayed above 80% even when 98% of pairs
367 are excluded, here the accuracy of the model drops below 80% when 60% or more of the pairs are
368 excluded globally. This contrast shows that the strong generalization observed previously relied on
369 indirect exposure to variable pairs in other roles. When coverage is removed globally, the inductive
370 bias of the model alone is insufficient, and extrapolation to unseen combinations diminishes.

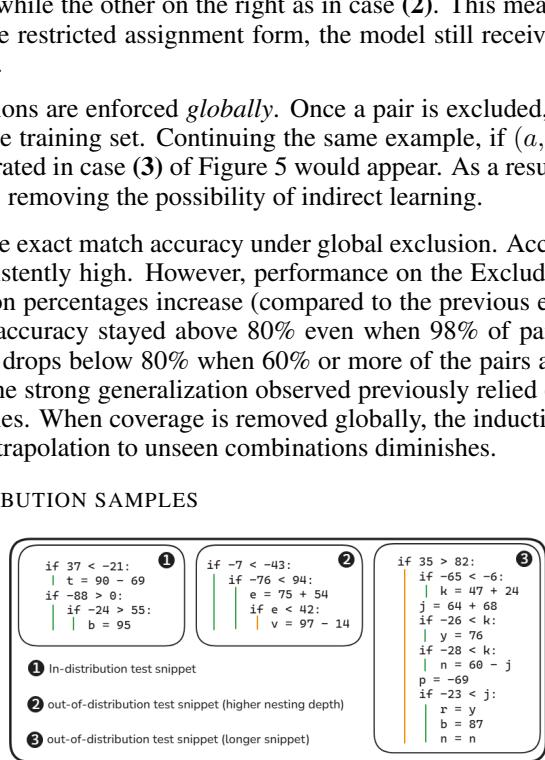
371 4.3 GENERALIZATION TO OUT-OF-DISTRIBUTION SAMPLES

372 Our third study evaluates the model’s out-
373 of-distribution generalization (OOD) (we
374 use the same trained model described in
375 Sec. 3 unless mentioned otherwise). First,
376 we describe two new test datasets used to
377 evaluate the model’s OOD generalization
378 performance. We then present the results.

379 **OOD generalization tests.** We test our
380 trained model on OOD data to measure its
381 ability to generalize. Before describing the
382 OOD perturbations, we highlight that the snippet examples of the in-distribution data are restricted
383 to comply with two constraints: the total number of statements must not exceed 10, and the if-
384 block nesting depth is limited to 2. Given these rules, we generate a test set that has two OOD
385 perturbations. First, the total number of statements is between 11 and 17, and second, the nesting



386 Figure 5: Exclusion regimes.



387 Figure 6: One ID and two OOD snippet examples

378 depth is between 3 and 4. The goal is to test the model on snippets with lengths and depths never
379 seen during training, justifying why such perturbations are considered OOD. All examples pass our
380 context-window filter (pairwise steps ≤ 512 tokens). Figure 6 shows an example, an in-distribution
381 snippet on the left (1) and two OOD test snippets, one with a higher nesting depth and one with
382 more statements ((2) and (3)).

383 **Results and analysis.** We evaluated the trained model on three test sets of 1,024 examples: the
384 first contained in-distribution data, while the second and third included out-of-distribution examples
385 with, respectively, deeper nesting and longer snippets (as described previously). The model achieved
386 100% exact match accuracy for in-distribution data, while struggling to trace any snippet with deeper
387 nesting (0%). In this case, the model fails at reproducing the snippets correctly because it does
388 not recognize the new nesting levels, thus clipping all lines at a depth of 3 or 4 to only 2. The model managed
389 to trace correctly 43.65% of longer snippets. This difference in accuracy gives insight that OOD
390 generalization performance does not depend only on factors related to the model but also on the
391 nature of the distribution change. In this example, and within our evaluation settings, learning the
392 concept of nesting depth seems harder than the concept of snippet length.

394 395 4.3.1 GENERALIZATION ACROSS NESTING DEPTHS.

396 We further investigate whether the model can generalize along the axis of *if*-statement nesting.
397 Starting from the standard setup (maximum depth = 2), we expand the training distribution to
398 include snippets with depths 0–5 and increase the maximum number of statements to 15 to allow
399 more conditionals. We then probe generalization to deeper nesting depths by evaluating on snippets
400 with depths 6, 7, 8, and 9.

401 Concretely, we generate a base training set of 3 million snippets in which $p\%$ of snippets
402 have a depth in (6,7) and the remainder have a depth in $\{0, 1, 2, 3, 4, 5\}$. We vary $p \in$
403 $\{0, 1, 5, 10, 20, 40, 60, 80, 100\}$. At test time, we evaluate on five sets of 1,024 examples: (i) a val-
404 idation set sampled from snippets with maximum depth 5, and (ii) four sets containing only depths
405 6, 7, 8, and 9, respectively (many of these test sets are OOD).

406 Detailed results and plots are provided in Appendix F. The results show three consistent patterns.
407 First, even without exposure to depths ≥ 6 , the model extrapolates to depth-6 (94.9% exact match
408 at $p=0$). Here, $p=0$ indicates that the model is trained on snippets that have a maximum nesting
409 depth of 5 (therefore, the model did not see depths of 6 and above). Second, introducing only a
410 small fraction of depth-6 and 7 examples suffices to unlock generalization to both of these depths
411 ($\geq 99\%$ accuracy once $p \geq 1$) and to unseen depth-8 snippets (up to 99.4%). Third, the benefit
412 does not extend to depth-9: performance on depth-9 remains much lower, suggesting that exposure
413 to maximum depth X enables generalization to $X + 1$, but accuracy degrades beyond $X + 1$.

414 4.4 ABLATION STUDY

415 **Supervised Fine-tuning (SFT)** During the design of our framework, we also studied the effect
416 of Supervised Fine-tuning (SFT) Ouyang et al. (2022) combined with Instruction Masking (Shi
417 et al. (2024)) on the accuracy of the model in ID and OOD cases. To achieve this, we applied LoRA
418 (Low-Rank Adaptation) Hu et al. (2021) and instruction masking on our original trained model, then
419 evaluated the model on the same test sets used in Sec. 4.3. Results show that the model obtained
420 shows slight but not substantial improvements in OOD generalization performance, while degrading
421 the model’s accuracy on ID data. Therefore, we decided not to use SFT and Instruction Masking in
422 our base model. More details in Appendix (G.1).

423 **Relative Positional Encoding** We compare three positional encoding schemes: (i) *learned Ab-
424 solute Positional Embeddings (APE)* Vaswani et al. (2017); (ii) *Relative Positional Embeddings
425 (RPE)* Shaw et al. (2018); and (iii) *Relative Positional Bias (RPB)* Raffel et al. (2020). To maintain
426 model comparability with the APE baseline, RPE and RPB models were implemented at the same
427 scale by adjusting only the embedding dimension while keeping layers, heads, and context window
428 fixed. Among all of these positional encodings, APE delivered the best accuracy across all the tasks;
429 therefore, we use it in our base model. The detailed results are presented in Appendix G.2.

430 5 RELATED WORK

431 **1. Robustness of language models to in-distribution perturbations.** Moradi & Samwald (2021)
432 showed that neural models suffer performance drops under semantically neutral perturbations such

432 as typos or synonym substitutions. Similarly, Mirzadeh et al. (2024) tested LLMs’ mathematical
433 reasoning under modifications to numerical values or problem phrasing, revealing that accuracy de-
434 grades even when the logical structure remains. Jiang et al. (2024) highlighted that single-token
435 changes can lead to incorrect inferences. Focusing on code, some early work explored neural mod-
436 els’ adversarial robustness (Henkel et al., 2022; Bielik & Vechev, 2020). A recent work close to
437 ours is that of (Orvalho & Kwiatkowska, 2025), who study semantics-preserving mutations applied
438 to code, though using pre-trained LLMs, and find that state-of-the-art code LLMs are not robust
439 to semantics-preserving edits. Their objective is different from ours, where we aim to control the
440 distribution of the training data to be able to perform fine-grained experiments.

441 **2. Generalization of language models to out-of-distribution data.** Song et al. (2025) examined
442 OOD generalization and its relation to composition (under synthetic settings), showing the role of
443 induction heads in learning hidden rules. By evaluating the robustness of ChatGPT from an OOD
444 perspective, Wang et al. (2023) showed that its performance still has limitations, suggesting that this
445 domain is still underexplored. Yuan et al. (2023) highlights the importance of OOD benchmarks with
446 challenging distribution shifts to accurately measure OOD performance and suggests a standardized
447 benchmark. This aligns with our work since we can accurately control the distribution shift with
448 synthetically generated data.

449 **3. Use of synthetic data and small Transformers.** Hupkes et al. (2020) generates via grammars
450 synthetic datasets containing examples of basic string manipulation functions and studies how small
451 Transformers handle generalization on predicting the output of these string operations when com-
452 posed. (Naïr et al., 2024) explore curriculum learning by training small Transformers to predict
453 the output of small code snippets generated using context-free grammars with increasing levels of
454 difficulty. (Ontanon et al., 2021) leverages multiple toy tasks (duplication, cartesian product, etc.)
455 to analyze the effect of architecture on Transformers OOD generalization. Other work focuses on
456 testing arithmetic and symbolic tasks (McLeish et al., 2024; Qian et al., 2022; Zhang et al., 2023).
457 Unlike classic diagnostics like SCAN and the behavioral testing framework CheckList (Lake &
458 Baroni, 2018; Ribeiro et al., 2020), we study *code tracing* with a controllable generator to probe in-
459 variances and compositionality along symbol-coverage, length, and nesting axes. Whereas WILDS
460 targets in-the-wild distribution shifts across real datasets (Koh et al., 2021), our synthetic setup en-
461 ables precise train–test controls and minimal-exposure interventions that are hard to guarantee in
462 natural corpora. Finally, unlike *Learning to Execute*, which trained RNNs to map programs directly
463 to outputs (Zaremba & Sutskever, 2014), we use tiny decoder-only Transformers with *stepwise exe-
464 cution traces* to dissect ID robustness and OOD generalization.

465 Our study extends these directions by combining synthetic data generation, a code-tracing task, and
466 tiny Transformers to systematically analyze model robustness in an accessible fashion. A more
467 detailed discussion of related work is presented in Appendix H.

468 6 LIMITATIONS

469 **1) Using synthetic data.** Enables precise control of distributions but lacks real-world diversity;
470 training only on synthetic data may miss challenging cases and limit robustness. **2) Limiting the**
471 **study to tiny language models.** Focuses on small models to study semantics under constraints;
472 findings may under-represent the capabilities of larger models. Therefore, we avoid extrapolating
473 to large-scale models. **3) Focusing on a single architecture.** Results are specific to a decoder-only
474 Transformer and may not extend to other architectures (e.g., encoder-decoder variants). A more
475 detailed discussion of the limitations of this study is presented in Appendix I.

476 7 CONCLUSION

477 In this work, we presented a minimalist, tightly controlled framework to probe robustness in
478 tiny decoder-only Transformers. Under this setup, we find that in-distribution brittleness to the
479 semantics-preserving edits we study is reduced as in-distribution training data increases, and this
480 invariance emerges early in training, even when the accuracy of the model is still modest. For com-
481 positional OOD, even limited coverage of variable-pair combinations (in expressions of the form
482 $var = var1 \text{ op } var2$) yields high accuracy on unseen pairs. OOD behavior is shift-specific:
483 the same model partially extrapolates to longer sequences but fails on deeper nesting, and in this
484 setup, data scaling alone was not sufficient to yield generalization to deeper nesting. While our
485 conclusions are limited to small models and a synthetic code-tracing task, the framework illustrates, in
486 this setting, when data scaling helps, where it falls short, and characterizes a graded dependence on
487 coverage, motivating broader controlled studies across architectures, capacities, and OOD axes.

486 REFERENCES

487

488 Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
489 Ambrose Sloane, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length gener-
490 alization in large language models. In *Advances in Neural Information Processing Systems*,
491 volume 35, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf.
492 NeurIPS 2022.

493

494 Pavol Bielik and Martin Vechev. Adversarial robustness for code, 2020. URL <https://arxiv.org/abs/2002.04694>.

495

496 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
497 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
498 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

499

500 Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail: Simple tricks im-
501 prove systematic generalization of transformers. In *Proceedings of the 2021 Conference on Em-
502 pirical Methods in Natural Language Processing*, pp. 619–634, Online and Punta Cana, Domini-
503 can Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/
504 2021.emnlp-main.49. URL <https://aclanthology.org/2021.emnlp-main.49/>.

505

506 Yanbo Fang, Zuohui Fu, Xin Dong, Yongfeng Zhang, and Gerard de Melo. Assessing combinational
507 generalization of language models in biased scenarios. In *Proceedings of the 2nd Conference of
508 the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th Interna-
509 tional Joint Conference on Natural Language Processing (Volume 2: Short Papers)*, pp. 392–397,
510 Online only, November 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
511 aacl-short.48. URL <https://aclanthology.org/2022.aacl-short.48/>.

512

513 Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
514 positional encodings still learn positional information. In *Findings of the Association for Compu-
515 tational Linguistics: EMNLP 2022*, pp. 1382–1390, Abu Dhabi, United Arab Emirates, Decem-
516 ber 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.99.
517 URL <https://aclanthology.org/2022.findings-emnlp.99/>.

518

519 Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song.
520 Pretrained transformers improve out-of-distribution robustness. In *Proceedings of the 58th Annual
521 Meeting of the Association for Computational Linguistics*, pp. 2744–2751, Online, July 2020.
522 Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.244. URL <https://aclanthology.org/2020.acl-main.244/>.

523

524 Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh Jha, and Thomas
525 Reps. Semantic robustness of models of source code. In *2022 IEEE International Conference on
526 Software Analysis, Evolution and Reengineering (SANER)*, pp. 526–537. IEEE, March 2022. doi:
527 10.1109/saner53432.2022.00070. URL <http://dx.doi.org/10.1109/SANER53432.2022.00070>.

528

529 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
530 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

531

532 Diewuke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
533 How do neural networks generalise? (extended abstract). In Christian Bessiere (ed.), *Proceedings
534 of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20*, pp. 5065–
535 5069. International Joint Conferences on Artificial Intelligence Organization, 7 2020. doi: 10.
536 24963/ijcai.2020/708. URL <https://doi.org/10.24963/ijcai.2020/708>. Journal
537 track.

538

539 Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng Wang, Tanwi Mallick, Weijie J. Su,
540 Camillo J. Taylor, and Dan Roth. A peek into token bias: Large language models are not yet
541 genuine reasoners, 2024. URL <https://arxiv.org/abs/2406.11050>.

540 Andrej Karpathy. karpathy/nanoGPT, December 2022. URL <https://github.com/karpathy/nanoGPT>.
541
542

543 Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
544 Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
545 Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A com-
546 prehensive method on realistic data. In *International Conference on Learning Representations*,
547 2020. URL <https://openreview.net/forum?id=SygcCnKwr>. ICLR 2020; preprint
548 at arXiv:1912.09713.
549

550 Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
551 interpretation. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language
552 Processing (EMNLP)*, pp. 9087–9105, Online, November 2020. Association for Computational
553 Linguistics. doi: 10.18653/v1/2020.emnlp-main.731. URL <https://aclanthology.org/2020.emnlp-main.731/>.
554

555 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
556 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
557 Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure
558 Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
559 Wilds: A benchmark of in-the-wild distribution shifts. In Marina Meila and Tong Zhang
560 (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of
561 *Proceedings of Machine Learning Research*, pp. 5637–5664. PMLR, 18–24 Jul 2021. URL
562 <https://proceedings.mlr.press/v139/koh21a.html>.
563

564 Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
565 of sequence-to-sequence recurrent networks. In Jennifer Dy and Andreas Krause (eds.), *Pro-
566 ceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceed-
567 ings of Machine Learning Research*, pp. 2873–2882. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/lake18a.html>.
568

569 Chenxiao Liu, Shuai Lu, Weizhu Chen, Dixin Jiang, Alexey Svyatkovskiy, Shengyu Fu, Neel Sun-
570 daresan, and Nan Duan. Code execution with pre-trained language models. In Anna Rogers,
571 Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational
572 Linguistics: ACL 2023*, pp. 4984–4999, Toronto, Canada, July 2023. Association for Compu-
573 tational Linguistics. doi: 10.18653/v1/2023.findings-acl.308. URL <https://aclanthology.org/2023.findings-acl.308/>.
574

575 Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
576 Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transfor-
577 mers can do arithmetic with the right embeddings, 2024. URL <https://arxiv.org/abs/2405.17399>.
578

579 John Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar,
580 Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: On the strong correlation
581 between out-of-distribution and in-distribution generalization. *arXiv preprint arXiv:2107.04649*,
582 2021. doi: 10.48550/arXiv.2107.04649. URL <https://arxiv.org/abs/2107.04649>.
583

584 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
585 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
586 language models, 2024. URL <https://arxiv.org/abs/2410.05229>.
587

588 Milad Moradi and Matthias Samwald. Evaluating the robustness of neural language models to input
589 perturbations. *arXiv preprint arXiv:2108.12237*, 2021.
590

591 Marwa Naïr, Kamel Yamani, Lynda Said Lhadj, and Riyadh Baghdadi. Curriculum learning for
592 small code language models, 2024. URL <https://arxiv.org/abs/2407.10194>.
593

594 Santiago Ontanon, Joshua Ainslie, Vaclav Cvícek, and Zachary Fisher. Making transformers solve
595 compositional tasks. *arXiv preprint arXiv:2108.04378*, 2021.

594 Pedro Orvalho and Marta Kwiatkowska. Are large language models robust in understanding code
595 against semantics-preserving mutations?, 2025. URL <https://arxiv.org/abs/2505.10443>.

597 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
598 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
599 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
600 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
601 URL <https://arxiv.org/abs/2203.02155>.

602 Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. Limitations of language models in
603 arithmetic and symbolic induction, 2022. URL <https://arxiv.org/abs/2208.05051>.

605 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
606 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
607 transformer, January 2020. ISSN 1532-4435.

608 Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Be-
609 havioral testing of NLP models with CheckList. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
610 and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Compu-
611 tational Linguistics*, pp. 4902–4912, Online, July 2020. Association for Computational Linguis-
612 tics. doi: 10.18653/v1/2020.acl-main.442. URL <https://aclanthology.org/2020.acl-main.442>.

614 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
615 tions, 2018. URL <https://arxiv.org/abs/1803.02155>.

617 Zhengyan Shi, Adam X. Yang, Bin Wu, Laurence Aitchison, Emine Yilmaz, and Aldo Li-
618 pani. Instruction tuning with loss over instructions. In A. Globerson, L. Mackey,
619 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-
620 ral Information Processing Systems*, volume 37, pp. 69176–69205. Curran Associates, Inc.,
621 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/7ffb43adf37b3eeaba559098bc084cc6-Paper-Conference.pdf.

623 Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a
624 lens through induction heads in transformers. *Proceedings of the National Academy of Sciences*,
625 122(6):e2417182122, 2025.

626 Dmitry Tsarkov, Tibor Tihon, Nathan Scales, Nikola Momchev, Danila Sinopalnikov, and Nathanael
627 Schärli. *-cfq: Analyzing the scalability of machine learning on a compositional task. In *Pro-
628 ceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 9949–9957. AAAI Press,
629 2021. URL <https://ojs.aaai.org/index.php/AAAI/article/view/17195>.

631 Lifu Tu, Garima Lalwani, Spandana Gella, and He He. An empirical study on robustness to
632 spurious correlations using pre-trained language models. *Transactions of the Association for
633 Computational Linguistics*, 8:621–633, 2020. doi: 10.1162/tacl_a_00335. URL <https://aclanthology.org/2020.tacl-1.40/>.

635 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
636 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

637 Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Haojun
638 Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue Zhang, and Xing Xie. On the robustness of chatgpt:
639 An adversarial and out-of-distribution perspective, 2023. URL <https://arxiv.org/abs/2302.12095>.

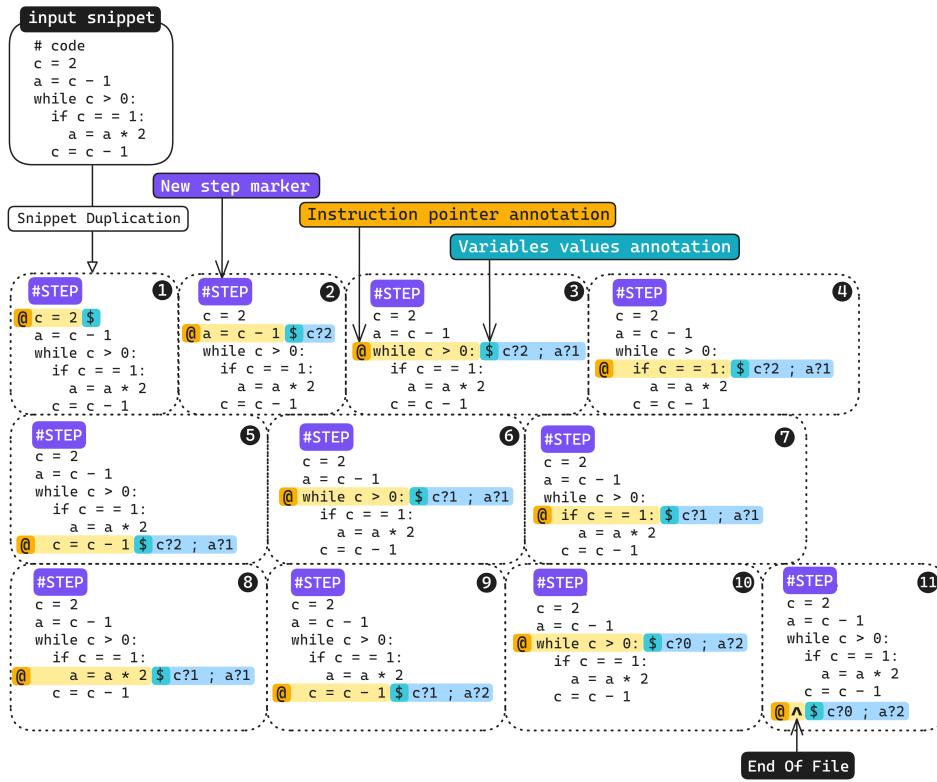
641 Lifan Yuan, Yangyi Chen, Ganqu Cui, Hongcheng Gao, FangYuan Zou, Xingyi Cheng,
642 Heng Ji, Zhiyuan Liu, and Maosong Sun. Revisiting out-of-distribution robustness in
643 nlp: Benchmarks, analysis, and llms evaluations. In A. Oh, T. Naumann, A. Glober-
644 son, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Pro-
645 cessing Systems*, volume 36, pp. 58478–58507. Curran Associates, Inc., 2023. URL
646 https://proceedings.neurips.cc/paper_files/paper/2023/file/b6b5f50a2001ad1cbccca96e693c4ab4-Paper-Datasets_and_Benchmarks.pdf.

648 Wojciech Zaremba and Ilya Sutskever. Learning to execute. *CoRR*, abs/1410.4615, 2014. URL
 649 <http://arxiv.org/abs/1410.4615>.
 650

651 Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can
 652 transformers learn to solve problems recursively?, 2023. URL <https://arxiv.org/abs/2305.14699>.
 653

654 A EXAMPLE OF FULL EXECUTION TRACE

655 We show an example of a full execution trace in Figure 7.



656
 657 Figure 7: Illustration of the TinyTracing task. At each execution step (from 1 to 11), the entire input
 658 code snippet is duplicated and annotated with corresponding execution information: The instruction
 659 pointer value is represented by setting a special symbol (here @) to the left of the current line to
 660 be executed, and the variable states are presented as (key, value) pairs to the right of the current
 661 execution line. A special symbol (here #STEP) indicates the beginning of a new step.
 662

663 B PYTHON SNIPPETS GENERATION

664 This section describes the full TinyTracing code generator for completeness, including constructs
 665 such as while-loops and basic data structures. However, all experiments in the main paper in-
 666 stantiate a restricted configuration that emits only programs with assignments and conditionals over
 667 scalars (no loops, no recursion, and no compound data structures). Consequently, tokens and ex-
 668 amples involving loops or data structures may appear in illustrative vocabulary tables, but they are never
 669 sampled in our training, validation, or test sets. This separation lets us present a unified generator
 670 while evaluating a simpler language necessary for our study.
 671

702 B.1 PRELIMINARY CONCEPTS: SKELETON CONSTRUCTION, CODE INSTANTIATION, AND
703 THE CONTEXT STACK
704

705 As illustrated on the leftmost side of Figure 2, the snippet generator is structured around two distinct
706 yet complementary processes: skeleton construction and code instantiation. These processes do not
707 operate sequentially; rather, they function in tandem to produce randomly generated Python code
708 snippets that adhere to user-specified distributional properties.

709 To provide context, we begin with a high-level overview of the respective roles of these two pro-
710 cesses in snippet generation. The skeleton construction process, as the name implies, generates
711 an abstract structure or "skeleton" of the code using a high-level intermediate language composed
712 of specific **user-defined keywords**. In parallel, the code instantiation process consumes these key-
713 words as they are produced, translating each into a corresponding fragment of concrete Python code.
714 Both processes are governed by a set of **user-defined generation rules**: **high-level** generation rules
715 control skeleton construction, while **low-level** generation rules govern code instantiation. These are
716 illustrated in blue in the top left corner of Figure 2, representing the user input. It is precisely this pa-
717 rameterization via user-defined generation rules that enables the generator to produce code snippets
718 with the desired distributional characteristics for an experiment.

719 To further elaborate on the internal organization of the generation system underlying the snippet
720 generator, we now introduce a simple illustrative example. As previously noted, the set of keywords
721 used in skeleton construction—referred to as the keyword vocabulary—is defined by the user. In
722 the example considered here, the keyword vocabulary consists of three distinct keywords, which we
723 describe in detail in Table 1.

724 As shown in Table 1, the three keywords used in our illustrative example are well defined. How-
725 ever, to further develop the description of the generation system of the snippet generator, we need to
726 distinguish a special type of keywords from the others: the **context creation keywords**. These are
727 keywords that lead to the creation of a new **execution context** in a code snippet, which is represented
728 by **indentation** in the case of python (as an illustrative comparison, it is often the case in other lan-
729 guages, such as C or Java, that new execution contexts are represented with curly braces `{}`). Based
730 on this definition, two such keywords exist in our example from Table 1: The **[IF_STATEMENT]**
731 and the **[WHILE_LOOP]** (Note that while our tool allows for generating "while" loops, we do not
732 include them in the experimental setup presented in Sec. 3).

Skeleton Keyword	Description	Instantiation Example
[ASSIGNMENT]	Corresponds to the initialization of a random variable name with a random constant. The variable name can be one of "a", "b", or "c". The constant can be between 0 and 9.	<code>a = 2</code>
[IF_STATEMENT]	Corresponds to the conditional header of an "if" block. The condition is of the form $n < m$ where n and m are random numbers between 0 and 9.	<code>if 1 < 3 :</code>
[WHILE_LOOP]	Corresponds to the looping header of a "while" block. The expression starts with " $c = 0$ " where " c " is the control variable of the loop. Then comes the looping condition, which is of the form " $c < n$ " where n is a random number between 0 and 9. Then directly under it and inside the loop is the update expression of the loop's control variable, which is of the form " $c = c + 1$ ".	<code>c = 0</code> <code>while c < 3 :</code> <code> c = c + 1</code>

751 Table 1: Illustrative example of a user-defined keyword vocabulary. Each keyword is given a de-
752 scription along with an instantiation example.
753

754 The motivation for distinguishing context creation keywords lies in the fact that many valuable ex-
755 perimental studies can be conducted by manipulating distributional features specifically related to
execution contexts creation. These features may include, for instance, the maximum number of

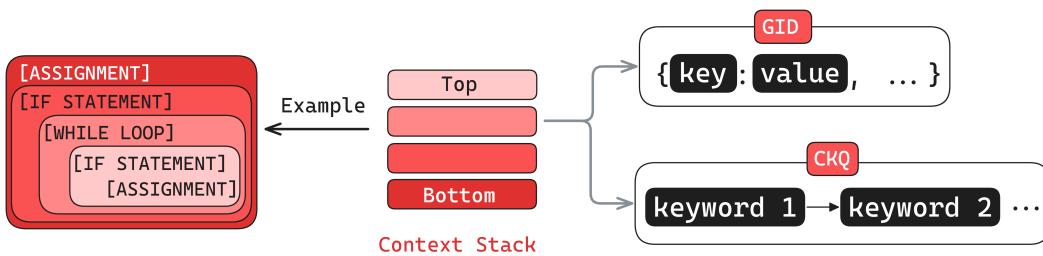
756 nested execution contexts, the permitted nesting combinations, or the maximum number of execution contexts allowed at a given depth. To enable controlled manipulation of such features—while maintaining the flexibility and generality of the data generator—we introduced a specialized data structure that plays a central role in the snippet generator: the **context stack**.

760 As its name implies, the context stack is a stack-based data structure that plays a pivotal role in the snippet synthesis process. It not only facilitates the controlled creation of execution contexts but 761 also serves as a coordination mechanism between the skeleton construction and code instantiation 762 processes. Broadly speaking, a new level is pushed onto the stack whenever a new execution context 763 is introduced during generation, and correspondingly, levels are popped from the top of the stack 764 as these contexts are closed. Each level of the context stack is itself a composite data structure, 765 consisting of two distinct sub-components which are associated with the execution context that the 766 level corresponds to:

768

- 769 • **A General Information Dictionary (GID).** This component is an extensible dictionary 770 of user-defined (key, value) pairs designed to store relevant metadata about the associated 771 execution context. Such metadata may include, for example, the type of execution context 772 (e.g., loop, conditional), or metrics such as the number of code lines contained within 773 the context. The GID allows for flexible customization and tracking of context-specific 774 properties during snippet generation. These properties can then be used to further control 775 the generation.
- 776 • **A Context Keyword Queue (CKQ).** This component is a simple queue data structure 777 responsible for storing the sequence of keywords that will constitute the sub-skeleton of 778 the corresponding execution context. Typically, the CKQ is populated by the skeleton 779 construction process and later consumed by the code instantiation process.

780 Figure 8 illustrates the concepts outlined above on the structure and function of the context stack.



790 Figure 8: Diagram illustrating a context stack with four nested levels (center), including a detailed 791 view of the substructures within a single stack level (right), and an example of a corresponding 792 skeleton that could give rise to such a stack configuration (left).

794 B.2 THE TINYTRACE-GENERATOR GENERATOR INTERFACE

796 Having established the foundational concepts of skeleton construction, code instantiation, and the 797 context stack, we can now present a comprehensive description of the underlying generation system 798 of the snippet generator.

799 The skeleton construction and code instantiation processes are each implemented as separate 800 algorithms: the **Skeleton Construction Algorithm (SCA)** and the **Code Instantiation Algorithm 801 (CIA)**, respectively. Within these algorithms, users are to define the generation rules that encode 802 the data constraints required for their specific experiments: high-level generation rules are expressed 803 within the skeleton construction algorithm, while low-level generation rules are defined in the code 804 instantiation algorithm.

805 However, to ensure compatibility with the overall generation system, including integration with 806 the context stack, these generation rules must conform to a predefined algorithmic template. This 807 template, referred to as the **TinyTrace-Generator Interface (TGI)**, is illustrated in Figure 9.

808 As shown in Figure 9, the TinyTrace Generator Interface consists of three core algorithms that 809 collectively define the generation system of the snippet generator. These three algorithms include:

```

810 1. The skeleton construction and code instantiation algorithms that we described previously.
811
812 2. A central Main Algorithm (MA) which is in charge of coordinating them.
813

```

```

814 By appropriately modifying the sections of the TGI designated for user-defined generation rules
815 within the SCA and the CIA—highlighted with a star (*) symbol in Figure 9—users can implement
816 a wide range of data distributions tailored to the requirements of their experiments. To demonstrate
817 how this flexibility is achieved, the following paragraphs will describe the structure and functionality
818 of each algorithm comprised in the interface, starting from the topmost component in Figure 9, which
819 represents the main algorithm, before moving to the skeleton construction and code instantiation
820 algorithms.
821

```

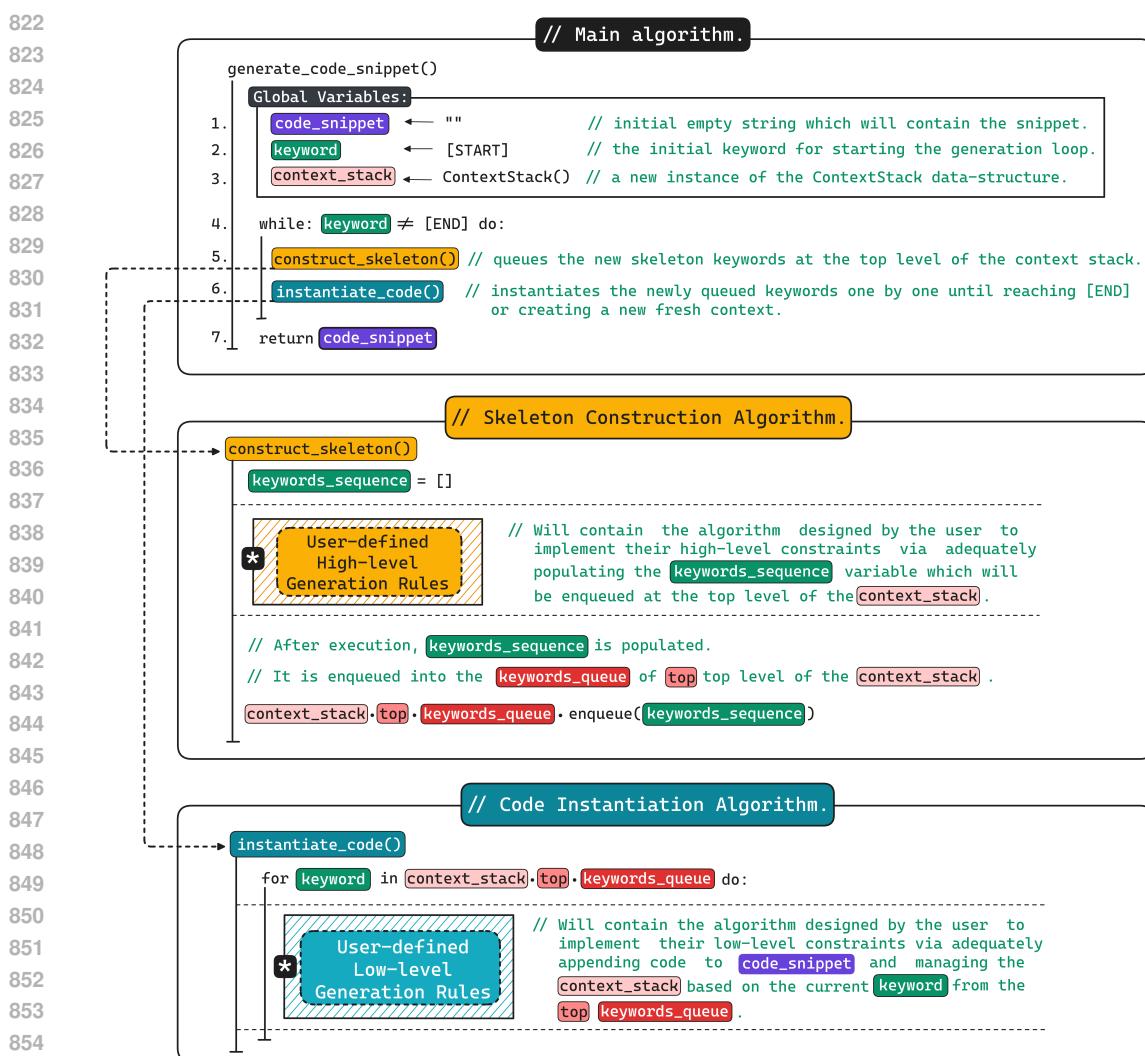


Figure 9: The TinyTrace Generator Interface (TGI) of the snippet generator.

```

857
858
859
860 Algorithm 1. The Main Algorithm. This algorithm is implemented by the generate_code_snippet()
861 function. It begins by initializing three global variables that are central to the
862 functioning of the generation system: code_snippet, keyword, and context_stack. Understanding
863 the role of each of these variables provides insight into the overall logic of the main algorithm and
864 offers a preliminary view of the two other auxiliary algorithms, which it coordinates:

```

864 • **code_snippet**: A string variable that accumulates the final generated code. It is initialized
 865 as an empty string, which is to be progressively extended with new code fragments as they
 866 are generated by instantiation.
 867 • **keyword**: This variable holds the current skeleton keyword to be instantiated into a Python
 868 code fragment. It is initialized with the special keyword **[START]** to enter the main genera-
 869 tion loop (line 4) and is to be eventually set to **[END]** to signal the termination of snippet
 870 generation.
 871 • **context_stack**: This variable holds the context stack, which we described earlier and de-
 872 picted in Figure 8. It is initialized with a single level representing the outermost execution
 873 context, which is also called indentation level 0.
 874

875 Following these initializations, the main generation loop (line 4) is entered. The loop’s structure
 876 is deliberately simple: at each iteration, it invokes the **construct_skeleton()** procedure (line 5),
 877 followed by the **instantiate_code()** procedure (line 6). These two procedures correspond to the
 878 **Skeleton Construction** and **Code Instantiation** algorithms, respectively, and will be described in
 879 detail in the following dedicated paragraphs.

880 Broadly speaking, **construct_skeleton()** is responsible for generating new skeleton keywords—
 881 according to user-defined rules—and queuing them in the topmost level of the context stack (i.e.,
 882 the **current context**). These keywords are then sequentially dequeued and processed by **instan-
 883 tiate_code()**, which translates each into a corresponding Python code fragment. This translation is
 884 also governed by user-defined rules and may involve additional actions necessary to maintain consis-
 885 tency with the overall generation system. Once the generation loop is exited, the final **code_snippet**
 886 is returned (line 7).

887 **Algorithm 2. The Skeleton Construction Algorithm.** This algorithm is implemented by the
 888 **construct_skeleton()** procedure. The algorithm begins by initializing a local variable named **key-
 889 words_sequence**. This variable, which begins as an empty list, is to be filled with the sequence of
 890 new keywords that should be enqueued in the current context (i.e., the top of the stack). Right after
 891 this initialization is the user-defined area for the high-level generation rules, which is the portion
 892 of the interface that the user must edit in order to implement the desired high-level distributional
 893 constraints. Basically, in order to integrate consistently with the rest of the generation system mod-
 894 eled by the TGI, this user-defined region must populate the **keywords_sequence** variable with the
 895 appropriate keywords to be enqueued in the current context, at the end of the **construct_skeleton()**
 896 procedure, as shown by the interface.

897 **Algorithm 3. The Code Instantiation Algorithm.** This algorithm is implemented by the **in-
 898 stantiate_code()** procedure. The algorithm begins by entering a local main loop. This main loop will
 899 dequeue the keywords of the current context, one by one, into the global **keyword** variable. Inside
 900 the loop is the user-defined area for the low-level generation rules, which is the portion of the in-
 901 terface that the user must edit in order to implement the desired low-level distributional constraints.
 902 Basically, in order to integrate consistently with the rest of the generation system modeled by the
 903 TGI, this user-defined region must be implemented so that for each keyword, the corresponding
 904 code fragment is appended to the global **code_snippet** variable, and, **in case of a context creation
 905 keyword**, a new context must be pushed onto the context stack.

906 — Figure 10 provides an example of a TGI-consistent user implementation for the high-level and
 907 low-level generation rules, expressed in pseudo-code. These user-defined generation rules allow for
 908 generating Python snippets with the following distributional constraints:
 909

910 1. **High-Level Constraints:**

911 • The snippets are always structured as an if block followed by an initialization state-
 912 ment.
 913 • The interior of the if block can either be structured as a while block followed by an
 914 initialization, with a probability of 30%, or two consecutive initializations, with a
 915 probability of 70%.
 916 • The interior of the while loop is empty of any other constructs.

917 2. **Low-Level Constraints:**

- These are represented by the keyword translations described in Table 1.

As illustrated in the example of Figure 10, the user-defined generation rules take the form of an imperative description: that is, they are expressed through procedural algorithms which specify the desired structure of the code snippets in a manner that integrates coherently with the rest of the generation system imposed by the TinyTrace Generator Interface.

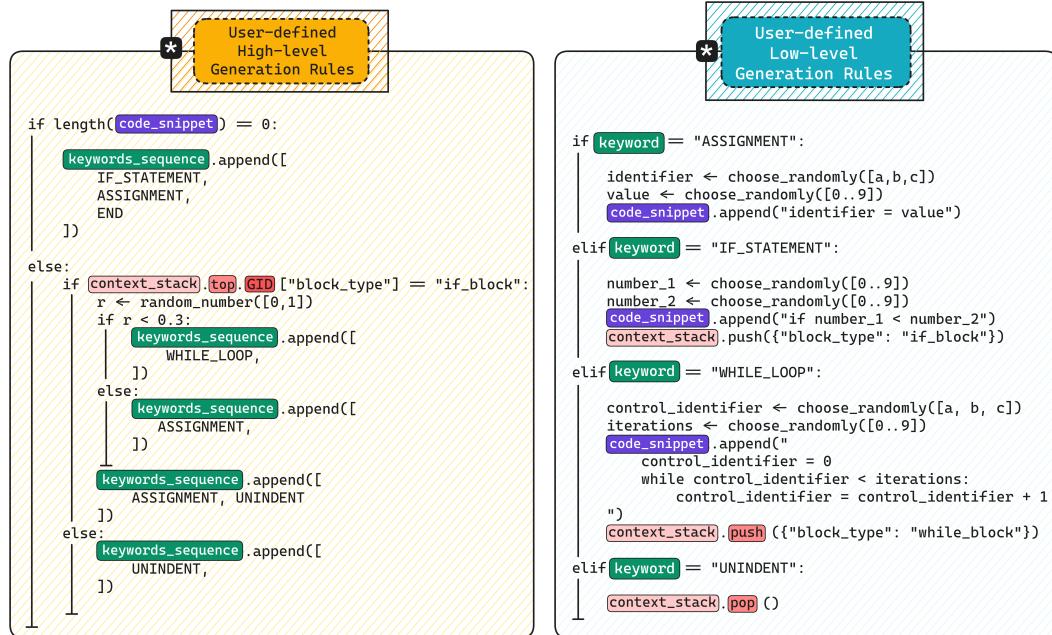


Figure 10: Example of a TGI-consistent implementation of the user-defined high-level and low-level generation rules.

C MODEL HYPERPARAMETERS AND TRAINING DETAILS

C.1 MODEL TRAINING

We train from scratch with the AdamW optimizer using a two-phase schedule: Phase 1 runs for half of the epochs with a linear warmup over the first 10% of steps from 10^{-4} to a peak 10^{-3} , followed by cosine decay back to the initial LR; Phase 2 continues for the rest of the epochs with all LRs reduced by 90% (initial 10^{-5} , peak 10^{-4}). Batches contain 512 examples and training uses data parallelism on $4 \times$ NVIDIA A100 80GB GPUs. During training, mini-batches are randomly sampled at a fixed context length $T=512$. Decoding at evaluation is greedy; the metric is strict exact-match including all tracing markers (e.g., `#STEP`, `@`, `$`, `.`, `^`) across the full generated trace.

C.2 TOKENIZATION

We use a custom tokenizer that has a fixed 77-token vocabulary tailored to the TinyTracing format, enumerating the task's lexemes (e.g., lower-case identifiers a–z; control keywords `if`/`elif`/`else`/`while`; arithmetic/comparison operators $\{+, -, *, //, \%, <, >, \leq, \geq, ==, !=\}$; assignment/punctuation; digits), together with the tracing markers (`@`, `$`, `^`, `#STEP` and newline). Integers are tokenized at the character level: each decimal digit is a separate token, and the minus sign (for negatives) is a separate token (e.g., $-37 \rightarrow '-'$, `'3'`, `'7'`). This design keeps all symbols atomic (no learned subwords).

Although the tokenizer contains a superset of operators, in this paper's datasets, we only use $\{+, -\}$ for arithmetic and $\{<, >\}$ for comparisons; the other operator tokens are not used.

972 **C.3 MODEL HYPERPARAMETERS**
973

974 Table 2 shows the hyperparameters we used when training our model.
975

976 Parameter	977 Value
977 Model Type	978 Decoder-only Transformer
978 Number of Layers	979 12
979 Number of Heads	980 16
980 Embedding Dimension	981 368
981 Context Window	982 512 tokens
982 Total Parameters	983 ~ 20 Million
983 Normalization	984 RMSNorm
984 FFN Activation	985 SiLU
985 Positional Encoding	986 Learned Absolute Positional Encoding

986 Table 2: Key hyperparameters of the probed Transformer model.
987

988 **C.4 DATA DEDUPLICATION**

989 To avoid duplicates, we enforce uniqueness during data generation: once a code snippet is generated,
990 it is hashed to produce a unique ID; if that ID has already appeared, the snippet is discarded and not
991 added to the dataset. For hashing, we use SHA-256 over the raw snippets. Deduplication is enforced
992 on the training, evaluation, and test sets.
993

994 To prevent leakage, we enforce *global* deduplication across train/validation/test. Concretely, we
995 maintain a single global hash set while constructing the corpus: any example whose hash is already
996 present is discarded *before* splitting. This procedure ensures both within-split uniqueness and cross-
997 split disjointness.
998

999 **C.5 DETERMINISM AT EVALUATION VS. WINDOWED TRAINING.**

1000 In Sec. 2.2, we require that two successive steps in the trace lie within the model’s context window to
1001 preserve *deterministic* execution during *evaluation* (i.e., the next step is a function of the visible state
1002 without truncation effects). By contrast, during pre-training we use standard *windowed sampling*:
1003 random contiguous 512-token spans drawn from the corpus, which may cut across step boundaries
1004 and do not enforce the step-pair constraint. This separation ensures (i) faithful, deterministic eval-
1005 uation and (ii) efficient, unbiased pre-training.
1006

1007 **D EXAMPLES OF IN-DISTRIBUTION SEMANTICS-PRESERVING ALTERATIONS**

1008 Figure 11 shows examples of our in-distribution semantics-preserving alterations.
1009

1010 **E ROBUSTNESS TO IN-DISTRIBUTION SEMANTICS-PRESERVING**
1011 **ALTERATIONS ON THE FULL TEST SET (NOT ON SUCCESSFULLY TRACED**
1012 **SNIPPETS ONLY)**

1013 Figure 12 shows the results of the experiment.
1014

1015 **F GENERALIZATION ACROSS NESTING DEPTHS**

1016 We describe here the experimental setup and detailed results for our study on generalization across
1017 nesting depths. By “nesting depth,” we refer to the maximum number of nested if-blocks or
1018 indentation levels in a Python snippet; for example, a snippet with a single if inside another if has a
1019 depth of 2. The initial training corpus contained 3M snippets with maximum depths ranging from
1020 0 to 5. For each percentage $p \in \{0, 1, 5, 10, 20, 40, 60, 80, 100\}$, we constructed a new training set by
1021

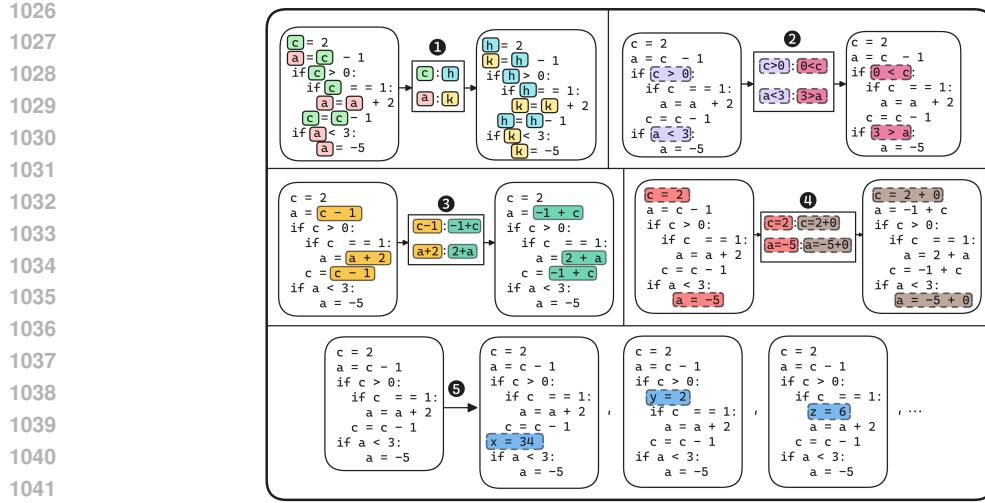


Figure 11: Our in-distribution alteration operators (1–5). **(1) Variable renaming:** variable identifiers are replaced with other valid identifiers from the same distribution, preserving semantics. **(2) Comparison symmetry:** conditional comparisons are made equivalent by simultaneously swapping operands and flipping to the symmetric comparator (e.g., $a < b \leftrightarrow b > a$). **(3) Addition commutativity:** swap the order of operands in addition expressions (e.g., $a + b \leftrightarrow b + a$). This transformation is applied exclusively to addition, since subtraction is not commutative. **(4) Neutral operator:** $a + 0$ or -0 is inserted in an assignment (e.g., $x = y \mapsto x = y + 0$), which preserves semantics; note that 0 naturally occurs in the training data range $[-99, 99]$, so such edits are in-distribution. **(5) Neutral assignment:** a new assignment is inserted at a random location, defining a fresh variable name not used elsewhere, ensuring the execution trace is unaffected.

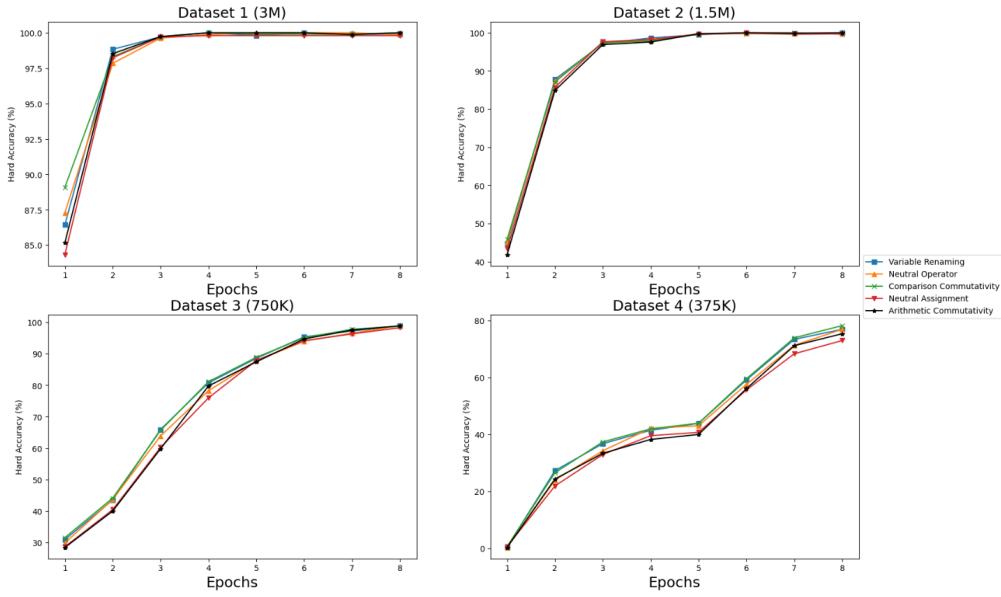
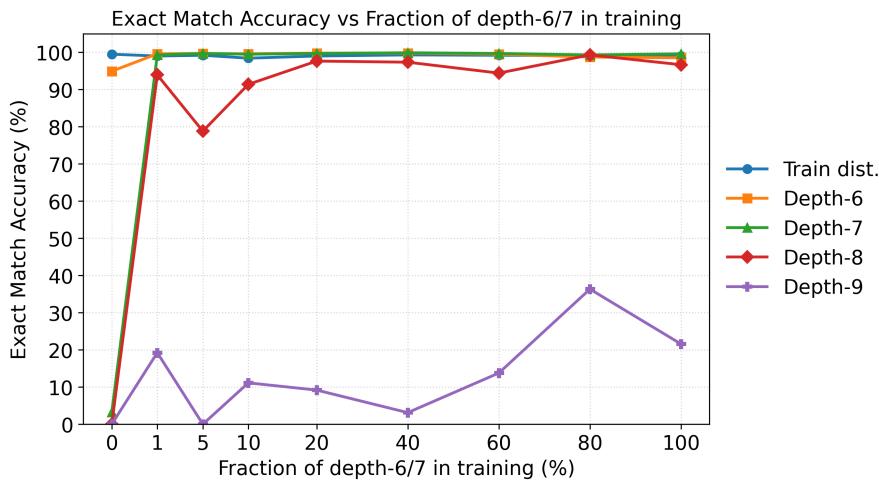


Figure 12: Robustness on the full test set to in-distribution alterations

keeping $(100 - p)\%$ of the original dataset and injecting $(p/2)\%$ of depth-6 and $(p/2)\%$ of depth-7 examples. This allows us to study the effect of gradually introducing deeper nesting patterns.

At evaluation time, we used five test sets of 1,024 examples each. The first was an in-distribution (ID) set, sampled using the same technique as the training data. The remaining four sets were maximum-depth test sets, each containing snippets in which the maximum nesting depth reaches 6,

1080 7, 8, and 9 at least once. Nesting depths 6 and 7 were gradually introduced into the training data
 1081 as described above, so these sets became partially in-distribution at higher training percentages. In
 1082 contrast, nesting depths 8 and 9 were never included in training and thus remained fully out-of-
 1083 distribution (OOD) throughout the experiment. We reported the exact match accuracy for all test
 1084 sets.
 1085



1102 Figure 13: Exact-match accuracy (%) as a function of the fraction of nesting depths 6 and 7 snippets
 1103 included in training. Curves correspond to evaluation sets with different maximum depths: the
 1104 training distribution (“labeled Train dist.”) and held-out deeper snippets (“Depth-6”, “Depth-7”,
 1105 “Depth-8”, “Depth-9”). The plot illustrates three key trends: (i) zero-shot generalization to the
 1106 immediately deeper depth (Depth-6) even when no such examples are present in training ($p =$
 1107 0%), (ii) rapid stabilization of accuracy for depths 6–8 with minimal exposure ($p \geq 1\%$), and (iii)
 1108 persistent degradation for Depth-9 across all fractions, highlighting limits of generalization to much
 1109 deeper structures.
 1110

1111 The results show that when a model is trained on a dataset with maximum depth X , it generalizes
 1112 reliably to $X + 1$ nesting depths without explicit exposure. For example, depth-6 accuracy is high
 1113 even when the training set contains only depths up to 5, and similarly, depth-8 accuracy improves
 1114 once depth-7 examples are included. Moreover, introducing even a small fraction of deeper exam-
 1115 ples (e.g., 1%) is sufficient to extend robust generalization to higher depths, as seen for depths 6
 1116 and 7. However, exact-match performance drops sharply at depth-9 and for higher depths when the
 1117 maximum exposure in training is limited (e.g., $X = 5$), indicating that generalization rarely extends
 1118 beyond $X + 2$.
 1119

G EXTENDED ABLATION STUDY

G.1 SUPERVISED FINE-TUNING (SFT) AND INSTRUCTION MASKING FOR OOD GENERALIZATION

1124 In addition to evaluating the current model’s out-of-distribution generalization capabilities, we ex-
 1125 plored whether these can be improved using SFT and Instruction Masking. In this section, we
 1126 explain technical implementation details related to the pre-evaluation phase (fine-tuning the pre-
 1127 trained model), presenting in the process the hyperparameters at play when running the experiments,
 1128 followed by the best results we obtained.
 1129

1130 **Supervised fine-tuning explained.** After training our model, we use LoRA (Low-Rank Adap-
 1131 tion) to fine-tune it Hu et al. (2021). The data used for fine-tuning belongs to the same distribution
 1132 as that used to train the model. The difference lies in a technique called *instruction masking*, which
 1133 is described as follows: for each example in a batch, the model sees two parts, an *input* and an
output. Each token of the example belongs to one of these parts. The model initially attempts to

1134 predict every token of the example based on the preceding tokens, but it only learns from tokens in
1135 the *output* region. This is achieved by masking the logits generated after predicting tokens in the
1136 *input* region.
1137

1138 **Hyperparameters and Results.** We conducted several fine-tuning experiments on the trained
1139 model described in Sec. 3, varying both data size (ranging from 65,536 to 2,097,152 examples)
1140 and the number of epochs (between 1 and 8) we used AdamW with $\beta_1 = 0.9$, $\beta_2 = 0.95$, and a
1141 weight decay of 0.1. The initial learning rate was set to 1×10^{-3} with cosine decay down to 10% of
1142 its initial value, and a linear warmup over the first 10% of training steps. Fine-tuning was run with
1143 a global batch size of 512 sequences (context length 512 tokens). Evaluation was performed every
1144 2.5% of fine-tuning steps on a held-out validation set, with checkpoints saved for the best validation
1145 loss. We used LoRA rank 8, with trainable low-rank adapters replacing linear layers and all other
1146 parameters frozen except LoRA weights and biases (reducing the number of trainable parameters from
1147 20 million to 2.2 million). We then evaluated each model—including the pure trained model for
1148 comparison purposes—on three test sets of 1,024 examples: the first contained in-distribution data,
1149 while the second and third included out-of-distribution examples with, respectively, deeper nesting
1150 and longer snippets. We present in Table 3 the corresponding evaluations for the pre-trained model
1151 and the best model obtained from fine-tuning (this model version was fine-tuned on one million
1152 examples, with the number of epochs set to 1).
1153

Table 3: Evaluation results for the pre-trained and fine-tuned models (targeted distribution shifts :
deeper nesting and longer sequence)

Case	ID Accuracy	OOD deeper nesting	OOD longer sequence
Pre-trained	100%	0.00%	43.65%
Fine-tuned	99.22%	0.00%	46.68%

1154 We observe from Table 3 that the supervised fine-tuning technique slightly improved the out-of-
1155 distribution generalization accuracy by just under 3% only for the task of tracing longer snippets,
1156 while slightly degrading the pre-trained model’s performance on in-distribution data. This trade-off
1157 suggests that supervised fine-tuning does not bring substantial improvements to the model’s out-of-
1158 distribution generalization capabilities; therefore, we chose not to use this technique in our proposed
1159 model.
1160

1161 G.2 ABLATION STUDY ON POSITIONAL ENCODING

	In-Distribution	Longer Snippets	Higher Nesting Depth
Absolute Positional Encoding	100%	43.65%	0.00%
Relative Positional Encoding	82.62%	12.99%	0.00%
Relative Positional Bias	100%	24.80%	0.00%

1162 Table 4: Accuracy of TinyTracing models trained with different positional encoding strategies. We
1163 compare Absolute Positional Encoding, Relative Positional Encoding, and Relative Positional Bias
1164 after 4 epochs of training. Models are evaluated on three test sets: In-Distribution, Longer Snippets,
1165 and Higher Nesting Depth. This ablation study guides the choice of the base architecture for the
1166 experiments presented in Sec. 4.
1167

1168 H MORE DETAILED RELATED WORK

1169 **Compositional generalization diagnostics (SCAN) Lake & Baroni (2018).** A foundational line
1170 of work measures systematic generalization with controlled, synthetic tasks. The SCAN bench-
1171 mark of Lake & Baroni tests whether models can recombine primitives (“jump,” “twice,” etc.) into
1172 held-out compositions; standard sequence models typically fail when generalization requires sys-
1173 tematic composition rather than local interpolation (e.g., jump twice). Our TinyTracing setup plays
1174 a similar diagnostic role—but in the code domain and with tight control over structural axes (symbol
1175 coverage, length, nesting), letting us probe which axes are amenable to data scaling and which are
1176 not. Proceedings of Machine Learning Research

1188 **Behavioral testing/invariance checks (CheckList) Ribeiro et al. (2020).** Beyond benchmark ac-
1189 curacy, Ribeiro et al.’s CheckList formalizes behavioral testing for NLP through capability matrices
1190 and templated test types, surfacing brittleness to meaning-preserving edits. Our in-distribution (ID)
1191 perturbation experiments instantiate an analogous philosophy for program tracing: we build tests
1192 that target invariances (renaming, commutativity, neutral insertions) and quantify when those invari-
1193 ances are learned—showing that, in our setting, ID brittleness largely disappears once training data
1194 covers such variants.

1195 **Standard OOD framing (WILDS) Koh et al. (2021).** For in-the-wild distribution shifts across
1196 subpopulations and environments, WILDS provides a unified benchmark suite and evaluation pro-
1197 tocol. While our study deliberately uses synthetic data to isolate causal factors, our findings mirror
1198 the WILDS perspective that OOD performance can degrade sharply—and that robustness depends
1199 on the nature of the shift. In particular, we observe length extrapolation but failure on deeper nesting
1200 and on new variable names, suggesting that some axes may require explicit exposure or inductive
1201 bias rather than mere data volume.

1202 **Code execution with sequence models (Learning to Execute) Zaremba & Sutskever (2014).** Our
1203 code-tracing task sits in a tradition of training sequence models to execute or reason about programs.
1204 Zaremba & Sutskever’s Learning to Execute showed that LSTMs can learn to map character-level
1205 programs to outputs—provided careful curricula—highlighting both the promise and pitfalls of se-
1206 quence models for program semantics. We extend this trajectory by studying step-by-step execution
1207 traces with tiny Transformers, enabling controlled ID/OOD stress-tests of invariances and composi-
1208 tionality.

1209
1210 **Additional related work.** Beyond the works already discussed, pretraining and data diversity can
1211 improve robustness but do not guarantee OOD gains: pretrained Transformers are generally more
1212 robust than older architectures yet still brittle under distribution shift (Hendrycks et al., 2020), and
1213 large-scale studies report only limited OOD improvements even as ID accuracy rises (Miller et al.,
1214 2021). At the same time, small amounts of targeted counterexamples can disproportionately help
1215 models unlearn shortcuts and generalize beyond spurious cues (Tu et al., 2020; Fang et al., 2022).
1216 On the compositional side, COGS complements SCAN/CFQ/PCFG in showing large train–test gaps
1217 under syntactic/semantic recombination (Kim & Linzen, 2020). Methodologically, simple train-
1218 ing/architecture choices (e.g., positional schemes, stopping criteria) can materially shift systematic
1219 generalization (Csordás et al., 2021), and causal LMs may learn positional information even with-
1220 out explicit encodings (Haviv et al., 2022). These findings contextualize our axis-dependent OOD
1221 results (length vs. depth) and our positional-encoding ablation.

1222
1223 I DETAILED DISCUSSION OF LIMITATIONS

1224 **1. Using synthetic, manually generated data.** While the use of synthetically generated data
1225 via manually defined algorithms allows for controlling the data distributional properties for precise
1226 model behavior probing, it inevitably lacks the variety of concepts naturally present in real-world
1227 datasets—a factor known to contribute heavily to the performance of pre-trained language
1228 models. Our models, by only being trained on a synthetic distribution, may have lacked the necessary
1229 exposure to a broader variety of adversarial samples that would contribute to their robustness.

1230 **2. Limiting the study to tiny language models.** We intentionally restrict our experiments to
1231 models within small parameter counts to explore semantic learning in resource-constrained settings.
1232 However, this constraint may under-represent capabilities that emerge in larger models, particularly
1233 those operating at scale, where generalization and abstraction mechanisms are more solid. Our
1234 results thus reflect the behaviors and limitations of this lower capacity regime, and caution should
1235 be exercised in extrapolating them to foundation-scale models.

1236 **3. Focusing on a single architecture.** By exclusively targeting a specific decoder-only Transformer
1237 architecture, we do not explore how alternative architectures (e.g., encoder-decoder variants) might
1238 perform on the same task. These architectures may offer different mechanisms for memory and
1239 representation that could influence performance. As such, our conclusions are limited to a specific
1240 architectural family and may not extend to other model designs.

1242 J FREQUENTLY ASKED QUESTIONS (FAQ) 1243

1244 In this section, we address some of the frequently asked questions related to our work.
1245

1246 **Why focus the core task on assignments and conditionals?** We restrict the main experiments to
1247 assignments and conditionals (no loops or compound data types) to keep the task within a \sim 20M-
1248 parameter capacity regime. An earlier iteration of our setup included loops; tracing such a richer
1249 language required a 60M-parameter model trained on 15B tokens for 5 days per run, making our
1250 large number of controlled experiments computationally impractical. We therefore target a simpler
1251 subset (assignments and conditionals) that a 20M-parameter model can master, while the generator
1252 still natively supports loops and basic data structures for follow-ups. We believe that such a simpler
1253 language is a better testbed that enables cost-effective experimentation for us and for the community.
1254

1255 **How should the positional-encoding results be interpreted?** The ablation equalizes parameter
1256 counts by adjusting embedding dimension; thus, the observed advantage of absolute positions here
1257 should be read as task-specific rather than a universal ranking.
1258

1259 **Why use exact match (EM) over full traces as the primary metric?** Given our determinism
1260 filter, each step is a function of the previous one; partial-credit metrics can mask execution-breaking
1261 errors. EM on the full trace directly reflects end-to-end execution fidelity.
1262

1263 **Interpreting Early Robustness** Robustness to semantics-preserving edits emerges early in training,
1264 even when base accuracy is modest, suggesting that invariances are learned before full task
1265 mastery in this setting. This observation motivates more studies of training dynamics under con-
1266 trolled distributions.
1267

1268 **On why we use synthetic generation** Synthetic data gives exact control over coverage and OOD
1269 axes (length, depth, symbol pairs), letting us make causal statements that opaque pretraining corpora
1270 do not afford.
1271

1272 **On train-test determinism** We decouple efficient pretraining (windowed spans) from determin-
1273 istic evaluation (step-pair constraint) so that reported robustness is not confounded by context trunc-
1274 ation.
1275

1276 **On comparisons to large pretrained models** Our objective is controlled diagnosis rather than
1277 leaderboard ranking; we therefore avoid cross-model comparisons whose training distributions can-
1278 not be specified.
1279

1280 **On interpreting length vs. depth** Length extrapolation partially succeeds while deeper nesting
1281 fails, indicating that longer contexts do not substitute for hierarchical state tracking; this suggests
1282 curricula or architectural biases as promising directions.
1283

1284 **Early emergence of invariance to the five semantics-preserving edits** Invariance to
1285 semantics-preserving edits appears early in training and persists when edits are applied to the full
1286 test, indicating that it is not a selection artifact.
1287

1288 **On artifacts and reproducibility** We will release (with the camera-ready paper) the
1289 TinyTrace-Generator configuration, the whole framework code and scripts, and all train-
1290 ing/evaluation scripts to enable exact replication and easy insertion of new variants. We avoid
1291 releasing these with the paper during review as it is hard to fully anonymize our code.
1292

1293 K LLM ASSISTANCE DISCLOSURE

1294 We made light use of large language models (LLMs) to (i) polish grammar and phrasing in parts of
1295 the manuscript and (ii) help identify potentially relevant related work during the literature review.
1296 All modeling ideas, methodological choices, experiments, and conclusions are our own.
1297

1296 **L REPRODUCIBILITY STATEMENT**
1297

1298 We strive to make all results fully reproducible. The problem setup and method are specified in the
1299 main text, and all implementation choices, training protocols, and evaluation procedures are cross-
1300 referenced there and detailed in the appendix (hyperparameters, optimization settings, ablations,
1301 and exact model configurations). We will release (with the camera-ready paper) the full source
1302 code, datasets, and evaluation scripts, including all parameters and hyperparameters used to produce
1303 every table and figure, as well as configuration files for each experiment, random seeds, and step-by-
1304 step run commands. The repository also includes environment specifications (e.g., requirements),
1305 preprocessing utilities for data, and scripts to reproduce metrics and plots.

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349