A MINIMALIST APPROACH FOR EXPLORING TRANS-
FORMER ROBUSTNESS TO IN-DISTRIBUTION AND
OUT-OF-DISTRIBUTION SAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their strong performance across tasks, large language models (LLMs) still
have limitations in their ability to generalize. Recent studies show that even state-
of-the-art LLMs exhibit significant accuracy fluctuations when evaluated on su-
perficially modified versions of the same benchmarks, suggesting potential gaps
in their ability to generalize. We argue that current evaluation methods, which rely
heavily on large Transformer-based models trained on massive and often opaque
datasets, often make it difficult to disentangle whether limitations arise from ar-
chitecture, data coverage, or other factors. While addressing this question in full
requires considerable computational resources, we propose a cost-effective, pre-
liminary investigation. Our approach involves training a tiny Transformer-based
decoder-only language model (with tens of millions of parameters) from scratch
on a custom code reasoning task. To train this model, we generate data using
a synthetic data generation tool that allows precise control over data distribution
and volume. We perform multiple experiments using our framework to study the
in-distribution and out-of-distribution robustness of these models, revealing their
behavior under controlled settings.

1 INTRODUCTION

Large language models (LLMs) can be brittle to seemingly small, meaning-preserving input
changes. For example, Mirzadeh et al.| (2024) show that state-of-the-art models, despite strong
scores on GSMS8K (Cobbe et al.,|2021), suffer sizable drops on slightly altered versions of the same
problems. Similar fragility to minor perturbations (typos, synonyms, rephrasings) has been widely
documented in NLP (Moradi & Samwald, [2021)), and recent analyses indicate that even advanced
LLMs may rely on superficial token biases that flip decisions under semantics-preserving edits (Jiang
et al.} |2024). In the code domain, related robustness limitations appear under semantics-preserving
mutations (renamings, refactorings, neutral insertions), where neural code models and code-specific
LLMs can change predictions despite unchanged program semantics (Henkel et al., [2022; Bielik &
Vechev, 2020; (Orvalho & Kwiatkowskal [2025). Beyond in-distribution (ID) semantics-preserving
edits, Language Models (LMs) also struggle under out-of-distribution (OOD) shifts, especially com-
positional and structural changes, where scaling data and model size often yield limited gains (Key-
sers et al., |2020; [Tsarkov et al., 2021} |Anil et al., [2022).

While it is established that (i) LMs are sensitive to ID semantics-preserving changes and (ii) OOD
generalization remains challenging, key questions persist. How far can data scaling alone improve
ID robustness? Evidence suggests benefits, but it remains unclear whether data scaling alone can
fully eliminate ID brittleness, or whether architectural/training changes are required. For OOD, we
lack controlled studies that identify whether some axes (e.g., length increase vs. depth increase)
remain difficult even under extensive data scaling. And how much data coverage is sufficient (and
necessary) to unlock invariance and compositional generalization? Progress is hindered because
many studies rely on large, opaque pre-training corpora, obscuring whether failures stem from data
coverage, architectural limits, or other reasons. Answering these questions is difficult: it requires
precise knowledge of the training distribution and of train—test shifts, and modern LLMs make
controlled experimentation computationally prohibitive.

To address these challenges, we analyze robustness using tiny transformer-based language models
trained from scratch on a custom code tracing task, which we call TinyTracing. In this task, the
model reads a short program and writes a step-by-step trace of its execution, at each step indicating
which line is being executed and what the current variable values are (Liu et al., | 2023). The task
is (1) simple enough for tiny models to learn; (2) rich in concepts (symbolic variables, arithmetic,

control flow); and (3) paired with tooling that allow data generation while controlling train/test
distributions (details on the TinyTracing task and data generation tool in[Sec. 2)).

With this environment, we train a decoder-only transformer-based language model from scratch
on synthetic TinyTracing datasets (the architecture and dataset are described in [Sec. 3). We then
evaluate ID/OOD robustness using a set of experiments: (i) ID robustness to semantics-
preserving alterations (e.g., variable renaming, neutral line addition; [Sec. 4.T); (ii) generalization to
unseen samples under controlled coverage of variable-pair combinations in arithmetic expressions
(Sec. 4.2); and (iii) OOD generalization to longer snippets and higher nesting depth (Sec. 4.3).

By synthesizing data, our framework gives fine-grained control over the training and test distribu-
tions: we can (a) isolate and hold out specific pattern classes, (b) tune coverage of those classes in
the training set, and (c) orthogonally manipulate OOD axes (e.g., symbol coverage, sequence length,
nesting depth) while keeping all other axes fixed. This control lets us ask questions that are hard
to explore with opaque LLM pre-training. For example, we use our framework to explore the fol-
lowing questions, not yet explored in the literature: (i) whether increasing ID data alone eliminates
brittleness to a set of semantic-preserving edits that we study; (ii) when does robustness to these
semantics-preserving edits emerge during training, early in training (before loss convergence), or
only later? (iii) whether some OOD axes remain difficult when increasing data alone (e.g., increas-
ing code depth vs length); and (iv) how much coverage/minimal exposure to certain data patterns is
enough to enable generalization?

Summary of findings. (1) Training on larger ID datasets largely diminishes ID brittleness to the
semantics-preserving edits we study. (2) Surprisingly, robustness to these semantics-preserving ed-
its emerges early in training, even when the accuracy of the model is still modest (at the 1st epoch).
(3) Providing limited coverage of certain code patterns in the training set (e.g., variable-pair combi-
nations used in expressions of the form var = varl op wvar2)is enough to obtain high accuracy
on unseen cases of those code patterns (e.g., new variable-pairs). (4) The same model in our tests
partially extrapolates to longer sequences but fails on deeper nesting, showing qualitatively different
difficulty across OOD axes. These results clarify cases when data scaling helps, where it might fall
short, and quantify how limited coverage relates to certain types of compositional generalization.

In this paper, we study decoder-only Transformer-based language models trained from scratch on a
simple programming language for a controlled code-tracing task. Therefore, our findings apply to
this setting and do not necessarily generalize to other architectures, tasks, or ID/OOD types. Instead,
they motivate the need for more controlled experiments where train/test distributions are known and
manipulable, as a complementary path to large-scale evaluations for better understanding of LMs.

In summary, our contributions are as follows: 1) We propose a cost-effective framework to study
the robustness of transformer-based decoder-only language models in in-distribution and out-of-
distribution settings; 2) We show that training on larger ID datasets largely reduces ID brittleness to
the semantics-preserving edits that we study; 3) We show that robustness to the semantics-preserving
edits that we study appears early in training, even when the accuracy of the model is still modest;
4) We find that providing limited coverage of certain patterns is enough to obtain high accuracy
on unseen cases of those patterns; 5) We release the full framework, data generation, training, and
evaluation scripts, along with the datasets, to the community (will be released with the camera-ready
paper to keep anonymity).

2 DESIGNING THE PROBING TASK AND THE DATA GENERATION TOOL

2.1 TINYTRACING TASK

We propose a controlled experimental setup in which models are trained to perform the task of 7iny-
Tracing. This task requires the model to take code as input and to generate its line-by-line execution
steps (execution trace) by duplicating the code snippet at each execution step and annotating the du-
plicate with corresponding execution information, including the instruction pointer and the variable
states (a depiction of the TinyTracing task in[Figure). By adjusting the complexity of the program-
ming language and code snippets used for tracing, the task can be adapted to fit the computational
budget of users, allowing cost-effective experiments.

2.2 DATA GENERATION TOOL

To complete our experimentation setup, we need to be able to access arbitrary quantities of data
with precisely controlled distributional characteristics. To this end, we propose a data generation

input snippet

code
c=2
a=c-1
while ¢ > 0:
if c==1:
=ax*2

Voc=2 H

@a=c-18)c22 ;

i while ¢ > 0: 1@while c > 0: 21 while c > 0:

ifc==1: | if c==1: 1@ ifc==1:@c?2; a1
a=ax?2 H a=a=*2 H a=ax*?2

c=c-1 R c=c-1 B c=c-1 o

Figure 1: Illustration of the TinyTracing task. At each execution step (we show the first 4 steps),
the entire input code snippet is duplicated and annotated with corresponding execution information:
The instruction pointer value is represented by setting a special symbol (here @) to the left of the
current line to be executed, and the variable states are presented as (key, value) pairs to the right of
the current execution line. A special symbol (here #STEP) indicates the beginning of a new step
(see Appendix @ for a full example).

tool, referred to as TinyTrace-Generator. This tool enables the synthesis of random code snippets
that are expressed in a subset of Python (or in Python) and that follow a certain data distribution
(defined using a set of constraints on the Python language). The tool also allows the creation of
the execution trace of these snippets according to the format of the TinyTracing task. TinyTrace-
Generator is structured as a three-stage pipeline, as illustrated in[Figure 2] and is described in greater
detail in the following paragraphs.

Use:

User-Defined High-Level § User-Defined Low-Level
Generation Rules Generation Rules
x Number of desired snippets

I
H 1 gPython Snippets Generation 2 g Code Tracing Generation 3 g Determinism Filtering

:) snippet generator code tracer

H ippet tep-1 | istep-2 |

B [Skeletun Cunstruction][Code Instantiation] PSR, { # code ®: [Smppe I Tep I ek] ,
i i # code c=2 H H i

a=c-1
while ¢ > 0:

@c=2

a=c-1
while c > @:

code context window(|

[WHILE LOOP] azc-1
[1F STATEMENT]—| while ¢ >

[ASSIGNMENT] if o

o
[WHILE UPDATE] azax2
Lc =c-1

1
1
[

e '*cszc:ai- 1a72 i context:window @

context windowf3 |

L [snippet | step-1 I i step-2]} i
ald < B

Runtime Constraints Fitlering

Figure 2: TinyTrace-Generator as a three-stage pipeline.

As depicted in the leftmost part of the first stage of TinyTrace-Generator produces code
snippets for the task using an imperative, rules-based generator. It runs two coupled processes:
skeleton construction (builds an abstract snippet with high-level keywords) and code instantiation
(turns those keywords into concrete Python). Both are driven by user-defined procedural rules.

Further details appear in

The second step of the pipeline involves generating the execution trace of code snippets created in
the first stage. It leverages the debugging capabilities provided by the Python standard library to
generate tracing. This setup not only enables straightforward access to key runtime information,
such as the program counter and the state of variables, but also facilitates the implementation of
runtime filtering barriers. These barriers serve to enforce constraints on runtime properties that can-
not be determined during snippet generation. Depending on the specific requirements of the target
experiment, such filters may include the detection of undesirable variable values during execution
(e.g., excessively large integers), an unexpected number of loop iterations (including infinite loops),
or simply the occurrence of runtime exceptions.

The third and final component of TinyTrace-Generator ensures that the generated tracing data allows
deterministic inference. For each generated snippet, we check that every two consecutive steps (code
duplicates) in its execution trace fit within the Transformer’s context window after tokenization.
This guarantees that during inference, the model has full access to the preceding execution step
when generating a new one, preserving determinism. The generated snippets that do not meet this
condition are filtered out. The application of this last stage can be considered optional, depending
on the use of the data: For instance, for training, this may not be necessary as the random sampling
of token batches from the training corpus is task-unaware, while for supervised fine-tuning or model
evaluation, this stage is required so that inference becomes deterministic (Appendix [C.3).

While the code generator supports the generation of loops and complex data structures, in this paper,
we do not generate code that has loops or complex data structures.

3 MODEL, DATA AND EVALUATION METHODOLOGY

This section details the model architecture and the subset of Python that we use in our experiments.
It also defines the evaluation protocol and metric used to measure model performance.

3.1 MODEL ARCHITECTURE

For our experiments, we employ a custom, decoder-only Transformer architecture, which we train
from scratch. We use NanoGPT: a small-scale, open-source implementation inspired by GPT-2, de-
veloped by |[Karpathy| (2022). The model is designed to be small enough for rapid experimentation
while being sufficiently powerful to learn the TinyTracing task. The architecture comprises 12 lay-
ers, 16 attention heads, and an embedding dimension of 368, resulting in approximately 20 million
trainable parameters. The context window is set to 512 tokens. Each Transformer block utilizes
a pre-Layer Normalization, employing RMSNorm for normalization before the self-attention and
feed-forward sub-layers. The feed-forward network uses a 4x expansion factor and a SiLU activa-
tion function. For tokenization, we use a custom tokenizer with a fixed 77-token vocabulary tailored
to the TinyTracing syntax (identifiers a—z, keywords, operators, punctuation, tracing markers), with
no learned subword segmentation. This keeps symbols atomic. More details about the tokenization
and hyperparameters are in Appendices|C.2] and [C.3]

3.2 DATASET

To create a controlled and reproducible experimental environment, all datasets used in our experi-
ments are synthesized using the TinyTrace-Generator under a set of constraints that define a subset
of Python that we use in our experiments.

Given the limited capacity of our small Transformer models (and limited computational budget),
we focus on a minimalist subset of the Python language, ensuring the TinyTracing task remains
learnable. This subset is built around the following programming constructs: variable assignments,
arithmetic operations, and conditionals. We enforce the following constraints to define this Python
subset: 1) Syntactic Constraints: The grammar and vocabulary of the generated code are inten-
tionally limited. The grammar includes variable assignments, i £ conditional, and arithmetic expres-
sions. Variable identifiers are restricted to a fixed set of 26 single lowercase letters (a—z). Arithmetic
operations are limited to addition and subtraction (+, —), while conditional comparisons are limited
to less-than and greater-than operators (<, >). The only supported data type is integers, and integer
values are limited to be within the range [-99, 99]; 2) Structural Constraints: The overall struc-
ture of the code snippets is also bounded. The total number of statements in any generated snippet
is constrained to be between 5 and 10. Furthermore, the maximum nesting depth for control flow
blocks (i.e., 1 f statements) is limited to two; 3) Runtime Constraints: Any generated snippet that
results in a variable holding an integer value outside the range of [-99, 99] at any point during its
execution is discarded. This filter ensures that the model only needs to learn representations for a
bounded and manageable range of integer values.

We generate a dataset of 3 million code snippets that follow the distribution described above. We
use this dataset (or sub-samples from this dataset sampled randomly), depending on the experi-
ment. Unless stated otherwise, all experiments use the dataset generated under the distribution and
language constraints defined previously; deviations (e.g., using longer code snippets) are explicitly
noted where they occur. We use a hash-based deduplication method to ensure that code snippets in
the dataset are unique across the training, validation, and test sets (detailed in Appendix [C.4).

3.3 EVALUATION METHOD AND METRIC
We evaluate the model performance using Exact Match Accuracy. For each test sample, the model

autoregressively generates the complete execution trace given the code snippet as a prompt. A
generated trace is considered correct only if it is a character-for-character match to the ground truth.
3.4 MODEL TRAINING

We train our base model on a dataset of 3 million code snippets that follows the distribution of the
Python subset described in The total number of tokens is 933 million. We use 4 x A100
GPUs, each with 80GB of memory, to train the model, and the training takes 1.5 hours (for 4 epochs).
The model achieved an exact match accuracy of 100% on a test set of 1024 samples that follows the
same distribution as the training set. In the experiments reported later, we intentionally vary dataset

size, training epochs, and dataset distributions depending on the experiment (e.g., smaller datasets
require the use of more epochs to reach convergence). The base model reported in this section (and
its accuracy) would help the reader contextualize the experiments and results reported later. Unless
otherwise stated, all experimental models are architecturally identical to the base model; only study-
specific knobs (e.g., dataset size, number of epochs) are varied (more details in Appendix [C.I).

4 STUDYING IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION ROBUSTNESS

4.1 ROBUSTNESS TO IN-DISTRIBUTION SEMANTICS-PRESERVING ALTERATIONS

We first study the behavior of our model when exposed to different in-distribution semantics-
preserving alterations. The goal is to explore how the model reacts when exposed to altered versions
of code snippets that it can already execute correctly, while ensuring that these altered versions re-
main within the distribution of the training data. We also want to study how this in-distribution
robustness evolves as a function of training-set size and the amount of training.

Our in-distribution alteration operators are as follows: (1) Variable renaming: variable identi-
fiers are replaced with other valid identifiers from the same distribution, preserving semantics. (2)
Comparison symmetry: conditional comparisons are made equivalent by simultaneously swapping
operands and flipping to the symmetric comparator (e.g., a < b — b > a). (3) Addition commuta-
tivity: swap the order of operands in addition expressions (e.g., a + b +— b+ a). This transformation
is applied exclusively to addition, since subtraction is not commutative. (4) Neutral operator: a +-0
or —0 is inserted in an assignment (e.g., x = y — x = y + 0), which preserves semantics; note that
0 naturally occurs in the training data range [—99, 99], so such edits are in-distribution. (5) Neutral
assignment: a new assignment is inserted at a random location, defining a fresh variable name not
used elsewhere, ensuring the execution trace is unaffected. An example illustrating these alterations
is presented in Appendix [D]

For our experiments, we create four distinct training datasets containing code snippets that follow
the same distribution described in[Sec. 3] These datasets include, respectively, 3M, 1.5M, 750K, and
375K snippets. On each of these four datasets, we train our model for eight epochs. We evaluate
the model at the end of each epoch on a test set composed of 1024 snippets that follow the same
distribution as the training dataset. We ensure that the test set snippets are not seen during training
(more details about deduplication in Appendix . Then, for each evaluation, we isolate the code
snippets that were correctly executed. We then apply each of the 5 semantics-preserving operators on
these correctly executed snippets (we apply one at a time). We obtain 5 different new test sets. Each
set is the result of applying exactly one operator; operators do not co-occur within a single snippet or
a single test set. After applying the semantics-preserving edits, the new altered codes remain within
the distribution of the training set (altered codes that exceed 10 statements are discarded).

Figure 3|shows the results. Analyzing these plots reveals many observations: First, the trained model
is robust to in-distribution semantics-preserving alterations; Second, if the model can successfully
trace a program, it also tends to successfully trace its semantically equivalent variants produced
by our five operators; Third, substantial robustness to our in-distribution semantics-preserving alter-
ations appears in the early stages of training, while the model still has modest accuracy. Interestingly,
this is true even when the performance of the base accuracy of the model is relatively low, which is
especially visible in datasets 2 to 4. For example, at the first epoch in dataset 2, despite the accu-
racy on the base test set being at around 40%, the performance on the altered test sets reaches 90%.
Furthermore, while the different experiments display an improvement in accuracy with more train-
ing, we notice considerable drops for the neutral assignment operator, especially in the more size-
restricted training datasets (datasets 3 and 4). Comparable perturbations were noticed by [Mirzadeh
et al. (2024) when they applied a similar neutral expression addition to the GSM8K benchmark
and found significant performance drops in state-of-the-art LLMs. However, no assurance could be
brought concerning whether their alteration operator would strictly fall into the training distribution
of the LLMs, contrary to our case, since neutral assignments appear in the training dataset.

Robustness on the full test set (not on successfully traced snippets only) To test whether the
robustness to our five semantics-preserving edits reported in the previous experiment reflects genuine
invariance rather than a selection artifact, we repeat the previous experiment but without success-
only conditioning. We instead apply the edits to every item in the held-out test set (one operator at a
time as we did before). Figure[I2]in Appendix [E]shows the results. In this success-agnostic setting,
we observe that the accuracy under each edit closely matches the accuracy on the unaltered test,

Dataset 1 (3M) Dataset 2 {1.5M)

98

96

94

Hard Accuracy (%)
Hard Accuracy (%)
~
3

92

—e— Base
Variable Renaming
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 —=— Neutral Operator

Epochs. Epochs —=— Comparison Commutativity
Dataset 3 (750K) Dataset 4 (375K)

90

—+— Neutral Assignment
—— Arithmetic Commutativity

100

90

80

Hard Accuracy (%)
Hard Accuracy (%)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Epochs Epochs

Figure 3: Robustness on successfully traced codes to in-distribution alterations

indicating that the model is robust to the edits. Because this holds without filtering to already-traced
codes, the earlier robustness is not a by-product of selecting successfully traced snippets.

4.2 GENERALIZATION TO UNSEEN DATA SAMPLES UNDER CONTROLLED DATA COVERAGE

In this experiment, we investigate the ability of our model to handle code assignments of the form
var = varl op var2 when a controlled subset of variable pairs is deliberately excluded from
the training distribution. For example, if we exclude assignments that have (a,b) on their right-
hand side from the training set, can the model learn to trace code snippets that have the excluded
assignments? Variable names in the right-hand side of assignments are drawn uniformly from the
26 lowercase letters, which yields a total of 26 x 27/2 = 351 distinct unordered pairs of variables
(we consider the pair (a, b) to be identical to (b, a)). If the pair (a, b) is excluded, then assignments
suchas x = a + bory = b — a will never appear in the training data. Unordered pairs are
taken with replacement, which means that pairs of the form (v, v) exist (e.g., (a, a)).

To enforce this systematically, we construct training datasets of 3 million TinyTracing snippets while
forbidding a fixed percentage of the 351 possible pairs. The exclusion percentages range over
{10, 20, 30, ..., 90, 95,96, 97,98,99, 100}. For example, in the 10% setting, we remove 35 pairs,
so the model can still observe 316 different variable pair combinations. At the extreme, in the 100%
setting, all 351 pairs are excluded, meaning the training data contains no assignments of the form
var = varl op var?2.

Evaluation and test sets. For evaluation, we generate two test sets of 1,024 snippets each. The
first mirrors the training distribution and contains only allowed pairs; it is used to verify that the
model has properly learned from its training data. The second is constructed so that every snippet
includes at least one excluded pair, directly testing the model’s generalization to unseen combina-
tions. In the test set containing the excluded pairs, we ensure that the assighment containing the
excluded pair is guaranteed to be executed during program flow (i.e., we make sure it will be exe-
cuted if the program has if-conditionals).

Results and analysis. Figure [da] summarizes the model’s performance across the different ex-
clusion percentages. Performance on the Allowed Pairs Test remains consistently high across all
percentages, confirming that the model has successfully learned from the training data regardless of
the percentage of excluded variable pairs. This rules out underfitting as a source of error and ensures
that any observed degradation is specific to the excluded combinations.

For the test set containing excluded variable pairs, the model demonstrates strong generalization
even under limited data coverage. Accuracy remains above 80% for exclusion percentages up to
95%, indicating that the model can successfully handle unseen variable combinations even when
it was trained on a training set that has only 5% of the possible pairs. Performance begins to de-
cline at 98% exclusion, and when all variable pairs are excluded from training (100%), accuracy
collapses. This setting corresponds to a regime in which the model has never encountered a single
var = varl op var2 assignment during training, highlighting the fundamental limitations of
extrapolating to unseen patterns.

Exact Match Accuracy vs Scarcity Percentage
P G SR G S G S S S P

100

80

60

40

Exact Match Accuracy (%)

—e— Allowed Pairs Test
Excluded Pairs Test

10 20 30 40 50 60 70 80 85 90 95 96 97 98 99 100
Scarcity Percentage

(a) Exact Match Accuracy as a function of exclu-
sion percentage. “Allowed Pairs Test” corresponds to
the test set containing only permitted variable pairs,
while “Excluded Pairs Test” corresponds to the test

Exact Match Accuracy vs Scarcity Percentage

W

80

60

40

Exact Match Accuracy (%)

—e— Allowed Pairs Test
Excluded Pairs Test

10 20 30 40 50 60 70 80 85 90 95 96 97 98 99
Scarcity Percentage

(b) Exact Match Accuracy under global exclusion.
“Allowed Pairs Test” uses only permitted pairs, while
“Excluded Pairs Test” requires each snippet to con-
tain an assignment with a forbidden pair. In contrast

set containing at least one assignment with an ex-
cluded variable pair.

to Figure[da] removing pairs globally eliminates indi-
rect exposure and causes generalization to fail.

Figure 4: Accuracy as a function of exclusion percentage.

These results suggest that even a limited coverage of variable pairs, whether directly in assignments
or indirectly in other program contexts, is sufficient for the model to generalize beyond its training
distribution. However, when all occurrences of a construct are absent, performance breaks down
sharply, underlining the dependence of generalization on some form of exposure.

4.2.1 EXCLUSION ACROSS ALL CONSTRUCTS

In the previous setup, exclusions applied only to the right-
hand side of assignments. For instance, if the pair (a, b)
was excluded, then training snippets would never contain
assignments such as case (1) in Figure [5] but the same
pair could still appear elsewhere in the program, for example, in conditionals or one of the variable
appears on the left-hand side of assignments while the other on the right as in case (2). This means
that although (a,b) was never observed in the restricted assignment form, the model still received
indirect exposure to the pair in other contexts.

Figure 5: Exclusion regimes.

In the stricter regime introduced here, exclusions are enforced globally. Once a pair is excluded, it
is removed from all syntactic constructs in the training set. Continuing the same example, if (a, b)
is excluded, then none of the constructs illustrated in case (3) of Figure[5| would appear. As a result,
the model never encounters the excluded pair, removing the possibility of indirect learning.

Results and analysis. Figure[db|presents the exact match accuracy under global exclusion. Accu-
racy on the Allowed Pairs Test remains consistently high. However, performance on the Excluded
Pairs Test now deteriorates earlier as exclusion percentages increase (compared to the previous ex-
periment). Unlike the earlier setting where accuracy stayed above 80% even when 98% of pairs
are excluded, here the accuracy of the model drops below 80% when 60% or more of the pairs are
excluded globally. This contrast shows that the strong generalization observed previously relied on
indirect exposure to variable pairs in other roles. When coverage is removed globally, the inductive
bias of the model alone is insufficient, and extrapolation to unseen combinations diminishes.

4.3 GENERALIZATION TO OUT-OF-DISTRIBUTION SAMPLES
Our third study evaluates the model’s out-

S o 7 - o)
of-distribution generalization (OOD) (we i< O) (17w ©) [irsmoe
. . . = - if -76 < if -65 < -6:
use the same trained model described in i =58 > o ez 75+ s J
S . . . if -24 > 55: if e < H] =
ec. 3|unless mentioned otherwise). First, I b=os v=o7- 14 i€ 26 < ki

| y=16

we describe two new test datasets used to
evaluate the model’s OOD generalization
performance. We then present the results.

o In-distribution test snippet

e out-of-distribution test snippet (higher nesting depth)

9 out-of-distribution test snippet (Longer snippet)

OOD generalization tests. We test our
trained model on OOD data to measure its
ability to generalize. Before describing the
OOD perturbations, we highlight that the snippet examples of the in-distribution data are restricted
to comply with two constraints: the total number of statements must not exceed 10, and the if-
block nesting depth is limited to 2. Given these rules, we generate a test set that has two OOD
perturbations. First, the total number of statements is between 11 and 17, and second, the nesting

Figure 6: One ID and two OOD snippet examples

depth is between 3 and 4. The goal is to test the model on snippets with lengths and depths never
seen during training, justifying why such perturbations are considered OOD. All examples pass our
context-window filter (pairwise steps <512 tokens). Figure[6|shows an example, an in-distribution
snippet on the left (1) and two OOD test snippets, one with a higher nesting depth and one with
more statements ((2) and (3)).

Results and analysis. We evaluated the trained model on three test sets of 1,024 examples: the
first contained in-distribution data, while the second and third included out-of-distribution examples
with, respectively, deeper nesting and longer snippets (as described previously). The model achieved
100% exact match accuracy for in-distribution data, while struggling to trace any snippet with deeper
nesting (0%). In this case, the model fails at reproducing the snippets correctly because it does
not recognize the new nesting levels, thus clipping all lines at a depth of 3 or 4 to only 2. The
model occasionally deletes if statements when their nesting depth surpasses 2. The model managed
to trace correctly 43.65% of longer snippets. This difference in accuracy gives insight that OOD
generalization performance does not depend only on factors related to the model but also on the
nature of the distribution change. In this example, and within our evaluation settings, learning the
concept of nesting depth seems harder than the concept of snippet length.

4.3.1 GENERALIZATION ACROSS NESTING DEPTHS.

We further investigate whether the model can generalize along the axis of if-statement nesting.
Starting from the standard setup (maximum depth = 2), we expand the training distribution to
include snippets with depths 0-5 and increase the maximum number of statements to 15 to allow
more conditionals. We then probe generalization to deeper nesting depths by evaluating on snippets
with depths 6, 7, 8, and 9.

Concretely, we generate a base training set of 3 million snippets in which p% of snippets
have a depth in (6,7) and the remainder have a depth in {0,1,2,3,4,5}. We vary p €
{0,1,5,10, 20, 40,60, 80, 100}. At test time, we evaluate on five sets of 1,024 examples: (i) a val-
idation set sampled from snippets with maximum depth 5, and (ii) four sets containing only depths
6,7, 8, and 9, respectively (many of these test sets are OOD).

Detailed results and plots are provided in Appendix [[} The results show three consistent patterns.
First, even without exposure to depths > 6, the model extrapolates to depth-6 (94.9% exact match
at p=0). Here, p=0 indicates that the model is trained on snippets that have a maximum nesting
depth of 5 (therefore, the model did not see depths of 6 and above). Second, introducing only a
small fraction of depth-6 and 7 examples suffices to unlock generalization to both of these depths
(> 99% accuracy once p > 1) and to unseen depth-8 snippets (up to 99.4%). Third, the benefit
does not extend to depth-9: performance on depth-9 remains much lower, suggesting that exposure
to maximum depth X enables generalization to X + 1, but accuracy degrades beyond X + 1.

4.4 ABLATION STUDY

Supervised Fine-tuning (SFT) During the design of our framework, we also studied the effect
of Supervised Fine-tuning (SFT) Ouyang et al.| (2022) combined with Instruction Masking (Shi
et al.| (2024)) on the accuracy of the model in ID and OOD cases. To achieve this, we applied LoRA
(Low-Rank Adaptation) Hu et al.|(2021)) and instruction masking on our original trained model, then
evaluated the model on the same test sets used in [Sec. 431 Results show that the model obtained
shows slight but not substantial improvements in OOD generalization performance, while degrading
the model’s accuracy on ID data. Therefore, we decided not to use SFT and Instruction Masking in
our base model. More details in Appendix (G.I).

Relative Positional Encoding We compare three positional encoding schemes: (i) learned Ab-
solute Positional Embeddings (APE) Vaswani et al.| (2017); (ii) Relative Positional Embeddings
(RPE)|Shaw et al.|(2018)); and (iii) Relative Positional Bias (RPB)|Raffel et al.|(2020). To maintain
model comparability with the APE baseline, RPE and RPB models were implemented at the same
scale by adjusting only the embedding dimension while keeping layers, heads, and context window
fixed. Among all of these positional encodings, APE delivered the best accuracy across all the tasks;
therefore, we use it in our base model. The detailed results are presented in Appendix |[G.2}

5 RELATED WORK

1. Robustness of language models to in-distribution perturbations. Moradi & Samwald (2021)
showed that neural models suffer performance drops under semantically neutral perturbations such

as typos or synonym substitutions. Similarly, [Mirzadeh et al.| (2024)) tested LLMs’ mathematical
reasoning under modifications to numerical values or problem phrasing, revealing that accuracy de-
grades even when the logical structure remains. Jiang et al.| (2024) highlighted that single-token
changes can lead to incorrect inferences. Focusing on code, some early work explored neural mod-
els’ adversarial robustness (Henkel et al., [2022; Bielik & Vechev, 2020). A recent work close to
ours is that of (Orvalho & Kwiatkowska, 2025), who study semantics-preserving mutations applied
to code, though using pre-trained LLMs, and find that state-of-the-art code LLMs are not robust
to semantics-preserving edits. Their objective is different from ours, where we aim to control the
distribution of the training data to be able to perform fine-grained experiments.

2. Generalization of language models to out-of-distribution data. |Song et al.[(2025)) examined
OOD generalization and its relation to composition (under synthetic settings), showing the role of
induction heads in learning hidden rules. By evaluating the robustness of ChatGPT from an OOD
perspective, [Wang et al.|(2023) showed that its performance still has limitations, suggesting that this
domain is still underexplored. [Yuan et al.|(2023) highlights the importance of OOD benchmarks with
challenging distribution shifts to accurately measure OOD performance and suggests a standardized
benchmark. This aligns with our work since we can accurately control the distribution shift with
synthetically generated data.

3. Use of synthetic data and small Transformers. [Hupkes et al.[(2020) generates via grammars
synthetic datasets containing examples of basic string manipulation functions and studies how small
Transformers handle generalization on predicting the output of these string operations when com-
posed. (Nair et al.l 2024) explore curriculum learning by training small Transformers to predict
the output of small code snippets generated using context-free grammars with increasing levels of
difficulty. (Ontanon et al., |2021) leverages multiple toy tasks (duplication, cartesian product, etc.)
to analyze the effect of architecture on Transformers OOD generalization. Other work focuses on
testing arithmetic and symbolic tasks (McLeish et al.| [2024; |Qian et al., 2022; [Zhang et al., [2023)).
Unlike classic diagnostics like SCAN and the behavioral testing framework CheckList (Lake &
Baroni| 2018 |Ribeiro et al.} 2020), we study code tracing with a controllable generator to probe in-
variances and compositionality along symbol-coverage, length, and nesting axes. Whereas WILDS
targets in-the-wild distribution shifts across real datasets (Koh et al.l|2021)), our synthetic setup en-
ables precise train—test controls and minimal-exposure interventions that are hard to guarantee in
natural corpora. Finally, unlike Learning to Execute, which trained RNNs to map programs directly
to outputs (Zaremba & Sutskever, 2014), we use tiny decoder-only Transformers with stepwise exe-
cution traces to dissect ID robustness and OOD generalization.

Our study extends these directions by combining synthetic data generation, a code-tracing task, and
tiny Transformers to systematically analyze model robustness in an accessible fashion. A more
detailed discussion of related work is presented in Appendix

6 LIMITATIONS

1) Using synthetic data. Enables precise control of distributions but lacks real-world diversity;
training only on synthetic data may miss challenging cases and limit robustness. 2) Limiting the
study to tiny language models. Focuses on small models to study semantics under constraints;
findings may under-represent the capabilities of larger models. Therefore, we avoid extrapolating
to large-scale models. 3) Focusing on a single architecture. Results are specific to a decoder-only
Transformer and may not extend to other architectures (e.g., encoder-decoder variants). A more
detailed discussion of the limitations of this study is presented in Appendix [I}

7 CONCLUSION

In this work, we presented a minimalist, tightly controlled framework to probe robustness in
tiny decoder-only Transformers. Under this setup, we find that in-distribution brittleness to the
semantics-preserving edits we study is reduced as in-distribution training data increases, and this
invariance emerges early in training, even when the accuracy of the model is still modest. For com-
positional OOD, even limited coverage of variable-pair combinations (in expressions of the form
var = varl op var?2) yields high accuracy on unseen pairs. OOD behavior is shift-specific:
the same model partially extrapolates to longer sequences but fails on deeper nesting, and in this
setup, data scaling alone was not sufficient to yield generalization to deeper nesting. While our con-
clusions are limited to small models and a synthetic code-tracing task, the framework illustrates, in
this setting, when data scaling helps, where it falls short, and characterizes a graded dependence on
coverage, motivating broader controlled studies across architectures, capacities, and OOD axes.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length gener-
alization in large language models. In Advances in Neural Information Processing Systems,
volume 35, 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/fb7451e43f9clc35b774bcfad7ab5714b-Paper—Conference.pdf.
NeurIPS 2022.

Pavol Bielik and Martin Vechev. Adversarial robustness for code, 2020. URL https://arxiv.
org/abs/2002.04694.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Rébert Csordas, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail: Simple tricks im-
prove systematic generalization of transformers. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, pp. 619—634, Online and Punta Cana, Domini-
can Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.49. URL https://aclanthology.org/2021.emnlp-main.49/l

Yanbo Fang, Zuohui Fu, Xin Dong, Yongfeng Zhang, and Gerard de Melo. Assessing combinational
generalization of language models in biased scenarios. In Proceedings of the 2nd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th Interna-
tional Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 392-397,
Online only, November 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
aacl-short.48. URL https://aclanthology.org/2022.aacl—-short.48/.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pp. 1382-1390, Abu Dhabi, United Arab Emirates, Decem-
ber 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.99.
URL https://aclanthology.org/2022.findings—emnlp.99/.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song.
Pretrained transformers improve out-of-distribution robustness. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 2744-2751, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.244. URL https:
//aclanthology.org/2020.acl-main.244/.

Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh Jha, and Thomas
Reps. Semantic robustness of models of source code. In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 526-537. IEEE, March 2022. doi:
10.1109/saner53432.2022.00070. URL http://dx.doi.org/10.1109/SANER53432.
2022.00070L

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? (extended abstract). In Christian Bessiere (ed.), Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 5065—
5069. International Joint Conferences on Artificial Intelligence Organization, 7 2020. doi: 10.
24963/ijcai.2020/708. URL https://doi.org/10.24963/ijcai.2020/708. Journal
track.

Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng Wang, Tanwi Mallick, Weijie J. Su,
Camillo J. Taylor, and Dan Roth. A peek into token bias: Large language models are not yet
genuine reasoners, 2024. URL https://arxiv.org/abs/2406.11050.

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf
https://arxiv.org/abs/2002.04694
https://arxiv.org/abs/2002.04694
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/2021.emnlp-main.49/
https://aclanthology.org/2022.aacl-short.48/
https://aclanthology.org/2022.findings-emnlp.99/
https://aclanthology.org/2020.acl-main.244/
https://aclanthology.org/2020.acl-main.244/
http://dx.doi.org/10.1109/SANER53432.2022.00070
http://dx.doi.org/10.1109/SANER53432.2022.00070
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.24963/ijcai.2020/708
https://arxiv.org/abs/2406.11050

Andrej Karpathy. karpathy/nanoGPT, December 2022. URL https://github.com/
karpathy/nanoGPT.

Daniel Keysers, Nathanael Schérli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A com-
prehensive method on realistic data. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SygcCnNKwr. ICLR 2020; preprint
at arXiv:1912.09713.

Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 9087-9105, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.731. URL https://aclanthology.org/
2020.emnlp-main.731/.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure
Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
Wilds: A benchmark of in-the-wild distribution shifts. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 5637-5664. PMLR, 18-24 Jul 2021. URL
https://proceedings.mlr.press/v139/koh2la.htmll

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Jennifer Dy and Andreas Krause (eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pp. 2873-2882. PMLR, 10-15 Jul 2018. URL https:
//proceedings.mlr.press/v80/lakel8a.html.

Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang, Alexey Svyatkovskiy, Shengyu Fu, Neel Sun-
daresan, and Nan Duan. Code execution with pre-trained language models. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational
Linguistics: ACL 2023, pp. 4984-4999, Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.308. URL https://aclanthology.
org/2023.findings—-acl.308/.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transform-
ers can do arithmetic with the right embeddings, 2024. URL https://arxiv.org/abs/
2405.17399.

John Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar,
Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: On the strong correlation
between out-of-distribution and in-distribution generalization. arXiv preprint arXiv:2107.04649,
2021. doi: 10.48550/arXiv.2107.04649. URL https://arxiv.org/abs/2107.04649.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/abs/2410.05229.

Milad Moradi and Matthias Samwald. Evaluating the robustness of neural language models to input
perturbations. arXiv preprint arXiv:2108.12237, 2021.

Marwa Nair, Kamel Yamani, Lynda Said Lhadj, and Riyadh Baghdadi. Curriculum learning for
small code language models, 2024. URL https://arxiv.org/abs/2407.10194,

Santiago Ontanon, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. Making transformers solve
compositional tasks. arXiv preprint arXiv:2108.04378, 2021.

11

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://openreview.net/forum?id=SygcCnNKwr
https://aclanthology.org/2020.emnlp-main.731/
https://aclanthology.org/2020.emnlp-main.731/
https://proceedings.mlr.press/v139/koh21a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://aclanthology.org/2023.findings-acl.308/
https://aclanthology.org/2023.findings-acl.308/
https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2107.04649
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2407.10194

Pedro Orvalho and Marta Kwiatkowska. Are large language models robust in understanding code
against semantics-preserving mutations?, 2025. URL https://arxiv.org/abs/2505.
10443

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URLhttps://arxiv.org/abs/2203.02155.

Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. Limitations of language models in
arithmetic and symbolic induction, 2022. URL https://arxiv.org/abs/2208.05051l

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, January 2020. ISSN 1532-4435.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 4902-4912, Online, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.442. URL https://aclanthology.org/2020.
acl-main.442/.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions, 2018. URL https://arxiv.org/abs/1803.02155.

Zhengyan Shi, Adam X. Yang, Bin Wu, Laurence Aitchison, Emine Yilmaz, and Aldo Li-
pani. Instruction tuning with loss over instructions. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 69176-69205. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/7ffb43adf37b3eeaba559098bc084cc6-Paper—Conference.pdf.

Jiajun Song, Zhuoyan Xu, and Yiqgiao Zhong. Out-of-distribution generalization via composition: a
lens through induction heads in transformers. Proceedings of the National Academy of Sciences,
122(6):e2417182122, 2025.

Dmitry Tsarkov, Tibor Tihon, Nathan Scales, Nikola Momchev, Danila Sinopalnikov, and Nathanael
Schirli. *-cfq: Analyzing the scalability of machine learning on a compositional task. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9949-9957. AAAI Press,
2021. URLhttps://ojs.aaai.org/index.php/AAAI/article/view/17195.

Lifu Tu, Garima Lalwani, Spandana Gella, and He He. An empirical study on robustness to
spurious correlations using pre-trained language models. Transactions of the Association for
Computational Linguistics, 8:621-633, 2020. doi: 10.1162/tacl.a_00335. URL https:
//aclanthology.orqg/2020.tacl-1.40/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Haojun
Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue Zhang, and Xing Xie. On the robustness of chatgpt:
An adversarial and out-of-distribution perspective, 2023. URL https://arxiv.org/abs/
2302.12095.

Lifan Yuan, Yangyi Chen, Ganqu Cui, Hongcheng Gao, FangYuan Zou, Xingyi Cheng,
Heng Ji, Zhiyuan Liu, and Maosong Sun. Revisiting out-of-distribution robustness in
nlp: Benchmarks, analysis, and llms evaluations. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 58478-58507. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
bo6b5f50a200ladlcbccca96e693cdabd-Paper—-Datasets_and_Benchmarks.
pdf.

12

https://arxiv.org/abs/2505.10443
https://arxiv.org/abs/2505.10443
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2208.05051
https://aclanthology.org/2020.acl-main.442/
https://aclanthology.org/2020.acl-main.442/
https://arxiv.org/abs/1803.02155
https://proceedings.neurips.cc/paper_files/paper/2024/file/7ffb43adf37b3eeaba559098bc084cc6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7ffb43adf37b3eeaba559098bc084cc6-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17195
https://aclanthology.org/2020.tacl-1.40/
https://aclanthology.org/2020.tacl-1.40/
https://arxiv.org/abs/2302.12095
https://arxiv.org/abs/2302.12095
https://proceedings.neurips.cc/paper_files/paper/2023/file/b6b5f50a2001ad1cbccca96e693c4ab4-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b6b5f50a2001ad1cbccca96e693c4ab4-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b6b5f50a2001ad1cbccca96e693c4ab4-Paper-Datasets_and_Benchmarks.pdf

Wojciech Zaremba and Ilya Sutskever. Learning to execute. CoRR, abs/1410.4615, 2014. URL
http://arxiv.org/abs/1410.4615.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can
transformers learn to solve problems recursively?, 2023. URL https://arxiv.org/abs/
2305.14699.

A EXAMPLE OF FULL EXECUTION TRACE

We show an example of a full execution trace in Figure[7]

input snippet

code
c=2
a=c-1
while ¢ > 0:
if ¢

@a=c-18c?2:

while ¢ > 0: while ¢ > 0: {@while ¢ > 0: §1c?2 ; a?li while ¢ > o:

ifc==1: ifc==1: ifc==1 1@ ifc==1:§c?2; a1

i a=ax*2 2 : TETS i

oSz enlo L eEe sl BTSSR STt S i
#STEP [#STEP O (B o
c=2 ioc=2 i c=2 :
a=c-1 i a=c-1 fa=c-1 :
while c > 0: i [@while c > 0:@lc?1 ; a?1 | while c > 0:
if c==1: i if c==1: i@ ifc==1:@)c?1 ; a7l

: a=ax*?2 i =ax2 H =a %2

‘@ c=c-1@c?22; an1 ! c=c-1 P,

a=c-1 Pa=c-1 Poa=zc-1 a=c-1

while ¢ > 0: . while ¢ > 0: :@whilec>0:$c?0;a?2 1 while ¢ > 0:
: if ¢ = = 1: if ¢ = =1: : ifc==1: if c==1:
@ a=ax2@§c; a7l : a=ax*2 H a=ax?2 : a=ax*2
: c=c-1 ‘@ c=c-18c1; a?2 ! c=c-1 :

Figure 7: Illustration of the TinyTracing task. At each execution step (from 1 to 11), the entire input
code snippet is duplicated and annotated with corresponding execution information: The instruction
pointer value is represented by setting a special symbol (here @) to the left of the current line to
be executed, and the variable states are presented as (key, value) pairs to the right of the current
execution line. A special symbol (here #STEP) indicates the beginning of a new step.

B PYTHON SNIPPETS GENERATION

This section describes the full TinyTracing code generator for completeness, including constructs
such as while-loops and basic data structures. However, all experiments in the main paper in-
stantiate a restricted configuration that emits only programs with assignments and conditionals over
scalars (no loops, no recursion, and no compound data structures). Consequently, tokens and exam-
ples involving loops or data structures may appear in illustrative vocabulary tables, but they are never
sampled in our training, validation, or test sets. This separation lets us present a unified generator
while evaluating a simpler language necessary for our study.

13

http://arxiv.org/abs/1410.4615
https://arxiv.org/abs/2305.14699
https://arxiv.org/abs/2305.14699

B.1 PRELIMINARY CONCEPTS: SKELETON CONSTRUCTION, CODE INSTANTIATION, AND
THE CONTEXT STACK

As illustrated on the leftmost side of the snippet generator is structured around two distinct
yet complementary processes: skeleton construction and code instantiation. These processes do not
operate sequentially; rather, they function in tandem to produce randomly generated Python code
snippets that adhere to user-specified distributional properties.

To provide context, we begin with a high-level overview of the respective roles of these two pro-
cesses in snippet generation. The skeleton construction process, as the name implies, generates
an abstract structure or ’skeleton” of the code using a high-level intermediate language composed
of specific user-defined keywords. In parallel, the code instantiation process consumes these key-
words as they are produced, translating each into a corresponding fragment of concrete Python code.
Both processes are governed by a set of user-defined generation rules: high-level generation rules
control skeleton construction, while low-level generation rules govern code instantiation. These are
illustrated in blue in the top left corner of[Figure 2} representing the user input. It is precisely this pa-
rameterization via user-defined generation rules that enables the generator to produce code snippets
with the desired distributional characteristics for an experiment.

To further elaborate on the internal organization of the generation system underlying the snippet
generator, we now introduce a simple illustrative example. As previously noted, the set of keywords
used in skeleton construction—referred to as the keyword vocabulary—is defined by the user. In
the example considered here, the keyword vocabulary consists of three distinct keywords, which we
describe in detail in

As shown in the three keywords used in our illustrative example are well defined. How-
ever, to further develop the description of the generation system of the snippet generator, we need to
distinguish a special type of keywords from the others: the context creation keywords. These are
keywords that lead to the creation of a new execution context in a code snippet, which is represented
by indentation in the case of python (as an illustrative comparison, it is often the case in other lan-
guages, such as C or Java, that new execution contexts are represented with curly braces {}). Based
on this definition, two such keywords exist in our example from The [IF_STATEMENT]
and the [WHILE_LOOP] (Note that while our tool allows for generating ”while” loops, we do not
include them in the experimental setup presented in[Sec. 3).

o Instantiati
Skeleton Keyword Description HE;: ni;lleon
Corresponds to the initialization of a random vari-
[ASSIGNMENT] able name with a random constin’t’. The variable a=2

name can be one of ”a”, ”’b”, or ”’c”. The constant
can be between 0 and 9.

Corresponds to the conditional header of an "if”
[IF_STATEMENT] | block. The condition is of the form n < m where | if 1 < 3:
n and m are random numbers between 0 and 9.

Corresponds to the looping header of a “while”
block. The expression starts with ’c = 0” where
”c” is the control variable of the loop. Then comes c=0
the looping condition, which is of the form ¢ <
n” where n is a random number between 0 and 9.
Then directly under it and inside the loop is the
update expression of the loop’s control variable,
which is of the form "c=c + 1”.

whilec < 3:
c=c+1

[WHILE_LOOP]

Table 1: Illustrative example of a user-defined keyword vocabulary. Each keyword is given a de-
scription along with an instantiation example.

The motivation for distinguishing context creation keywords lies in the fact that many valuable ex-
perimental studies can be conducted by manipulating distributional features specifically related to
execution contexts creation. These features may include, for instance, the maximum number of

14

nested execution contexts, the permitted nesting combinations, or the maximum number of execu-
tion contexts allowed at a given depth. To enable controlled manipulation of such features—while
maintaining the flexibility and generality of the data generator—we introduced a specialized data
structure that plays a central role in the snippet generator: the context stack.

As its name implies, the context stack is a stack-based data structure that plays a pivotal role in the
snippet synthesis process. It not only facilitates the controlled creation of execution contexts but
also serves as a coordination mechanism between the skeleton construction and code instantiation
processes. Broadly speaking, a new level is pushed onto the stack whenever a new execution context
is introduced during generation, and correspondingly, levels are popped from the top of the stack
as these contexts are closed. Each level of the context stack is itself a composite data structure,
consisting of two distinct sub-components which are associated with the execution context that the
level corresponds to:

* A General Information Dictionary (GID). This component is an extensible dictionary
of user-defined (key, value) pairs designed to store relevant metadata about the associated
execution context. Such metadata may include, for example, the type of execution context
(e.g., loop, conditional), or metrics such as the number of code lines contained within
the context. The GID allows for flexible customization and tracking of context-specific
properties during snippet generation. These properties can then be used to further control
the generation.

* A Context Keyword Queue (CKQ). This component is a simple queue data structure
responsible for storing the sequence of keywords that will constitute the sub-skeleton of
the corresponding execution context. Typically, the CKQ is populated by the skeleton
construction process and later consumed by the code instantiation process.

illustrates the concepts outlined above on the structure and function of the context stack.

Example
[WHILE LOOP] D —

[ASSIGNMENT] _
Sorron keyword 1 g keyword 2 B

Context Stack

[ASSIGNMENT] [{: , .. }J
C_

Figure 8: Diagram illustrating a context stack with four nested levels (center), including a detailed
view of the substructures within a single stack level (right), and an example of a corresponding
skeleton that could give rise to such a stack configuration (left).

B.2 THE TINYTRACE-GENERATOR GENERATOR INTERFACE

Having established the foundational concepts of skeleton construction, code instantiation, and the
context stack, we can now present a comprehensive description of the underlying generation system
of the snippet generator.

The skeleton construction and code instantiation processes are each implemented as separate al-
gorithms: the Skeleton Construction Algorithm (SCA) and the Code Instantiation Algorithm
(CIA), respectively. Within these algorithms, users are to define the generation rules that encode the
data constraints required for their specific experiments: high-level generation rules are expressed
within the skeleton construction algorithm, while low-level generation rules are defined in the code
instantiation algorithm.

However, to ensure compatibility with the overall generation system, including integration with
the context stack, these generation rules must conform to a predefined algorithmic template. This
template, referred to as the TinyTrace-Generator Interface (TGI), is illustrated in

As shown in the TinyTrace Generator Interface consists of three core algorithms that
collectively define the generation system of the snippet generator. These three algorithms include:

15

1. The skeleton construction and code instantiation algorithms that we described previously.

2. A central Main Algorithm (MA) which is in charge of coordinating them.

By appropriately modifying the sections of the TGI designated for user-defined generation rules
within the SCA and the CIA—highlighted with a star (*) symbol in[Figure 9}—users can implement
a wide range of data distributions tailored to the requirements of their experiments. To demonstrate
how this flexibility is achieved, the following paragraphs will describe the structure and functionality
of each algorithm comprised in the interface, starting from the topmost component in[Figure 9} which
represents the main algorithm, before moving to the skeleton construction and code instantiation
algorithms.

- // Main algorithm. <

generate_code_snippet()

Global Variables:

1. code_snippet IR emnli // initial empty string which will contain the snippet.
2. +— [START] // the initial keyword for starting the generation loop.

3. context_stack] « — ContextStack() // a new instance of the ContextStack data-structure.

U, while: ;ﬁ [END] do:
S I 5.| __| [construct_skeleton()) // queues the new skeleton keywords at the top level of the context stack.

6. | HETWEEIWILI®) // instantiates the newly queued keywords one by one until reaching [END]

or creating a new fresh context.
7. fy3dityl code_snippet

p {// Skeleton Construction A'LgorithmJ \

---]---» |construct_skeleton()
keywords_sequence [EHN]

""" // Will contain the algorithm designed by the user to
User implement their high-level constraints via adequately

ngthevel populating the [[EUIYEILIENEY variable which will
enera ules }
77/ be enqueued at the top level of the(context_stack].

// After execution, (RIS YEMILIENES is populated.
// Tt is enqueued into the (EIITIECIENY of @SP top level of the (context_stack .

context_stack)-([€0p - (I r e - enqueue (I

- // Code Instantiation Algorithm. ~
for in (context_stacK).(top - (B L) do:

g

// Will contain the algorithm designed by the user to

4, User—-defined implement their low-level constraints via adequately

% Low-level appending code to (LR[TEINNAY and managing the
7 Generation Rules context_stack] based on the currentFrom the

keywords_queue i

Figure 9: The TinyTrace Generator Interface (TGI) of the snippet generator.

The Main Algorithm. This algorithm is implemented by the gener-
ate_code_snippet() function. It begins by initializing three global variables that are central to the
functioning of the generation system: code_snippet, keyword, and context_stack. Understanding
the role of each of these variables provides insight into the overall logic of the main algorithm and
offers a preliminary view of the two other auxiliary algorithms, which it coordinates:

16

* code_snippet: A string variable that accumulates the final generated code. It is initialized
as an empty string, which is to be progressively extended with new code fragments as they
are generated by instantiation.

* keyword: This variable holds the current skeleton keyword to be instantiated into a Python
code fragment. It is initialized with the special keyword [START] to enter the main gener-
ation loop (line 4) and is to be eventually set to [END] to signal the termination of snippet
generation.

¢ context_stack: This variable holds the context stack, which we described earlier and de-
picted in[Figure 8] It is initialized with a single level representing the outermost execution
context, which is also called indentation level 0.

Following these initializations, the main generation loop (line 4) is entered. The loop’s structure
is deliberately simple: at each iteration, it invokes the construct_skeleton() procedure (line 5),
followed by the instantiate_code() procedure (line 6). These two procedures correspond to the
Skeleton Construction and Code Instantiation algorithms, respectively, and will be described in
detail in the following dedicated paragraphs.

Broadly speaking, construct_skeleton() is responsible for generating new skeleton keywords—
according to user-defined rules—and queuing them in the topmost level of the context stack (i.e.,
the current context). These keywords are then sequentially dequeued and processed by instan-
tiate_code(), which translates each into a corresponding Python code fragment. This translation is
also governed by user-defined rules and may involve additional actions necessary to maintain consis-
tency with the overall generation system. Once the generation loop is exited, the final code_snippet
is returned (line 7).

VRN WA The Skeleton Construction Algorithm. This algorithm is implemented by the

construct_skeleton() procedure. The algorithm begins by initializing a local variable named key-
words_sequence. This variable, which begins as an empty list, is to be filled with the sequence of
new keywords that should be enqueued in the current context (i.e., the top of the stack). Right after
this initialization is the user-defined area for the high-level generation rules, which is the portion
of the interface that the user must edit in order to implement the desired high-level distributional
constraints. Basically, in order to integrate consistently with the rest of the generation system mod-
eled by the TGI, this user-defined region must populate the keywords_sequence variable with the
appropriate keywords to be enqueued in the current context, at the end of the construct_skeleton()
procedure, as shown by the interface.

The Code Instantiation Algorithm. This algorithm is implemented by the in-
stantiate_code() procedure. The algorithm begins by entering a local main loop. This main loop will
dequeue the keywords of the current context, one by one, into the global keyword variable. Inside
the loop is the user-defined area for the low-level generation rules, which is the portion of the in-
terface that the user must edit in order to implement the desired low-level distributional constraints.
Basically, in order to integrate consistently with the rest of the generation system modeled by the
TGI, this user-defined region must be implemented so that for each keyword, the corresponding
code fragment is appended to the global code_snippet variable, and, in case of a context creation
keyword, a new context must be pushed onto the context stack.

— provides an example of a TGI-consistent user implementation for the high-level and
low-level generation rules, expressed in pseudo-code. These user-defined generation rules allow for
generating Python snippets with the following distributional constraints:

1. High-Level Constraints:

* The snippets are always structured as an if block followed by an initialization state-
ment.

* The interior of the if block can either be structured as a while block followed by an
initialization, with a probability of 30%, or two consecutive initializations, with a
probability of 70%.

 The interior of the while loop is empty of any other constructs.
2. Low-Level Constraints:

17

* These are represented by the keyword translations described in [Table 1]

As illustrated in the example of the user-defined generation rules take the form of an
imperative description: that is, they are expressed through procedural algorithms which specify the
desired structure of the code snippets in a manner that integrates coherently with the rest of the
generation system imposed by the TinyTrace Generator Interface.

User-defined

! User-defined
High-level i N

Low-level

| _Generation Rules % Generation Rules %
if length(CIEETRI) = o:
if (EIR) = "ASSIGNMENT":
[keyuords_sequence RUSSN:
IF_STATEMENT, identifier < choose_randomly([a,b,c])
ASSIGNMENT, value < choose_randomly([0..9])
END EXEEETTES - append("identifier = value")
n
elif (BYIR) = "IF_STATEMENT":
else:
if ..-["block_type"] = "if_block": number_1 < choose_randomly([0..9])
r < random_number([6,1]) number_2 < choose_randomly([0..9])
if r < 0.3: .append("if number_1 < number_2")
[keywords_sequence JERRININIEN (context_stack]. push({"block_type": "if_block"})
WHILE_LOOP,
D elif LGN = "WHILE_LOOP":
else:
.append([control_identifier < choose_randomly([a, b, cl)
ASSIGNMENT, iterations < choose_randomly([0..9])
» [code_snippet JEISTE
control_identifier = @
.append([while control_identifier < iterations:
ASSIGNMENT, UNINDENT control_identifier = control_identifier + 1
n ")
else: (context_stack).(ush) ({"block_type": "while_block"})
[oywords_sequence ST
UNINDENT, elif EVIIN = "UNINDENT":
n
(context_stack]. ({5 ()
_ J U J

Figure 10: Example of a TGI-consistent implementation of the user-defined high-level and low-level
generation rules.

C MODEL HYPERPARAMETERS AND TRAINING DETAILS

C.1 MODEL TRAINING

We train from scratch with the AdamW optimizer using a two-phase schedule: Phase 1 runs for half
of the epochs with a linear warmup over the first 10% of steps from 10~* to a peak 10~2, followed by
cosine decay back to the initial LR; Phase 2 continues for the rest of the epochs with all LRs reduced
by 90% (initial 10~°, peak 10~%). Batches contain 512 examples and training uses data parallelism
on 4x NVIDIA A100 80GB GPUs. During training, mini-batches are randomly sampled at a fixed
context length T=512. Decoding at evaluation is greedy; the metric is strict exact-match including
all tracing markers (e.g., #STEP, @, $. . ., 7) across the full generated trace.

C.2 TOKENIZATION

We use a custom tokenizer that has a fixed 77-token vocabulary tailored to the TinyTrac-
ing format, enumerating the task’s lexemes (e.g., lower-case identifiers a—z; control keywords
if/elif/else/while; arithmetic/comparison operators {+, —, *, //, %, <, >, <, >, ==, |=};
assignment/punctuation; digits), together with the tracing markers (@, $, *, #STEP and newline).
Integers are tokenized at the character level: each decimal digit is a separate token, and the minus
sign (for negatives) is a separate token (e.g., -37 — ’-’, ’3’, °7°). This design keeps all symbols
atomic (no learned subwords).

Although the tokenizer contains a superset of operators, in this paper’s datasets, we only use {+, —}
for arithmetic and {<, >} for comparisons; the other operator tokens are not used.

18

C.3 MODEL HYPERPARAMETERS

Table [2] shows the hyperparameters we used when training our model.

Parameter Value

Model Type Decoder-only Transformer

Number of Layers 12

Number of Heads 16

Embedding Dimension 368

Context Window 512 tokens

Total Parameters ~20 Million

Normalization RMSNorm

FFN Activation SiLU

Positional Encoding Learned Absolute Positional Encoding

Table 2: Key hyperparameters of the probed Transformer model.

C.4 DATA DEDUPLICATION

To avoid duplicates, we enforce uniqueness during data generation: once a code snippet is generated,
it is hashed to produce a unique ID; if that ID has already appeared, the snippet is discarded and not
added to the dataset. For hashing, we use SHA-256 over the raw snippets. Deduplication is enforced
on the training, evaluation, and test sets.

To prevent leakage, we enforce global deduplication across train/validation/test. Concretely, we
maintain a single global hash set while constructing the corpus: any example whose hash is already
present is discarded before splitting. This procedure ensures both within-split uniqueness and cross-
split disjointness.

C.5 DETERMINISM AT EVALUATION VS. WINDOWED TRAINING.

In[Sec. 2.2} we require that two successive steps in the trace lie within the model’s context window to
preserve deterministic execution during evaluation (i.e., the next step is a function of the visible state
without truncation effects). By contrast, during pre-training we use standard windowed sampling:
random contiguous 512-token spans drawn from the corpus, which may cut across step boundaries
and do not enforce the step-pair constraint. This separation ensures (i) faithful, deterministic evalu-
ation and (ii) efficient, unbiased pre-training.

D EXAMPLES OF IN-DISTRIBUTION SEMANTICS-PRESERVING ALTERATIONS

Figure [TT]shows examples of our in-distribution semantics-preserving alterations.

E ROBUSTNESS TO IN-DISTRIBUTION SEMANTICS-PRESERVING
ALTERATIONS ON THE FULL TEST SET (NOT ON SUCCESSFULLY TRACED
SNIPPETS ONLY)

Figure[12|shows the results of the experiment.

F GENERALIZATION ACROSS NESTING DEPTHS

We describe here the experimental setup and detailed results for our study on generalization across
nesting depths. By “nesting depth,” we refer to the maximum number of nested if-blocks or in-
dentation levels in a Python snippet; for example, a snippet with a single if inside another if has a
depth of 2. The initial training corpus contained 3M snippets with maximum depths ranging from
0 to 5. For each percentage p € 0, 1, 5, 10, 20, 40, 60, 80, 100, we constructed a new training set by

19

Figure 11: Our in-distribution alteration operators (1-5). (1) Variable renaming: variable identi-
fiers are replaced with other valid identifiers from the same distribution, preserving semantics. (2)
Comparison symmetry: conditional comparisons are made equivalent by simultaneously swapping
operands and flipping to the symmetric comparator (e.g., a < b+~ b > a). (3) Addition commuta-
tivity: swap the order of operands in addition expressions (e.g., a +b — b+ a). This transformation
is applied exclusively to addition, since subtraction is not commutative. (4) Neutral operator: a +-0
or —0 is inserted in an assignment (e.g., z = y — = = y + 0), which preserves semantics; note that
0 naturally occurs in the training data range [—99, 99], so such edits are in-distribution. (5) Neutral
assignment: a new assignment is inserted at a random location, defining a fresh variable name not
used elsewhere, ensuring the execution trace is unaffected.

Dataset 1 (3M) Dataset 2 (1.5M)
100.0 100
97.5 90
z 0 g ®
z 3z
5 X} 5 N
£ £
B e
£ 00 e
60
875
50
85.0
40 —m— Variable Renaming
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Neutral Operator
Epochs Epochs < Comparison Commutativity
=%¥— Neutral Assignment
Dataset 3 (750K) Dataset 4 (375K) —— Arithmetic Commutativity
100 80
90
60
80
g
£a
g
H
20
s
* o
1 2 3 4 s 5 7 s 1 2 3 4 s s 7 s
Epochs Epochs

Figure 12: Robustness on the full test set to in-distribution alterations

keeping (100 — p)% of the original dataset and injecting (p/2)% of depth-6 and (p/2)% of depth-7
examples. This allows us to study the effect of gradually introducing deeper nesting patterns.

At evaluation time, we used five test sets of 1,024 examples each. The first was an in-distribution
(ID) set, sampled using the same technique as the training data. The remaining four sets were
maximum-depth test sets, each containing snippets in which the maximum nesting depth reaches 6,

20

7, 8, and 9 at least once. Nesting depths 6 and 7 were gradually introduced into the training data
as described above, so these sets became partially in-distribution at higher training percentages. In
contrast, nesting depths 8 and 9 were never included in training and thus remained fully out-of-
distribution (OOD) throughout the experiment. We reported the exact match accuracy for all test
sets.

Exact Match Accuracy vs Fraction of depth-6/7 in training

100
907
£ 5o
>
g 70 —e— Train dist.
§ 60 - Depth-6
;’1 50 —+— Depth-7
9 —o— Depth-8
2 409 —+— Depth-9
T 301
©
&g 204
101
0

0 1 5 10 20 40 60 80 100
Fraction of depth-6/7 in training (%)

Figure 13: Exact-match accuracy (%) as a function of the fraction of nesting depths 6 and 7 snippets
included in training. Curves correspond to evaluation sets with different maximum depths: the
training distribution (“labeled Train dist.”) and held-out deeper snippets (“Depth-6“, “Depth-7,
“Depth-8%, “Depth-9°). The plot illustrates three key trends: (i) zero-shot generalization to the
immediately deeper depth (Depth-6) even when no such examples are present in training (p =
0%), (ii) rapid stabilization of accuracy for depths 6-8 with minimal exposure (p > 1%), and (iii)
persistent degradation for Depth-9 across all fractions, highlighting limits of generalization to much
deeper structures.

The results show that when a model is trained on a dataset with maximum depth X, it generalizes
reliably to X + 1 nesting depths without explicit exposure. For example, depth-6 accuracy is high
even when the training set contains only depths up to 5, and similarly, depth-8 accuracy improves
once depth-7 examples are included. Moreover, introducing even a small fraction of deeper exam-
ples (e.g., 1%) is sufficient to extend robust generalization to higher depths, as seen for depths 6
and 7. However, exact-match performance drops sharply at depth-9 and for higher depths when the
maximum exposure in training is limited (e.g., X = 5), indicating that generalization rarely extends
beyond X + 2.

G EXTENDED ABLATION STUDY

G.1 SUPERVISED FINE-TUNING (SFT) AND INSTRUCTION MASKING FOR OOD
GENERALIZATION

In addition to evaluating the current model’s out-of-distribution generalization capabilities, we ex-
plored whether these can be improved using SFT and Instruction Masking. In this section, we
explain technical implementation details related to the pre-evaluation phase (fine-tuning the pre-
trained model), presenting in the process the hyperparameters at play when running the experiments,
followed by the best results we obtained.

Supervised fine-tuning explained. After training our model, we use LoRA (Low-Rank Adapta-
tion) to fine-tune it{Hu et al.| (2021). The data used for fine-tuning belongs to the same distribution
as that used to train the model. The difference lies in a technique called instruction masking, which
is described as follows: for each example in a batch, the model sees two parts, an input and an
output. Each token of the example belongs to one of these parts. The model initially attempts to

21

predict every token of the example based on the preceding tokens, but it only learns from tokens in
the output region. This is achieved by masking the logits generated after predicting tokens in the
input region.

Hyperparameters and Results. We conducted several fine-tuning experiments on the trained
model described in varying both data size (ranging from 65,536 to 2,097,152 examples)
and the number of epochs (between 1 and 8) we used AdamW with 5; = 0.9, 85 = 0.95, and a
weight decay of 0.1. The initial learning rate was set to 1 x 10~3 with cosine decay down to 10% of
its initial value, and a linear warmup over the first 10% of training steps. Fine-tuning was run with
a global batch size of 512 sequences (context length 512 tokens). Evaluation was performed every
2.5% of fine-tuning steps on a held-out validation set, with checkpoints saved for the best validation
loss. We used LoRA rank 8, with trainable low-rank adapters replacing linear layers and all other pa-
rameters frozen except LoORA weights and biases (reducing the number of trainable parameters from
20 million to 2.2 million). We then evaluated each model—including the pure trained model for
comparison purposes—on three test sets of 1,024 examples: the first contained in-distribution data,
while the second and third included out-of-distribution examples with, respectively, deeper nesting
and longer snippets. We present in Table [3|the corresponding evaluations for the pre-trained model
and the best model obtained from fine-tuning (this model version was fine-tuned on one million
examples, with the number of epochs set to 1).

Table 3: Evaluation results for the pre-trained and fine-tuned models (targeted distribution shifts :
deeper nesting and longer sequence)

Case ID Accuracy | OOD deeper nesting | OOD longer sequence
Pre-trained 100% 0.00% 43.65%
Fine-tuned 99.22% 0.00% 46.68%

We observe from Table [3] that the supervised fine-tuning technique slightly improved the out-of-
distribution generalization accuracy by just under 3% only for the task of tracing longer snippets,
while slightly degrading the pre-trained model’s performance on in-distribution data. This trade-off
suggests that supervised fine-tuning does not bring substantial improvements to the model’s out-of-
distribution generalization capabilities; therefore, we chose not to use this technique in our proposed
model.

G.2 ABLATION STUDY ON POSITIONAL ENCODING

In-Distribution Longer Snippets Higher Nesting Depth

Absolute Positional Encoding 100% 43.65% 0.00%
Relative Positional Encoding 82.62% 12.99% 0.00%
Relative Positional Bias 100% 24.80% 0.00%

Table 4: Accuracy of TinyTracing models trained with different positional encoding strategies. We
compare Absolute Positional Encoding, Relative Positional Encoding, and Relative Positional Bias
after 4 epochs of training. Models are evaluated on three test sets: In-Distribution, Longer Snippets,
and Higher Nesting Depth.This ablation study guides the choice of the base architecture for the

experiments presented in

H MORE DETAILED RELATED WORK

Compositional generalization diagnostics (SCAN) |[Lake & Baroni| (2018). A foundational line
of work measures systematic generalization with controlled, synthetic tasks. The SCAN bench-
mark of Lake & Baroni tests whether models can recombine primitives (“jump,” “twice,” etc.) into
held-out compositions; standard sequence models typically fail when generalization requires sys-
tematic composition rather than local interpolation (e.g., jump twice). Our TinyTracing setup plays
a similar diagnostic role—but in the code domain and with tight control over structural axes (symbol
coverage, length, nesting), letting us probe which axes are amenable to data scaling and which are
not. Proceedings of Machine Learning Research

22

Behavioral testing/invariance checks (CheckList) Ribeiro et al.|(2020). Beyond benchmark ac-
curacy, Ribeiro et al.’s CheckList formalizes behavioral testing for NLP through capability matrices
and templated test types, surfacing brittleness to meaning-preserving edits. Our in-distribution (ID)
perturbation experiments instantiate an analogous philosophy for program tracing: we build tests
that target invariances (renaming, commutativity, neutral insertions) and quantify when those invari-
ances are learned—showing that, in our setting, ID brittleness largely disappears once training data
covers such variants.

Standard OOD framing (WILDS) Koh et al.| (2021). For in-the-wild distribution shifts across
subpopulations and environments, WILDS provides a unified benchmark suite and evaluation pro-
tocol. While our study deliberately uses synthetic data to isolate causal factors, our findings mirror
the WILDS perspective that OOD performance can degrade sharply—and that robustness depends
on the nature of the shift. In particular, we observe length extrapolation but failure on deeper nesting
and on new variable names, suggesting that some axes may require explicit exposure or inductive
bias rather than mere data volume.

Code execution with sequence models (Learning to Execute)|Zaremba & Sutskever|(2014). Our
code-tracing task sits in a tradition of training sequence models to execute or reason about programs.
Zaremba & Sutskever’s Learning to Execute showed that LSTMs can learn to map character-level
programs to outputs—provided careful curricula—highlighting both the promise and pitfalls of se-
quence models for program semantics. We extend this trajectory by studying step-by-step execution
traces with tiny Transformers, enabling controlled ID/OOD stress-tests of invariances and composi-
tionality.

Additional related work. Beyond the works already discussed, pretraining and data diversity can
improve robustness but do not guarantee OOD gains: pretrained Transformers are generally more
robust than older architectures yet still brittle under distribution shift (Hendrycks et al., 2020), and
large-scale studies report only limited OOD improvements even as ID accuracy rises (Miller et al.,
2021). At the same time, small amounts of targeted counterexamples can disproportionately help
models unlearn shortcuts and generalize beyond spurious cues (Tu et al., |2020; Fang et al., [2022).
On the compositional side, COGS complements SCAN/CFQ/PCFG in showing large train—test gaps
under syntactic/semantic recombination (Kim & Linzen, 2020). Methodologically, simple train-
ing/architecture choices (e.g., positional schemes, stopping criteria) can materially shift systematic
generalization (Csordas et al., 2021)), and causal LMs may learn positional information even with-
out explicit encodings (Haviv et al.|[2022). These findings contextualize our axis-dependent OOD
results (length vs. depth) and our positional-encoding ablation.

I DETAILED DISCUSSION OF LIMITATIONS

1. Using synthetic, manually generated data. While the use of synthetically generated data
via manually defined algorithms allows for controlling the data distributional properties for precise
model behavior probing, it inevitably lacks the variety of concepts naturally present in real-world
datasets—a factor known to contribute heavily to the performance of pre-trained language mod-
els. Our models, by only being trained on a synthetic distribution, may have lacked the necessary
exposure to a broader variety of adversarial samples that would contribute to their robustness.

2. Limiting the study to tiny language models. We intentionally restrict our experiments to
models within small parameter counts to explore semantic learning in resource-constrained settings.
However, this constraint may under-represent capabilities that emerge in larger models, particularly
those operating at scale, where generalization and abstraction mechanisms are more solid. Our
results thus reflect the behaviors and limitations of this lower capacity regime, and caution should
be exercised in extrapolating them to foundation-scale models.

3. Focusing on a single architecture. By exclusively targeting a specific decoder-only Transformer
architecture, we do not explore how alternative architectures (e.g., encoder-decoder variants) might
perform on the same task. These architectures may offer different mechanisms for memory and
representation that could influence performance. As such, our conclusions are limited to a specific
architectural family and may not extend to other model designs.

23

J FREQUENTLY ASKED QUESTIONS (FAQ)
In this section, we address some of the frequently asked questions related to our work.

Why focus the core task on assignments and conditionals? We restrict the main experiments to
assignments and conditionals (no loops or compound data types) to keep the task within a ~20M-
parameter capacity regime. An earlier iteration of our setup included loops; tracing such a richer
language required a 60M-parameter model trained on 15B tokens for 5 days per run, making our
large number of controlled experiments computationally impractical. We therefore target a simpler
subset (assignments and conditionals) that a 20M-parameter model can master, while the generator
still natively supports loops and basic data structures for follow-ups. We believe that such a simpler
language is a better testbed that enables cost-effective experimentation for us and for the community.

How should the positional-encoding results be interpreted? The ablation equalizes parameter
counts by adjusting embedding dimension; thus, the observed advantage of absolute positions here
should be read as task-specific rather than a universal ranking.

Why use exact match (EM) over full traces as the primary metric? Given our determinism
filter, each step is a function of the previous one; partial-credit metrics can mask execution-breaking
errors. EM on the full trace directly reflects end-to-end execution fidelity.

Interpreting Early Robustness Robustness to semantics-preserving edits emerges early in train-
ing, even when base accuracy is modest, suggesting that invariances are learned before full task
mastery in this setting. This observation motivates more studies of training dynamics under con-
trolled distributions.

On why we use synthetic generation Synthetic data gives exact control over coverage and OOD
axes (length, depth, symbol pairs), letting us make causal statements that opaque pretraining corpora
do not afford.

On train—test determinism We decouple efficient pretraining (windowed spans) from determin-
istic evaluation (step-pair constraint) so that reported robustness is not confounded by context trun-
cation.

On comparisons to large pretrained models Our objective is controlled diagnosis rather than
leaderboard ranking; we therefore avoid cross-model comparisons whose training distributions can-
not be specified.

On interpreting length vs. depth Length extrapolation partially succeeds while deeper nesting
fails, indicating that longer contexts do not substitute for hierarchical state tracking; this suggests
curricula or architectural biases as promising directions.

Early emergence of invariance to the five semantics-preserving edits Invariance to
semantics-preserving edits appears early in training and persists when edits are applied to the full
test, indicating that it is not a selection artifact.

On artifacts and reproducibility We will release (with the camera-ready paper) the
TinyTrace-Generator configuration, the whole framework code and scripts, and all train-
ing/evaluation scripts to enable exact replication and easy insertion of new variants. We avoid
releasing these with the paper during review as it is hard to fully anonymize our code.

K LLM ASSISTANCE DISCLOSURE

We made light use of large language models (LLMs) to (i) polish grammar and phrasing in parts of
the manuscript and (ii) help identify potentially relevant related work during the literature review.
All modeling ideas, methodological choices, experiments, and conclusions are our own.

24

L REPRODUCIBILITY STATEMENT

We strive to make all results fully reproducible. The problem setup and method are specified in the
main text, and all implementation choices, training protocols, and evaluation procedures are cross-
referenced there and detailed in the appendix (hyperparameters, optimization settings, ablations,
and exact model configurations). We will release (with the camera-ready paper) the full source
code, datasets, and evaluation scripts, including all parameters and hyperparameters used to produce
every table and figure, as well as configuration files for each experiment, random seeds, and step-by-
step run commands. The repository also includes environment specifications (e.g., requirements),
preprocessing utilities for data, and scripts to reproduce metrics and plots.

25

	Introduction
	Designing the Probing Task and the Data Generation Tool
	TinyTracing Task
	Data Generation Tool

	Model, Data and Evaluation Methodology
	Model Architecture
	Dataset
	Evaluation Method and Metric
	Model Training

	Studying In-Distribution and Out-Of-Distribution Robustness
	Robustness to in-distribution semantics-preserving alterations
	Generalization to unseen data samples under controlled data coverage
	Exclusion across all constructs

	Generalization to out-of-distribution samples
	Generalization across nesting depths.

	Ablation study

	Related Work
	Limitations
	Conclusion
	Example of Full Execution Trace
	Python Snippets Generation
	Preliminary Concepts: Skeleton Construction, Code Instantiation, and the Context Stack
	The TinyTrace‑Generator Generator Interface

	Model Hyperparameters and Training Details
	Model Training
	Tokenization
	Model Hyperparameters
	Data Deduplication
	Determinism at evaluation vs. windowed training.

	Examples of in-distribution semantics-preserving alterations
	Robustness to in-distribution semantics-preserving alterations on the full test set (not on successfully traced snippets only)
	Generalization across nesting depths
	Extended Ablation Study
	Supervised Fine-tuning (SFT) and Instruction Masking for OOD generalization
	Ablation Study on Positional Encoding

	More Detailed Related Work
	Detailed Discussion of Limitations
	Frequently Asked Questions (FAQ)
	LLM Assistance Disclosure
	Reproducibility statement

