

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PRIVATE TOP- k SELECTION UNDER GUMBEL DIFFERENTIAL PRIVACY GUARANTEES

Anonymous authors

Paper under double-blind review

ABSTRACT

From the perspective of hypothesis testing, f -differential privacy (f -DP) as a relaxation of differential privacy (DP) possesses numerous desirable properties, the most prominent of which is its lossless characterization of the composition of DP mechanisms. Within the f -DP class, Gaussian differential privacy (GDP), as a canonical family introduced to design Gaussian mechanism, has gained widespread acceptance. However, Gaussian mechanism is not the optimal option for all scenarios to ensure DP. As a type of extreme value distribution, Gumbel distribution is naturally considered to design private top- k selection algorithms. In this work, a new family in f -DPs, named Gumbel differential privacy (GumDP), is developed to parameterize Gumbel mechanism as similar to GDP. And the composition of Gumbel mechanisms is studied. In addition, two important composition properties of the Gumbel mechanism are discovered among different private selection problems. Utilizing these, a novel privacy-preserving top- k selection algorithm with Gumbel mechanism, called the peeling algorithm under oneshot RNM, is presented based on the Report Noisy Min (RNM) and peeling algorithms. Simulations demonstrate that the privacy-utility performance of the proposed private selection algorithm is significantly improved compared to the peeling algorithm under RNM with Laplace or Gaussian mechanism.

1 INTRODUCTION

With the rapid advancement of the information era, vast amounts of data are generated and released daily. This has led to heightened awareness of personal privacy and increased focus on privacy protection technologies. Based on these, differential privacy (DP) (Dwork et al., 2006a;b), as an emerging technology for protecting individual user privacy, has received widespread attention from both academia and industry. On the one hand, the definition is used by academics for a wide range of research, e.g., the privatization of deep learning (Abadi et al., 2016; Zhao et al., 2020) and federated learning (Wei et al., 2020; Yazdinejad et al., 2024; Cai et al., 2024), and the protection of models and data in statistics (Alparslan & Yildirim, 2022; Awan & Wang, 2024; Lin et al., 2024; Acharya et al., 2024). On the other hand, in industry, DP is also the core technology used by Apple (Differential Privacy Team, 2017), Google (Erlingsson et al., 2014), Microsoft (Ding et al., 2017), and the US Census Bureau (Abowd, 2018; Groschen & Goroff, 2022).

Under the theoretical framework of DP, designing the privacy-preserving mechanism to perturb the output by adding noise is the core concept of the DP application where the three major ones are Laplace, Gaussian and exponential mechanisms (Dwork et al., 2006a;b; McSherry & Talwar, 2007). With the goal of privacy and utility maximization, a large body of literature examines and parameterizes these mechanisms. However, as stated in (Brenner & Nissim, 2010), there is no universally optimal DP mechanism for all types of queries. Hence, the design of DP mechanism is one of the hot issues in DP research trying to start from the perspective of different noise distributions (Liu, 2019; Sadeghi & Korki, 2022; Muthukrishnan & Kalyani, 2023). In addition, along with the complexity and modularity of the algorithm in large models, there will be multiple queries to the database implying the composition of DP mechanisms. The composition of these mechanisms will degrade the privacy-utility performance. The naive and advanced composition theorems (Dwork et al., 2006a; 2010) are originally formulated to track these privacy performances which only carve out loose privacy upper bounds. To achieve a tighter privacy upper bound, some important variants of DP that have also been proposed to minimize the privacy loss of the composition process are

054 zero-Concentrated Differential Privacy, Rényi Differential Privacy, truncated Concentrated Differential Privacy (Bun & Steinke, 2016; Mironov, 2017; Bun et al., 2018). According to the above
 055 approaches, the composition of Laplace, and Gaussian mechanisms all lead to tighter bounds. Un-
 056 fortunately, these results are still the relaxing ones of the privacy upper bound. Meanwhile, the
 057 statistical perspective of transforming DP into a hypothesis testing problem that cannot distinguish
 058 the output of two neighboring datasets under the same mechanism has been proposed to enrich the
 059 research perspective (Wasserman & Zhou, 2010). The f -differential privacy (f -DP) is put forward
 060 in line with this idea (Dong et al., 2022) where Gaussian differential privacy (GDP) as a family of
 061 f -DPs gives a loss-free privacy upper bound carving on the composition of Gaussian mechanisms.
 062 And GDP is heavily used because of its lossless after composition and the universality of the Gaus-
 063 sian mechanism (Zheng et al., 2021; Bu et al., 2023; Liu et al., 2024). However, Brenner & Nissim
 064 (2010) shows that the Gaussian mechanism is not the optimal one in all application scenarios.
 065

066 Naturally, the Gumbel distribution, as the most common extreme value distribution, has gained
 067 interest in the design of DP mechanisms to protect privacy in selection problems. Among selection
 068 problems, the top- k query techniques (Ilyas et al., 2008) is one of the top-mentioned techniques,
 069 which are widely used in the Web, medical, government, such as information crawling for search
 070 engines, sorting queries for medical data, analyzing and researching demographic data. Obviously,
 071 attackers can strike this query process to steal the privacy of individual users. Therefore, this work
 072 attempts using Gumbel distribution to privatize the top- k selection algorithm and providing the
 073 privacy bound for the k -fold Gumbel mechanism embedded implicit in the algorithm. Unfortunately,
 074 under the definition of f -DP, the lack of research on other types of trade-off functions allows for a
 075 tighter privacy characterization for DP mechanisms beyond the Gaussian mechanism. Building upon
 076 that, a new family of trade-off functions for Gumbel mechanism is proposed.
 077

078 1.1 RELATED WORKS

079 The private top- k selection algorithm under DP has been extensively studied in fields such as statis-
 080 tics (Dwork et al., 2021; Cai et al., 2021; Xia & Cai, 2023) and machine learning (Cohen & Lyu,
 081 2023; Lebeda & Tetek, 2025; Pagh et al., 2025). However, how to select a suitable DP mecha-
 082 nism and depict the composition of those mechanisms are still two central issues in designing a
 083 top- k selection algorithm under DP. For simplicity, private top-1 query, also called private selec-
 084 tion algorithm, is prior subjected to research that returns the minimum perturbed query value \tilde{q}_i and
 085 its corresponding index i given n queries $\{q_1, \dots, q_n\}$. Exponential mechanism (EM) (McSherry &
 086 Talwar, 2007; McKenna & Sheldon, 2020) and Report Noisy Min (RNM) algorithm (Dwork &
 087 Roth, 2013; Durfee & Rogers, 2019; Zhu & Wang, 2022) are two common selection algorithms
 088 under DP. In the development of RNM algorithm, it is essentially a matter of perturbing the output
 089 index by attempting to apply the Laplace, Gaussian or Gumbel mechanisms to the query value and
 090 re-perturbing the corresponding query value by the Laplace or Gaussian mechanism. Furthermore,
 091 extending top-1 to top- k , the goal of private top- k selection is to design a DP algorithm that outputs
 092 the k smallest perturbed query values $\{\tilde{q}_{i_1}, \dots, \tilde{q}_{i_k}\}$ and their corresponding indexes $\{i_1, \dots, i_k\}$.
 093 There are two main methods to perform k -term items selection, namely peeling algorithm (Hardt
 094 & Roth, 2013; Dwork et al., 2021; Xia & Cai, 2023) and oneshot algorithm (Durfee & Rogers,
 095 2019; Qiao et al., 2021). Considering the complexity of analyzing privacy parameters in the oneshot
 096 algorithm, this paper considers only the peeling algorithm.
 097

098 1.2 CONTRIBUTIONS

099 In this work, we try to design a new private top- k selection algorithm with Gumbel mechanism and
 100 utilize f -DP to ensure better privacy-utility performance for this algorithm. The main contributions
 101 of this work are summarized as follows:

- 102 • The Gumbel mechanism is firstly proposed to directly noise the query value to ensure DP.
 103 Gumbel differential privacy (GumDP), as a special family of trade-off function in f -DPs,
 104 is designed to precisely characterize the Gumbel mechanism and its composition under the
 105 assumption that the query functions are consistent. In addition, two equivalent conversion
 106 forms between GumDP and DP are given.
- 107 • Two attractive composition properties of the Gumbel distribution in the private selection
 108 problem are presented, as seen in Lemma 1 and Lemma 2. Based on these and the RNM

108 algorithm, a newly validated private selection algorithm with Gumbel mechanism, named
 109 oneshot RNM algorithm, is introduced which can simultaneously output the index and
 110 query value without re-adding noise. Building upon Gumbel mechanism, Theorem 3 guar-
 111 antees the privacy of this algorithm.

112 • Extending to top- k private selection, the peeling algorithm under oneshot RNM with Gum-
 113 bel mechanism, whose privacy is secured by Theorem 4, is put through the peeling algo-
 114 rithm. And simulations show that there is a significant reduction in the variance of the added
 115 noise compared to the peeling algorithm under RNM with Laplace or Gaussian mechanism,
 116 which also confirms the increase in data availability and ensures that Gumbel mechanism
 117 achieves superior privacy-utility performance in the top- k selection problem.

118 *Notations:* Let $\mathcal{N}(0, \sigma^2)$, $\text{Lap}(\lambda)$ and $\chi^2(2k)$ represent Gaussian distribution with location pa-
 119 rameter 0 and scale parameter σ , Laplace distribution with mean 0 and scale parameter λ , and
 120 chi-square distribution with parameter $2k$ respectively. The $\text{sign}(x)$ denotes the signature function,

121 i.e., $\text{sign}(x) = \begin{cases} -1, & \text{if } x < 0, \\ 0, & \text{if } x = 0, \\ 1, & \text{if } x > 1. \end{cases}$ And $[m]$ and \mathcal{R} represent the set of $\{1, \dots, m\}$ and the set of real
 122 numbers respectively.

123 *Mathematical details:* Due to the space limitation, all details of the proofs of lemmas, corollaries
 124 and theorems in this paper are provided in the appendices.

125 2 GUMBEL DIFFERENTIAL PRIVACY

126 For the sake of subsequent discussion, we foresee the definitions of DP and f -DP, along with their
 127 equivalence transformation relationship. Let $\mathcal{D} = (d_1, d_2, \dots, d_l)$, $\mathcal{D}' = (d'_1, d'_2, \dots, d'_l)$, denoted
 128 two neighboring datasets containing l data items, of which l can be interpreted as the number of
 129 users in the database, be sampling from \mathcal{X}^l where \mathcal{X} is a sample universe. These two datasets differ
 130 in one and only one data item, i.e., only one $j \in [l]$ such that $d_j \neq d'_j$. Dwork et al. (2006a;b)
 131 propose DP to protect the individual privacy which is unable to distinguish between \mathcal{D} and \mathcal{D}' .

132 **Definition 1** $((\varepsilon, \delta)$ -DP (Dwork & Roth, 2013)). *For any $\varepsilon > 0$ and $\delta > 0$, a mechanism \mathcal{M} is
 133 (ε, δ) -DP if for all adjacent databases $\mathcal{D}, \mathcal{D}'$ and any measurable event $S \subset \mathcal{R}$,*

$$134 P(\mathcal{M}(\mathcal{D}) \in S) \leq e^\varepsilon P(\mathcal{M}(\mathcal{D}') \in S) + \delta.$$

135 From the definition of DP, it is evident that the smaller the privacy parameters ε and δ , the higher
 136 the level of privacy protection provided by the corresponding DP mechanism \mathcal{M} . In f -DP, it is
 137 natural to extend it to the problem of hypothesis testing where the distribution of the null hypothesis
 138 follows $\mathcal{M}(\mathcal{D})$ and the alternative one follows $\mathcal{M}(\mathcal{D}')$ making it difficult to distinguish them. Let
 139 ϕ denote the rejection rule. The trade-off function as a tool to characterize the degree of difference
 140 between two hypotheses is

$$141 T(\mathcal{M}(\mathcal{D}), \mathcal{M}(\mathcal{D}'))(\alpha) = \inf_{\phi} \{\beta_{\phi} : \alpha_{\phi} \leq \alpha\},$$

142 where α_{ϕ} and β_{ϕ} are its corresponding type I and II errors respectively defined as

$$143 \alpha_{\phi} = \mathbb{E}_{\mathcal{M}(\mathcal{D})}[\phi], \quad \beta_{\phi} = 1 - \mathbb{E}_{\mathcal{M}(\mathcal{D}')}[\phi].$$

144 **Definition 2** (f -DP(Dong et al., 2022)). *Given a trade-off function $f : [0, 1] \rightarrow [0, 1]$ satisfies
 145 convexity, continuity, and $f(x) \leq 1 - x$ for $x \in [0, 1]$. A mechanism \mathcal{M} is said to be f -DP if*

$$146 T(\mathcal{M}(\mathcal{D}), \mathcal{M}(\mathcal{D}')) \geq f,$$

147 for all neighbouring datasets \mathcal{D} and \mathcal{D}' .

148 The closer f in Definition 2 approaches $g(x) = 1 - x$ with $x \in [0, 1]$, the higher the level of
 149 privacy protection provided by the DP mechanism \mathcal{M} . Besides, the equivalent conversion between
 150 f -DP and DP is also given by Dong et al. (2022) through the concept of convex conjugate. For
 151 a function f with $f(x) = \infty$ for $x < 0$ or $x > 1$, its convex conjugate is defined as $f^*(y) = \sup_{-\infty < x < \infty} (yx - f(x))$. For a symmetric trade-off function f , a mechanism is f -DP if and only
 152 if it is $(\varepsilon, \delta(\varepsilon))$ -DP for all $\varepsilon > 0$ with

$$153 \delta(\varepsilon) = 1 + f^*(-e^\varepsilon). \quad (1)$$

162 2.1 μ -GUMBEL DIFFERENTIAL PRIVACY
163

164 For a random variable X distributed from the Gumbel (minimum) distribution with location parameter μ and scale parameter $\gamma > 0$, denoted as $X \sim \text{Gum}(\mu, \gamma)$, its variance is $\pi^2\gamma^2/6$, and its 165 cumulative distribution function (CDF) and probability density function (PDF) respectively are
166

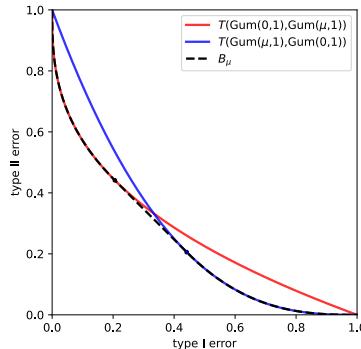
$$167 F(x; \mu, \gamma) = 1 - e^{-e^{\frac{x-\mu}{\gamma}}}, \quad p(x; \mu, \gamma) = \frac{1}{\gamma} e^{\frac{x-\mu}{\gamma}} e^{-e^{\frac{x-\mu}{\gamma}}}.$$

169 **Definition 3** (Gumbel Mechanism). *Given a database \mathcal{D} and a query function h , the Gumbel mechanism \mathcal{M}_{Gum} is defined as*
170
171

$$172 \mathcal{M}_{\text{Gum}}(\mathcal{D}) = h(\mathcal{D}) + \eta, \quad \eta \sim \text{Gum}(0, \gamma).$$

173 Analogously to GDP (Dong et al., 2022), from the Gumbel distribution aspect, we design the μ -
174 GumDP as a special family of the trade-off function in f -DP. Consider the following hypothesis
175 testing problem:
176

$$H_0 : y \sim \mathcal{M}_{\text{Gum}}(\mathcal{D}) \quad \text{versus} \quad H_1 : y \sim \mathcal{M}_{\text{Gum}}(\mathcal{D}'). \quad (2)$$



191 Figure 1: The trade-off functions $T(\text{Gum}(0, 1), \text{Gum}(\mu, 1))$, $T(\text{Gum}(\mu, 1), \text{Gum}(0, 1))$ and B_μ
192 with $\mu = 1$.
193

194 Unlike the Gaussian distribution, the Gumbel distribution is asymmetric. From the hypothesis testing
195 problem in (2), as shown in the Fig. 1, for any $\mu \geq 0$,

$$196 T(\text{Gum}(0, 1), \text{Gum}(\mu, 1)) \neq T(\text{Gum}(\mu, 1), \text{Gum}(0, 1)).$$

197 To facilitate subsequent conversion to DP, we perform a two-step operation in the definition of
198 trade-off function B_μ : symmetrization and convexification. Symmetrization is taking the minimum
199 of $T(\text{Gum}(0, 1), \text{Gum}(\mu, 1))$ and $T(\text{Gum}(\mu, 1), \text{Gum}(0, 1))$; and convexification is taking the bi-
200 conjugate one, i.e., the largest convex lower envelope, of
201

$$202 \min\{T(\text{Gum}(0, 1), \text{Gum}(\mu, 1)), T(\text{Gum}(\mu, 1), \text{Gum}(0, 1))\}.$$

204 **Definition 4.** For $\mu \geq 0$, the trade-off function B_μ is defined as

$$205 B_\mu = \min\{T(\text{Gum}(0, 1), \text{Gum}(\mu, 1)), T(\text{Gum}(\mu, 1), \text{Gum}(0, 1))\}^{**}. \quad (3)$$

207 The B_μ for any $\mu \geq 0$ satisfies the requirements for the trade-off function as defined in Definition 2.
208 Fig. 1 also presents the curve of B_μ with $\mu = 1$. And the explicit expression for the trade-off
209 function B_μ in (3) reads

$$210 B_\mu(\alpha) = \begin{cases} 1 - \alpha^{e^{-\mu}}, & \alpha \in [0, \alpha_1], \\ -\alpha + e^{\frac{\mu}{e^{-\mu}-1}} + 1 - e^{\frac{\mu e^{-\mu}}{e^{-\mu}-1}}, & \alpha \in [\alpha_1, \alpha_2], \\ (1 - \alpha)^{e^\mu}, & \alpha \in [\alpha_2, 1], \end{cases} \quad (4)$$

214 where $\alpha_1 = e^{\frac{\mu}{e^{-\mu}-1}}$ and $\alpha_2 = 1 - e^{\frac{\mu e^{-\mu}}{e^{-\mu}-1}}$. The proof details of (4) are provided in Appendix A.
215 From (4), this trade-off function is decreasing in μ that $B_\mu > B_{\mu_0}$ if $\mu < \mu_0$, as shown in Fig. 2(a).

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

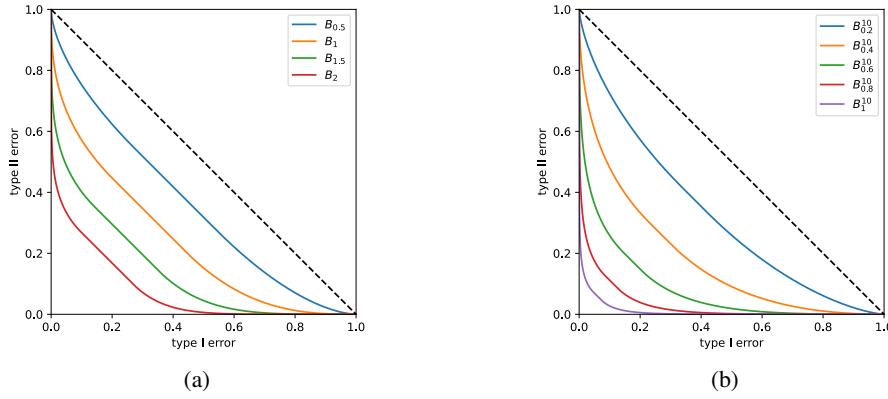


Figure 2: (a) Changes in B_μ curves for different values of μ . (b) Changes in B_μ^{10} curves for different values of μ .

Definition 5 (Gumbel Differential Privacy). *A mechanism \mathcal{M} is said to satisfy μ -Gumbel differential privacy, denoted as μ -GumDP, if*

$$T(\mathcal{M}(\mathcal{D}), \mathcal{M}(\mathcal{D}')) \geq B_\mu,$$

for all neighboring datasets \mathcal{D} and \mathcal{D}' .

Theorem 1. *If a Gumbel mechanism operates on a real statistic h as $\mathcal{M}_{\text{Gum}}(\mathcal{D}) = h(\mathcal{D}) + \eta$, where $\eta \sim \text{Gum}(0, \gamma)$ and $\Delta h = \max_{\mathcal{D}, \mathcal{D}'} |h(\mathcal{D}) - h(\mathcal{D}')|$, then \mathcal{M}_{Gum} is μ -GumDP with $\gamma\mu \geq \Delta h$.*

From Definition 5, μ -GumDP, on the one hand, facilitates the privacy analysis and comparison as a one-parameter privacy definition; on the other hand, achieves a good degree of privacy at $\mu < 0.5$ as shown in Fig. 2(a). Besides, it has a tight privacy carving for the Gumbel mechanism by Theorem 1. Next, we provide an equivalent transformation between μ -GumDP and (ε, δ) -DP to conveniently compare the privacy-utility performance of different DP mechanisms.

Corollary 1. *A mechanism is satisfied μ -GumDP if and only if it is $(\varepsilon, \delta(\varepsilon))$ -DP for all $\varepsilon \geq 0$, where $\delta(\varepsilon) = (e^{\mu+\varepsilon} - e^\varepsilon) e^{\frac{\mu+\varepsilon}{e^{\mu+\varepsilon}-1}}$.*

2.2 (k, μ) -GUMBEL DIFFERENTIAL PRIVACY

In practical applications, the composition of DP mechanisms is often involved. Therefore, this section proposes (k, μ) -GumDP to characterize the composition of Gumbel mechanisms.

Definition 6 (k -fold Composed Mechanism). *When $k = 2$, with the first mechanism $\mathcal{M}_1 : \mathcal{X}^l \rightarrow \mathcal{R}$ and the second mechanism $\mathcal{M}_2 : \mathcal{X}^l \times \mathcal{R} \rightarrow \mathcal{R}$, the 2-fold mechanism $\mathcal{M} : \mathcal{X}^l \rightarrow \mathcal{R} \times \mathcal{R}$ is given by $\mathcal{M}(\mathcal{D}) = (y_1, \mathcal{M}_2(\mathcal{D}, y_1))$ with $\mathcal{M}_1(\mathcal{D}) = y_1$ and $\mathcal{D} \in \mathcal{X}^l$. Let $\mathcal{M}_i : \mathcal{X}^l \times \mathcal{R}^{i-1} \rightarrow \mathcal{R}$, $i \in [k]$. Extension to the case of $k \geq 2$, the k -fold composed mechanism \mathcal{M} of \mathcal{M}_i , $i \in [k]$, is defined as*

$$\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k) : \mathcal{X}^l \rightarrow \mathcal{R}^k.$$

Based on Definition 6, considering a new hypothesis testing problem for the k -fold composed mechanism \mathcal{M} :

$$H_0 : (y_1, y_2, \dots, y_k) \sim \mathcal{M}(\mathcal{D}) \quad \text{versus} \quad H_1 : (y_1, y_2, \dots, y_k) \sim \mathcal{M}(\mathcal{D}'). \quad (5)$$

Assuming that \mathcal{M}_i is an independent Gumbel mechanism given $\{y_j\}_{j=1}^{i-1}$, the above hypothesis test can be viewed as a discussion of independent composition of k Gumbel mechanisms. For ease of analysis, the Gumbel mechanism corresponding to each \mathcal{M}_i is based on the identical Gumbel distribution, denoted as \mathcal{M}_{Gum} . Under the above assumptions, y_1, y_2, \dots, y_k are independently and identically distributed (i.i.d.) from $\mathcal{M}_{\text{Gum}}(\mathcal{D})$ given database \mathcal{D} . Then, the hypothesis test problem (5) can be converted to

$$H_0 : \{y_j\}_{j=1}^k \stackrel{\text{i.i.d.}}{\sim} \mathcal{M}_{\text{Gum}}(\mathcal{D}) \quad \text{versus} \quad H_1 : \{y_j\}_{j=1}^k \stackrel{\text{i.i.d.}}{\sim} \mathcal{M}_{\text{Gum}}(\mathcal{D}'). \quad (6)$$

270 Similar to B_μ in (3), we propose the following trade-off function B_μ^k .
 271

272 **Definition 7.** For $\mu \geq 0$, the trade-off function is defined as

$$273 \quad B_\mu^k = \min\{T(\text{Gum}(0, 1)^k), T(\text{Gum}(\mu, 1)^k), T(\text{Gum}(\mu, 1)^k, \text{Gum}(0, 1)^k)\}^{**}. \\ 274$$

275 And the explicit expression for the trade-off function B_μ^k reads

$$276 \quad B_\mu^k = \begin{cases} F_Y(F_Y^{-1}(1 - \alpha)e^{-\mu}), & \alpha \in [0, \alpha_1], \\ \alpha_1 - \alpha + F_Y(F_Y^{-1}(1 - \alpha_1)e^{-\mu}), & \alpha \in [\alpha_1, \alpha_2], \\ 1 - F_Y(F_Y^{-1}(\alpha)e^\mu), & \alpha \in [\alpha_2, 1], \end{cases} \quad (7)$$

277 where $\alpha_1 = 1 - F_Y\left(\frac{2k\mu}{1-e^{-\mu}}\right)$, $\alpha_2 = F_Y\left(\frac{2k\mu e^{-\mu}}{1-e^{-\mu}}\right)$ and $Y \sim \chi^2(2k)$ with CDF F_Y . The proof
 278 details of (7) are provided in Appendix D. The trade-off function B_μ^k is also decreasing in μ that
 279 $B_\mu^k > B_{\mu_0}^k$ if $\mu < \mu_0$, as seen in Fig. 2b.

280 **Definition 8** $((k, \mu)$ -Gumbel Differential Privacy). A mechanism \mathcal{M} is said to satisfy (k, μ) -Gumbel
 281 differential privacy $((k, \mu)$ -GumDP) if

$$282 \quad T(\mathcal{M}(\mathcal{D}), \mathcal{M}(\mathcal{D}')) \geq B_\mu^k$$

283 for all neighbouring data sets \mathcal{D} and \mathcal{D}' .

284 Let the query functions $\{h_i\}_{i=1}^k$ be consistent before characterizing the k -fold composed mechanism
 285 under the Gumbel distribution.

286 **Definition 9.** The k query functions $\{h_i\}_{i=1}^k$ are consistent if either $\text{sign}(h_j(\mathcal{D}') - h_j(\mathcal{D})) \leq 0$
 287 for all $j = 1, \dots, k$, or $\text{sign}(h_j(\mathcal{D}') - h_j(\mathcal{D})) \geq 0$ for all $j = 1, \dots, k$.

288 **Theorem 2.** Consider the Gumbel mechanism operating on a statistic h_i as $\mathcal{M}_i(\mathcal{D}) = h_i(\mathcal{D}, y_1, y_2, \dots, y_{i-1}) + \eta_i$ where $i \in [k]$, $\eta_i \stackrel{i.i.d.}{\sim} \text{Gum}(0, \Delta/\mu)$, $\Delta = \max_{i \in [k]} \max_{\mathcal{D}, \mathcal{D}'} |h_i(\mathcal{D}) - h_i(\mathcal{D}')|$. If $\{h_i\}_{i=1}^k$ are consistent, then the k -fold composed mechanism $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k)$
 289 is (k, μ) -GumDP.

290 By Theorem 2, it can be seen as that the composition of k Gumbel mechanisms satisfied μ -GumDP
 291 is (k, μ) -GumDP under certain conditions. Meanwhile, the equivalence transformation between
 292 (k, μ) -GumDP and (ε, δ) -DP is proposed as follows.

293 **Corollary 2.** A mechanism is (k, μ) -GumDP if and only if its k -fold mechanism is $(\varepsilon, \delta_k(\varepsilon))$ -DP for
 294 all $\varepsilon > 0$, where $\delta_k(\varepsilon) = 1 - e^\varepsilon + e^\varepsilon F_Z\left(\frac{2(k\mu+\varepsilon)}{1-e^{-\mu}}\right) - F_Z\left(\frac{2(k\mu+\varepsilon)e^{-\mu}}{1-e^{-\mu}}\right)$ and F_Z denotes the CDF
 295 of distribution $\chi^2(2k)$.

296 Note that the $\delta_k()$ in Corollary 2 is strictly derived from the equivalent conversion between f -DP
 297 and DP, i.e. Equation (1), so that $\delta_k(\varepsilon) \in [0, 1]$ for all $\varepsilon > 0$.

3 PRIVATE TOP- k SELECTION UNDER GUMBEL MECHANISM

311 To ease the study, the top- k selection problem in this paper is to perform m real queries for
 312 any database \mathcal{D} , i.e., $\{h_1(\mathcal{D}), h_2(\mathcal{D}), \dots, h_m(\mathcal{D})\}$, sort the m queries, i.e., $h_{i_1}(\mathcal{D}) < h_{i_2}(\mathcal{D}) <$
 313 $\dots < h_{i_m}(\mathcal{D})$, and finally output the smallest k query values and the corresponding indexes, i.e.,
 314 $\{(i_1, h_{i_1}(\mathcal{D})), (i_2, h_{i_2}(\mathcal{D})), \dots, (i_k, h_{i_k}(\mathcal{D}))\}$. The output of indexes and query values suffers from
 315 the leakage of individual privacy in \mathcal{D} . The peeling algorithm under RNM as a top- k selection al-
 316 gorithm under DP protects both of them (Dwork et al., 2021). In this section, based on the above
 317 algorithm and the Gumbel mechanism under GumDP given in the previous section, we design a
 318 newly private top- k selection algorithm. Moreover, analyzing from the perspective of adding noise
 319 variance, the new algorithm guarantees higher privacy-utility performance.

3.1 THE PEELING ALGORITHM UNDER ONESHOT REPORT NOISE MIN

321 Before designing the private selection algorithm, there are two important composition properties
 322 about Gumbel mechanism.

324 **Lemma 1.** Let $\{\mathcal{M}_{\text{Gum}}^{(i)}(\mathcal{D}) = h_i(\mathcal{D}) + \eta_i\}_{i \in [m]}$ be μ -GumDP where $\{\eta_i\}_{i \in [m]} \stackrel{i.i.d.}{\sim} \text{Gum}(0, \frac{\Delta}{\mu})$.
 325 The minimum Gumbel mechanism $\mathcal{M}_{\text{minGum}}^m$ is defined as, for $m \in \mathbb{N}^+$ and any database \mathcal{D} ,
 326

$$\mathcal{M}_{\text{minGum}}^m(\mathcal{D}) = \min_{i \in [m]} \{\mathcal{M}_{\text{Gum}}^{(i)}(\mathcal{D})\}.$$

327 The $\mathcal{M}_{\text{minGum}}^m$ can be also seen as a Gumbel mechanism which satisfies μ -GumDP.
 328

329 Lemma 1 illustrates that the minimum output among the noisy query values perturbed by Gumbel
 330 noises still satisfies GumDP. However, the private selection problem considered in this paper requires
 331 not only the minimum query value but also its corresponding index. To find the best index $j \in [m]$
 332 and output the corresponding query value $h_j(\mathcal{D})$, the RNM algorithm (Dwork & Roth, 2013) with
 333 Laplace mechanism satisfied $(\varepsilon, 0)$ -DP: Add the independent Laplace noise ω from $\text{Lap}(2\Delta/\varepsilon)$
 334 to each query $\{h_j(\mathcal{D})\}_{j=1}^m$, return the index j^* of the smallest noisy one $\tilde{h}_{j^*}(\mathcal{D}) = h_{j^*}(\mathcal{D}) + \omega$
 335 and draw a fresh noise $\text{Lap}(2\Delta/\varepsilon)$ added to $h_{j^*}(\mathcal{D})$ to output the noise one. It is evident that
 336 the original RNM algorithm suffers from a privacy allocation issue concerning both the index and
 337 the query value. Meanwhile, EM in Dwork & Roth (2013) as another common privacy selection
 338 algorithm only outputs the best index $i \in [m]$. The EM \mathcal{M}_E satisfies $(\varepsilon, 0)$ -DP which outputs the
 339 index i with probability
 340

$$P(\mathcal{M}_E(\mathcal{D}, \{h_j\}_{j \in [m]}, \varepsilon) = i) = \frac{e^{-\frac{\varepsilon h_i(\mathcal{D})}{\Delta}}}{\sum_{j \in [m]} e^{-\frac{\varepsilon h_j(\mathcal{D})}{\Delta}}}.$$

341 Fortunately, Durfee & Rogers (2019) demonstrates that $\mathcal{M}_E(\cdot, \{h_j\}_{j \in [m]}, \varepsilon)$ is equivalent to the
 342 RNM with $\text{Gum}(0, \Delta/\varepsilon)$ when both of them output only the index. Building upon Lemma 1 and
 343 the relation the EM and the Gumbel mechanism, Lemma 2 gives a natural way to assign privacy-
 344 preserving parameters to the output query value and its corresponding index in the private selection
 345 problem utilizing Gumbel mechanism .

346 **Lemma 2.** For any database \mathcal{D} and a batch of query values $\{h_j(\mathcal{D})\}_{j \in [m]}$ added independent
 347 noise perturbations from $\text{Gum}(0, \frac{\Delta}{\varepsilon})$, output the minimum noise query value and its index concur-
 348 rently, denoted as $\mathcal{M}_{\text{Gum}}^*(\mathcal{D})$, is equal to the independent composition of the Gumbel mechanism
 349 $\mathcal{M}_{\text{minGum}}^m(\mathcal{D})$ satisfied ε -GumDP and the EM $\mathcal{M}_E(\mathcal{D}, \{h_j\}_{j \in [m]}, \varepsilon)$, i.e., for any $S \subset \mathbb{R}$,
 350

$$\begin{aligned} P(\mathcal{M}_{\text{Gum}}^*(\mathcal{D}) = (i, h_i(\mathcal{D}) + \eta_i) \in [m] \times S) \\ = P(\mathcal{M}_{\text{minGum}}^m(\mathcal{D}) \in S) P(\mathcal{M}_E(\mathcal{D}, \{h_j\}_{j \in [m]}, \varepsilon) = i). \end{aligned}$$

351 Actually, Lemma 2 also gives a composition of the Gumbel mechanism and the EM. Based on this,
 352 the oneshot RNM algorithm which outputs the query and its index at the same time is formulated
 353 and presented in Algorithm 1.
 354

355 **Algorithm 1** Oneshot Report Noisy Min

356 **Input:** The database \mathcal{D} , functions h_1, \dots, h_m with sensitivity Δ and scale parameter γ

357 **Output:** The index j^* and approximation to $h_{j^*}(\mathcal{D})$

358 1: **for** $j = 1$ to m **do**
 359 2: Set $\tilde{h}_j = h_j(\mathcal{D}) + Z_j$, where Z_j is independently sampled from $\text{Gum}(0, \gamma)$;
 360 3: **end for**
 361 4: Solve $j^* = \arg \min_{j \in [m]} \tilde{h}_j$ and compute \tilde{h}_{j^*} .

362 It is evident that Algorithm 1 is more efficient than the RNM algorithm. Theorem 3 below provides
 363 the privacy assurance for this algorithm.
 364

365 **Theorem 3.** The oneshot RNM algorithm given in Algorithm 1 is $\left(\frac{\Delta}{\gamma} + \varepsilon, \delta(\varepsilon)\right)$ -DP where $\delta(\varepsilon) =$
 366 $\left(e^{\frac{\Delta}{\gamma} + \varepsilon} - e^\varepsilon\right) e^{\frac{\Delta}{\gamma} - 1}$ for any $\varepsilon > 0$.
 367

378 It is natural to design a new private top- k selection algorithm using the peeling algorithm under
 379 oneshot RNM proposed and shown in Algorithm 2. This top- k selection algorithm can be seen as
 380 the independent composition of k Gumbel mechanisms satisfied $\frac{\Delta}{\gamma}$ -GumDP and k EMs satisfied
 381 $\left(\frac{\Delta}{\gamma}, 0\right)$ -DP.
 382

Algorithm 2 Peeling Algorithm under Oneshot Report Noisy Min

385 **Input:** database \mathcal{D} , functions h_1, \dots, h_m with sensitivity Δ , number of invocations k and scale
 386 parameter γ
 387 1: **for** $j = 1$ to k **do**
 388 2: Let (i_j, \tilde{h}_{i_j}) be returned by oneshot Report Noisy Min applied to $(\mathcal{D}, h_1, \dots, h_m)$.
 389 3: Set $h_{i_j} \equiv +\infty$.
 390 4: **end for**
 391 **Output:** indices i_1, \dots, i_k and approximations to $h_{i_1}(\mathcal{D}), \dots, h_{i_k}(\mathcal{D})$

394 Therefore, for characterizing the degree of privacy preservation of Algorithm 2, the optimal DP
 395 composition theorem of EMs are required and stated in the following Lemma 3.

396 **Lemma 3.** (Dong et al., 2020) *If \mathcal{M} is a k -fold non-adaptive composition of ε -BR mechanisms,
 397 then it is $(\varepsilon_g, \delta_k^{\text{EM}}(\varepsilon_g))$ -DP with*

$$398 \delta_k^{\text{EM}}(\varepsilon_g) = \max_{0 \leq \ell \leq k} \sum_{i=0}^k \binom{k}{i} p_{t_\ell^*}^{k-i} (1 - p_{t_\ell^*})^i \left(e^{kt_\ell^* - i\varepsilon} - e^{\varepsilon_g} \right)_+,$$

402 where $(a)_+$ is defined as $\max\{a, 0\}$, $p_t = \frac{e^{-t} - e^{-\varepsilon}}{1 - e^{-\varepsilon}}$ and $t_\ell^* = \frac{\varepsilon_g + (\ell+1)\varepsilon}{k+1}$ where if $t_\ell^* \notin [0, \varepsilon]$, then we
 403 round it to the closest point in $[0, \varepsilon]$.
 404

405 **Theorem 4.** *If $\{h_i\}_{i=1}^k$ are consistent, then Algorithm 2 ensures $(\varepsilon_1 + \varepsilon_2, \delta_k(\varepsilon_1) + \delta_k^{\text{EM}}(\varepsilon_2))$ -DP
 406 for all $\varepsilon_1, \varepsilon_2 > 0$, where the expressions for $\delta_k(\varepsilon_1)$ and $\delta_k^{\text{EM}}(\varepsilon_2)$ are respectively given in Theorem
 407 2 and Lemma 3 in which $\mu = \varepsilon = \frac{\Delta}{\gamma}$.*

409 3.2 PRIVACY-UTILITY PERFORMANCE COMPARISON

410 The most intuitive way to analyze the privacy-utility performance of the private top- k algorithm
 411 is to compare the variance of the added noise. Under the same privacy guarantee, a smaller noise
 412 variance indicates that the output values are closer to the true values, and also signifies the higher
 413 privay-utility performance. Therefore, in this subsection, for the peeling algorithm under RNM with
 414 Laplace or Gaussian mechanim and the peeling algorithm under oneshot RNM with Gumbel mecha-
 415 nism, we compare the corresponding noise variances of Laplace, Gaussian and Gumbel mechanisms
 416 in these algorithms.

417 To ensure fairness in comparison, let the peeling algorithm under RNM with Laplace, Gaussian
 418 mechanism and the peeling algorithm under oneshot RNM satisfy (ε, δ) -DP separately in pri-
 419 vate top- k selection. By formulating the following optimization problems, we obtain the mini-
 420 mum noise variance corresponding to several algorithms. The peeling algorithm under RNM with
 421 $\text{Lap}\left(0, \frac{\Delta\sqrt{10k\ln(1/\delta)}}{\varepsilon}\right)$ is (ε, δ) -DP (Dwork et al., 2021). The variance of Laplace distribution
 422 in the peeling algorithm under RNM is $\frac{\varepsilon^2}{5k\Delta^2\ln(1/\delta)}$. Meanwhile, combined with the result in Cai
 423 et al. (2024), the peeling algorithm under RNM with $\mathcal{N}(0, \sigma^2)$ is (ε, δ) -DP where the variance of
 424 Gaussian distribution σ^2 satisfies

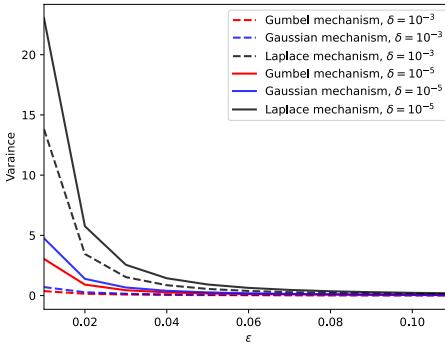
$$425 \min_{0 < \varepsilon_0 < \varepsilon} \sigma^2 \\ 426 \text{s.t. } \delta_{\text{Gauss}}(\varepsilon_0) \leq \delta,$$

427 where $\delta_{\text{Gauss}}(\varepsilon_0)$ is provided in Corollary 1 of Dong et al. (2022) with $\mu = \frac{\sqrt{8k\Delta}}{\sigma}$. Lastly, for Gumbel
 428 mechanism, Algorithm 2 is (ε, δ) -DP utilizing Theorem 4 if the variance of Gumbel distribution

432 $\frac{\pi^2}{6}\gamma^2$ is satisfied that

$$\begin{aligned} 434 \quad & \min_{\varepsilon_1, \varepsilon_2 > 0} \frac{\pi^2}{6}\gamma^2 \\ 435 \quad & \text{s.t. } \varepsilon_1 + \varepsilon_2 \leq \varepsilon, \\ 436 \quad & \delta_k(\varepsilon_1) + \delta_k^{\text{EM}}(\varepsilon_2) \leq \delta, \\ 437 \end{aligned}$$

438 where $\delta_k(\varepsilon_1)$ and $\delta_k^{\text{EM}}(\varepsilon_2)$ are respectively illustrated in Corollary 2 and Lemma 3 in which $\mu =$
439 $\varepsilon = \frac{\Delta}{\gamma}$. Based on the above results, as shown in Fig. 3, by comparing at the same level of privacy
440 protection, i.e., (ε, δ) -DP, the noise variances of Gumbel mechanism are smaller than those of both
441 Laplace and Gaussian mechanisms which also implies that the application of the Gumbel mechanism
442 offers superior privacy-utility performance.



457 Figure 3: Noise variances comparison of Gaussian, Laplace mechanisms in the peeling algorithms
458 under RNM and Gumbel mechanism in the peeling algorithm under oneshot RNM with ε varying,
459 $k = 10$ and $\delta = 10^{-3}, 10^{-5}$.

4 CONCLUSION

464 In this paper, we provide a different privacy-preserving top- k selection algorithm with Gumbel
465 mechanism, i.e., the peeling algorithm under oneshot RNM. Exploiting two special composition
466 properties of the Gumbel mechanism, the oneshot RNM algorithm is designed, which is more ef-
467 ficient than the previous one as an algorithm that outputs the index and its query value without
468 re-noising the query. To better characterize the privacy upper bound for the composition of k Gumbel
469 mechanisms hidden within the peeling algorithm, GumDP is presented in this work as a novel
470 family of f -DPs. The μ -GumDP analytically and tightly characterize the privacy of a single Gumbel
471 mechanism, while the (k, μ) -GumDP is presented as an extension to characterize the composition
472 of k Gumbel mechanisms under the assumption of consistency. To fairly compare different private
473 top- k selection algorithms, two equivalent transformation relationships between GumDP and DP
474 are provided. Based on the above equivalence relations, the variance-based comparison shows that
475 the new Gumbel-based algorithm outperforms the original Laplace- and Gaussian-based algorithms
476 under the same privacy guarantees. It is evident that the Gumbel mechanism holds advantages as
477 compared to the Gaussian and Laplace mechanisms in privacy-preserving selection algorithms.

478 Due to the wide range of practical applications involving top- k selection algorithms, conducting
479 in-depth and comprehensive research on private selection algorithms holds significant value. How-
480 ever, the topic of privacy selection still receives many challenges. In the process of extending the
481 top-1 selection algorithm to the top- k selection algorithm, only the peeling algorithm is studied in
482 this work. The oneshot algorithm can be subsequently used to further improve the performance.
483 Moreover, the composition of k Gumbel mechanisms is taken under the strong assumption of con-
484 sistency. Additionally, the practical application of this new private top- k selection algorithm remains
485 to be explored.

486 REFERENCES
487

488 Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
489 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
490 *Conference on Computer and Communications Security (CCS'16)*, pp. 308–318, Vienna, AU,
491 24-28 October 2016. ACM. doi: 10.1145/2976749.2978318.

492 John M. Abowd. The U.S. Census Bureau adopts differential privacy. In *Proceedings of the 24th*
493 *ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'18)*, pp.
494 2867, London, UK, 19-23 August 2018. ACM. doi: 10.1145/3219819.3226070.

495 Krishna Acharya, Franziska Boenisch, Rakshit Naidu, and Juba Ziani. Personalized differential
496 privacy for ridge regression, 2024. URL <https://arxiv.org/abs/2401.17127>.

497 Bariş Alparslan and Sinan Yıldırım. Statistic selection and MCMC for differentially private
498 Bayesian estimation. *Statistics and Computing*, 32(66), 2022. ISSN 1573-1375. doi: 10.1007/
499 s11222-022-10129-8.

500 Jordan Awan and Zhanyu Wang. Simulation-based, finite-sample inference for privatized data.
501 *Journal of the American Statistical Association*, pp. 1–14, 2024. ISSN 1537-274X. doi:
502 10.1080/01621459.2024.2427436.

503 Hai Brenner and Kobbi Nissim. Impossibility of differentially private universally optimal mech-
504 anisms. In *2010 IEEE 51st Annual Symposium on Foundations of Computer Science*, pp. 71–80,
505 Las Vegas, NV, USA, 23-26 October 2010. IEEE. doi: 10.1109/110846671.

506 Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially pri-
507 vate deep learning made easier and stronger. In *the Thirty-Seventh Annual Conference on Neural*
508 *Information Processing Systems*, volume 36, pp. 41727–41764, New Orleans, LA, USA, 10–16
509 December 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/8249b30d877c91611fd8c7aa6ac2b5fe-Paper-Conference.pdf.

510 Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and
511 lower bounds. In Martin Hirt and Adam Smith (eds.), *Theory of Cryptography*, volume 9985,
512 chapter Lecture Notes in Computer Science, pp. 635–658. Springer, Berlin Heidelberg, 2016.
513 ISBN 9783662536414. doi: 10.1007/978-3-662-53641-4_24.

514 Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas Steinke. Composable and versatile
515 privacy via truncated CDP. In *Proceedings of the 50th Annual ACM SIGACT Symposium on*
516 *Theory of Computing (STOC'18)*, pp. 74–86, Los Angeles, CA, USA, 25-29 June 2018. ACM.
517 doi: 10.1145/3188745.3188946.

518 Jianping Cai, Qingqing Ye, Haibo Hu, Ximeng Liu, and Yanggeng Fu. Boosting accuracy of dif-
519 ferentially private continuous data release for federated learning. *IEEE Transactions on Infor-
520 mation Forensics and Security*, 19:10287–10301, 2024. ISSN 1556-6021. doi: 10.1109/tifs.2024.
521 3477325.

522 T. Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence
523 for parameter estimation with differential privacy. *The Annals of Statistics*, 49(5):2825 – 2850,
524 2021. doi: 10.1214/21-AOS2058.

525 Edith Cohen and Xin Lyu. The target-charging technique for privacy analysis across interactive
526 computations. In *Advances in Neural Information Processing Systems 36*, volume 36, pp. 62139–
527 62168, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/c3fe2a07ec47b89c50e89706d2e23358-Paper-Conference.pdf.

528 Apple. Differential Privacy Team. Learning with privacy at scale., May
529 2017. URL <https://machinelearning.apple.com/2017/12/06/learning-with-privacyat-scale.html>.

530 Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately. In
531 *Proceedings of the 31st International Conference on Neural Information Processing Systems*
532 (*NIPS'17*), pp. 3574–3583, Long Beach, CA, USA, 4-9 December 2017. Curran Associates, Inc.

540 Jinshuo Dong, David Durfee, and Ryan Rogers. Optimal differential privacy composition for expo-
 541 nential mechanisms. In *Proceedings of the 37th International Conference on Machine Learning*
 542 (*ICML’20*), number 243, pp. 2597–2606, Vienna, AUT, 13-18 July 2020. PMLR.
 543

544 Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy. *Journal of the Royal*
 545 *Statistical Society Series B: Statistical Methodology*, 84(1):3–37, 2022. ISSN 1467-9868. doi:
 546 10.1111/rssb.12454.

547 David Durfee and Ryan Rogers. Practical differentially private top- k selection with pay-what-you-
 548 get composition. In *Proceedings of the 33rd International Conference on Neural Information*
 549 *Processing Systems (NIPS’19)*, number 317, pp. 3532 – 3542, Vancouver, BC, CA, 8-14 Decem-
 550 ber 2019. Curran Associates Inc.

551 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. *Foundations*
 552 *and Trends® in Theoretical Computer Science*, 9(3–4):211–407, 2013. ISSN 1551-3068. doi:
 553 10.1561/0400000042.

554 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
 555 data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay (ed.), *Advances in*
 556 *Cryptology - EUROCRYPT 2006*, volume 4004, chapter Lecture Notes in Computer Science, pp.
 557 486–503. Springer Berlin Heidelberg, Petersburg, Russia, May 2006a. ISBN 9783540345473.
 558 doi: 10.1007/11761679_29.

559 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
 560 private data analysis. In *Proceedings of the Third conference on Theory of Cryptography (TCC’6)*,
 561 pp. 265–284, New York, NY, USA, 4-7 March 2006b. Springer-Verlag. ISBN 3540327312. doi:
 562 10.1007/11681878_14.

563 Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential privacy. In *2010*
 564 *IEEE 51st Annual Symposium on Foundations of Computer Science*, pp. 51–60, Las Vegas, NV,
 565 USA, 23-26 October 2010. IEEE. doi: 10.1109/focs.2010.12.

566 Cynthia Dwork, Weijie Su, and Li Zhang. Differentially private false discovery rate control. *Journal*
 567 *of Privacy and Confidentiality*, 11(2), 2021. ISSN 2575-8527. doi: 10.29012/jpc.755.

568 Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized aggregatable
 569 privacy-preserving ordinal response. In *Proceedings of the 2014 ACM SIGSAC Conference on*
 570 *Computer and Communications Security (CCS’14)*, pp. 1054–1067, Scottsdale, AZ, USA, 3-7
 571 November 2014. ACM. doi: 10.1145/2660267.2660348.

572 Erica L. Groshen and Daniel Goroff. Disclosure avoidance and the 2020 Census: What do
 573 researchers need to know? *Harvard Data Science Review*, (Special Issue 2), 2022. doi:
 574 10.1162/99608f92.aed7f34f.

575 Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private singular vector computation.
 576 In *Proceedings of the forty-fifth annual ACM symposium on Theory of Computing (STOC’13)*, pp.
 577 331–340, Palo Alto, CA, USA, 1-4 June 2013. ACM. doi: 10.1145/2488608.2488650.

578 Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top- k query processing
 579 techniques in relational database systems. *ACM Computing Surveys*, 40(4):1–58, 2008. ISSN
 580 1557-7341. doi: 10.1145/1391729.1391730.

581 Christian Janos Lebeda and Jakub Tetek. Better differentially private approximate histograms and
 582 heavy hitters using the misra-gries sketch. *ACM Transactions on Database Systems*, 50(3), May
 583 2025. ISSN 0362-5915. doi: 10.1145/3716375.

584 Shurong Lin, Mark Bun, Marco Gaboardi, Eric D. Kolaczyk, and Adam Smith. Differentially pri-
 585 vate confidence intervals for proportions under stratified random sampling. *Electronic Journal of*
 586 *Statistics*, 18(1):1455–1494, 2024. ISSN 1935-7524. doi: 10.1214/24-ejs2234.

587 Fang Liu. Generalized Gaussian mechanism for differential privacy. *IEEE Transactions on Knowl-
 588 edge and Data Engineering*, 31(4):747–756, 2019. ISSN 2326-3865. doi: 10.1109/tkde.2018.
 589 2845388.

594 Hanyang Liu, Yong Wang, Zhiqiang Zhang, Jiangzhou Deng, Chao Chen, and Leo Yu Zhang. Matrix
 595 factorization recommender based on adaptive Gaussian differential privacy for implicit feedback.
 596 *Information Processing Management*, 61(4):103720, 2024. ISSN 0306-4573. URL <https://www.sciencedirect.com/science/article/pii/S0306457324000803>.
 597

598 Ryan McKenna and Daniel R Sheldon. Permute-and-flip: A new mechanism for differentially pri-
 599 vate selection. In *Proceedings of the 34th International Conference on Neural Information Pro-
 600 cessing Systems (NIPS '20)*, volume 1, pp. 193–203, Vancouver, BC, CA, 6–12 December 2020.
 601 Curran Associates Inc.
 602

603 Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In *48th Annual IEEE
 604 Symposium on Foundations of Computer Science (FOCS'07)*, pp. 94–103, Providence, RI, USA,
 605 20–23 October 2007. doi: 10.1109/focs.2007.66.

606 Ilya Mironov. Rényi differential privacy. In *2017 IEEE 30th Computer Security Foundations
 607 Symposium (CSF)*, pp. 263–275, Santa Barbara, CA, USA, 21–25 August 2017. doi:
 608 10.1109/csf.2017.11.

609 Gokularam Muthukrishnan and Sheetal Kalyani. Grafting Laplace and Gaussian distributions: A
 610 new noise mechanism for differential privacy. *IEEE Transactions on Information Forensics and
 611 Security*, 18:5359–5374, 2023. ISSN 1556-6021. doi: 10.1109/tifs.2023.3306159.

612 Rasmus Pagh, Lukas Retschmeier, Hao Wu, and Hanwen Zhang. Optimal bounds for private mini-
 613 mum spanning trees via input perturbation. *Proceedings of the ACM on Management of Data*, 3
 614 (2), 2025. doi: 10.1145/3725240.

615 Gang Qiao, Weijie Su, and Li Zhang. Oneshot differentially private top- k selection. In *Proceedings
 616 of the 38th International Conference on Machine Learning (ICML'21)*, volume 139, pp. 8672–
 617 8681. PMLR, 18–24 July 2021.

618 Parastoo Sadeghi and Mehdi Korki. Offset-symmetric Gaussians for differential privacy. *IEEE
 619 Transactions on Information Forensics and Security*, 17:2394–2409, 2022. ISSN 1556-6021. doi:
 620 10.1109/tifs.2022.3185770.

621 Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. *Journal of
 622 the American Statistical Association*, 105(489):375–389, 2010. ISSN 1537-274X. doi: 10.1198/
 623 jasa.2009.tm08651.

624 Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi, Shi Jin, Tony Q. S.
 625 Quek, and H. Vincent Poor. Federated learning with differential privacy: Algorithms and perfor-
 626 mance analysis. *IEEE Transactions on Information Forensics and Security*, 15:3454–3469, 2020.
 627 ISSN 1556-6021. doi: 10.1109/tifs.2020.2988575.

628 Xintao Xia and Zhanrui Cai. Adaptive false discovery rate control with privacy guarantee. *Journal
 629 of Machine Learning Research*, 24(252):1–35, 2023.

630 Abbas Yazdinejad, Ali Dehghantanha, Hadis Karimipour, Gautam Srivastava, and Reza M. Parizi.
 631 A robust privacy-preserving federated learning model against model poisoning attacks. *IEEE
 632 Transactions on Information Forensics and Security*, 19:6693–6708, 2024. ISSN 1556-6021. doi:
 633 10.1109/tifs.2024.3420126.

634 Lingchen Zhao, Qian Wang, Qin Zou, Yan Zhang, and Yanjiao Chen. Privacy-preserving collabora-
 635 tive deep learning with unreliable participants. *IEEE Transactions on Information Forensics and
 636 Security*, 15:1486–1500, 2020. ISSN 1556-6021. doi: 10.1109/tifs.2019.2939713.

637 Qinqing Zheng, Shuxiao Chen, Qi Long, and Weijie Su. Federated f-differential privacy. In *Pro-
 638 ceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume
 639 130 of *Proceedings of Machine Learning Research*, pp. 2251–2259. PMLR, 13–15 April 2021.
 640 URL <https://proceedings.mlr.press/v130/zheng21a.html>.

641 Yuqing Zhu and Yu-Xiang Wang. Adaptive private- k -selection with adaptive k and application to
 642 multi-label pate. In *Proceedings of The 25th International Conference on Artificial Intelligence
 643 and Statistics (AISTATS)*, volume 151, pp. 5622–5635, Valencia, ES, 2022. PMLR.

648 A PROOF OF EQUATION (4)
649650 Let $\text{Gum}(0, 1)$ and $\text{Gum}(\mu, 1)$ be the distributions of $\mathcal{M}_{\text{Gum}}(\mathcal{D})$ and $\mathcal{M}_{\text{Gum}}(\mathcal{D}')$ in (2) respectively, and p_0 and p_1 be the PDFs of $\text{Gum}(0, 1)$ and $\text{Gum}(\mu, 1)$ respectively. For the hypothesis testing problem (2), the likelihood ratio is

653
$$\frac{p_1(x)}{p_0(x)} = \frac{e^{x-\mu-e^{x-\mu}}}{e^{x-e^x}} = e^{-\mu+e^x(1-e^{-\mu})},$$

654
655

656 which is a monotone increasing function in x . Thus, the rejection domain in (2) is $W = \{X > t\}$
657 where X is random sample from Gumbel distribution and $t \in \mathcal{R}$. The corresponding type I and type
658 II errors are

659
$$\alpha(t) = P(X > t | X \sim \text{Gum}(0, 1)) = e^{-e^t},$$

660
$$\beta(t) = P(X < t | X \sim \text{Gum}(\mu, 1)) = 1 - e^{-e^{t-\mu}}.$$

661

662 Solving $\alpha(t) = \alpha$ yields $t = \ln(-\ln \alpha)$. So

663
$$T(\text{Gum}(0, 1), \text{Gum}(\mu, 1))(\alpha) = 1 - e^{-e^{-\mu}(-\ln \alpha)} = 1 - (\alpha)^{e^{-\mu}}.$$

664

And

665
$$T(\text{Gum}(\mu, 1), \text{Gum}(0, 1))(\alpha) = T(\text{Gum}(0, 1), \text{Gum}(\mu, 1))^{-1}(\alpha) = (1 - \alpha)^{e^\mu}.$$

666

667 Let α_1 be unique solution of $T(\text{Gum}(0, 1), \text{Gum}(\mu, 1))'(\alpha) = -1$ and $\alpha_2 =$
668 $T(\text{Gum}(0, 1), \text{Gum}(\mu, 1))(\alpha_1)$. Then, $\alpha_1 = e^{-\frac{\mu}{e^{-\mu}-1}}$, $\alpha_2 = 1 - e^{\frac{\mu e^{-\mu}}{e^{-\mu}-1}}$. Similar to Eq.(13)
669 in Dong et al. (2022),

670
$$B_\mu(\alpha) = \min\{T(\text{Gum}(0, 1), \text{Gum}(\mu, 1)), T(\text{Gum}(\mu, 1), \text{Gum}(0, 1))\}^{**}$$

671
672
$$= \begin{cases} T(\text{Gum}(0, 1), \text{Gum}(\mu, 1))(\alpha), & \alpha \in [0, \alpha_1], \\ \alpha_1 - \alpha + T(\text{Gum}(0, 1), \text{Gum}(\mu, 1))(\alpha_1), & \alpha \in [\alpha_1, \alpha_2], \\ T(\text{Gum}(\mu, 1), \text{Gum}(0, 1))(\alpha), & \alpha \in [\alpha_2, 1]. \end{cases}$$

673
674

675 B PROOF OF THEOREM 1
676677 For any two neighboring databases \mathcal{D} and \mathcal{D}' and $\gamma \geq \Delta h / \mu$, we get

678
$$\begin{aligned} T(\mathcal{M}_{\text{Gum}}(\mathcal{D}), \mathcal{M}_{\text{Gum}}(\mathcal{D}')) &= T(\text{Gum}(h(\mathcal{D}), \gamma), \text{Gum}(h(\mathcal{D}'), \gamma)) \\ &\geq \min \{T(\text{Gum}(0, 1), \text{Gum}(|h(\mathcal{D}) - h(\mathcal{D}')|/\gamma, 1)), \\ &\quad T(\text{Gum}(|h(\mathcal{D}) - h(\mathcal{D}')|/\gamma, 1), \text{Gum}(0, 1))\} \\ &\geq B_{\frac{|h(\mathcal{D}) - h(\mathcal{D}')|}{\gamma}}. \end{aligned}$$

679

680 By the definition of sensitivity, $|h(\mathcal{D}) - h(\mathcal{D}')| \leq \Delta h \leq \gamma \mu$. Therefore, we get
681

682
$$T(\mathcal{M}_{\text{Gum}}(\mathcal{D}), \mathcal{M}_{\text{Gum}}(\mathcal{D}')) \geq B_{\frac{|h(\mathcal{D}) - h(\mathcal{D}')|}{\gamma}} \geq B_\mu.$$

683

684 C PROOF OF COROLLARY 1
685686 Based on the equivalent conversion of f -DP and DP and the symmetry of the function B_μ , μ -
687 GumDP is equal to $(\varepsilon, 1 + B_\mu^*(-e^\varepsilon))$ -DP. Therefore, we only need to compute the $B_\mu^*(-e^\varepsilon)$. From
688 the definition of convex conjugate function, $B_\mu^*(y) = \sup_{x \in [0, 1]} (yx - B_\mu(x))$. And, from the shape
689 of B_μ , the supremum is obtained only at the unique critical point when $y \in (-\infty, -1)$. From
690

691
$$\begin{aligned} 0 &= \frac{d}{dx} (yx - B_\mu(x)) = \frac{d}{dx} (yx - 1 + x^{e^{-\mu}}) \\ &= y + e^{-\mu} x^{e^{-\mu}-1}, \end{aligned}$$

692

693 we have $x = (-e^\mu y)^{\frac{1}{e^{-\mu}-1}}$. Then,
694

695
$$B_\mu^*(y) = y(-e^\mu y)^{\frac{1}{e^{-\mu}-1}} + (-e^\mu y)^{\frac{e^{-\mu}}{e^{-\mu}-1}} - 1, \quad y \in (-\infty, -1).$$

696

697 Setting $y = -e^\varepsilon$ implies $B_\mu^*(-e^\varepsilon) = (e^{\mu+\varepsilon} - e^\varepsilon)e^{\frac{\mu+\varepsilon}{e^{-\mu}-1}} - 1$. Thus, this corollary holds.
698

702 **D PROOF OF EQUATION (7)**
 703

704 Let $\text{Gum}(0, 1)$ and $\text{Gum}(\mu, 1)$ be the distributions of $\mathcal{M}_{\text{Gum}}(\mathcal{D})$ and $\mathcal{M}_{\text{Gum}}(\mathcal{D}')$ in (6) respectively,
 705 and p_0 and p_1 be the PDFs of (y_1, y_2, \dots, y_k) under H_0 and H_1 respectively. For the hypothesis testing problem (6), the likelihood ratio is
 707

$$708 \frac{p_1(x_1, x_2, \dots, x_k)}{p_0(x_1, x_2, \dots, x_k)} = \prod_{i=1}^k \frac{e^{(x_i - \mu) - e^{(x_i - \mu)}}}{e^{x_i - e^{x_i}}} = e^{-k\mu} e^{(1 - e^{-\mu}) \sum_{i=1}^k e^{x_i}}.$$

711 It is a monotonically increasing function in $\sum_{i=1}^k e^{\frac{x_i}{\beta}}$. Thus, the rejection domain in (6) is $W =$
 712 $\{\sum_{i=1}^k e^{\frac{x_i}{\beta}} > t\}$ where X_i is a random sample and $t > 0$. The corresponding type I and type II
 713 errors respectively are
 714

$$716 \alpha(t) = P\left(\sum_{i=1}^k e^{X_i} > t \mid \{X_i\}_{i=1}^k \stackrel{\text{i.i.d.}}{\sim} \text{Gum}(0, 1)\right), \quad (8)$$

$$719 \beta(t) = P\left(\sum_{i=1}^k e^{X_i} < t \mid \{X_i\}_{i=1}^k \stackrel{\text{i.i.d.}}{\sim} \text{Gum}(\mu, 1)\right). \quad (9)$$

722 To facilitate the analysis, let $y_i = e^{x_i}, i = 1, 2, \dots, k$. When $X_i \sim \text{Gum}(0, 1)$, $P_{Y_i}(y_i \leq t) =$
 723 $P_{X_i}(e^{x_i} \leq t) = P_{X_i}(x_i \leq \ln t) = 1 - e^{-t}$, the distribution of Y_i is the exponential distribution with
 724 parameter 1, denoted as $\text{Exp}(1)$. Since $\{X_i\}_{i=1}^k$ are distributed independently and identically, so
 725 are $\{Y_i\}_{i=1}^k$. Based on the nature of the exponential distribution, $\sum_{i=1}^k Y_i \sim \Gamma(k, 1)$ where $\Gamma(k, 1)$
 726 denotes the Gamma distribution with shape parameter k and inverse scale parameter 1. Similarly,
 727 when $X_i \sim \text{Gum}(\mu, 1)$, $P_{Y_i}(y_i \leq t) = 1 - e^{-e^{\ln t - \mu}} = 1 - e^{-e^{-\mu} t}$, so $Y_i \sim \text{Exp}(e^{-\mu})$ and
 728 $\sum_{i=1}^k Y_i \sim \Gamma(k, e^{-\mu})$. Then, (8) and (9) respectively become
 729

$$730 \alpha(t) = P\left(\sum_{i=1}^k Y_i > t \mid \{Y_i\}_{i=1}^k \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(1)\right)$$

$$731 = P(\xi > t \mid \xi \sim \Gamma(k, 1))$$

$$732 = e^{-t} \left(1 + \sum_{i=1}^{k-1} \frac{t^i}{i!}\right),$$

$$733 \beta(t) = P\left(\sum_{i=1}^k Y_i < t \mid \{Y_i\}_{i=1}^k \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(e^{-\mu})\right)$$

$$734 = P(\xi < t \mid \xi \sim \Gamma(k, e^{-\mu}))$$

$$735 = 1 - e^{-te^{-\mu}} \left(1 + \sum_{i=1}^{k-1} \frac{(te^{-\mu})^i}{i!}\right).$$

744 Due to $Y \sim \chi^2(2k)$, $F_Y(x) = 1 - e^{-\frac{x}{2}} \left(1 + \sum_{i=1}^{k-1} \frac{(\frac{x}{2})^i}{i!}\right)$. So, $\alpha(t) = 1 - F_Y(2t)$ and $\beta(t) =$
 745 $F_Y\left(\frac{1}{2}F_Y^{-1}(1 - \alpha(t))2e^{-\mu}\right) = F_Y\left(F_Y^{-1}(1 - \alpha(t))e^{-\mu}\right)$, which yields
 746

$$747 T(\text{Gum}(0, 1)^k, \text{Gum}(\mu, 1)^k)(\alpha) = F_Y\left(F_Y^{-1}(1 - \alpha)e^{-\mu}\right).$$

750 Analogously, under the original hypothesis obeying $\text{Gum}(\mu, 1)^k$ and the alternative hypothesis obeying
 751 $\text{Gum}(0, 1)^k$, the type I and type II errors are respectively $\alpha(t) = 1 - e^{-te^{-\mu}} \left(1 + \sum_{i=1}^{k-1} \frac{(te^{-\mu})^i}{i!}\right)$ and
 752 $\beta(t) = e^{-t} \left(1 + \sum_{i=1}^{k-1} \frac{t^i}{i!}\right)$. Easily obtained, $\alpha(t) = F_Y(2e^{-\mu}t)$
 753 and $\beta(t) = 1 - F_Y\left(2F_Y^{-1}(\alpha(t))\frac{1}{2}e^{\mu}\right) = 1 - F_Y\left(F_Y^{-1}(\alpha(t))e^{\mu}\right)$, which yields
 754

$$755 T(\text{Gum}(\mu, 1)^k, \text{Gum}(0, 1)^k)(\alpha) = 1 - F_Y\left(F_Y^{-1}(\alpha(t))e^{\mu}\right).$$

756 Being identical to the proof of Equation (4), let α_1 be unique solution of
 757 $T(\text{Gum}(0, 1)^k, \text{Gum}(\mu, 1)^k)'(\alpha) = -1$ and $\alpha_2 = T(\text{Gum}(0, 1)^k, \text{Gum}(\mu, 1)^k)(\alpha_1)$. Tak-
 758 ing the derivative of $T(\text{Gum}(0, 1)^k, \text{Gum}(\mu, 1)^k)(\alpha)$ and setting it to -1 yields
 759

$$\begin{aligned} 760 \quad -1 &= \frac{d}{d\alpha} T(\text{Gum}(0, 1)^k, \text{Gum}(\mu, 1)^k)(\alpha) = \frac{d}{d\alpha} F_Y(F_Y^{-1}(1 - \alpha)e^{-\mu}) \\ 761 \\ 762 &= \frac{-p_Y(F_Y^{-1}(1 - \alpha)e^{-\mu})e^{-\mu}}{p_Y(F_Y^{-1}(1 - \alpha))} \\ 763 \\ 764 &= -e^{\frac{1}{2}F_Y^{-1}(1 - \alpha)(1 - e^{-\mu}) - k\mu}, \\ 765 \end{aligned}$$

766 where p_Y is the PDF of $\chi^2(2k)$. Then, $\alpha_1 = 1 - F_Y\left(\frac{2k\mu}{1 - e^{-\mu}}\right)$ and $\alpha_2 = F_Y(F_Y^{-1}(1 - \alpha_1)e^{-\mu}) =$
 767 $F_Y\left(\frac{2k\mu e^{-\mu}}{1 - e^{-\mu}}\right)$. This proof is finished.
 768

770 E PROOF OF THEOREM 2

771 Because of the consistence of $\{h_i\}_{i=1}^k$,

$$\begin{aligned} 772 \quad &T(\mathcal{M}(\mathcal{D}), \mathcal{M}(\mathcal{D}')) \\ 773 &= T(\text{Gum}(h_1(\mathcal{D}), \gamma) \times \cdots \times \text{Gum}(h_k(\mathcal{D}), \gamma), \text{Gum}(h_1(\mathcal{D}'), \gamma) \times \cdots \times \text{Gum}(h_k(\mathcal{D}'), \gamma)) \\ 774 &= T(\text{Gum}(0, 1)^k, \text{Gum}((h_1(\mathcal{D}') - h_1(\mathcal{D}))/\gamma, 1) \times \cdots \times \text{Gum}((h_k(\mathcal{D}') - h_k(\mathcal{D}))/\gamma, 1)) \\ 775 &\geq T(\text{Gum}(0, 1)^k, \text{Gum}(\text{sign}(h_1(\mathcal{D}') - h_1(\mathcal{D}))/\mu, 1) \times \cdots \times \text{Gum}(\text{sign}(h_k(\mathcal{D}') - h_k(\mathcal{D}))/\mu, 1)) \\ 776 &\geq \min\{T(\text{Gum}(0, 1)^k, \text{Gum}(\mu, 1)^k), T(\text{Gum}(\mu, 1)^k, \text{Gum}(0, 1)^k)\} \\ 777 &\geq B_\mu^k. \\ 778 \end{aligned}$$

779 The proof is completed.
 780

781 F PROOF OF COROLLARY 2

782 Similarly to the proof of Theorem 1, by the symmetry of the function B_μ^k , (k, μ) -GumDP is equal
 783 to $(\varepsilon, 1 + B_\mu^{k*}(-e^\varepsilon))$ -DP. Therefore, we only need to compute the $B_\mu^{k*}(-e^\varepsilon)$. Before that we need
 784 to know that the PDF of Z is
 785

$$p_Z(x) = \begin{cases} \frac{1}{2^k \Gamma(k)} x^{k-1} e^{-\frac{x}{2}}, & x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

786 It is easy to get $B_\mu^{k*}(y) = \sup_{x \in [0, 1]} (yx - B_\mu^k(x))$. And, from the shape of B_μ^k , the supremum is
 787 obtained only at the unique critical point when $y \in (-\infty, -1)$. Taking the derivative of the objective
 788 function and setting it to zero yields, when $y \in (-\infty, -1)$,
 789

$$\begin{aligned} 790 \quad 0 &= \frac{d}{dx} (yx - B_\mu^k(x)) = \frac{d}{dx} (yx - F_Z(F_Z^{-1}(1 - x)e^{-\mu})) \\ 791 &= y + \frac{e^{-\mu} p_Z(F_Z^{-1}(1 - x)e^{-\mu})}{p_Z(F_Z^{-1}(1 - x))} \\ 792 &= y + e^{\frac{F_Z^{-1}(1-x)}{2}(1 - e^{-\mu}) - k\mu}. \\ 793 \end{aligned}$$

794 Getting $x = 1 - F_Z\left(\frac{2(k\mu + \ln(-y))}{1 - e^{-\mu}}\right)$ and taking it into B_μ^{k*} leads to
 795

$$\begin{aligned} 800 \quad B_\mu^{k*}(x) &= y \left(1 - F_Z\left(\frac{2(k\mu + \ln(-y))}{1 - e^{-\mu}}\right)\right) - F_Z\left(F_Z^{-1}\left(F_Z\left(\frac{2(k\mu + \ln(-y))}{1 - e^{-\mu}}\right)\right)e^{-\mu}\right) \\ 801 &= y - y F_Z\left(\frac{2(k\mu + \ln(-y))}{1 - e^{-\mu}}\right) - F_Z\left(\frac{2(k\mu + \ln(-y))e^{-\mu}}{1 - e^{-\mu}}\right), \quad y \in (-\infty, -1). \\ 802 \end{aligned}$$

803 When $y = -e^\varepsilon$, $B_\mu^{k*}(-e^\varepsilon) = -e^\varepsilon + e^\varepsilon F_Z\left(\frac{2(k\mu + \varepsilon)}{1 - e^{-\mu}}\right) - F_Z\left(\frac{2(k\mu + \varepsilon)e^{-\mu}}{1 - e^{-\mu}}\right)$.
 804

810 **G PROOF OF LEMMA 1**

812 Start by analyzing the distribution of $\mathcal{M}_{\text{minGum}}^m(\mathcal{D})$, if $\{\eta_i\}_{i=1}^m \stackrel{\text{i.i.d.}}{\sim} \text{Gum}(0, \frac{\Delta}{\varepsilon})$,

$$\begin{aligned}
 814 \quad P(\mathcal{M}_{\text{minGum}}^m(\mathcal{D}) > t) &= P\left(\min_{i \in [m]} \left\{ \mathcal{M}_{\text{Gum}}^{(i)}(\mathcal{D}) \right\} > t\right) \\
 815 &= P\left(\min_{i \in [m]} \{h_i(\mathcal{D}) + \eta_i\} > t\right) \\
 816 &= \prod_{i=1}^m P(h_i(\mathcal{D}) + \eta_i > t) \\
 817 &= \prod_{i=1}^m e^{-e^{\frac{t-h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}}} \\
 818 &= \prod_{i=1}^m e^{-e^{\frac{t-h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}}} \\
 819 &\quad \frac{t+\frac{\Delta}{\varepsilon} \ln \left(\sum_{i=1}^m e^{-\frac{h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}} \right)}{\frac{\Delta}{\varepsilon}} \\
 820 &= e^{-e^{\frac{t+\frac{\Delta}{\varepsilon} \ln \left(\sum_{i=1}^m e^{-\frac{h_i(\mathcal{D})}{\varepsilon}} \right)}{\frac{\Delta}{\varepsilon}}}}.
 \end{aligned}$$

821 It is easy to see that $\mathcal{M}_{\text{minGum}}^m$ as a Gumbel mechanism and $\mathcal{M}_{\text{minGum}}^m(\mathcal{D})$ distributed from

$$822 \quad \text{Gum}\left(-\frac{\Delta}{\varepsilon} \ln \left(\sum_{i=1}^m e^{-\frac{h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}} \right), \frac{\Delta}{\varepsilon}\right).$$

823 Let $g(\mathcal{D}) = -\frac{\Delta}{\varepsilon} \ln \left(\sum_{i=1}^m e^{-\frac{h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}} \right)$. Then, $\mathcal{M}_{\text{minGum}}^m(\mathcal{D}) = g(\mathcal{D}) + \eta$ where $\eta \sim \text{Gum}(0, \frac{\Delta}{\varepsilon})$.

824 Because of $\Delta = \max_{i \in [k]} \max_{\mathcal{D}, \mathcal{D}'} |h_i(\mathcal{D}) - h_i(\mathcal{D}')|$, $|h_i(\mathcal{D}) - h_i(\mathcal{D}')| \leq \Delta$. So,

$$825 \quad e^{-\varepsilon} \sum_{i=1}^m e^{-\frac{h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}} \leq \sum_{i=1}^m e^{-\frac{h_i(\mathcal{D}')}{\frac{\Delta}{\varepsilon}}} \leq e^{\varepsilon} \sum_{i=1}^m e^{-\frac{h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}}.$$

826 Then, for any $i \in [k]$,

$$\begin{aligned}
 827 \quad |g(\mathcal{D}) - g(\mathcal{D}')| &= \left| -\frac{\Delta}{\varepsilon} \ln \left(\sum_{i=1}^m e^{-\frac{h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}} \right) + \frac{\Delta}{\varepsilon} \ln \left(\sum_{i=1}^m e^{-\frac{h_i(\mathcal{D}')}{\frac{\Delta}{\varepsilon}}} \right) \right| \\
 828 &= \left| \frac{\Delta}{\varepsilon} \ln \left(\frac{\sum_{i=1}^m e^{-\frac{h_i(\mathcal{D}')}{\frac{\Delta}{\varepsilon}}}}{\sum_{i=1}^m e^{-\frac{h_i(\mathcal{D})}{\frac{\Delta}{\varepsilon}}}} \right) \right| \leq \left| \frac{\Delta}{\varepsilon} \ln e^{\varepsilon} \right| = \Delta.
 \end{aligned}$$

829 So $|g(\mathcal{D}) - g(\mathcal{D}')| \leq \Delta$ holds in the general case. Because of $\max_{\mathcal{D}, \mathcal{D}'} |g(\mathcal{D}) - g(\mathcal{D}')| \leq \Delta$,
 830 $\mathcal{M}_{\text{minGum}}^m$ satisfies μ -GumDP using Theorem 2.

831 **H PROOF OF LEMMA 2**

832 Let $\{\eta_j\}_{j=1}^m$ be i.i.d. copied from $\text{Gum}(0, \frac{\Delta}{\varepsilon})$ and $\mathcal{M}_{\text{Gum}}^{(j)}(\mathcal{D}) = h_j(\mathcal{D}) + \eta_j$, $j \in [m]$. Then, for
 833 any $i \in [m]$ and $t \in \mathcal{R}$,

$$\begin{aligned}
 834 \quad P(M_{\text{Gum}}^*(D) = (i, h_i(D) + \eta_i) \in [m] \times (t, +\infty)) \\
 835 &= \int_t^\infty p\left(u_i - h_i(D), 0, \frac{\Delta}{\varepsilon}\right) \prod_{j \in [m] \setminus \{i\}} \left(1 - F\left(u_i - h_j(D), 0, \frac{\Delta}{\varepsilon}\right)\right) du_i \\
 836 &= e^{-\sum_{j=1}^m e^{\frac{\varepsilon(t-h_j(D))}{\Delta}}} \cdot \frac{e^{\frac{-\varepsilon h_i(D)}{\Delta}}}{\sum_{j=1}^m e^{\frac{-\varepsilon h_j(D)}{\Delta}}} \\
 837 &= P\left(\min_{j \in [m]} \left\{ \mathcal{M}_{\text{Gum}}^{(j)}(\mathcal{D}) \right\} > t\right) \cdot P(\mathcal{M}_{\text{E}}(\mathcal{D}, \{h_j\}_{j \in [m]}, \varepsilon) = i) \\
 838 &= P(\mathcal{M}_{\text{minGum}}^m(\mathcal{D}) > t) \cdot P(\mathcal{M}_{\text{E}}(\mathcal{D}, \{h_j\}_{j \in [m]}, \varepsilon) = i),
 \end{aligned}$$

864 where p and F are the PDF and CDF of $\text{Gum}(0, \frac{\Delta}{\varepsilon})$ respectively. With Lemma 1, the proof is
 865 complete.
 866

867 **I PROOF OF THEOREM 3**

868 By Lemma 2, Algorithm 1 is equivalent to the independent composition of a mechanism satisfied
 869 $\frac{\Delta}{\gamma}$ -GumDP and the EM $\mathcal{M}_E \left(\mathcal{D}, \{h_j\}_{j \in [m]}, \frac{\Delta}{\gamma} \right)$. Because of the monotone, \mathcal{M}_E is $\left(\frac{\Delta}{\gamma}, 0 \right)$ -DP.
 870 And, due to Theorem 1 and the basic composition theorem in Dwork & Roth (2013), the algorithm
 871 is $\left(\frac{\Delta}{\gamma} + \varepsilon, \delta(\varepsilon) \right)$ -DP where $\delta(\varepsilon) = \left(e^{\frac{\Delta}{\gamma} + \varepsilon} - e^\varepsilon \right) e^{\frac{\Delta}{\gamma} - 1}$ for any $\varepsilon > 0$.
 872

873 **J PROOF OF THEOREM 4**

874 Based on the result in Dong et al. (2020), the ε -BR is equal to ε -DP when the functions $\{h_i\}_{i \in [m]}$
 875 are monotone. Similarly to Theorem 3, it can be proved by Theorem 2, Lemma 3 and the basic
 876 composition theorem.
 877

878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917