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ABSTRACT

From the perspective of hypothesis testing, f-differential privacy (f-DP) as a re-
laxation of differential privacy (DP) possesses numerous desirable properties, the
most prominent of which is its lossless characterization of the composition of
DP mechanisms. Within the f-DP class, Gaussian differential privacy (GDP),
as a canonical family introduced to design Gaussian mechanism, has gained
widespread acceptance. However, Gaussian mechanism is not the optimal option
for all scenarios to ensure DP. As a type of extreme value distribution, Gumbel dis-
tribution is naturally considered to design private top-k selection algorithms. In
this work, a new family in f-DPs, named Gumbel differential privacy (GumDP), is
developed to parameterize Gumbel mechanism as similar to GDP. And the compo-
sition of Gumbel mechanisms is studied. In addition, two important composition
properties of the Gumbel mechanism are discovered among different private se-
lection problems. Utilizing these, a novel privacy-preserving top-k selection algo-
rithm with Gumbel mechanism, called the peeling algorithm under oneshot RNM,
is presented based on the Report Noisy Min (RNM) and peeling algorithms. Sim-
ulations demonstrate that the privacy-utility performance of the proposed private
selection algorithm is significantly improved compared to the peeling algorithm
under RNM with Laplace or Gaussian mechanism.

1 INTRODUCTION

With the rapid advancement of the information era, vast amounts of data are generated and released
daily. This has led to heightened awareness of personal privacy and increased focus on privacy
protection technologies. Based on these, differential privacy (DP) (Dwork et al.l 2006aib), as an
emerging technology for protecting individual user privacy, has received widespread attention from
both academia and industry. On the one hand, the definition is used by academics for a wide range of
research, e.g., the privatization of deep learning (Abadi et al.||2016; Zhao et al., 2020) and federated
learning (Wei et al.,[2020; Yazdinejad et al., 2024;|Cai et al.,[2024)), and the protection of models and
data in statistics (Alparslan & Yildirim, [2022; |Awan & Wang, [2024; |Lin et al.,[2024; |Acharya et al.}
2024). On the other hand, in industry, DP is also the core technology used by Apple (Differential
Privacy Team, |2017)), Google (Erlingsson et al., [2014), Microsoft (Ding et al., 2017), and the US
Census Bureau (Abowd, [2018}; |(Groshen & Goroff, 2022).

Under the theoretical framework of DP, designing the privacy-preserving mechanism to perturb the
output by adding noise is the core concept of the DP application where the three major ones are
Laplace, Gaussian and exponential mechanisms (Dwork et al., 2006aib; McSherry & Talwar, [2007).
With the goal of privacy and utility maximization, a large body of literature examines and parame-
terizes these mechanisms. However, as stated in (Brenner & Nissim, 2010), there is no universally
optimal DP mechanism for all types of queries. Hence, the design of DP mechanism is one of
the hot issues in DP research trying to start from the perspective of different noise distributions
(Liu, 2019; [Sadeghi & Korkil 2022} Muthukrishnan & Kalyani, |2023). In addition, along with the
complexity and modularity of the algorithm in large models, there will be multiple queries to the
database implying the composition of DP mechanisms. The composition of these mechanisms will
degrade the privacy-utility performance. The naive and advanced composition theorems (Dwork:
et al.| 2006a} [2010) are originally formulated to track these privacy performances which only carve
out loose privacy upper bounds. To achieve a tighter privacy upper bound, some important variants
of DP that have also been proposed to minimize the privacy loss of the composition process are
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zero-Concentrated Differential Privacy, Rényi Differential Privacy, truncated Concentrated Differ-
ential Privacy (Bun & Steinke, 2016; Mironov, 2017; Bun et al., |2018)). According to the above
approaches, the composition of Laplace, and Gaussian mechanisms all lead to tighter bounds. Un-
fortunately, these results are still the relaxing ones of the privacy upper bound. Meanwhile, the
statistical perspective of transforming DP into a hypothesis testing problem that cannot distinguish
the output of two neighboring datasets under the same mechanism has been proposed to enrich the
research perspective (Wasserman & Zhou, 2010). The f-differential privacy ( f-DP) is put forward
in line with this idea (Dong et al., 2022) where Gaussian differential privacy (GDP) as a family of
f-DPs gives a loss-free privacy upper bound carving on the composition of Gaussian mechanisms.
And GDP is heavily used because of its lossless after composition and the universality of the Gaus-
sian mechanism (Zheng et al., 2021} [Bu et al., [2023} |Liu et al., 2024). However, |Brenner & Nissim
(2010) shows that the Gaussian mechanism is not the optimal one in all application scenarios.

Naturally, the Gumbel distribution, as the most common extreme value distribution, has gained
interest in the design of DP mechanisms to protect privacy in selection problems. Among selection
problems, the top-k query techniques (Ilyas et al., [2008) is one of the top-mentioned techniques,
which are widely used in the Web, medical, government, such as information crawling for search
engines, sorting queries for medical data, analyzing and researching demographic data. Obviously,
attackers can strike this query process to steal the privacy of individual users. Therefore, this work
attempts using Gumbel distribution to privatize the top-k selection algorithm and providing the
privacy bound for the k-fold Gumbel mechanism embedded implicit in the algorithm. Unfortunately,
under the definition of f-DP, the lack of research on other types of trade-off functions allows for a
tighter privacy characterization for DP mechanisms beyond the Gaussian mechanism. Building upon
that, a new family of trade-off functions for Gumbel mechanism is proposed.

1.1 RELATED WORKS

The private top-k selection algorithm under DP has been extensively studied in fields such as statis-
tics (Dwork et al., 2021} |Cat et al., 2021} |Xia & Cail, 2023) and machine learning (Cohen & Lyul
2023} Lebeda & Tetek, [2025; [Pagh et al., |2025). However, how to select a suitable DP mecha-
nism and depict the composition of those mechanisms are still two central issues in designing a
top-k selection algorithm under DP. For simplicity, private top-1 query, also called private selec-
tion algorithm, is prior subjected to research that returns the minimum perturbed query value ¢; and
its corresponding index 4 given n queries {q,...,¢,}. Exponential mechanism (EM) (McSherry
& Talwar, [2007; McKenna & Sheldon, 2020) and Report Noisy Min (RNM) algorithm (Dwork &
Roth| 2013} |[Durfee & Rogers| 2019} |[Zhu & Wang] 2022)) are two common selection algorithms
under DP. In the development of RNM algorithm, it is essentially a matter of perturbing the output
index by attempting to apply the Laplace, Gaussian or Gumbel mechanisms to the query value and
re-perturbing the corresponding query value by the Laplace or Gaussian mechanism. Furthermore,
extending top-1 to top-k, the goal of private top-k selection is to design a DP algorithm that outputs
the & smallest perturbed query values {;,, ..., g, } and their corresponding indexes {i1,...,i}.
There are two main methods to perform k-term items selection, namely peeling algorithm (Hardt
& Roth, 2013; IDwork et al., 2021} Xia & Cai, 2023) and oneshot algorithm (Durfee & Rogers,
2019;|Qiao et al.,2021). Considering the complexity of analyzing privacy parameters in the oneshot
algorithm, this paper considers only the peeling algorithm.

1.2 CONTRIBUTIONS

In this work, we try to design a new private top-k selection algorithm with Gumbel mechanism and
utilize f-DP to ensure better privacy-utility performance for this algorithm. The main contributions
of this work are summarized as follows:

* The Gumbel mechanism is firstly proposed to directly noise the query value to ensure DP.
Gumbel differential privacy (GumDP), as a special family of trade-off function in f-DPs,
is designed to precisely characterize the Gumbel mechanism and its composition under the
assumption that the query functions are consistent. In addition, two equivalent conversion
forms between GumDP and DP are given.

* Two attractive composition properties of the Gumbel distribution in the private selection
problem are presented, as seen in Lemma [1|and Lemma [2| Based on these and the RNM
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algorithm, a newly validated private selection algorithm with Gumbel mechanism, named
oneshot RNM algorithm, is introduced which can simultaneously output the index and
query value without re-adding noise. Building upon Gumbel mechanism, Theorem [3| guar-
antees the privacy of this algorithm.

» Extending to top-k private selection, the peeling algorithm under oneshot RNM with Gum-
bel mechanism, whose privacy is secured by Theorem 4] is put through the peeling algo-
rithm. And simulations show that there is a significant reduction in the variance of the added
noise compared to the peeling algorithm under RNM with Laplace or Gaussian mechanism,
which also confirms the increase in data availability and ensures that Gumbel mechanism
achieves superior privacy-utility performance in the top-k selection problem.

Notations: Let N'(0,02%), Lap()\) and x2(2k) represent Gaussian distribution with location pa-
rameter 0 and scale parameter o, Laplace distribution with mean 0 and scale parameter )\, and
chi-square distribution with parameter 2k respectively. The sign(z) denotes the signature function,

1, ifzx<0,
ie., sign(x) = <0, ifz = 0, And [m] and R represent the set of {1,-,m} and the set of real
1, ifx > 1.

numbers respectively.

Mathematical details: Due to the space limitation, all details of the proofs of lemmas, corollaries
and theorems in this paper are provided in the appendices.

2 GUMBEL DIFFERENTIAL PRIVACY

For the sake of subsequent discussion, we foresee the definitions of DP and f-DP, along with their
equivalence transformation relationship. Let D = (di,ds, ..., d;), D’ = (d},d5, ..., d]), denoted
two neighboring datasets containing [ data items, of which [ can be interpreted as the number of
users in the database, be sampling from X! where X is a sample universe. These two datasets differ
in one and only one data item, i.e., only one j € [I] such that d; # d’;. Dwork et al. (2006aZb)
propose DP to protect the individual privacy which is unable to distinguish between D and D’.
Definition 1 ((¢, §)-DP (Dwork & Roth, 2013)). For any ¢ > 0 and § > 0, a mechanism M is
(,6)-DP if for all adjacent databases D, D’ and any measurable event S C R,

P(M(D) € §) < e“P(M(D') € §) + 4.

From the definition of DP, it is evident that the smaller the privacy parameters € and d, the higher
the level of privacy protection provided by the corresponding DP mechanism M. In f-DP, it is
natural to extend it to the problem of hypothesis testing where the distribution of the null hypothesis
follows M (D) and the alternative one follows M (D’) making it is difficult to distinguish them. Let
¢ denote the rejection rule. The trade-off function as a tool to characterize the degree of difference
between two hypotheses is

T(M(D), M(D')) () = inf {8 : 0y <

where a4 and 3, are its corresponding type I and II errors respectively defined as
ap =Emm) 0], By =1—Emond]-
Definition 2 (f-DP(Dong et al. 2022)). Given a trade-off function f : [0,1] — [0, 1] satisfies
convexity, continuity, and f(x) < 1 — x for x € [0, 1]. A mechanism M is said to be f-DP if
T(M(D), M(D")) > f,
for all neighbouring datasets D and D'.

The closer f in Definition [2| approaches g(x) = 1 — = with € [0, 1], the higher the level of
privacy protection provided by the DP mechanism M. Besides, the equivalent conversion between
f-DP and DP is also given by Dong et al.| (2022) through the concept of convex conjugate. For
a function f with f(x) = oo for z < 0 or & > 1, its convex conjugate is defined as f*(y) =
SUP_ oo cpcoo (YT — f(2)). For a symmetric trade-off function f, a mechanism is f-DP if and only
ifitis (¢,0(¢))-DP for all ¢ > 0 with

6(e) =1+ (=€) (1)
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2.1 pu-GUMBEL DIFFERENTIAL PRIVACY

For a random variable X distributed from the Gumbel (minimum) distribution with location param-
eter 4 and scale parameter v > 0, denoted as X ~ Gum(yu, ), its variance is 722 /6, and its
cumulative distribution function (CDF) and probability density function (PDF) respectively are

z—p 1 z—p

Top oy

F(zyp,y)=1—e°" ,p(:v;pw):§6 g

Definition 3 (Gumbel Mechanism). Given a database D and a query function h, the Gumbel mech-
anism Mgum Is defined as

MGHHI(D) = h(D) + m, n~ Gum(077)

Analogously to GDP (Dong et al., [2022), from the Gumbel distribution aspect, we design the p-
GumDP as a special family of the trade-off function in f-DP. Consider the following hypothesis

testing problem:
Ho:y ~ Mgum(D) versus  Hy :y ~ Mgum(D'). @

—— T(Gum(0,1),Gum(u,1))
—— T(Gum(u,1),Gum(0,1))
-- B,

0.8

°
o

type Il error

1
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0.2
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type | error

Figure 1: The trade-off functions T(Gum(0, 1), Gum(u, 1)), T(Gum(y, 1), Gum(0,1)) and B,
with p = 1.

Unlike the Gaussian distribution, the Gumbel distribution is asymmetric. From the hypothesis test-
ing problem in (2), as shown in the Fig.[T} for any x > 0,
T(Gum(0, 1), Gum(y, 1)) # T(Gum(p, 1), Gum(0, 1)).

To facilitate subsequent conversion to DP, we perform a two-step operation in the definition of
trade-off function B,,: symmetrization and convexification. Symmetrization is taking the minimum
of T(Gum(0,1), Gum(y, 1)) and T(Gum(p, 1), Gum(0, 1)); and convexification is taking the bi-
conjugate one, i.e., the largest convex lower envelope, of
min{7(Gum(0, 1), Gum(y, 1)), T(Gum(y, 1), Gum(0, 1))}.

Definition 4. For ;i > 0, the trade-off function B,, is defined as

B, = min{T(Gum(0, 1), Gum(y, 1)), T(Gum(y, 1), Gum(0, 1)) }**. 3)
The B,, for any 1 > 0 satisfies the requirements for the trade-off function as defined in Deﬁnition@

Fig. |I| also presents the curve of B,, with u = 1. And the explicit expression for the trade-off
function By, in (@) reads

1—a¢ ", a € [0,aq),
Bu(a) = —a + ee—;:—l -+ 1— eeﬂfﬂ—lj o E [a17a2)a (4)
(1_04)6“’ o€ [042,1],

L e M
where a; = e7"=1 and a =1-— ¢=-7-1. The proof details of (lé—_l[) are provided in Appendix
From (ED, this trade-off function is decreasing in p that B,, > B, if 1 < pg, as shown in Fig. Eka).
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Figure 2: (a) Changes in B,, curves for different values of . (b) Changes in B }LO curves for different
values of p.

Definition 5 (Gumbel Differential Privacy). A mechanism M is said to satisfy u-Gumbel differential
privacy, denoted as -GumDP, if

T(M(D), M(D")) > By,
for all neighboring datasets D and D'

Theorem 1. If a Gumbel mechanism operates on a real statistic h as Mgum (D) = h(D)+n, where
1 ~ Gum(0,v) and Ah = maxp pr |h(D) — h(D")|, then Mgum is pu-GumDP with yp > Ah.

From Definition[5] -GumDP, on the one hand, facilitates the privacy analysis and comparison as a
one-parameter privacy definition; on the other hand, achieves a good degree of privacy at ;1 < 0.5 as
shown in Fig.[2(a). Besides, it has a tight privacy carving for the Gumbel mechanism by Theorem ]
Next, we provide an equivalent transformation between p-GumDP and (g, §)-DP to conveniently
compare the privacy-utility performance of different DP mechanisms.

Corollary 1. A mechanism is satisfied p-GumDP if and only if it is (g,d(¢))-DP for all ¢ > 0,

+e
where §(g) = (elte — ea)eﬁf“—l.

2.2 (k,u)-GUMBEL DIFFERENTIAL PRIVACY

In practical applications, the composition of DP mechanisms is often involved. Therefore, this
section proposes (k, 1)-GumDP to characterize the composition of Gumbel mechanisms.
Definition 6 (k-fold Composed Mechanism). When k = 2, with the first mechanism M, : X' - R
and the second mechanism My : X' x R — R, the 2-fold mechanism M : X' — R x R is given
by M(D) = (y1, Ma(D,y1)) with M1(D) = y1 and D € X'. Let M; : X' x R"=' — R, i € [k].
Extension to the case of k > 2, the k-fold composed mechanism M of M, i € [k], is defined as

M= (M1,M2,...,Mk):Xl —>Rk.

Based on Definition[6] considering a new hypothesis testing problem for the k-fold composed mech-
anism M:

Ho: (y1,92,---,Yyk) ~ M(D) versus  Hy : (y1,92,--,yx) ~ M(D'). 5

Assuming that M, is an independent Gumbel mechanism given {y; }3;11 the above hypothesis test
can be viewed as a discussion of independent composition of £ Gumbel mechanisms. For ease
of analysis, the Gumbel mechanism corresponding to each M, is based on the identical Gumbel
distribution, denoted as Mgum. Under the above assumptions, y1,ys, ...,y are independently
and identically distributed (i.i.d.) from Mgum (D) given database D. Then, the hypothesis test
problem (5)) can be converted to

iid. pid.
Hy : {y; ?:1 X Maum(D)  versus  Hy : {y; ?:1 X Maum (D). 6)
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Similar to B, in , we propose the following trade-off function ij.
Definition 7. For p > 0, the trade-off function is defined as

Bﬁ = min{7(Gum(0, 1)*, Gum(, 1)*), T(Gum(x, 1)*, Gum(0, 1)*)}**.

And the explicit expression for the trade-off function ij reads

Fy (Fy (1 —a)e ™), a€0,m),
Bﬁ = —a+ Fy(Fyl(1—ap)e™), aclo,a), (7N
1 — Fy (Fy H(a)er), a € [ag, 1],

where oy = 1 — Fy( 2k ),ag = Fy(M) and Y ~ x%(2k) with CDF Fy. The proof

l—eH l—e—H
details of are provided in Appendix @ The trade-off function Bl’j is also decreasing in yu that
Bf > B if i1 < po. as seen in Fig.
Definition 8 ((k, )-Gumbel Differential Privacy). A mechanism M is said to satisfy (k, pu)-Gumbel
differential privacy ((k, u)-GumDP) if

T(M(D), M(D)) > B;;
for all neighbouring data sets D and D'.

Let the query functions {h; }%X_; be consistent before characterizing the k-fold composed mechanism
under the Gumbel distribution.

Definition 9. The k query functions {h;}%_, are consistent if if either sign(h;(D’") — hj(D)) < 0
forallj=1,... k,orsign(h;j(D") —h;(D)) > 0forallj=1,..., k.

Theorem 2. Consider the Gumbel mechanism operating on a statistic h; as M;(D) =
hi(D, Y1,Y2y .- ,yifl) +’I71 where i € [k’], ;i li\-q GrllHl(O7 A//J,), A= maxie[k] maxp p’ ‘hl(D> —

hi(D")|. If {hi}k_, are consistent, then the k-fold composed mechanism M = (My, Ma, ..., My,)
is (k, u)-GumDP.

By Theorem 2] it can be seen as that the composition of k¥ Gumbel mechanisms satisfied ;i-GumDP
is (k, u)-GumDP under certain conditions. Meanwhile, the equivalence transformation between
(k, 1)-GumDP and (&, §)-DP is proposed as follows.

Corollary 2. A mechanism is (k, ;1)-GumDP if and only if its k-fold mechanism is (¢, 6 ())-DP for
all e > 0, where 6i(¢) =1 — e + e Fy (%) — Fy (%) and Fyz denotes the CDF
of distribution x> (2k).

Note that the dx() in Corollary [2]is strictly derived from the equivalent conversion between f-DP
and DP, i.e. Equation (1)), so that dx(¢) € [0,1] forall € > 0.

3 PRIVATE TOP-k SELECTION UNDER GUMBEL MECHANISM

To ease the study, the top-k selection problem in this paper is to perform m real queries for
any database D, i.e., {h1(D), ha(D),. .., hn(D)}, sort the m queries, i.e., hi, (D) < hy(D) <
-+ < h;, (D), and finally output the smallest k& query values and the corresponding indexes, i.e.,
{(i1, hiy (D)), (32, hiy (D)), - . ., (ik, hi,, (D)) }. The output of indexes and query values suffers from
the leakage of individual privacy in D. The peeling algorithm under RNM as a top-k selection al-
gorithm under DP protects both of them (Dwork et al.l [2021). In this section, based on the above
algorithm and the Gumbel mechanism under GumDP given in the previous section, we design a
newly private top-k selection algorithm. Moreover, analyzing from the perspective of adding noise
variance, the new algorithm guarantees higher privacy-utility performance.

3.1 THE PEELING ALGORITHM UNDER ONESHOT REPORT NOISE MIN

Before designing the private selection algorithm, there are two important composition properties
about Gumbel mechanism.
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Lemma 1. Let {M(i) (D) = hi(D) + m}ie[m] be pi-GumDP where {1;};c[m) HS Gum(0, %)

Gum

The minimum Gumbel mechanism M . s defined as, for m € N* and any database D,

ginGum (D) = Ien[ln] {M(Cézlm(p)}

The M3 cum can be also seen as a Gumbel mechanism which satisfies j1-GumDP.
Lemma [I] illustrates that the minimum output among the noisy query values perturbed by Gumbel
noises still satisfies GumDP. However, the private selection problem considered in this paper requires
not only the minimum query value but also its corresponding index. To find the best index j € [m)]
and output the corresponding query value /;(D), the RNM algorithm (Dwork & Roth, 2013) with
Laplace mechanism satisfied (¢,0)-DP: Add the independent Laplace noise w from Lap(2A/e)

to each query {h;(D)}7L,, return the index j* of the smallest noisy one h;«(D) = h;«(D) + w
and draw a fresh noise Lap(2A/e) added to h;- (D) to output the noise one. It is evident that
the original RNM algorithm suffers from a privacy allocation issue concerning both the index and
the query value. Meanwhile, EM in Dwork & Roth| (2013) as another common privacy selection
algorithm only outputs the best index 7 € [m]. The EM Mg satisfies (¢, 0)-DP which outputs the
index ¢ with probability
_zhi(D)
[ A
P(Mg(D, {h;}jem,e) =1) = ———mr-
Djetm € 5

Fortunately, |Durfee & Rogers| (2019) demonstrates that ME(', {hj }je[m]a 5) is equivalent to the
RNM with Gum(0, A/e) when both of them output only the index. Building upon Lemma |l and
the relation the EM and the Gumbel mechanism, Lemma [2] gives a natural way to assign privacy-
preserving parameters to the output query value and its corresponding index in the private selection
problem utilizing Gumbel mechanism .

Lemma 2. For any database D and a batch of query values {h;(D)} c(m) added independent

noise perturbations from Gum(0, %) output the minimum noise query value and its index concur-
rently, denoted as M., (D), is equal to the independent composition of the Gumbel mechanism
m (D) satisfied e-GumDP and the EM Mg (D, {h;}jc[m), €), i.e., for any S C R,

minGum
P (M&um(D) = (i, hi(D) 4 1) € [m] x 5)
=P (Mg?inGum(,D) € S) P (ME(D7 {h’]}JE[M]?a) = Z) .
Actually, Lemma|2] also gives a composition of the Gumbel mechanism and the EM. Based on this,

the oneshot RNM algorithm which outputs the query and its index at the same time is formulated
and presented in Algorithm [I]

Algorithm 1 Oneshot Report Noisy Min

Input: The database D, functions hq, ..., h,, with sensitivity A and scale parameter -y
Output: The index j* and approximation to - (D)
1: for j = 1tomdo
2:  Seth; = h;(D)+ Z;, where Z; is independently sampled from Gum(0, y);
3: end for ~ ~
4: Solve j* = arg minh; and compute h .
j€[m]

It is evident that Algorithm [T]is more efficient than the RNM algorithm. Theorem [3|below provides
the privacy assurance for this algorithm.

Theorem 3. The oneshot RNM algorithm given in Algorithmis (% + e, 5(5)) -DP where 6(c) =

g

ALe _4
(ev fea)ee 7 -1 forany € > 0.
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It is natural to design a new private top-k selection algorithm using the peeling algorithm under
oneshot RNM proposed and shown in Algorithm [2] This top-k selectlon algorithm can be seen as
the independent composition of k& Gumbel mechanisms satisfied ——GumDP and k EMs satisfied

(7, 0) -DP.

Algorithm 2 Peeling Algorithm under Oneshot Report Noisy Min

Input: database D, functions hq, ..., h,, with sensitivity A, number of invocations k and scale
parameter -y
:forj=1tokdo

Let (z 3 hi ) be returned by oneshot Report Noisy Min applied to (D, h1, ..., hAp).

1
2
3: Seth;; = +oo.
4: end for

Output: indices iy, .. ., and approximations to h;, (D), ..., h;, (D)

Therefore, for characterizing the degree of privacy preservation of Algorithm [2] the optimal DP
composition theorem of EMs are required and stated in the following Lemma3]

Lemma 3. (Dong et al., 2020) If M is a k-fold non-adaptive composition of e-BR mechanisms,
then it is (g4, 05 (£4))-DP with

k

EM _ k—1 1 kt; —ie €g
o1 = g 2 () 0 (7 ).
where (a)is defined as max{a,0}, p; = ti and t; = W where if tj ¢ [0, €], then we

round it to the closest point in [0, €].

Theorem 4. If {h;}¥_, are consistent, then Algorithm 2] ensures (1 + €2, 6x(c1) + 6™ (e2))-DP
for all e1,e2 > 0, where the expressions for 6y (1) and 65 (e2) are respectively given in Theorem

and Lemmain which p =€ = %.

3.2 PRIVACY-UTILITY PERFORMANCE COMPARISON

The most intuitive way to analyze the privacy-utility performance of the private top-k algorithm
is to compare the variance of the added noise. Under the same privacy guarantee, a smaller noise
variance indicates that the output values are closer to the true values, and also signifies the higher
privay-utility performance. Therefore, in this subsection, for the peeling algorithm under RNM with
Laplace or Gaussian mechanim and the peeling algorithm under oneshot RNM with Gumbel mecha-
nism, we compare the corresponding noise variances of Laplace, Gaussian and Gumbel mechanisms
in these algorithms.

To ensure fairness in comparison, let the peeling algorithm under RNM with Laplace, Gaussian
mechanism and the peeling algorithm under oneshot RNM satisfy (e,d)-DP separately in pri-
vate top-k selection. By formulating the following optimization problems, we obtain the mini-
mum noise variance corresponding to several algorithms. The peeling algorithm under RNM with

Lap (0, W) is (g,0)-DP (Dwork et al., [2021). The variance of Laplace distribution

in the peeling algorithm under RNM is Wﬁl(l/&)' Meanwhile, combined with the result in (Cai
et al|(2024), the peeling algorithm under RNM with A(0, o2) is (g, §)-DP where the variance of
Gaussian distribution o2 satisfies
min o2
O0<eo<e
S.t. 5Gauss(50) < 67

where dgauss(€0) is provided i m Corollary 1 of|Dong et al.|(2022)) with it = FA . Lastly, for Gumbel
mechanism, Algorithm I is (,9)-DP utilizing Theorem E] if the variance of Gumbel distribution
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2 . .
T-~? is satisfied that

. 71—2 2
min = —~
€1,62>0 6

st. €1 +e2<¢,
S(e1) + ;M (e2) <6,
where 85 (¢1) and 6EM(e2) are respectively illustrated in Corollary [2| and Lemma [3|in which 1 =

£ = 2. Based on the above results, as shown in Fig. 3| by comparing at the same level of privacy

protection, i.e., (&, §)-DP, the noise variances of Gumbel mechanism are smaller than those of both
Laplace and Gaussian mechanisms which also implies that the application of the Gumbel mechanism
offers superior privacy-utility performance.

—=: Gumbel mechanism, 6 =103
——- Gaussian mechanism, 6 =103
20 —— Laplace mechanism, 6 =103
—— Gumbel mechanism, 6=10"°
—— Gaussian mechanism, 6 =10
—— Laplace mechanism, 6 =10"°

-
«

Varaince

-
o

0.02 0.04 0.06 0.08 0.10

Figure 3: Noise variances comparison of Gaussian, Laplace mechanisms in the peeling algorithms
under RNM and Gumbel mechanism in the peeling algorithm under oneshot RNM with ¢ varying,
k=10and 6 = 103,105,

4 CONCLUSION

In this paper, we provide a different privacy-preserving top-k selection algorithm with Gumbel
mechanism, i.e., the peeling algorithm under oneshot RNM. Exploiting two special composition
properties of the Gumbel mechanism, the oneshot RNM algorithm is designed, which is more ef-
ficient than the previous one as an algorithm that outputs the index and its query value without
re-noising the query. To better characterize the privacy upper bound for the composition of k¥ Gum-
bel mechanisms hidden within the peeling algorithm, GumDP is presented in this work as a novel
family of f-DPs. The ;~-GumDP analytically and tightly characterize the privacy of a single Gumbel
mechanism, while the (k, 1)-GumDP is presented as an extension to characterize the composition
of k£ Gumbel mechanisms under the assumption of consistency. To fairly compare different private
top-k selection algorithms, two equivalent transformation relationships between GumDP and DP
are provided. Based on the above equivalence relations, the variance-based comparison shows that
the new Gumbel-based algorithm outperforms the original Laplace- and Gaussian-based algorithms
under the same privacy guarantees. It is evident that the Gumbel mechanism holds advantages as
compared to the Gaussian and Laplace mechanisms in privacy-preserving selection algorithms.

Due to the wide range of practical applications involving top-k selection algorithms, conducting
in-depth and comprehensive research on private selection algorithms holds significant value. How-
ever, the topic of privacy selection still receives many challenges. In the process of extending the
top-1 selection algorithm to the top-k selection algorithm, only the peeling algorithm is studied in
this work. The oneshot algorithm can be subsequently used to further improve the performance.
Moreover, the composition of £ Gumbel mechanisms is taken under the strong assumption of con-
sistency. Additionally, the practical application of this new private top-k selection algorithm remains
to be explored.
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A PROOF OF EQUATION (@)

Let Gum(0, 1) and Gum(y, 1) be the distributions of Mgum (D) and Mgum(D’) in respec-
tively, and py and p; be the PDFs of Gum(0,1) and Gum(y, 1) respectively. For the hypothesis
testing problem (2), the likelihood ratio is

pi(z) e

Do (l‘) - er—e®
which is a monotone increasing function in z. Thus, the rejection domain in (2) is W = {X > ¢}
where X is random sample from Gumbel distribution and ¢ € R. The corresponding type I and type
II errors are

w
— T(1_e™ M
e pte(1—e )

)

a(t) = P(X > t|X ~ Gum(0,1)) = e “,

B(t) = P(X <t|X ~Gum(p,1))=1—e"°
Solving a(t) = avyields ¢t = In (—Ina). So

T(Gum(0,1), Gum(y, 1)) () =1 — e ¢ "(Cna) =1 _(q)* ",
And
T(Gum(z, 1), Gum(0,1))(a) = T(Gum(0, 1), Gum(p, 1)) "*(a) = (1 — )"
Let «; be unique solution of T(Gum(0,1),Gum(u,1))(a) = -1 and ay =
T(Gum(0,1), Gum(u, 1))(a1). Then, a; = e 1 oy = 1 — e 71, Similar to Eq.(13)
in|Dong et al.| (2022),
B,.(a) = min{T(Gum(0, 1), Gum(y, 1)), 7(Gum(z, 1), Gum(0,1))}**

T(Gum(ov 1); Gum(ﬂa 1))(()4), S [Oa al)a
= a; —a+T(Gum(0,1), Gum(p, 1)) (1), «€ [aq,az),
T(Gum(p, 1), Gum(0,1))(a), a € |ag, 1].

B PROOF OF THEOREMI]

For any two neighboring databases D and D’ and v > Ah/u, we get
T(Mcum(D), Maum(D')) = T(Gum(h(D), ), Gum(h(D'), 7))
> min {7(Gum(0, 1), Gum(|k(D) — h(D")|/7,1)),
T(Gum(|h(D) — h(D')|/7, 1), Gum(0, 1))}
> B\h(m;h(v’)\ .
By the definition of sensitivity, |h(D) — h(D’)| < Ah < ~u. Therefore, we get
T(MGum(D), MGum(D")) > B\h(D)—ﬁh(D’)\ > B,.

C PROOF OF COROLLARY (1]

Based on the equivalent conversion of f-DP and DP and the symmetry of the function B,,, u-
GumDP is equal to (g, 1 + B;;(—e®))-DP. Therefore, we only need to compute the Bj;(—e). From
the definition of convex conjugate function, B;;(y) = sup,¢,1)(y* — By (z)). And, from the shape
of B,,, the supremum is obtained only at the unique critical point when y € (—o0, —1). From
d d "
0= @(W—Bu(x)) = a(y:v—lﬂ‘ )

=y+ e—uiref“—l7

we have x = (—et'y) i . Then,

B(y) = y(—eiy) T 4 (—ety) e — 1,y e (—o0,—1).

pte
Setting y = —e® implies B;(—e®) = (e#"® — e®)e< #~1 — 1. Thus, this corollary holds.
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D PROOF OF EQUATION

Let Gum(0,1) and Gum(p, 1) be the distributions of MGum (D) and Mgum(D’) in (6) respec-
tively, and pg and p; be the PDFs of (y1,ys, - - ., yx) under Hy and H; respectively. For the hypoth-
esis testing problem (6), the likelihood ratio is

L hug—e ) S e

p1(xy, xr) b
1 1,425,534k :H

po(ﬂfiﬂﬁz, cee ,l’k)

Itisa monotonically increasing function in Z € 7. Thus, the rejection domain in (@) isW =

{Zizl e 7 > t} where X; is a random sample and ¢ > 0. The corresponding type I and type II
errors respectively are

k
= P<ZeXi > t‘{Xi}f & Gum(0, 1)) (8)

To facilitate the analysis, let y; = e®i,i = 1,2,...,k. When X; ~ Gum(0,1), Py,(y; < t) =
Py, (e* <t) = Px,(z; <Int) = 1—e~¢, the distribution of Y; is the exponential distribution with
parameter 1, denoted as Exp(1). Since {X 1k are distributed mdependently and identically, so

are {Y;}*_,. Based on the nature of the exponential distribution, Zi:l Y; ~ T'(k,1) where I'(k, 1)
denotes the Gamma distribution With shape parameter k£ and inverse scale parameter 1. Similarly,

when X; ~ Gum(y,1 y =1l 21" 50V ~ Exp(e ") and
27 1Y ~T(k, e #) Then 1 and respectively become

k
= P(Zn > t\{mf | Exp<1>>
=1

= P>t ~T(k1))

k
= P(Zn < t{yip, Exp(e—%)
=1

=P <tfe~T(ke™))
—1—ete “(1+Z (te” ") )

Due to ¥ ~ x?(2k), Fy(2) = 1— e % (1+ 255 BF). So, a(t) = 1 - Fy(2t) and f(t) =

7!

Fy (3Fy ' (1 —a(t))2e ™) = Fy (Fy' (1 - a(t)) e™#), which yields

T(Gum(0,1)", Gum(p, 1)*)(a) = Fy (Fy'' (1 —a)e ™).

Analogously, under the original hypothesis obeying Gum(u,1)* and the alternative hypoth-

esis obeying Gum(0, 1)‘, the type I and type II errors are respectively «(t) = 1 —
e—te " (1 4yl “7) and B(t) = e~ (1 I L,) Easily obtained, a(t) = Fy (2¢~"¢)

and B(t) = 1 — Fy (2Fy ' (a(t))3e”) = 1 — Fy (Fy' (a(t)) e*), which yields

T(Gum(p, 1)*, Gum(0,1)%)(a) =1 — Fy (F);1 (a(t)) et).
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Being identical to the proof of Equation @), let «; be unique solution of

T(Gum(0,1)*, Gum(p, 1)¥)'(a) = —1 and ay = T(Gum(0,1)¥, Gum(u,1)¥)(ay). Tak-
ing the derivative of T'(Gum(0, 1)*, Gum(y, 1)¥)(«) and setting it to —1 yields
d d _ _
1= aT(Gum(O7 1)*, Gum(p, 1)*)(a) = @FY (Fy'(1—a)e™)

2% (F;1 (1-a) 67“) e H
Py (F;l (1-— a))
::AieéF;J(141Q(1fe_“)fku’

where py is the PDF of x?(2k). Then, a; = 1 — Fy(lflz’i“) and ap = Fy (Fy' (1 —ay)e ™) =
Fy ( Qk”e - ) This proof is finished.

T—en

E PROOF OF THEOREM 2]

Because of the consistence of {h; }¥_,,
T(M(D), M(D")

=T(Gum(hi(D),7) x - - x Gum(hy(D),v), Gum(hy(D'),7) X - - x Gum(h(D’), 7))

— T(Gumn(0, 1)¥, Gum((hn (D) — hy(D)) /7, 1) x -+ x Gum((h(D') — he(D)) /7, 1))

> T(Gum(0,1)*, Gum(sign(hy (D) — h1(D))p, 1)) x - - - x Gum(sign(hx (D) — hi(D))p, 1))
> min{T(Gum(0, 1), Gum(y, 1)*), T(Gum(y, 1)¥, Gum(0, 1)*)}

> B
The proof is completed.

F PROOF OF COROLLARY 2]

Similarly to the proof of Theorem |1} by the symmetry of the function B ﬁ, (k, 1)-GumDP is equal
to (g,1 4 B*"(—e))-DP. Therefore, we only need to compute the B,’j* (—e®). Before that we need
to know that the PDF of Z is

k—1

1 _z
i W(k)x e 2, T > O,
xT) =
pz(2) {O, otherwise.

It is easy to get BE (y) = sup,¢(o1(yz — Bf(x)). And, from the shape of B, the supremum is
obtained only at the unique critical point when y € (—oco, —1). Taking the derivative of the objective
function and setting it to zero yields, when y € (—o0, —1),

0= 3 (0o = Bi(a)) = (= Fu(F5' (1= 2)e )
e Mg (Fy (1 —a)e )
pz(Fy; (1 — 1))

Fol(i-x)

=y+e Tz ek

Gettingz =1 — Fy (M) and taking it into Bﬁ* leads to

l—e—#

it = (1 () ) - (7 (e (PR ) )

2(kp 4+ In(—y 2(kp 4+ In(—y))e™#
=y—ykFy ((16(“)))_FZ< ( 17(€7H)) , ye(—oo,—l).
When y = feE,BI’f*(fef) = —ef +efFy (%i’:tﬁ?) —Fy (72(’“1“_26,)5_“').
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G PRrROOF OF LEMMA[I

Start by analyzing the distribution of M7~ (D), if {n;} 7~ 13\9 Gum(0, £),

P( ZinGum =P <m1n Gum D)})

i€[m]

<m1n{h )+ ni} >t)

i€[m]

_HP D) +m; > t)

_hi(D)
A
t+% In X7, e €

A
B

—e €

It is easy to see that M™ as a Gumbel mechanism and M (D) distributed from

minGum minGum

Gum<f —In (Ze h(ED>> é)
hi(D)

Let g(D) = —£1n (Z:’il e = ). Then, M7 cum(D) = g(D) + 1 where 1) ~ Gum(0, 2).
Because of A = max;¢ [y maxp pr |h;i (D) — hi(D’)|, [hi(D) — hi(D')| < A. So,

m Ry (D) m hz‘,(D/) m h; (D)
— - A T A
€ E e = < E e = <ef E e =

Then, for any i € [k],

90) — g0 = -2 (3o ) 4 A (3
€ ‘ € ‘

i=1 i=1
hi(D')
ET}'}, 67 %
_ | = i=1 = el
=|—1In p—— <‘ Ine®| = A.

Yiie =
So |g(D) — g (D')] < A holds in the general case. Because of maxp p |g(D) — g(D')] < A,
satisfies p-GumDP using Theorem @

ginGum
H PROOF OF LEMMA

Let {n;}7., be i.i.d.copied from Gum(0, £) and Mgl)lm( D) = h;j(D) + n,, j € [m]. Then, for
any i € [m [ Jandt € R,

P (Mgym (D) = (i, hi(D) +m:) € [m] x (£, +00))

:/ p(ui—hi(D),O, A) H (1—F<ui—hj(D),0,A)>dui
t €/ . ) €
JeIm\{i}

e(t—h; —chy(D)
e N
= . Em efehg(D)
j=1
=P (s {ME,(D)} > 0) P (Me(D. U} yeme) = 1)

- P( mlnGum(D) > t) P (ME(D7 {hj}je[m]78) = Z) )
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where p and F' are the PDF and CDF of Gum(0, %) respectively. With Lemma 1} the proof is
complete.

I PROOF OF THEOREM 3]

By Lemma [2} Algorithm |1|is equivalent to the independent composition of a mechanism satisfied
%-GumDP and the EM Mg (D, {hj}iems %) Because of the monotone, Mg is (%, 0) -DP.
And, due to Theorem E] and the basic composition theorem in Dwork & Roth|(2013)), the algorithm

34

. A o A+5_ c —%7
is (5 +¢,6(¢) )-DP where §(c) = (e ef)ee t for any € > 0.

J  PROOF OF THEOREM

Based on the result in Dong et al.| (2020), the -BR is equal to e-DP when the functions {hi}ie[m]
are monotone. Similarly to Theorem [3] it can be proved by Theorem [2] Lemma [3| and the basic
composition theorem.
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