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Abstract

We introduce DynaMITE-RL, a meta-reinforcement learning (meta-RL) approach1

to approximate inference in environments where the latent state evolves at varying2

rates. We model episode sessions—parts of the episode where the latent state3

is fixed—and propose three key modifications to existing meta-RL methods: (i)4

consistency of latent information within sessions, (ii) session masking, and (iii)5

prior latent conditioning. We demonstrate the importance of these modifications6

in various domains, ranging from discrete Gridworld environments to continuous-7

control and simulated robot assistive tasks, illustrating the efficacy of DynaMITE-8

RL over state-of-the-art baselines in both online and offline RL settings.9

1 Introduction10

Markov decision processes (MDPs) [4] provide a general framework in reinforcement learning (RL),11

and can be used to model sequential decision problems in a variety of domains, e.g., recommender12

systems (RSs), robot and autonomous vehicle control, and healthcare [22, 21, 7, 46, 31, 5]. MDPs13

assume a static environment with fixed transition probabilities and rewards [3]. In many real-world14

systems, however, the dynamics of the environment are intrinsically tied to latent factors subject15

to temporal variation. While non-stationary MDPs are special instances of partially observable16

MDPs (POMDPs) [24], in many applications these latent variables change infrequently, i.e. the latent17

variable remains fixed for some duration before changing. One class of problems exhibiting this latent18

transition structure is recommender systems, where a user’s preferences are a latent variable which19

gradually evolves over time [23, 26]. For instance, a user may initially have a strong affinity for a20

particular genre (e.g., action movies), but their viewing habits could change over time, influenced by21

external factors such as trending movies, mood, etc. A robust system should adapt to these evolving22

tastes to provide suitable recommendations. Another example is in manufacturing settings, where23

industrial robots may experience unobserved gradual deterioration of their mechanical components24

affecting the overall functionality of the system. Accurately modelling such latent transitions caused25

by hardware degradation can help manufacturers optimize performance, cost, and equipment lifespan.26

Our goal in this work is to leverage such a temporal structure to obviate the need to solve a fully general27

POMDP. To this end, we propose Dynamic Model for Improved Temporal Meta Reinforcement28

Learning (DynaMITE-RL), a method designed to exploit the temporal structure of sessions, i.e.,29

sub-trajectories within the history of observations in which the latent state is fixed. We formulate our30

problem as a dynamic latent contextual MDP (DLCMDP), and identify three crucial elements needed31

to enable tractable and efficient policy learning in environments with the latent dynamics captured by32

a DLCMDP. First, we consider consistency of latent information, by exploiting time steps for which33

we have high confidence that the latent variable is constant. To do so, we introduce a consistency loss34

to regularize the posterior update model, providing better posterior estimates of the latent variable.35

Second, we enforce the posterior update model to learn the dynamics of the latent variable. This36
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Figure 1: (Left) The graphical model for a DLCMDP. The transition dynamics of the environment
follows T (st+1,mt+1 | st, at,mt). At every timestep t, an i.i.d. Bernoulli random variable, dt,
denotes the change in the latent context, mt. Blue shaded variables are observed, whereas white
shaded variables are latent. (Right) A realization of a DLCMDP episode. Each session i is governed
by a latent variable mi which is changing between sessions according to a fixed transition function,
Tm(m′ | m). We denote li as the length of session i. The state-action pair (sit, a

i
t) at timestep t in

session i is summarized into a single observed variable, xit. We emphasize that session terminations
are not explicitly observed.

allows the trained policy to better infer, and adapt to, temporal shifts in latent context in unknown37

environments. Finally, we show that the variational objective in meta-RL algorithms, which attempts38

to reconstruct the entire trajectory, can hurt performance when the latent context is nonstationary. We39

modify this objective to reconstruct only the transitions that share the same latent context.40

Closest to our work is VariBAD [47], a meta-RL [1] approach for learning a Bayes-optimal policy,41

enabling an agent to quickly adapt to a new environment with unknown dynamics and reward42

functions. VariBAD uses variational inference to learn a posterior update model that approximates43

the belief over the distribution of transition and reward functions. It augments the state space with44

this belief to encode the agent’s uncertainty during decision-making. Nevertheless, VariBAD and the45

Bayes-Adaptive MDP framework [35] assume the latent context is static across an episode and do46

not address settings with latent state dynamics. In this work, we focus on the dynamic latent state47

formulation of the meta-RL problem.48

Our core contributions are as follows: (1) We introduce DynaMITE-RL, a meta-RL approach to49

handle environments with evolving latent context variables. (2) We introduce three key elements50

for learning an improved posterior update model: session consistency, modeling dynamics of latent51

context, and session reconstruction masking. (3) We validate our approach on a diverse set of52

challenging simulation environments and demonstrate significantly improved results over multiple53

state-of-the-art baselines in both online and offline-RL settings.54

2 Background55

We begin by reviewing relevant background including meta-RL and Bayesian RL. We also briefly56

summarize the VariBAD [47] algorithm for learning Bayes-adaptive policies.57

Meta-RL. The goal of meta-RL [1] is to quickly adapt an RL agent to an unseen test environment.58

Meta-RL assumes a distribution p(T ) over possible environments or tasks, and learns this distribution59

by repeatedly sampling batches of tasks during meta-training. Each task Ti ∼ p(T ) is described by60

an MDPMi = (S,A, Ri, Ti, γ), where the state space S , action space A, and discount factor γ are61

shared across tasks, while Ri and Ti are task-specific reward and transition functions, respectively.62

The objective of meta-RL is to learn a policy that efficiently maximizes reward given a new task63

Ti ∼ p(T ) sampled from the task distribution at meta-test time. Meta-RL is a special case of64

a POMDP in which the unobserved variables are R and T , which are assumed to be stationary65

throughout an episode.66

Bayesian Reinforcement Learning (BRL). BRL [18] utilizes Bayesian inference to model the67

uncertainty of agent and environment in sequential decision making problems. In BRL, R68

and T are unknown a priori and treated as random variables with associated prior distributions.69
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Figure 2: A DLCMDP rollout. VariBAD
does not model the transition dynamics
of the latent context and fails to adapt
to the changing goal location. By con-
trast, DynaMITE-RL correctly infers the
transition and consistently reaches the
rewarding cell (green cross).

At time t, the observed history of states, actions and re-70

wards is τ:t = {s0, a0, r1, . . . , rt, st}, and the belief bt71

represents the posterior over task parameters R and T72

given the transition history, i.e. bt , p(R, T | τ:t). Given73

the initial belief b0(R, T ), the belief can be updated it-74

eratively using Bayes’ rule: bt+1 = p(R, T | τ:t+1) ∝75

p(st+1, rt+1 | τ:t, R, T ) · bt. This Bayesian approach to76

RL can be formalized as a Bayes-adaptive MDP (BAMDP)77

[14]. A BAMDP is an MDP over the augmented state78

space S+ =S×B, where B denotes the belief space. Given79

the augmented state s+
t =(st, bt), the transition function is80

given by T+(s+
t+1 |s

+
t ,at)=Ebt [T (st+1 |st, at)·δ(bt+1 =81

p(R, T | τ:t+1)], and reward function is the expected re-82

ward given the belief, R+(s+
t , at) = Ebt [R(st, at)]. The83

BAMDP formulation naturally resolves the exploration-84

exploitation tradeoff. A Bayes-optimal RL agent takes85

information-gathering actions to reduce its uncertainty in86

the MDP parameters while simultaneously maximizing its87

returns. However, for most interesting problems, solving88

the BAMDP—and even computing posterior updates—89

is intractable given the continuous and typically high-90

dimensional nature of its state space.91

VariBAD. Zintgraf et al. [47] approximates the Bayes-optimal solution by modeling uncertainty over92

the MDP parameters. These parameters are represented by a latent vector m ∈ Rd, the posterior over93

which is p(m | τ:H), where H is the BAMDP horizon. VariBAD uses a variational approximation94

qφ(m | τ:t) parameterized by φ and conditioned on the observed history up to time t. Zintgraf95

et al. [47] show that qφ(m | τ:t) approximates the belief bt. In practice, qφ(m | τ:t) is represented96

by a Gaussian distribution qφ(m | τ:t) = N (µ(τ:t),Σ(τ:t)), where µ and Σ are sequence models97

(e.g., recurrent neural networks or transformers [42]) that encode trajectories to latent statistics. The98

variational lower bound at time t is Eqφ(m|τ:t)[log pθ(τ:H | m)]−DKL(qφ(m | τ:t) ‖ pθ(m)), where99

the first term reconstructs the trajectory likelihood pθ(τ:H | m) and the second term regularizes100

the variational posterior to a prior distribution over the latent space, typically modeled with a101

standard Gaussian distribution. Importantly, the trajectory up to time t, i.e., τ:t, is used in the102

ELBO equation to infer the posterior belief at time t, which then decodes the entire trajectory τ:H ,103

including future transitions. Given the belief state distribution qφ of a BAMDP, the policy maps104

both the state and belief to actions, i.e., π(at | st, qφ(m | τ:t)). The BAMDP solution policy π∗ is105

trained, e.g., via policy gradient methods, to maximize the expected cumulative return of meta-RL:106

J(π) = ER,T
[
Eπ[
∑H−1
t=0 γtr(st, at)]

]
, where the first expectation is averaged over environments.107

The RL agent is trained jointly with the variational belief distribution qφ.108

3 Dynamic Latent Contextual MDPs109

As a special case of a BAMDP, where the belief state is parameterized with a latent context vector110

(analogous to the problem formulation of VariBAD), the dynamic latent contextual MDP (DLCMDP)111

is denoted by 〈S,A,M, R, T, ν0, H〉, where S is the state space, A is the action space,M is the112

latent context space, R : S ×A×M 7→ ∆[0,1] is a reward function, T : S ×A×M 7→ ∆S×M is113

a transition function, ν0 ∈ ∆S×M is an initial state distribution, γ ∈ (0, 1) is a discount factor, and114

H is the (possibly infinite) horizon.115

We assume an episodic setting in which each episode begins in a state-context pair (s0,m0) ∼ ν0. At116

time t, the agent is at state st and context mt, and has observed history τ:t = {s0, a0, r1, . . . , rt, st}.117

Given the history, the agent selects an action at ∈ A, after which the state and latent context118

transitions according to T (st+1,mt+1 | st, at,mt), and the agent receives a reward sampled from119

R(st, at,mt). Throughout this process, the context mt is latent (i.e., not observed by the agent).120

DLCMDPs embody the causal independence depicted by the graphical model in Figure 1. Particularly,121

DLCMDPs impose a structure on changes of the latent variable m, allowing the latent context m to122

change less or more frequently. We denote by dt the random variable at which a transition occurs in123
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DynaMITE-RL Training
1: Input: env, policy, critic, belief model
2: for iter = 1 to num_rl_updates do
3: Collect DLCMDP episodes
4: Train posterior belief model by maximizing

ELBO (Eq. (2))
5: Train policy and critic with any online RL

algorithm
6: end for

Figure 3: Pseudo-code (online RL training) and model architecture of DynaMITE-RL.

mt. Let Ω = {dt}H−1
t=0 denote a sequence of i.i.d. Bernoulli random variables, according to Figure 1,124

the transition function T is represented by the following factored distribution:125

T (st+1 = s′,mt+1 = m′ | st = s, at = a,mt = m)

= Ts(s
′ | s, a,m)1{m′ = m, dt = 0}Td(dt = 0) + ν0(s′ | m′)Tm(m′ | m)1{dt = 1}Td(dt = 1),

where Tm :M 7→M is the latent dynamics function, Ts is the context-dependent state transition126

function, and Td is the termination probability distribution. We refer to sub-trajectories between127

changes in the latent context as sessions, which may vary in length. At the start of a new session,128

a new state and a new latent context are sampled based on the distribution ν0. Each session itself129

is governed by an MDP parameterized with a latent context m ∈M, which changes stochastically130

between sessions according to the latent transition function Tm(m′ | m). For notational simplicity131

we use index i to denote the ith session in a trajectory, and mi the respective latent context of that132

session. We emphasize that sessions switching times are latent random variables.133

Notice that DLCMDPs are more general than latent MDPs [38, 29], in which the latent context is134

fixed throughout the entire episode; this corresponds to dt ≡ 0. Moreover, DLCMDPs are closely135

related to POMDPs; letting dt ≡ 1, a DLCMDP reduces to a general POMDP with state spaceM,136

observation space S, and observation function ν0. As a consequence DLCMDPs are as general as137

POMDPs, rendering them very expressive. Moreover, the specific temporal structure of DLCMDPs138

allows us to devise efficient learning algorithms that exploit the transition dynamics of the latent139

context, improving learning efficiency. DLCMDPs are related to DCMDPs [40], LSMDPs [8], and140

DP-MDP [45]. However, DCMDPs assume contexts are observed, and focus on aggregated context141

dynamics, LSMDPs assume that the latent contexts across sessions are i.i.d (i.e., there is no latent142

dynamics) and DP-MDPs assume that sessions are fixed length.143

We aim to learn a policy π(at | st,mt) which maximizes the expected return J(π) over unseen test144

environments. As in BAMDPs, the optimal DLCMDP Q-function satisfies the Bellman equation;145

∀s+ ∈ S+, a ∈ A : Q(s+, a) = R+(s+, a) + γ
∑
s+′∈S+ T+(s+′ | s+, a) max

a′
Q(s+′ , a). In the146

following section, we present DynaMITE-RL for learning a Bayes-optimal agent in a DLCMDP.147

4 DynaMITE-RL148

We detail DynaMITE-RL, first deriving a variational lower bound for learning a DLCMDP posterior149

model, then outlining three principles for training DLCMDPs, and finally integrating them into our150

training objective.151

Variational Inference for Dynamic Latent Contexts. Given that we do not have direct access to152

the transition and reward functions of the DLCMDP, following Zintgraf et al. [47], we infer the153

posterior p(m | τ:t), and reason about the latent context vector m instead. Since exact posterior154

computation over m is computationally infeasible, given the need to marginalize over task space, we155

introduce the variational posterior qφ(m | τ:t), parameterized by φ ∈ Rd, to enable fast inference at156

every step. Our learning objective maximizes the log-likelihood Eπ[log p(τ)] of observed trajectories.157

In general, the true posterior over the latent context is intractable, as is the empirical estimate of the158
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log-likelihood. To circumvent this, we derive the evidence lower bound (ELBO) [27] to approximate159

the posterior over m under the variational inference framework.160

LetZ = {mi}K−1
i=0 be the sequence of latent context vectors forK sessions in an episode (note thatK161

is inherently a random variable—the exact number of sessions in an episode is not known). As defined162

previously, Ω is the collection of the session terminations. We use a parametric generative distribution163

model for the state-reward trajectory, conditioned on the action sequence: pθ(s0, r1, s1, . . . , rH , sH |164

a0, . . . , aH−1). In what follows, we drop the conditioning on a:H−1 for the sake of brevity.165

The variational lower bound can be expressed as:166

log pθ(τ) ≥ Eqφ(Z,Ω|τ:t)
[

log pθ(τ | Z,Ω)
]︸ ︷︷ ︸

reconstruction

−DKL(qφ(Z,Ω | τ:t)) ‖ pθ(Z,Ω))︸ ︷︷ ︸
regularization

= LELBO,t, (1)

which can be estimated via Monte Carlo sampling over a learnable approximate posterior qφ. In167

optimizing the reconstruction loss of session transitions and rewards, the learned latent variables168

should capture the unobserved MDP parameters. The full derivation of the ELBO for a DLCMDP is169

provided in Appendix A.1.170

Figure 2 depicts a (qualitative) didactic GridWorld example with two possible rewarding goals that171

alternate between sessions. The VariBAD agent does not account for latent goal dynamics and gets172

stuck after reaching the goal in the first session. By contrast, DynaMITE-RL employs the latent173

context dynamics model to capture goal changes, and adapts to the context changes across sessions.174

Consistency of Latent Information. In the DLCMDP formulation, each session is itself an MDP175

with a latent context fixed across the session. This within-context stationarity means new observations176

can only increase the information the agent has about this context. In other words, the agent’s177

posterior over latent contexts gradually hone in on the true latent distribution. Although this true178

distribution remain unknown, this insight suggest the use of a session-based consistency loss, which179

penalizes an increase in KL-divergence between the current and final posterior belief within a session.180

Let dH−1 = 1 and ti ∈ {0, . . . ,H} be a random variable denoting the last timestep of session181

i ∈ {0, . . . ,K−1}, i.e., ti = min{t′ ∈ Z≥0 :
∑t′

t=0 dt = i + 1}. At each time t in session i, we182

define the temporal, session-based consistency loss as183

Lconsistency,t = max{DKL(qφ(mi | τ:t+1) ‖ qφ(mi | τ:ti))−DKL(qφ(mi | τ:t) ‖ qφ(mi | τ:ti)), 0},
where qφ(mi | τ:ti) is the final posterior in session i. Using temporal consistency to regularize184

inference introduces an explicit inductive bias that allows for better posterior estimation.185

Remark 4.1. We introduce session-based consistency for DLCMDPs, though it is also relevant in186

single-session settings with non-dynamic latent context. Indeed, as we discuss below, while VariBAD187

focuses on single sessions, it does not constrain the latent’s posterior to be identical to final posterior188

belief. Consistency may be useful in settings where the underlying latent variable is stationary, but189

may hurt performance when this variable is indeed changing. Since our modeling approach allows190

latent context changes across sessions, incorporating consistency regularization does not generally191

hurt performance.192

Latent Belief Conditioning. Unlike the usual BAMDP framework, DLCMDPs allow one to model193

temporal changes of latent contexts via dynamics Tm(m′ | m) across sessions. To incorporate this194

model into belief estimation, in addition to the history (τ:t, d:t), we condition the posterior on the final195

latent belief qφ(m′, d′ | m, d, τ:t) from the previous session, and impose KL-divergence matching196

between this belief and the prior distribution pθ(m′ | m).197

Reconstruction Masking. When the agent is at time t, Zintgraf et al. [47] encode past interactions to198

obtain the current posterior qφ(m | τ:t) since this is all the information available for inference about199

the current task (see Eq. (1)). They use this posterior to decode the entire trajectory—including future200

transitions—from different sessions to optimize the lower bound during training. The insight is that201

decoding both the past and future allows the posterior model to perform inference about unseen states.202

However, we observe that when the latent context is stochastic, reconstruction over the full sequence203

is detrimental to training efficiency. The model is attempting to reconstruct transitions outside of the204

current session that may be irrelevant or biased given the latent-state dynamics, rendering it a more205

difficult learning problem. Instead we reconstruct only the transitions within the session defined by206

the predicted termination indicators, i.e., at any arbitrary time t within session i, the session-based207

reconstruction loss is given by208

Lsession-ELBO,t = Eqφ(Z,Ω|τ:t)
[

log pθ(τti−1+1:ti | Z,Ω)
]
−DKL(qφ(Z,Ω | τ:t)) ‖ pθ(Z,Ω)).
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Figure 4: Learning curves for DynaMITE-RL and state-of-the-art baseline methods. Shaded areas
represent standard deviation over 5 different random seeds for each method and 3 for ScratchItch. In
each of the evaluation environments, we observe that DynaMITE-RL exhibits better sample efficiency
and converges to a policy with better environment returns than the baseline methods.

DynaMITE-RL. By incorporating the three modifications above, we obtain at the following training209

objective for our variational meta-RL approach:210

LDynaMITE-RL(θ, φ) =

H−1∑
t=0

[
Lsession-ELBO,t(θ, φ) + β · Lconsistency,t(φ)

]
, (2)

where β > 0 is a hyper-parameter that regularizes the consistency loss. We present a simplified211

pseudocode for online training of DynaMITE-RL in Algorithm 3a and a detailed algorithm in212

Appendix A.2.213

Implementation Details. We use proximal policy optimization (PPO) [37] for online RL training.214

We introduce a posterior inference network that outputs a Gaussian over the latent context for215

the i-th session and the session termination indicators, qφ(mi, d:t | τ:t,mi−1), conditioned on the216

history and posterior belief from the previous session. We parameterize the inference network217

as a sequence model, with e.g., an RNN [9] or a Transformer [42], with different multi-layer218

perceptron (MLP) output heads for predicting the logits for session termination and the posterior219

belief. In practice, the posterior MLP outputs the parameters of a Gaussian belief distribution220

qφm(mi | τ:t,mi−1) = N (µ(τ:t),Σ(τ:t)). The session termination network applies a sigmoid221

activation function σ(x) = 1
1+e−x to the MLP output. Following PPO [37], the actor loss Jπ222

and critic loss Jω are respectively given by Jπ = Eτ∼πψ [log πψ(a | s,m)Â(s, a,m)] and Jω =223

Eτ∼πψ [(Qω(s, a,m) − (r + Vω(s′,m))2], where V is the target network, and Â is the advantage224

function. We also add an entropy bonus to ensure sufficient exploration in more complex domains.225

A decoder network, also parameterized using MLPs, reconstructs transitions and rewards given226

the session’s latent context mi, current state st, and action at, i.e., pTθ (st+1 | st, at,mt) and227

pRθ (rt+1 | st, at,mt). Figure 3b depicts the implemented model architecture. The final objective228

of DLCMDP is to jointly learn the policy πψ, the variational posterior model qφ, and the factored229

likelihood model pθ that minimizes the following loss:230

L(θ, φ, ψ) = E
[
Jπ(ψ) + λ · LDynaMITE-RL(φ, θ)

]
, (3)

where J is the expected return, and λ > 0 is a hyper-parameter trades off this return with DynaMITE-231

RL’s variational inference objective. We also evaluate DynaMITE-RL in an offline RL setting, in232

which we collect an offline dataset of trajectories following an oracle goal-conditioned policy and233

subsequently approximate the optimal value function and RL agent using offline RL methods, e.g.,234

IQL [28]. The value function and the policy are parameterized with the same architecture as in the235

online setting and will be detailed in Appendix A.5.236

5 Experiments237

We present experiments that demonstrate, while VariBAD and other meta-RL methods struggle to238

learn good policies given nonstationary latent contexts, DynaMITE-RL exploits the causal structure239
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of a DLCMDP to more efficiently learn performant policies. We compare our approach to several240

state-of-the-art meta-RL baselines, showing its significantly better evaluation returns.241

Environments. We test DynaMITE-RL on a suite of standard meta-RL benchmark tasks including a242

didactic gridworld navigation, continuous control, and human-in-the-loop robot assistance as shown243

in Figure 8. Gridworld navigation and MuJoCo [41] locomotion tasks are considered by Zintgraf et al.244

[47], Dorfman et al. [12], and Choshen and Tamar [10]. We modify these environments to incorporate245

temporal shifts in the reward and/or environment dynamics. To achieve good performance under246

these conditions, a learned policy must adapt to the latent state dynamics. More details about the247

environments and hyperparameters can be found in Appendix A.4 and A.5.248

Gridworld. We modify the Gridworld environment used by Zintgraf et al. [47]. In a 5× 5 gridworld,249

two possible goals are sampled uniformly at random in each episode. One of the two goals has a250

+1 reward while the other has 0 reward. The rewarding goal location changes after each session251

according to a predefined transition function. Goal locations are provided to the agent in the state—the252

only latent information is which goal has positive reward.253

Continuous Control. We experiment with two tasks from OpenAI Gym [6]: Reacher and HalfCheetah.254

Reacher is a two-jointed robot arm tasked with reaching a 2D goal location that moves along a255

circular path according to some unknown transition function. HalfCheetah is a locomotion task which256

we modify to incorporate changing latent contexts w.r.t. the target direction (HalfCheetah-Dir), target257

velocity (HalfCheetah-Vel), and target velocity with opposing wind forces (HalfCheetah-Wind+Vel).258

Assistive Itch Scratching. Assistive Itch Scratch is part of the Assistive-Gym benchmark [15]259

consisting of a human and a wheelchair-mounted 7-degree-of-freedom (DOF) Jaco robot arm. The260

human has limited-mobility and requires robot assistance to scratch an itch. We simulate stochastic261

latent context by moving the itch location—unobserved by the agent—along the human’s right arm.262

Figure 5: Ablating components of DynaMITE-RL.
We observe that modelling latent dynamics is cru-
cial in achieving good performance in a DLCMDP.
Additionally, consistency regularization and ses-
sion reconstruction improve the sample efficiency
and convergence to a better performing policy.

Meta-RL Baselines. We compare DynaMITE-263

RL to several state-of-the-art (approximately)264

Bayes-optimal meta-RL methods including RL2
265

[13], VariBAD [47], BORel [12], SecBAD [8],266

and ContraBAR [10]. RL2 [13] is an RNN-267

based policy gradient method which encodes268

environment transitions in the hidden state and269

maintains them across episodes. VariBAD re-270

duces to RL2 without the decoder and the vari-271

ational reconstruction objective for environment272

transitions. BORel primarily investigates offline273

meta-RL (OMRL) and proposes a few modifica-274

tions such as reward relabelling to address the275

identifiability issue in OMRL. Chen et al. [8]276

proposes the latent situational MDP (LS-MDP),277

in which there is non-stationary latent contexts278

that are sampled i.i.d., and SecBAD, an algo-279

rithm for learning in an LS-MDP. However, they280

do not consider latent dynamics which a crucial281

aspect in many applications. ContraBAR em-282

ploys a contrastive learning objective to discrim-283

inate future observations from negative samples284

to learn an approximate sufficient statistic of the285

history. As Zintgraf et al. [47] already demonstrate better performance by VariBAD than posterior286

sampling methods (e.g., PEARL [34]) we exclude such methods from our comparison.287

DynaMITE-RL outperforms prior meta-RL methods in a DLCMDP in both online and offline288

RL settings. In Figure 4, we show the learning curves for DynaMITE-RL and baseline methods.289

We first observe that DynaMITE-RL significantly outperforms the baselines across all domains in290

sample efficiency and average environment returns. RL2, VariBAD, BORel, SecBAD, and ContraBAR291

all perform poorly in the DLCMDP, converging to a suboptimal policy. By contrast, DynaMITE-RL292

accurately models the latent dynamics and consistently achieves high rewards despite the nonstation-293

ary latent context. We also evaluate an oracle with access to ground-truth session terminations and294

find that DynaMITE-RL with learned session terminations effectively recovers session boundaries and295
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Table 1: Average single episode returns for DynaMITE-RL and other state-of-the-art meta-RL
algorithms across different environments. Results for all environments are averaged across 5 seeds
beside ScratchItch which has 3 seeds. DynaMITE-RL, in bold, achieves the highest return on all of
the evaluation environments and is the only method able to recover an optimal policy.

Gridworld Reacher HC-Dir HC-Vel Wind+Vel ScratchItch
RL2 33.4±1.6 −150.6±1.2 −420.0±8.4 −513.2±8.7 −493.5±1.8 50.4±16.8

VariBAD 31.8±1.9 −102.4±4.2 −242.5±4.8 −363.5±3.2 −188.5±4.4 81.8±6.9

BORel 32.4±2.4 −103.5±4.6 −240.6±4.3 −343.4±3.6 −167.8±5.4 82.5±6.0

SecBAD 38.5±3.1 −96.2±4.8 −202.4±10.4 −323.5±3.4 −155.3±5.4 101.4±9.2

ContraBAR 34.5±0.9 −101.6±3.2 −256.5±3.6 −312.3±4.8 −243.4±2.6 114.6±24.4

DynaMITE-RL 42.9±0.5 −8.4±5.1 −68.5±2.3 −146.0±8.1 −42.8±6.9 231.2±23.3

Table 2: Average single episode returns with Offline RL. Results are averaged across 5 random seeds.
Algorithm with the highest average return are shown in bold. We present results for an oracle agent
trained with goal information for reference.

Gridworld Reacher HC-Dir HC-Vel HC-Dir+Vel ScratchItch
BORel 31.4±3.5 −102.0±5.8 −245.0±12.4 −354.0±8.3 −170.0±5.4 72.5±4.6

w/o Consistency 38.2±1.2 −33.2±2.7 −206.0±5.6 −212.0±6.4 −120.0±12.4 105.8±8.5

w/o Sess. Dynamics 33.4±1.3 −95.0±5.2 −244.0±6.0 −342.0±8.6 −166.0±9.5 74.1±2.3

DynaMITE-RL 41.8±0.6 −15.5±3.2 −154.0±8.6 −156.0±4.8 −48.0±8.6 225.5±10.6

w/ Transformer 43.8±0.6 −8.4±2.8 −132.0±7.4 −144.0±6.5 −33.0±5.8 242.5±7.4

Oracle (w/ goal) 44.6 −4.8 −112.0 −132.2 −24.4 245.3

matches oracle performance with sufficient training. Our empirical results validate that DynaMITE-RL296

learns a policy robust to changing latent contexts at inference time, while the baseline methods fail to297

adapt and get stuck in suboptimal behavior. We also demonstrate that DynaMITE-RL outperforms298

BORel in an offline RL setting in Table 2 in all environments. This highlights the importance of299

DynaMITE-RL training objectives in learning a more accurate posterior belief model even without300

online environment interactions. We also experimented with a Transformer encoder to parameterize301

our belief model and find that a more powerful model further improves the evaluation performance.302

General

POMDP

DLCMDP
Latent

MDP

Figure 6: Ablation studies on various fre-
quencies of latent context switches within an
episode in the HalfCheetah-Vel environment.
The boxplot shows the distribution over eval-
uation returns for 25 rollouts of trained poli-
cies with VariBAD and DynaMITE-RL . When
p = 0, we have a latent MDP and when p = 1
this is equivalent to a general POMDP.

Each component of DynaMITE-RL contributes303

to efficient learning in a DLCMDP: We ablate the304

three key components of DynaMITE-RL to under-305

stand their impact on the resulting policy. We com-306

pare full DynaMITE-RL to: (i) DynaMITE-RL w/o307

Consistency, which does not include consistency reg-308

ularization; (ii) DynaMITE-RL w/o Conditioning,309

which does not include latent conditioning; and (iii)310

DynaMITE-RL w/o SessRecon, which does not in-311

clude session reconstruction. In Figure 5, we re-312

port the performance for each of these ablations and313

vanilla VariBAD for comparisons. First, without prior314

latent belief conditioning, the model converges to a315

suboptimal policy slightly better than VariBAD, con-316

firming the importance of modeling the latent transi-317

tion dynamics of a DLCMDP. Second, we find that318

session consistency regularization reinforces the in-319

ductive bias of changing dynamics and improves the320

sample efficiency of learning an accurate posterior321

model in DLCMDPs. Finally, session reconstruc-322

tion masking also improves the sample efficiency by323

neglecting terms that are irrelevant and potentially bi-324

ased. Similar ablation studies in the offline RL setting325

can be found in Table 2, reinforcing the importance326

of our proposed training objectives.327
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DynaMITE-RL is robust to varying levels of latent stochasticity. We study the effect of varying328

the number of latent context switches over an episode of fixed time horizon. For the HalfCheetah-Vel329

environment, we fix the episode horizon H = 400 to create multiple problems. We introduce a330

Bernoulli random variable, e.g dt ∼ Bernoulli(p) where p is a hyperparameter we set to determine331

the probability that the latent context changes at timestep t. If p = 0, the latent context remains332

unchanged throughout the entire episode, corresponding to a latent MDP. If p = 1, the latent333

context changes at every timestep, which is equivalent to a general POMDP. As shown in Figure 6,334

DynaMITE-RL performs better, on average, than VariBAD, with lower variance in a latent MDP. We335

hypothesize that, in the case of latent MDP, consistency regularization helps learn a more accurate336

posterior model by enforcing the inductive bias that the latent is static. Otherwise, there is no inherent337

advantage in modeling the latent dynamics if it is stationary. As we gradually increase the number338

of context switches, the problem becomes more difficult and closer to a general POMDP. VariBAD339

performance decreases drastically because it is unable to model the changing latent dynamics while340

DynaMITE-RL is less affected, highlighting the robustness of our approach. When we set the number341

of contexts equal to the episode horizon length, we recreate a fully general POMDP and again the342

performance between VariBAD and DynaMITE-RL converges.343

6 Related Work344

POMDPs provide a general framework modeling non-stationality and partial observability in sequen-345

tial decision problems. Many model variants have been introduced, defining a rich spectrum between346

episodic MDPs and POMDPs. The Bayes-adaptive MDP (BAMDP) [14] and hidden parameter MDP347

(HiP-MDP) [25] are both special cases of POMDPs in which environment parameters are unknown348

and the goal is to infer these parameters online during an episode. However, neither framework349

addresses the dynamics of the latent parameters across sessions, but rather assumes it is constant350

throughout an episode. LSMDP [8] and DP-MDP [44] do investigate nonstationary latent contexts351

but LSMDP samples them i.i.d., not considering the dynamics, while DP-MDP assumes fixed session352

lengths. By contrast, DLCMDPs models the dynamics of the latent state and simultaneously infers353

when the transition occurs, allowing better posterior updates at inference time.354

DynaMITE-RL shares conceptual similarities with other meta-RL algorithms. Firstly, optimization-355

based techniques [16, 11, 36] learn neural network policies that can quickly adapt to new tasks at356

test time using policy gradient updates. However, these methods do not optimize for Bayes-optimal357

behavior and generally exhibit suboptimal test-time adaptation. Context-based meta-RL techniques358

aim to learn policies that directly infer task parameters at test time, conditioning the policy on359

the posterior belief. Such methods include recurrent memory-based architectures [13, 43, 30, 2]360

and variational approaches [20, 47, 12]. VariBAD, closest to our work, uses variational inference361

to approximate Bayes-optimal policies. However, we have demonstrated above the limitations of362

VariBAD in DLCMDPs, and have developed several crucial modifications to drive effective learning363

a highly performant policies in our setting.364

7 Conclusion365

We developed DynaMITE-RL, a meta-RL method to approximate Bayes-optimal behavior using366

a latent variable model. We presented the dynamic latent contextual Markov Decision Process367

(DLCMDP), a model in which latent context information changes according to an unknown transition368

function, that captures many natural settings. We derived a graphical model for this problem setting369

and formalized it as an instance of a POMDP. DynaMITE-RL is designed to exploit the causal370

structure of this model, and in a didactic GridWorld environment and several challenging continuous371

control tasks, we demonstrated that it outperforms existing meta-RL methods w.r.t. both learning372

efficiency and test-time adaptation in both online and offline-RL settings.373

There are a number of exciting directions for future research building on the DLCMDP model. While374

we only consider Markovian latent dynamics in this work (i.e. future latent states are independent of375

prior latent states given the current latent state), we plan to investigate richer non-Markovian latent376

dynamics. We hope to extend DynaMITE-RL to other real-world applications including recommender377

systems (RS), autonomous driving, multi-agent collaborative systems, etc. DLCMDPs are a good378

model for RS as recommender agents often interact with users over long periods of time during which379

the user’s latent context changes irregularly, directly influencing their preferences.380
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NeurIPS Paper Checklist505

1. Claims506

Question: Do the main claims made in the abstract and introduction accurately reflect the507

paper’s contributions and scope?508

Answer: [Yes]509

Justification: Section 5 demonstrates, while VariBAD and other meta-RL methods struggle510

to learn good policies given nonstationary latent contexts, DynaMITE-RL exploits the causal511

structure of a DLCMDP to more efficiently learn performant policies in both online and512

offline-RL settings.513

Guidelines:514

• The answer NA means that the abstract and introduction do not include the claims515

made in the paper.516

• The abstract and/or introduction should clearly state the claims made, including the517

contributions made in the paper and important assumptions and limitations. A No or518

NA answer to this question will not be perceived well by the reviewers.519

• The claims made should match theoretical and experimental results, and reflect how520

much the results can be expected to generalize to other settings.521

• It is fine to include aspirational goals as motivation as long as it is clear that these goals522

are not attained by the paper.523

2. Limitations524

Question: Does the paper discuss the limitations of the work performed by the authors?525

Answer: [Yes]526

Justification: We only consider Markovian latent dynamics here (i.e. future latent states are527

independent of prior latent states given the current latent state). It would be interesting to528

explore complex non-Markovian latent dynamics.529

Guidelines:530

• The answer NA means that the paper has no limitation while the answer No means that531

the paper has limitations, but those are not discussed in the paper.532

• The authors are encouraged to create a separate "Limitations" section in their paper.533

• The paper should point out any strong assumptions and how robust the results are to534

violations of these assumptions (e.g., independence assumptions, noiseless settings,535

model well-specification, asymptotic approximations only holding locally). The authors536

should reflect on how these assumptions might be violated in practice and what the537

implications would be.538

• The authors should reflect on the scope of the claims made, e.g., if the approach was539

only tested on a few datasets or with a few runs. In general, empirical results often540

depend on implicit assumptions, which should be articulated.541

• The authors should reflect on the factors that influence the performance of the approach.542

For example, a facial recognition algorithm may perform poorly when image resolution543

is low or images are taken in low lighting. Or a speech-to-text system might not be544

used reliably to provide closed captions for online lectures because it fails to handle545

technical jargon.546

• The authors should discuss the computational efficiency of the proposed algorithms547

and how they scale with dataset size.548

• If applicable, the authors should discuss possible limitations of their approach to549

address problems of privacy and fairness.550

• While the authors might fear that complete honesty about limitations might be used by551

reviewers as grounds for rejection, a worse outcome might be that reviewers discover552

limitations that aren’t acknowledged in the paper. The authors should use their best553

judgment and recognize that individual actions in favor of transparency play an impor-554

tant role in developing norms that preserve the integrity of the community. Reviewers555

will be specifically instructed to not penalize honesty concerning limitations.556

3. Theory Assumptions and Proofs557
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Question: For each theoretical result, does the paper provide the full set of assumptions and558

a complete (and correct) proof?559

Answer: [NA]560

Justification: We do not derive new theoretical results in this work.561

Guidelines:562

• The answer NA means that the paper does not include theoretical results.563

• All the theorems, formulas, and proofs in the paper should be numbered and cross-564

referenced.565

• All assumptions should be clearly stated or referenced in the statement of any theorems.566

• The proofs can either appear in the main paper or the supplemental material, but if567

they appear in the supplemental material, the authors are encouraged to provide a short568

proof sketch to provide intuition.569

• Inversely, any informal proof provided in the core of the paper should be complemented570

by formal proofs provided in appendix or supplemental material.571

• Theorems and Lemmas that the proof relies upon should be properly referenced.572

4. Experimental Result Reproducibility573

Question: Does the paper fully disclose all the information needed to reproduce the main ex-574

perimental results of the paper to the extent that it affects the main claims and/or conclusions575

of the paper (regardless of whether the code and data are provided or not)?576

Answer: [Yes]577

Justification: We present all the information needed in the Appendix.578

Guidelines:579

• The answer NA means that the paper does not include experiments.580

• If the paper includes experiments, a No answer to this question will not be perceived581

well by the reviewers: Making the paper reproducible is important, regardless of582

whether the code and data are provided or not.583

• If the contribution is a dataset and/or model, the authors should describe the steps taken584

to make their results reproducible or verifiable.585

• Depending on the contribution, reproducibility can be accomplished in various ways.586

For example, if the contribution is a novel architecture, describing the architecture fully587

might suffice, or if the contribution is a specific model and empirical evaluation, it may588

be necessary to either make it possible for others to replicate the model with the same589

dataset, or provide access to the model. In general. releasing code and data is often590

one good way to accomplish this, but reproducibility can also be provided via detailed591

instructions for how to replicate the results, access to a hosted model (e.g., in the case592

of a large language model), releasing of a model checkpoint, or other means that are593

appropriate to the research performed.594

• While NeurIPS does not require releasing code, the conference does require all submis-595

sions to provide some reasonable avenue for reproducibility, which may depend on the596

nature of the contribution. For example597

(a) If the contribution is primarily a new algorithm, the paper should make it clear how598

to reproduce that algorithm.599

(b) If the contribution is primarily a new model architecture, the paper should describe600

the architecture clearly and fully.601

(c) If the contribution is a new model (e.g., a large language model), then there should602

either be a way to access this model for reproducing the results or a way to reproduce603

the model (e.g., with an open-source dataset or instructions for how to construct604

the dataset).605

(d) We recognize that reproducibility may be tricky in some cases, in which case606

authors are welcome to describe the particular way they provide for reproducibility.607

In the case of closed-source models, it may be that access to the model is limited in608

some way (e.g., to registered users), but it should be possible for other researchers609

to have some path to reproducing or verifying the results.610
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5. Open access to data and code611

Question: Does the paper provide open access to the data and code, with sufficient instruc-612

tions to faithfully reproduce the main experimental results, as described in supplemental613

material?614

Answer: [No]615

Justification: Not at this point but we will release the code along with the camera ready616

version of the paper. We will integrate several other meta-RL environments in addition to617

the ones discussed in the paper.618

Guidelines:619

• The answer NA means that paper does not include experiments requiring code.620

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/621

public/guides/CodeSubmissionPolicy) for more details.622

• While we encourage the release of code and data, we understand that this might not be623

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not624

including code, unless this is central to the contribution (e.g., for a new open-source625

benchmark).626

• The instructions should contain the exact command and environment needed to run to627

reproduce the results. See the NeurIPS code and data submission guidelines (https:628

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.629

• The authors should provide instructions on data access and preparation, including how630

to access the raw data, preprocessed data, intermediate data, and generated data, etc.631

• The authors should provide scripts to reproduce all experimental results for the new632

proposed method and baselines. If only a subset of experiments are reproducible, they633

should state which ones are omitted from the script and why.634

• At submission time, to preserve anonymity, the authors should release anonymized635

versions (if applicable).636

• Providing as much information as possible in supplemental material (appended to the637

paper) is recommended, but including URLs to data and code is permitted.638

6. Experimental Setting/Details639

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-640

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the641

results?642

Answer: [Yes]643

Justification: As said, we present all the information needed in the Appendix. We disclose644

hyperparameters in Appendix A.5.645

Guidelines:646

• The answer NA means that the paper does not include experiments.647

• The experimental setting should be presented in the core of the paper to a level of detail648

that is necessary to appreciate the results and make sense of them.649

• The full details can be provided either with the code, in appendix, or as supplemental650

material.651

7. Experiment Statistical Significance652

Question: Does the paper report error bars suitably and correctly defined or other appropriate653

information about the statistical significance of the experiments?654

Answer: [Yes]655

Justification: Tables 1 and 2 have error bars. Figures 5 and 6 also have error bars.656

Guidelines:657

• The answer NA means that the paper does not include experiments.658

• The authors should answer "Yes" if the results are accompanied by error bars, confi-659

dence intervals, or statistical significance tests, at least for the experiments that support660

the main claims of the paper.661
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• The factors of variability that the error bars are capturing should be clearly stated (for662

example, train/test split, initialization, random drawing of some parameter, or overall663

run with given experimental conditions).664

• The method for calculating the error bars should be explained (closed form formula,665

call to a library function, bootstrap, etc.)666

• The assumptions made should be given (e.g., Normally distributed errors).667

• It should be clear whether the error bar is the standard deviation or the standard error668

of the mean.669

• It is OK to report 1-sigma error bars, but one should state it. The authors should670

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis671

of Normality of errors is not verified.672

• For asymmetric distributions, the authors should be careful not to show in tables or673

figures symmetric error bars that would yield results that are out of range (e.g. negative674

error rates).675

• If error bars are reported in tables or plots, The authors should explain in the text how676

they were calculated and reference the corresponding figures or tables in the text.677

8. Experiments Compute Resources678

Question: For each experiment, does the paper provide sufficient information on the com-679

puter resources (type of compute workers, memory, time of execution) needed to reproduce680

the experiments?681

Answer: [Yes]682

Justification: Section A.5.2 provides information on the computer resources.683

Guidelines:684

• The answer NA means that the paper does not include experiments.685

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,686

or cloud provider, including relevant memory and storage.687

• The paper should provide the amount of compute required for each of the individual688

experimental runs as well as estimate the total compute.689

• The paper should disclose whether the full research project required more compute690

than the experiments reported in the paper (e.g., preliminary or failed experiments that691

didn’t make it into the paper).692

9. Code Of Ethics693

Question: Does the research conducted in the paper conform, in every respect, with the694

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?695

Answer: [Yes]696

Justification: We confirm that this paper conforms the NeurIPS Code of Ethics.697

Guidelines:698

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.699

• If the authors answer No, they should explain the special circumstances that require a700

deviation from the Code of Ethics.701

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-702

eration due to laws or regulations in their jurisdiction).703

10. Broader Impacts704

Question: Does the paper discuss both potential positive societal impacts and negative705

societal impacts of the work performed?706

Answer: [NA]707

Justification: This paper is about foundational research and not tied to particular applications708

currently. In the future, DynaMITE-RL can be used in assistive robots to improve healthcare709

delivery and patient satisfaction as we demonstrate in the experiments with Assistive Itch710

Scratch.711

Guidelines:712
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• The answer NA means that there is no societal impact of the work performed.713

• If the authors answer NA or No, they should explain why their work has no societal714

impact or why the paper does not address societal impact.715

• Examples of negative societal impacts include potential malicious or unintended uses716

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations717

(e.g., deployment of technologies that could make decisions that unfairly impact specific718

groups), privacy considerations, and security considerations.719

• The conference expects that many papers will be foundational research and not tied720

to particular applications, let alone deployments. However, if there is a direct path to721

any negative applications, the authors should point it out. For example, it is legitimate722

to point out that an improvement in the quality of generative models could be used to723

generate deepfakes for disinformation. On the other hand, it is not needed to point out724

that a generic algorithm for optimizing neural networks could enable people to train725

models that generate Deepfakes faster.726

• The authors should consider possible harms that could arise when the technology is727

being used as intended and functioning correctly, harms that could arise when the728

technology is being used as intended but gives incorrect results, and harms following729

from (intentional or unintentional) misuse of the technology.730

• If there are negative societal impacts, the authors could also discuss possible mitigation731

strategies (e.g., gated release of models, providing defenses in addition to attacks,732

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from733

feedback over time, improving the efficiency and accessibility of ML).734

11. Safeguards735

Question: Does the paper describe safeguards that have been put in place for responsible736

release of data or models that have a high risk for misuse (e.g., pretrained language models,737

image generators, or scraped datasets)?738

Answer: [NA]739

Justification: This paper poses no such risks.740

Guidelines:741

• The answer NA means that the paper poses no such risks.742

• Released models that have a high risk for misuse or dual-use should be released with743

necessary safeguards to allow for controlled use of the model, for example by requiring744

that users adhere to usage guidelines or restrictions to access the model or implementing745

safety filters.746

• Datasets that have been scraped from the Internet could pose safety risks. The authors747

should describe how they avoided releasing unsafe images.748

• We recognize that providing effective safeguards is challenging, and many papers do749

not require this, but we encourage authors to take this into account and make a best750

faith effort.751

12. Licenses for existing assets752

Question: Are the creators or original owners of assets (e.g., code, data, models), used in753

the paper, properly credited and are the license and terms of use explicitly mentioned and754

properly respected?755

Answer: [Yes]756

Justification: All the creators of code used in the paper are credited and VariBAD, RL2,757

BORel, SecBAD, and ContraBAR are under MIT License.758

Guidelines:759

• The answer NA means that the paper does not use existing assets.760

• The authors should cite the original paper that produced the code package or dataset.761

• The authors should state which version of the asset is used and, if possible, include a762

URL.763

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.764
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• For scraped data from a particular source (e.g., website), the copyright and terms of765

service of that source should be provided.766

• If assets are released, the license, copyright information, and terms of use in the767

package should be provided. For popular datasets, paperswithcode.com/datasets768

has curated licenses for some datasets. Their licensing guide can help determine the769

license of a dataset.770

• For existing datasets that are re-packaged, both the original license and the license of771

the derived asset (if it has changed) should be provided.772

• If this information is not available online, the authors are encouraged to reach out to773

the asset’s creators.774

13. New Assets775

Question: Are new assets introduced in the paper well documented and is the documentation776

provided alongside the assets?777

Answer: [NA]778

Justification: This paper does not release new assets.779

Guidelines:780

• The answer NA means that the paper does not release new assets.781

• Researchers should communicate the details of the dataset/code/model as part of their782

submissions via structured templates. This includes details about training, license,783

limitations, etc.784

• The paper should discuss whether and how consent was obtained from people whose785

asset is used.786

• At submission time, remember to anonymize your assets (if applicable). You can either787

create an anonymized URL or include an anonymized zip file.788

14. Crowdsourcing and Research with Human Subjects789

Question: For crowdsourcing experiments and research with human subjects, does the paper790

include the full text of instructions given to participants and screenshots, if applicable, as791

well as details about compensation (if any)?792

Answer: [NA]793

Justification: This paper does not involve crowdsourcing nor research with human subjects.794

Guidelines:795

• The answer NA means that the paper does not involve crowdsourcing nor research with796

human subjects.797

• Including this information in the supplemental material is fine, but if the main contribu-798

tion of the paper involves human subjects, then as much detail as possible should be799

included in the main paper.800

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,801

or other labor should be paid at least the minimum wage in the country of the data802

collector.803

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human804

Subjects805

Question: Does the paper describe potential risks incurred by study participants, whether806

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)807

approvals (or an equivalent approval/review based on the requirements of your country or808

institution) were obtained?809

Answer: [NA]810

Justification: This paper does not involve crowdsourcing nor research with human subjects.811

Guidelines:812

• The answer NA means that the paper does not involve crowdsourcing nor research with813

human subjects.814
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• Depending on the country in which research is conducted, IRB approval (or equivalent)815

may be required for any human subjects research. If you obtained IRB approval, you816

should clearly state this in the paper.817

• We recognize that the procedures for this may vary significantly between institutions818

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the819

guidelines for their institution.820

• For initial submissions, do not include any information that would break anonymity (if821

applicable), such as the institution conducting the review.822
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