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Abstract

Estimating joint causal effects is crucial in many domains, but obtaining data from
multiple simultaneous interventions can be challenging. Our study explores how to
learn joint interventional effects using only observational data and single-variable
interventions. We present an identifiability result for this problem, showing that
for a class of nonlinear additive outcome mechanisms, joint effects can be inferred
without access to joint interventional data. We propose a practical estimator that
decomposes the causal effect into confounded and unconfounded contributions
for each intervention variable. Experiments on synthetic data demonstrate that
our method achieves performance comparable to models trained directly on joint
interventional data, outperforming a purely observational estimator.

1 Introduction

Understanding the effects of interventions is fundamental across many domains, from designing public
health policies to optimizing business operations and administering medical treatments. Particularly
challenging and important are joint interventional effects, where simultaneous interventions on
multiple action variables influence a target outcome. Such scenarios are common in epidemiology [1],
e-commerce [2, 3], and medicine [4].

Such joint effects can be estimated from observational data, assuming a known causal structure
and that all variables necessary for identification are observed [5]. However, real-world scenarios
frequently involve unobserved confounding factors, introducing biases that render observational
models unreliable. The gold standard approach is to run fully randomized experiments. However, this
can be challenging for ethical or practical reasons, particularly as the number of intervention settings
grows combinatorially with the number of intervenable variables.

Our work addresses a middle ground between these two approaches: learning joint causal effects
using observational and single-intervention data, where only one variable is intervened upon at a time.
This is an instance of the Intervention Generalization Problem [6]: predicting treatment effects in
previously unseen interventional settings. Causal models encode additional structural relationships
between variables that allow us to generalize to settings in which non-causal machine learning
approaches assuming independent, identically distributed (i.i.d.) data fail.

However, this problem setting is not solvable in its most general form and in order to achieve Interven-
tion Generalization, we need to restrict the causal model class [7]. In this study, we focus on causal
models with real-valued variables, where each action contributes to the outcome variable in a non-
linear way and is subject to confounding. We assume that these complex individual effects combine
additively to produce the outcome. Within this model class, we show that the joint interventional ef-
fect is identifiable from observational and single-intervention data using an estimator that decomposes
the causal effect into confounded and unconfounded contributions for each intervention variable.
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2 Problem Statement

Y

A1 A2 · · · AK

C1 C2 · · · CK

PM

observational

Y

A1 A2 · · · AK

C1 C2 · · · CK

PM(do(A1))

Y

A1 A2 · · · AK

C1 C2 · · · CK

PM(do(AK))

· · ·

single
interventions

Y

A1 A2 · · · AK

C1 C2 · · · CK

PM(do(A1,...,AK))

joint
interventions

training prediction

Figure 1: The Intervention Generalization Problem. The figure shows the different interventional regimes.
Our goal is to estimate the joint interventional effect of the action variables {A1, ... , AK} on Y , that is,
E[Y | do(A1, ... , AK)] (right). However, during training we only have access to observational (left) and
single-interventional data (middle). There are unobserved counfounders {C1, ... , CK} between the actions and
the outcome variable Y . A box around a variable indicates that it was intervened on.

2.1 Background and Notation

We use boldface for vector-valued or sets of random variables. We denote random variables with
capital letters and realizations thereof in lowercase.

Definition 1 (SCM [5, 8]). An N -dimensional structural causal model is a triplet M = (G,S, PU)
consisting of:

• a joint distribution pU over the jointly independent “exogenous” variables U = {U1, ... , UN},
• a directed acyclic graph G with N vertices,
• a set S = {Xj := fj(Paj , Uj), j = 1, ... , N} of structural assignments, where each fj is a

scalar-valued function and Paj are the variables indexed by the set of parents of node j in G,

such that for every u, the system {xj := fj(paj , uj)} has a unique solution. The SCM thus entails a
joint distribution over the “endogenous” random variables X = {X1, ... , XN}.

Interventions in SCMs. Interventions on one or more endogenous variables in SCMs are encoded
by replacing the corresponding structural assignments. The do(·)-operator represents perfect in-
terventions. For example, applying do(Xi=xi) describes an intervention where the corresponding
structural assignment is replaced by a constant xi, leading to an interventional model M(do(Xi=xi)),
or M(do(xi)) for short. In general, M(do(xi)) entails a different distribution over the endogenous
variables, which we represent through a superscript, that is pM(do(xi)). When there is no superscript,
the distribution is assumed to come from the unintervened or observational model M. In conditioning
sets, {x1, ... ,do(xi), ... , xn} denotes a set where Xi was intervened on and all other variables have
observational realizations.

2.2 Setting

Let A = {A1, ... , AK} be a set of treatment or action variables, C = {C1, ... , CK} be a set of
unobserved confounders and Y be an outcome variable. The actions are direct causes of the outcome,
and we allow for an arbitrary acyclic causal structure among the actions. For notational simplicity, we
assume the actions are in topological order and write the causal structure as a fully connected DAG.1

1This means that each variable Ak can potentially depend on all preceding variables {A1, ... , Ak−1}.
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We can write the structural assignments as follows:
Y := f(A1, ... , AK , C1, ... , CK , U) (1)
Ak := gk(A1, ... , Ak−1, C1, ... , Ck−1, Vk) for k ∈ {1, ... ,K} (2)
Ck := Wk for k ∈ {1, ... ,K} (3)

where {U, V1, ... , VK ,W1, ... ,WK} are mutually independent exogenous noise variables.

We are given a dataset of observational i.i.d. samples

Dobs ∼ PM
(Y,A) (4)

and K datasets of i.i.d. samples for single-variable interventions on each action variable

{Dk
int ∼ P

Mdo(Ak)

(Y,A) }Kk=1 . (5)

Our objective is to estimate the joint interventional effect
E [Y | do(A1, ... , AK)] . (6)

2.3 General Non-Identifiability

In general, the setting described in Section 2.2 is not identifiable. In this section, we show that two
distinct SCMs can induce identical observational distributions and single-variable interventional
distributions, but exhibit different behaviors under joint interventions.

Example 1. Consider the following two SCMs over binary variables:

M : Y := A1 ∧A2 ∧ C ∧ U

A2 := A1 ∧ C ∧ V2

A1 := C

C := W

M̃ : Y := A2 ∧ C ∧ U

A2 := A1 ∧ C ∧ V2

A1 := C

C := W

where U, V2,W∼Bernoulli(p), with 0<p<1. These two models induce the same observational distri-
bution over the observed variables; that is, PM(Y,A1, A2) = PM̃(Y,A1, A2). They also lead to the
same single-variable interventional distributions; PM(do(A1))(Y,A1, A2) = PM̃(do(A1))(Y,A1, A2)

and PM(do(A2))(Y,A1, A2) = PM̃(do(A2))(Y,A1, A2).2 However, they induce different distribu-
tions when A1 and A2 are jointly intervened:

PM(do(A1=0,A2=1))(Y=1) = 0 ̸= p = PM̃(do(A1=0,A2=1))(Y=1) . (7)

This example demonstrates the need for additional assumptions on the ground-truth SCM to identify
joint interventional effects from single variable interventions.

2.4 Assumptions

Assumption 1. The variables are continuous.
Assumption 2 (Intervention Support). The distributions of the action variables have identical support
across all interventional regimes. That is,

suppPM
(A)

(A) = supp
P

Mdo(A1,...,AK )

(A)

(A) = supp
P

Mdo(Ak)

(A)

(A) for any k ∈ {1, ... ,K} . (8)

Assumption 3 (Additive Outcome Mechanism). There is pair-wise confounding between the actions
and the outcome. The outcome is generated by an additive combination of separate nonlinear
functions for each action and its associated confounder. The structural assignments can be written as:

Y :=
∑K

k=1 fk(Ak, Ck) + U (9)
Ak := gk(A1, ... , Ak−1, Ck, Vk) for k ∈ {1, ... ,K} (10)
Ck := Wk for k ∈ {1, ... ,K} (11)

where {U, V1, ... , VK ,W1, ... ,WK} are mutually independent exogenous noise variables.
2These probability distributions are shown in Tables 1 to 3 in Appendix D.
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For the outcome mechanism (9), we assume that both the contributions of each action-confounder
pair (Ak, Ck) and the exogenous noise U are additive. The latter is an assumption which has gained
popularity in causal structure learning [9]. Note that for the other structural assignments we do not
introduce such constraints. The resulting causal structure is illustrated in Figure 1 (left).

3 Identifiability

In this section, we show that in the causal model class with an additive outcome mechanism, outlined
in Section 2.4, we can achieve Intervention Generalization.
Theorem 1 (Identifiability). Under the assumptions in Section 2.4, the joint interventional effect (6)
is identifiable from single-variable interventions and observational data in the infinite data regime.

Proof Sketch We first note that we can decompose the joint interventional effect (6) which we want
to estimate, as well as the conditional expectations, for which we have data, as

E[Y | do(a1, ... , aK)] =
∑

k ECk∼p(Ck) [fk(ak, Ck)] (12)

E[Y | a1, ... ,do(aj), ... , aK ] = ECj∼p(Cj)[fj(aj , Cj)]

+
∑

k ̸=j ECk∼p(Ck|a1,...,aK)[fk(ak, Ck)] for j∈{1, ... ,K} (13)

E[Y | a1, ... , aK ] =
∑

k ECk∼p(Ck|a1,...,aK)[fk(ak, Ck)] . (14)

These decompositions correspond to the terms fk in the additive outcome mechanism (9). In each term,
the expectation over the confounder Ck is taken with respect to a measure that depends on whether the
corresponding action variable Ak was intervened on. When Ak is not intervened on, the confounding
can introduce an additional dependence on the other action variables, entangling their influences.

However, these decompositions still allow us to learn a representation that enables us to generalize
from the observational and single-interventional setting to the joint-interventional effect. We define
K estimator functions

f̂k(a1, ... , aK , Rk), k ∈ {1, ... ,K} , (15)
where Rk ∈ {0, 1} indicates an intervention on Ak. Each Rk can be thought of as selecting one of
two functions

f̂k(a1, ... , aK , Rk) =

{
f̂obs
k (a1, ... , aK) if Rk = 0

f̂ int
k (a1, ... , aK) if Rk = 1

(16)

where f̂ int
k represent the terms in the decompositions (12)–(14) where the corresponding action Ak is

intervened on, and f̂obs
k are the factors with Ak observational. We then define an overall estimator

f̂(a1, ... , aK , R1, ... , RK) =
∑K

k=1 f̂k(a1, ... , aK , Rk) (17)

to represent all regimes, depending on the setting of the indicator variables R1, ... , RK :

• When R1=1, ... , RK=1, the function f̂ is an estimator for the joint interventional regime.
• R1=0, ... , Rj=0, ... , RK=1 corresponds to the single-interventional setting of M(do(aj)).
• R1=0, ... , RK=0 is the observational setting.

In the outcome mechanism (9) each term fk depends only on one action Ak.3 In contrast, each model
factor f̂k has to take all actions into account due to the entanglement introduced through confounding.

Now if we fit the estimator f̂ in the observational and the single-interventional regimes, that is,

f̂(a1, ... , aK , R1=0, ... , RK=0) = E[Y | a1, ... , aK ] (18)

f̂(a1, ... , aK , R1=0, ... , Rj=1, ... , RK=0) = E[Y | a1, ... ,do(aj), ... , aK ], for j ∈ {1, ... ,K} ,
(19)

we can show that the estimator also identifies the joint interventional effect:

f̂(a1, ... , aK , R1=1, ... , RK=1) = E[Y | do(a1, ... , aK)] . (20)

The full proof is shown in Appendix A.
3fk also depends on the confounder Ck.
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Note that, while our approach assumes that the action variables are direct causes of the outcome
and that there is no confounding between the actions, we do not assume a particular causal structure
between the actions. The approach we present here is agnostic to causal relationships among the
actions and does not use this information to infer the joint interventional effect (6).

Moreover, we can extend our results to any combination of intervened and observational actions:

Proposition 1 (Identifiability of Mixed Interventional Effects). Let Aint ∪Aobs = {A1, ... , AK} be
a partition of the action variables into intervened and observational actions. Under the assumptions in
Section 2.4, the effect

E[Y | do(aint),aobs] (21)

is identifiable from single-variable interventions and observational data in the infinite data regime.
The proof is given in Appendix B.

Theorem 1 implies that for an additive outcome mechanism (1), the number of interventional datasets
required for identification of the joint effect (6) grows only linearly with the number of actions. In
Appendix C, we show that even when (1) is only additive with respect to the effect of subsets of
actions, identification is possible as long as we have joint interventional data on each subset.

4 Experiments
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Figure 2: Experiments on Synthetic Data. (a) Average root mean squared error (RMSE) for predicting the
joint interventional effect E[Y | do(A1, ... , A5)], averaged over 100 experiment runs. Each run uses a randomly
generated ground truth SCM. We compare three approaches: (i) Our Intervention Generalization method, training
the estimator (17) on observational and single-intervention data (Section 3). (ii) An estimator trained directly on
joint interventional data (topline). (iii) An estimator trained solely on observational data. The error bars show the
standard error of the mean. (b) Causal graph structure of the ground truth latent SCMs. Dashed edges between
actions represent probabilistic dependencies that may or may not exist in each sampled SCM.

Synthetic data-generating process. We sample a structural causal model with five actions and
confounders and causal relationships as shown in Figure 2b. The structural assignments are linear,
and the exogenous noises are lognormal. The corresponding parameters are drawn at random before
each experiment run. The dependencies between actions are probabilistic, with each potential edge
having a probability pedge of being active. We sample 100 SCMs, where for each run we sample
100, 000 data points for the observational, the single-interventional- and joint-interventional datasets.
We split each dataset into 80% training- and 20% test data. Further details about the experimental
setup are given in Appendix E.

Models and benchmarks. We train linear estimator functions (17) as outlined in Section 3. We
compare that model to two baselines. (i) A linear model that is directly trained on joint interventional
data. That is, we directly fit E[Y | do(A1, ... , A5)]. This comparison represents the minimal error that
our method could achieve. (ii) A linear model that only considers the observational data. That is, we
use a model fit to E[Y | A1, ... , A5] to predict E[Y | do(A1, ... , A5)]. This is a typical approximation
made in the absence of interventional data in real-world applications [2].4

4The additional error incurred through making this simplifying assumption quantifies the Causal Risk [10].
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Results. The mean root mean squared error (RMSE) over all sampled SCMs in each of the three
settings is shown in Figure 2a. We observe that our method achieves a similarly low error as the
minimally achievable error of the topline model that was trained on joint interventional data. Both
our approach and the topline benchmark significantly outperform the naive observational-only model.
The results empirically validate the effectiveness of our Intervention Generalization technique in
leveraging single-intervention data to predict joint interventional effects.

5 Related Work

The most closely related prior work is that of Saengkyongam and Silva [7]. They show that generaliza-
tion from single-intervention and observational data to the joint interventional effect with continuous
variables is possible. Their set of assumptions is more restrictive in some aspects and more general
in others. It is more general in that they allow for full confounding between all variables and has
fewer restrictions on the functional form of the outcome mechanism (1). The biggest restriction in [7]
is the assumption of Gaussian additive noise for all causal mechanisms. In contrast, our method
only requires additive noise in the outcome mechanism (1), without parametric assumptions on the
distribution of exogenous noise variables.

Bravo-Hermsdorff et al. [6] present a factor graph approach for the Intervention Generalization
Problem, investigating identifiability of joint interventional effects given specific factorizations of
observational and interventional probability distributions. Similarly, Jung et al. [11] present graphical
conditions for non-parametric identification of joint interventional effects (which they term Multiple
Treatment Interactions, MTI) and employ double machine learning techniques for estimation from
marginal interventional data.

The complementary problem of generalizing from joint interventional data to single intervention
effects was studied by [12] and [13], and generalization to unseen interventions without identifiability
was explored in the context of stationary diffusion models [14].

Intervention Generalization is akin to other types of generalization, which is aided by the structure
encoded in causal models such as the Causal Marginal Problem [15–17]. There, instead of gen-
eralizing to a new interventional regime, the goal is to learn about the joint behavior and causal
structure of variables that have only been observed in subsets, but never jointly. Another example is
Out-of-Variable Generalization [18], where some variables have never been observed in training.

A key aspect of our method is the ability of causal models to combine information from different
data sets. This aligns with Causal Representation Learning, where many approaches use datasets or
observation pairs that differ by interventions in the latent variables [19–22], samples from scientific
simulations [1, 23], and multiple views and modalities [24].

6 Discussion and Outlook

We have shown that by constraining the outcome mechanism (1) to an additive model class, we
can successfully identify joint interventional effects from single-interventional and observational
data. Our constructive identifiability proof provides a practical estimator for the joint interventional
effect (6). The estimator function decomposes into terms for the confounded and unconfounded
contribution of each action to the outcome.

This work opens up several avenues for future research. A primary direction is exploring potential
generalizations of the function class for the outcome mechanism (1). Generalized Additive [25] or
Postnonlinear Models [26] could be suitable candidates. Such an extension could broaden the appli-
cability of our approach to a wider range of real-world scenarios where strict additivity may not hold.

The precise confounding structure can be difficult to assess and often there are additional covariate to
account for. Therefore, another area for investigation is the adaptation of our estimation technique to
more complex scenarios. This includes settings with additional non-intervened covariates or under
more general confounding structures between action variables.
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A Proof of Theorem 1

A.1 Lemmas

Before we prove the main proposition, we introduce two useful lemmas.

Lemma 1. Let M be an SCM as defined above. Then,

pM(do(aj))(ck | a1, ... ,do(aj), ... , ak) = p(ck | a1, ... , aj , ... , ak), (22)

for all k ∈ {2, ... ,K}, and j ∈ {1, ... , k − 1}.

Proof (Lemma 1) Using Bayes’ rule on the left hand side of Equation (22) we have,

pM(do(aj))(ck | a1, ... ,do(aj), ... , ak) (23)

= pM(do(aj))(ak | a1, ... ,do(aj), ... , ak−1, ck)︸ ︷︷ ︸
causal mechanism

no open path between ck and a1,...,do(aj),...,ak−1︷ ︸︸ ︷
pM(do(aj))(ck | a1, ... ,do(aj), ... , ak−1)

pM(do(aj))(ak | a1, ... ,do(aj), ... , ak−1)
(24)

= p(ak | a1, ... , aj , ... , ak−1, ck)

root node︷ ︸︸ ︷
pM(do(aj))(ck)

pM(do(aj))(ak | a1, ... ,do(aj), ... , ak−1)
(25)

= p(ak | a1, ... , aj , ... , ak−1, ck)
p(ck)

pM(do(aj))(ak | a1, ... ,do(aj), ... , ak−1)
. (26)

We now focus on the denominator,

pM(do(aj))(ak | a1, ... ,do(aj), ... , ak−1) (27)

=

∫
pM(do(aj))(ak, ck | a1, ... ,do(aj), ... , ak−1) dck (28)

=

∫
pM(do(aj))(ak | a1, ... ,do(aj), ... , ak−1, ck) p

M(do(aj))(ck | a1, ... ,do(aj), ... , ak−1) dck

(29)

=

∫
p(ak | a1, ... , aj , ... , ak−1) p

M(do(aj))(ck) dck (30)

=

∫
p(ak | a1, ... , aj , ... , ak−1) p(ck) dck (31)

=

∫
p(ak | a1, ... , aj , ... , ak−1) p(ck | a1, ... , aj , ... , ak−1) dck (32)

= p(ak | a1, ... , aj , ... , ak−1). (33)

Using Equation (33) on Equation (26), and using Bayes’ rule we obtain,

p(ak | a1, ... , aj , ... , ak−1, ck)
p(ck | a1, ... , aj , ... , ak−1)

p(ak | a1, ... , aj , ... , ak−1)
= p(ck | a1, ... , aj , ... , ak), (34)

as required.

Lemma 2. The following identities hold:

a) pM(do(a1,...,aK))(c1, ... , cK | do(a1, ... , aK)) =
∏

k p(ck).

b) pM(do(aj))(c1, ... , ck | a1, ... ,do(aj), ... , aK) = p(cj)
∏

k ̸=j p(ck | a1, ... , ak)

c) p(c1, ... , ck | a1, ... , ak) =
∏

k p(ck | a1, ... , ak)

Proof (Lemma 2)
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a) Given the causal graph, and since all action variables Ak are intervened on, the only way
in which we could introduce dependencies between the confounders is through conditioning
on the collider Y . Hence, Ci ⊥⊥ Cj | do(A1, ... , Ak), for all i, j ∈ {1, ... ,K}. Thus,
p(c1, ... , cK | do(a1, ... , ak)) =

∏
k p(ck | do(a1, ... , aK)). Furthermore, since interven-

tion cuts the dependence to the action variables, and Y is not conditioned on, we have
CK ⊥⊥ do(A1, ... , AK) for all K, giving us the first identity.

b) We have Ci ⊥⊥ Ck | A1, ... ,do(Aj), ... , Ak for all i, k ∈ {1, ... ,K} since the conditioning
set blocks all paths between the confounders. Either Ak block the outgoing path from Ck for
unintervened actions, or there is no outgoing edge (other than to Y ) for Cj .

Additionally, we have Cj ⊥⊥ A1, ... ,do(Aj), ... , AK . Hence,

pM(do(aj))(c1, ... , cK | a1, ... ,do(aj), ... , aK) (35)

=

root node︷ ︸︸ ︷
pM(do(aj))(cj)

∏
k ̸=j

pM(do(aj))(ck | a1, ... ,do(aj), ... , aK) (36)

= p(cj)
∏
k ̸=j

pM(do(aj))(ck | a1, ... ,do(aj), ... , aK) (37)

= p(cj)
∏
k ̸=j

p(ck | a1, ... , aK), (38)

where in the last line we use Lemma 1.

c) Follows from an argument analogous to b).

A.2 Proof of main result

Proof (Theorem 1) First note that

a)

E[Y | do(a1, ... , aK)] =

∫
y pM(do(a1,...,aK))(y | do(a1, ... , aK)) dy (39)

=

∫
...

∫
y pM(do(a1,...,aK))(y | do(a1, ... , aK), c1, ... , cK) dy

× pM(do(a1,...,aK))(c1, ... cK | do(a1, ... , aK)) dc1 ... dcK (40)

=

∫
...

∫
E[Y | do(a1, ... , aK), c1, ... , cK ]

× pM(do(a1,...,aK))(c1, ... cK | do(a1, ... , aK)) dc1 ... dcK (41)

=

∫
...

∫ (∑
k

fk(ak, ck)

)
pM(do(a1,...,aK))(c1, ... cK | do(a1, ... , aK)) dc1 ... dcK (42)

Lemma 2a)
=

∫
...

∫ (∑
k

fk(ak, ck)

)∏
k

p(ck) dc1 ... dcK (43)

=
∑
k

∫
fk(ak, ck) p(ck) dck (44)

=
∑
k

ECk∼p(Ck) [fk(ak, Ck)] . (45)

Second,
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b) For every j ∈ {1, ... ,K} we have

E[Y | a1, ... ,do(aj), ... , aK ] =

∫
y pM(do(aj))(y | a1, ... ,do(aj), ... , aK) dy (46)

=

∫
...

∫
y pM(do(aj))(y | a1, ... ,do(aj), ... , aK , c1, ... , cK) dy

× pM(do(aj))(c1, ... cK | a1, ... ,do(aj), ... , aK) dc1 ... dcK (47)

=

∫
...

∫
y p(y | a1, ... , aj , ... , aK , c1, ... , cK) dy

× pM(do(aj))(c1, ... cK | a1, ... ,do(aj), ... , aK) dc1 ... dcK (48)

=

∫
...

∫
E[Y | a1, ... , aj , ... , aK , c1, ... , cK ]

× pM(do(aj))(c1, ... cK | a1, ... ,do(aj), ... , aK) dc1 ... dcK (49)

=

∫
...

∫ (∑
k

fk(ak, ck)

)
pM(do(aj))(c1, ... cK | a1, ... ,do(aj), ... , aK) dc1 ... dcK (50)

Lemma 2b)
=

∫
...

∫ (∑
k

fk(ak, ck)

)
p(cj)

∏
k ̸=j

p(ck | a1, ... , aK) dc1 ... dcK (51)

=

∫
fj(aj , cj)p(cj) dcj +

∑
k ̸=j

∫
fk(ak, ck)p(ck | a1, ... , aK) dck (52)

= ECj∼p(Cj)[fj(aj , Cj)] +
∑
k ̸=j

ECk∼p(Ck|a1,...,aK)[fk(ak, Ck)]. (53)

And finally,

c)

E[Y | a1, ... , aK ] =

∫
y p(y | a1, ... , aK) dy (54)

=

∫
...

∫
y p(y | a1, ... , aK , c1, ... , cK) dy p(c1, ... cK | a1, ... , aK) dc1 ... dcK (55)

=

∫
...

∫
E[Y | a1, ... , aK , c1, ... , cK ] p(c1, ... cK | a1, ... , aK) dc1 ... dcK (56)

=

∫
...

∫ (∑
k

fk(ak, ck)

)
p(c1, ... cK | a1, ... , aK) dc1 ... dcK (57)

Lemma 2c)
=

∫
...

∫ (∑
k

fk(ak, ck)

)∏
k

p(ck | a1, ... , aK) dc1 ... dcK (58)

=
∑
k

∫
fk(ak, ck) p(ck | a1, ... , aK) dck (59)

=
∑
k

ECk∼p(Ck|a1,...,aK)[fk(ak, Ck)]. (60)

We learn K functions
f̂k(a1, ... , aK , Rk), k ∈ {1, ... ,K} (61)

where Rk ∈ {0, 1} is an indicator for whether Ak was intervened on. Rk can be thought of as
selecting one of two functions

f̂k(a1, ... , aK , Rk) =

{
f̂obs
k (a1, ... , aK) if Rk = 0

f̂ int
k (a1, ... , aK) if Rk = 1

(62)

11



where f̂obs
k and f̂ int

k are universal function approximators.

We define

f̂(a1, ... , aK , R1, ... , RK) =

K∑
k=1

f̂k(a1, ... , aK , Rk). (63)

Since we are in the infinite data regime and have universal function approximators we can fit f̂ such
that

f̂(a1, ... , aK , R1=0, ... , RK=0) = E[Y | a1, ... , aK ] (64)

f̂(a1, ... , aK , R1=0, ... , Rj=1, ... , RK=0) = E[Y | a1, ... ,do(aj), ... , aK ], for j ∈ {1, ... ,K}.
(65)

From the definition of Equation (63), we have for each j ∈ {1, ... ,K}

f̂(a1, ... , aK , R1=0, ... , Rj=1, ... , RK=0)− f̂(a1, ... , aK , R1=0, ... , Rj=0, ... , RK=0) (66)

= f̂j(a1, ... , aK , Rj=1)− f̂j(a1, ... , aK , Rj=0). (67)

After training the estimator we have

f̂(a1, ... , aK , R1=0, ... , Rj=1, ... , RK=0)− f̂(a1, ... , aK , R1=0, ... , Rj=0, ... , RK=0) (68)
= E[Y | a1, ... ,do(aj), ... , aK ]− E[Y | a1, ... , aK ] (69)

(53),(60)
= ECj∼p(Cj)[fj(aj , Cj)]− ECj∼p(Cj |a1,...,aK)[fj(aj , Cj)] (70)

where in the last step we have plugged in the decomposition of the expectation in the single-
intervention (53) and observational (60) setting.

Combining the definition of the estimator (63), and Equations (67) and (70), we get an expression for
the joint interventional effect:

f̂(a1, ... , aK , R1=1, ... , RK=1) =

K∑
j=1

f̂j(a1, ... , aK , Rj=1) (71)

=

K∑
j=1

(
ECj∼p(Cj)[fj(aj , Cj)]− ECj∼p(Cj |a1,...,aK)[fj(aj , Cj)] + f̂j(a1, ... , aK , Rj=0)

)
(72)

=

K∑
j=1

ECj∼p(Cj)[fj(aj , Cj)]−
K∑
j=1

ECj∼p(Cj |a1,...,aK)[fj(aj , Cj)] +

K∑
j=1

f̂j(a1, ... , aK , Rj=0)

(73)
(45),(60),(63)

= E[Y | do(a1, ... , aK)]−E[Y | a1, ... , aK ] + f̂(a1, ... , aK , R1=0, ... , RK=0)︸ ︷︷ ︸
(64)
=0

(74)

= E[Y | do(a1, ... , aK)] . (75)

B Proof of Proposition 1

Proof (Proposition 1) As in the proof of Theorem 1, we can decompose the interventional effect as

E[Y | do(aint),aobs] =
∑
j

Aj∈Aint

ECj∼p(Cj)[fj(aj , Cj)] +
∑
k

Ak∈Aobs

ECk∼p(Ck|a1,...,aK)[fk(ak, Ck)].

(76)

We learn K functions and fit them to the observational and single-interventional expectation (Equa-
tions (61) to (65)).
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Let

Rk =

{
1 if Ak ∈ Aint

0 if Ak ∈ Aobs
for all k ∈ {1, ... ,K}. (77)

Then our estimator identifies the interventional effect (21), since

f̂(a1, ... , aK , R1, ... , RK) (78)
(62),(63)
=

∑
k

Ak∈Aobs

f̂k(a1, ... , aK , Rk=0) +
∑
j

Aj∈Aint

f̂j(a1, ... , aK , Rj=1) (79)

=
∑
k

Ak∈Aobs

f̂k(a1, ... , aK , Rk=0) +
∑
l

Al∈Aint

f̂l(a1, ... , aK , Rl=0)

−
∑
l

Al∈Aint

f̂l(a1, ... , aK , Rl=0) +
∑
j

Aj∈Aint

f̂j(a1, ... , aK , Rj=1) (80)

=

K∑
k=1

f̂k(a1, ... , aK , Rk=0)︸ ︷︷ ︸
(63),(64)
= E[Y |a1,...,aK ]

+
∑

j, Aj∈Aint

(
f̂j(a1, ... , aK , Rj=1)− f̂j(a1, ... , aK , Rj=0)

)
︸ ︷︷ ︸

(67),(70)
= ECj∼p(Cj)

[fj(aj ,Cj)]−ECj∼p(Cj |a1,...,aK )[fj(aj ,Cj)]

(81)

(60)
=

K∑
k=1

ECk∼p(Ck|a1,...,aK)[fk(ak, Ck)]

+
∑

j, Aj∈Aint

(
ECj∼p(Cj)[fj(aj , Cj)]− ECj∼p(Cj |a1,...,aK)[fj(aj , Cj)]

)
(82)

=
∑
j

Aj∈Aint

ECj∼p(Cj)[fj(aj , Cj)] +
∑
k

Ak∈Aobs

ECk∼p(Ck|a1,...,aK)[fk(ak, Ck)] (83)

(76)
= E[Y | do(aint),aobs] (84)

C Additional Restults

Definition 2. Let B be a partition of the index set {1, ... ,K}. For an SCM of the form discussed
in Section 2.2, we call the outcome mechanism (1) additive with respect to B, if we can write the
structural assignments as:

Y :=
∑
B∈B

fB(AB ,CB) + U (85)

Ak := gk(A1, ... , Ak−1, Ck, Vk) for k ∈ {1, ... ,K} (86)
Ck := Wk for k ∈ {1, ... ,K} . (87)

Corollary 1. Let B be a partition of the index set {1, ... ,K} such that the ground-truth SCM M has
an outcome mechanism which is additive with respect to B. Then the joint interventional effect (6)
can be identified from observational data

Dobs ∼ PM
(Y,A) (88)

and |B| interventional datasets

{Db
int ∼ P

Mdo(AB)

(Y,A) }B∈B . (89)
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Proof (Corollary 1) Similar to the proof of Theorem 1, we can decompose the outcome expectations
in the joint interventional regime and the settings for which we have data as

E[Y | do(a1, ... , aK)] =
∑
B∈B

ECB∼
∏

k∈B p(Ck) [fB(aB ,CB)] (90)

E[Y | do(aB),a¬B ] = ECB∼
∏

k∈B p(Ck) [fB(aB ,CB)]

+
∑
B̃ ̸=B

ECB̃∼
∏

k∈B̃ p(Ck|a1,...,aK)[fB̃(aB̃ ,CB̃)] ∀B ∈ B (91)

E[Y | a1, ... , aK ] =
∑
B∈B

ECB∼
∏

k∈B̃ p(Ck|a1,...,aK)[fB(aB ,CB)] , (92)

where a¬B denotes all actions that are not in subset B.

We define |B| estimator functions as∑
B∈B

f̂B(a1, ... , aK , RB) , (93)

where RB ∈ {0, 1} indicates whether the actions in the subset B were intervened on. Then, following
the analogous steps as in Theorem 1, the joint interventional effect (6) is identified through∑

B∈B

f̂B(a1, ... , aK , RB=1) . (94)

D Probability Distributions for Example 1

Table 1: Observational distribution: PM(Y,A1, A2) = PM̃(Y,A1, A2)

PM(Y,A1, A2) Y = 0 Y = 1

A1 = 0, A2 = 0 (1− p) 0
A1 = 1, A2 = 0 p(1− p) 0
A1 = 0, A2 = 1 0 0
A1 = 1, A2 = 1 p2(1− p) p3

Table 2: Single-intervention distribution: PM(do(A1))(Y,A2) = PM̃(do(A1))(Y,A2)

PM(do(A1))(Y,A2) Y = 0 Y = 1

do(A1 = 0)
A2 = 0 1 0
A2 = 1 0 0

do(A1 = 1)
A2 = 0 (1− p) 0
A2 = 1 0 p

Table 3: Single-intervention distribution: PM(do(A2))(Y,A1) = PM̃(do(A2))(Y,A1)

PM(do(A2))(Y,A1) Y = 0 Y = 1

do(A2 = 0)
A1 = 0 (1− p) 0
A1 = 1 p(1− p) p2

do(A2 = 1)
A1 = 0 (1− p) 0
A1 = 1 p(1− p) p2
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E Experiments

Sampling SCMs We sample SCMs of the form

Y :=

5∑
k=1

αkAk + βkCk︸ ︷︷ ︸
fk(Ak,Ck)

+U (95)

Ak := γkCk +
∑
j<k

δkjMkjAj + Vk for k ∈ 1, ... , 5 (96)

Ck := Wk for k ∈ 1, ... , 5, , (97)

where Mkj ∼ Bernoulli(pedge) are binary masks determining which edges between actions are active,
and the exogenous noises are lognormal distributions with zero mean and standard deviation drawn
uniformly from σU , σV1 , ... , σV5 , σW1 , ... , σW5 ∼ Uniform(0.5, 1.5). The parameters of the causal
mechanisms are also drawn uniformly from α1, ... , α5, γ1, ... , γ5, δkj ∼ Uniform(0.5, 1.5). The
edge probability pedge is set to 0.5 in our experiments.
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