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ABSTRACT

Attention layers in transformer networks have contributed to state-of-the-art re-
sults on many vision tasks. Still, attention layers leave room for improvement
because relative position information is not learned, and locality constraints are
typically not enforced. To mitigate both issues, we propose a convolution-style at-
tention layer, LA-layer, as a replacement for traditional attention layers. LA-layers
implicitly learn the position information in a convolutional manner. Given an input
feature map, keys in the kernel region deform in a designated constrained region,
which results in a larger receptive field with locality constraints. Query and keys
are processed by a novel aggregation function that outputs attention weights for
the values. The final result is an aggregation of the attention weights and values.
In our experiments, we replace ResNet’s convolutional layers with LA-layers and
address image recognition, object detection and instance segmentation tasks. We
consistently demonstrate performance gains with LA-layers over the state-of-the-
art, despite having fewer floating point operations and training parameters. These
results suggest that LA-layers more effectively and efficiently extract features.
They can replace convolutional and attention layers across a range of networks.

1 INTRODUCTION

Convolutional neural networks (CNNs) have become the backbone for many computer vision tasks,
including object detection (He et al., 2016; Redmon et al., 2016), instance segmentation (Chen et al.,
2018; Iglovikov et al., 2018), and image generation (Han et al., 2018).

One challenge with CNNs is to achieve long-range interactions between pixels. The receptive field
of a single layer is bound by the small kernel size. Long-range interactions can typically only be
modeled through many layers. To overcome this issue, recent approaches introduce self-attention
(SA) into computer vision tasks (Dosovitskiy et al., 2021; Vaswani et al., 2017). Building on SA
layers, researchers have proposed different types of vision transformer models (Dong et al., 2022;
Liu et al., 2021; Han et al., 2021; Zhou et al., 2021; Liu et al., 2022) that typically outperform CNNs
in terms of accuracy by integrating transformer-style modules into CNN-based architectures. For
example, ViT (Dosovitskiy et al., 2021) directly processes image patches of CNN outputs through
self-attention. Ramachandran et al. (2019) and Hu et al. (2019) present a stand-alone design of local
self-attention modules to even fully replace the spatial convolutions in ResNet architectures.

Despite the success of self-attention in video transformers, two issues remain. The first is that
the position information is embedded through a manually designed, fixed position encoder. The
performance could deteriorate when the designed position encoder is sub-optimal for the given task
or image domain. The second issue is that most transformers neglect the performance improvement
from the locality constraint and the extraction of useful tokens, while focusing on enlarging the
receptive field to achieve long-range dependencies. Consequently, this leads to excessive memory
use and computational cost for the attention layer.

To address these issues, researchers have proposed convolution-style local attention layers to im-
plicitly learn the position information. For example, Contextual Transformers (Li et al., 2022) have
demonstrated impressive results on many challenging vision tasks, but the performance remains lim-
ited by the kernel size. Other works have begun to use deformable kernels to extract useful tokens so
that they can enlarge the receptive field while keeping the kernel small. For example, inspired by the
deformable convolution (Dai et al., 2017), DAT (Xia et al., 2022) utilizes a deformable self-attention
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Figure 1: Typical local attention (a) compared to LA-layer (b). The red box denotes the anchor of the self-
attention. (a) Local attention extracts a fixed region to compute the key and attention weight. (b) LA-layer
learns the deformable region to extract the key, and employs an efficient aggregation function to produce the
attention weight. The attention result is the multiplication of weight and value.

module to extract region of interests. However, the method can generate only a few groups of po-
sition offsets for attention layers due to the high computation and memory cost of the self-attention
module.

In this work, we propose a novel convolution-style local attention layer, termed LA-layer and shown
in Figure 1(b). Compared to a typical local attention module (Hu et al., 2019; Ramachandran et al.,
2019; Zhao et al., 2020), our LA-layer not only implicitly learns the position information but also
inherits the ability of extracting deformable regions of interests with locality constraints. In the
LA-layer, we first extract the single query within a kernel region-like convolution operation. Keys
are added with position offsets in a constrained region to expand the receptive field while observing
the locality constraint. The single query and keys pass a novel attention aggregation function to
produce the attention weight with lower computation and memory cost. The attention weight is
further utilized to aggregate all input values and return the output with implicitly encoded position
information and useful regions of interest with proper locality constraint.

By integrating the proposed LA-layer into common CNN models, full attention models of the same
architecture can be achieved with fewer parameters and FLOPs. Our two main contributions:

• We introduce LA-layer, a local attention layer that can serve as an effective replacement for
convolution layers. The LA-layer uses an efficient novel attention aggregation function.

• We use ResNets with LA-layers as full attention networks. Extensive experiments on im-
age classification, object detection and instance segmentation demonstrate that LA-layers
outperform several state-of-the-art backbones.

We first discuss related work on convolution layers, self-attention and methods to combine the ad-
vantages of both. We then introduce the LA-layer in Section 3. In Section 4, we demonstrate the
performance of the LA-layer on various core vision tasks. We conclude in Section 5.

2 RELATED WORK

Convolution Layers and Extensions: Convolutional neural networks (CNNs) have shown great
performance on many vision tasks. The convolution layer is the basic building block for CNNs. Its
aim is to encourage the network to learn local correlation structures in the input. Due to the specific
way of extracting feature maps, convolution layers require convolution kernels to have a fixed size.
Although larger kernels result in larger receptive fields, they come with higher computation and
memory cost. Moreover, large kernels in CNNs tend to harm the performance on vision tasks (Ding
et al., 2022). One way to avoid large kernels while increasing the receptive field is to model the
interactions between spatially distant regions with a limited receptive field in the image through
successive convolution layers (Howard et al., 2017; Huang et al., 2017; Radosavovic et al., 2020).

While typically increasing accuracy, this approach reduces the efficiency of CNNs. To overcome the
short-range problem for small kernels, several extensions to the regular convolution layer have been
proposed. Group convolutions (Krizhevsky et al., 2012) and depth-wise convolutions (Chollet, 2017)
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are examples of such efforts. Another option is to modify the spatial scope for aggregation, which
can enlarge the receptive field. One popular implementation of this idea is the dilated convolution
(Yu & Koltun, 2015), which increases the spacing inside the kernel to increase the receptive field.

Self-Attention: Researchers have begun to apply self-attention to computer vision tasks (Vaswani
et al., 2017; Dosovitskiy et al., 2021; Dong et al., 2022). This is achieved by employing self-
attention over feature vectors across different spatial locations within an image, such that a large
content-based receptive field is obtained. The process is mathematically presented as:

A = (a)ij = Softmax(QKT ) (1)
Y = AV (2)

with Query map Q, Key map K, and Value map V . A ∈ RN×N is the attention matrix and αij the
relationship between the ith and jth elements, and Y is the attention feature map.

In Dosovitskiy et al. (2021), ViT is proposed for image classification with convolution layers re-
placed by self-attention layers. The input image is split into patches, then embedded as tokens
containing features of patches. Tokens with manually designed position information are processed
by the transformer encoder that is composed of self-attention layers. In Zhang et al. (2019), the
Self-Attention Generative Adversarial Network (SAGAN) is proposed for image generation. Since
image generation highly depends on the quality of each pixel, instead of splitting the feature map
into patches, SAGAN directly utilizes the global attention feature map as a replacement of the con-
volution feature map. In Perreault et al. (2020), SpotNet is proposed to output the bounding boxes
for the object detection task. Inspired by the spatial relationship inside the attention feature map,
this map acts as an aide for the convolution feature map instead of fully replacing it. Through mul-
tiplication in the last stage, the convolution feature map and attention feature maps are integrated to
suppress non-relevant areas. This has been shown to significantly improve the performance.

Self-Attention Extensions: Inspired by advantages of self-attention, researchers have further pro-
posed full attention networks which replace the convolution layers inside CNN models with attention
layers while otherwise retaining the network architecture (Ramachandran et al., 2019). Full atten-
tion networks have achieved many state-of-the-art models for various tasks, e.g. Hu et al. (2019); Li
et al. (2022). Despite their popularity, global self-attention layers in such networks incur high com-
putation and memory demands. To address this issue, researchers have introduced local attention
layers to constrain the attention pattern fixed local windows (Hu et al., 2019; Ramachandran et al.,
2019; Zhao et al., 2020).

Although the local attention layer reduces the computation cost, the receptive field is also con-
strained. To enlarge the receptive field while reducing the computation cost as much as possible,
different methods have been proposed. Swin Transformer (Liu et al., 2021) uses a hierarchical rep-
resentation computed with shifted windows. This allows for the flexible modeling at various scales,
but the method leads to a slower increase of the receptive field. Based on Swin Transformer, other
vision transformers introduce data-dependent sparse attention to flexibly model relevant features
(Xia et al., 2022). Although a sparse convolution is realized in deformable convolution network
(DCN, Dai et al. (2017)), applying DCN to transformer models is a non-trivial problem. Compared
to the convolution layer, the space complexity of the self-attention layer is generally bi-quadratic.

Deformable DETR (Zhu et al., 2020) implements the idea of deformable attention with a lower
number of keys at each scale to reduce the computation cost. This works well as a detection head,
but also causes a loss of information due to the strongly reduced number of keys in the backbone
network. Based on the assumption that different queries may have similar attention maps, DAT (Xia
et al., 2022) proposes to generate a few groups of position offsets for the local attention layers, so that
it can use shared shifted keys and values for each query to achieve an efficient trade-off. However,
since different pixels in the same group use a shared query offset, the network concentrates on
specific regions which limits the receptive field.

Another issue is that the self-attention layer is the content-based summarization of features. This
requires the introduction of manually designed position information into self-attention layers, such
as in Vision Transformers (Dosovitskiy et al., 2021) and Swin Transformers (Liu et al., 2021). How-
ever, optimal position information might differ between vision tasks, image domain and network
depth. Therefore, a fixed position encoding might not be optimal. Convolution layers implicitly en-
code position information along with the feature maps they extract (Islam et al., 2020). Inspired by
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this observation, researchers have introduced local convolution-style self-attention layers, such that
the position information is implicitly encoded in a convolution way. For example, CoT blocks (Li
et al., 2022) are proposed as a local attention layer to replace the convolution layer. To reduce the
computation cost of the self-attention layer, CoT uses two successive 1 × 1 convolution layers to
produce the attention matrix. A 3× 3 convolution layer is then applied in the query region to obtain
the local context information. The convolution output is concatenated with the query as the input
for the next stage. The CoT block requires fewer FLOPs and parameters compared to the same net-
work with solely convolution layers. CoT can implicitly learn the position information because the
attention matrix is generated from convolution layers. Still, the performance is constrained due to
the lack of data specificity of the self-attention, which plays a more importance role than long-range
dependency, especially in CNNs (Park & Kim, 2022).

Figure 2: Schematic overview of the LA-layer. (a) Computation process, which is repeated for each element of
the input feature map. The output is the sum of deformable features with assigned locality constraint. (b) The
offset module in the LA-layer. The input feature map passes through a 3 × 3 convolution, GELU, and 1 × 1
convolution. The output is a feature map with size H×W ×2. Values are the deformed (x, y) position indices.

3 LOCAL ATTENTION LAYER (LA-LAYER)

We introduce a local attention layer (LA-layer) as a replacement for convolution layers in CNNs,
to produce full attention networks while preserving the original model structure. Compared to the
traditional local attention module, our LA-layer implicitly learns the position information and in-
herits the ability to extract deformable regions of interest with significantly reduced computation
and memory cost. More importantly, the LA-layer integrates the improvements from locality con-
straints of self-attention layers, which brings better performance. The framework of the LA-layer
is shown in Figure 2. We will first introduce the LA-layer with its components, and then detail the
implementation of full attention networks using the LA-layer.

3.1 OVERVIEW OF THE LA-LAYER

For the LA-layer, similar to the kernel in the convolution layer, we assign a local region, i.e., a k×k
neighborhood, to aggregate the input features. We first revisit the local attention layer in recent
vision transformers (Ramachandran et al., 2019). Taking a flattened feature map x ∈ RW×H×C as
the input, the Query map Q, Key map K, and Value map V are generated through the self-attention
mechanism, which is formulated as:

Q = xWq (3)
K = xWk (4)
V = xWv (5)

where Wq,Wk,Wv ∈ Rdout×din are learned transformation matrices.

The local Query map Qk, Key map Kk, and Value map Vk are extracted from the feature maps K,
Q, and V . At each anchor position qij , the attention matrix will be produced after the multiplication
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Stage Output ResNet-50 LA-ResNet-50 ResNeXt-50 LA-ResNeXt-50
res1 112×112 7×7 conv,64,stride2 7×7 conv,64,stride2 7×7 conv,64,stride2 7×7 conv,64,stride2

res2 56×56

3×3 max pool, stride 2 3×3 max pool, stride 2 3×3 max pool, stride 2 3×3 max pool, stride 2{ 1×1,64
3×3 conv,64

1×1,256

}
×3

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×3

{ 1×1,64
3×3 conv,64

1×1,256

}
×3

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×3

res3 28×28

{ 1×1,64
3×3 conv,64

1×1,256

}
×4

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×4

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×4

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×4

res4 14×14

{ 1×1,64
3×3 conv,64

1×1,256

}
×6

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×6

{ 1×1,64
3×3 conv,64

1×1,256

}
×6

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×6

res5 7×7

{ 1×1,64
3×3 conv,64

1×1,256

}
×3

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×3

{ 1×1,64
3×3 conv,64

1×1,256

}
×3

{ 1×1,64
3×3 LA-layer,64

1×1,256

}
×3

1×1 global average pool global average pool global average pool global average pool
1000-d fc,softmax 1000-d fc,softmax 1000-d fc,softmax 1000-d fc,softmax

Params (M) 25.5 21.0 25.0 24.2

FLOPs (G) 4.1 3.4 4.2 4.2

Table 1: Comparison of ResNet-50 and ResNext-50 with and without LA-layer with 3×3 kernel and 8 channels.

of qij and Kk. The content-based integrated feature yij will be generated after Vk and the attention
matrix pass through the feature multiplication. Finally, we obtain the attention feature map by sliding
the kernel through the entire input. Mathematically, for input xij with corresponding position pij ,
the output yij is computed as:

yij =
∑

a,b∈Nk(i,j)

softmaxab(q
T
ijkab)vab (6)

In practice, multiple attention heads are used to learn multiple distinct representations of the input
(Vaswani et al., 2017). This works by partitioning the pixel features xij depth-wise into m groups
xn
ij ∈ Rdin/m and to calculate each group independently using distinct transformations. Finally, we

concatenate the resulting representations into the final output.

For the traditional local attention mechanism, the kernel size limits the receptive field of the local
attention layer. Inspired by the convolution operation, we apply the deformable mechanism in our
local attention kernel. Following Dai et al. (2017), a sub-network is adopted for offset generation.
It processes the local features and outputs the offset values for reference points in the kernel region.
The input features are first passed through a 3×3 convolution to capture local features. Then, GELU
activation and a 1 × 1 convolution is applied to produce the 2D offsets. We drop the bias in the
1× 1 convolution to avoid the compulsive shift for all locations. Inspired by the improvement from
locality constraints in self-attention (Park & Kim, 2022), we introduce a simple locality constraint
operation into the traditional deformable mechanism to improve the performance of LA-layer. We
first round up the 2D offsets ∆p, then we assign the size of constraint region l, which is used to
constrain the position offsets as:

∆p′ =
∆p

max(∆p) + |min(∆p)|
l (7)

l is typically in the order of 2–4 times the kernel size k. We perform ablations in Section 4.4.

After producing the offsets, for a target position t in local attention region k × k, we perform
a weighted average of values to aggregate the Key map and Query map, the result of which is
combined with the Value map through multiplication. For the local Query map Qk, Key map Kk,
and Value map Vk extracted from feature maps K, Q, and V , we perform the following operation:

yt = vt
⊙ ∑

(kt′ +∆p
′

t′
)
⊙

qt∑
(kt′ +∆p

′

t′
)

(8)

where t′ is the reference point index in the kernel region, yt is the output of the LA-layer at position
t, and kt′ is the key value inside Key map Kk (see Figure 2 for an illustration).
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The aggregation function is simply composed of keys and a set of learned position biases. Conse-
quently, we effectively avoid the expensive computation and storage of the attention matrix. This not
only reduces the computation and memory cost, but also maintains the spatial interaction between
query and values.

3.2 FULL ATTENTION NETWORK IMPLEMENTATION

We use the LA-layer to replace the convolution layers in the ResNet architecture for our full attention
networks. We also compare our LA-layer performance with other state-of-the-art local attention
approaches. More recent ResNet extensions such as ResNext (Xie et al., 2017) and ResNeSt (Zhang
et al., 2022) also benefit from the introduction of LA-layers.

The core building block of a ResNet is a bottleneck block with a structure of a 1×1 down-projection
convolution, a 3× 3 spatial convolution, and a 1× 1 up-projection convolution, as well as a residual
connection between the input of the block and the output of the last convolution in the block. The
bottleneck block is repeated multiple times across layers to form the ResNet, with the output of the
current block being the input of the next.

The proposed LA-layer only replaces the 3 × 3 spatial convolution operation. All other settings,
including the number of layers and when spatial downsampling is applied, are preserved. A com-
parison of networks with and without the LA-layer is shown in Table 1.

Model FLOPs Params (M) Top-1 Top-5
(G) (M) Acc.(%) Acc.(%)

B
ac

kb
on

es ResNet-50 (He et al., 2016) 4.1 25.5 77.3 93.6
ResNet-101 7.9 44.6 78.5 94.2
ResNeXt-50 (Xie et al., 2017) 4.2 25.0 78.2 93.9
ResNeXt-101 8.0 44.2 79.1 94.4

L
oc

al
at

te
nt

io
n

Stand-Alone-50Ramachandran et al. (2019) 3.6 18.0 77.6 -
Swin-ResNet-50 (Park & Kim, 2022) 4.3 32.7 78.4 94.0
DAT-ResNet-50 (Xia et al., 2022) 4.3 32.7 78.9 94.5
LR-Net-50 (Hu et al., 2019) 4.3 23.3 77.3 93.6
LR-Net-101 8.0 42.0 78.5 94.3
AA-ResNet-50 (Bello et al., 2019) 4.2 25.8 77.7 93.8
AA-ResNet-101 8.1 45.4 78.7 94.4
CoTNet-50 (Li et al., 2022) 3.3 22.2 79.2 94.5
CoTNet-101 6.1 38.3 80.0 94.9
CoTNeXt-50 4.3 30.1 79.5 94.5
CoTNeXt-101 8.2 53.4 80.3 95.0

L
A

-l
ay

er LA-ResNet-50 (ours) 3.4 21.0 79.7 (+2.4) 94.9 (+1.3)
LA-ResNet-101 (ours) 5.7 35.9 81.0 (+2.5) 95.7 (+1.5)
LA-ResNeXt-50 (ours) 4.2 24.2 79.6 (+1.4) 94.4 (+0.5)
LA-ResNeXt-101 (ours) 7.6 39.5 81.5 (+2.4) 95.8 (+1.4)

Table 2: ImageNet-1K image classification on ResNet and ResNext backbones. Comparison with the state-of-
the-art local attention approaches. For LA models, the difference with the original ResNet/ResNext models is
shown in parentheses. Best results in bold.

4 EXPERIMENTS

We empirically validate our LA-layer on several common computer vision tasks: image classifica-
tion, object detection, and semantic segmentation (Sections 4.1-4.3). We conduct an ablation study
(Section 4.4), and present qualitative results of our LA-layer to better understand how our LA-layer
lead to the improved performance of ResNets (Section 4.5).

4.1 IMAGENET CLASSIFICATION

Setup: We perform experiments on ImageNet-1K image classification (Russakovsky et al., 2015),
which contains 1.28M training images and 50k test images. For the LA-layer, we use a kernel size
of k = 3, constraint region size of L = 7 and m = 8 attention heads. During training, we adopt the
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training setup as in Li et al. (2022). Specifically, we perform SGD optimization with a batch size
of 512 on 8 GPUs for all experiments. We train our models for 100 epochs, with a weight decay
of 0.0001 and a momentum of 0.9. For the first five epochs, the initial learning rate is 0.4 with
linear warm-up in the first 5 epochs, and the learning rate is further decayed via a cosine schedule
(Loshchilov & Hutter, 2016).

To demonstrate the generalization of the LA-layer, we replace the convolution layers by our lo-
cal attention layer in ResNet-50, ResNet-101, ResNeXt-50, and ResNeXt-101. The corresponding
networks are referred to as LA-ResNet or LA-ResNeXt.

Results: Table 2 shows the results of the full attention ResNet (LA-ResNet) compared to the con-
volution baseline and other state-of-the-art local attention approaches. Compared to the ResNet-50
baseline, the full attention LA-ResNet-50 achieves 2.4% higher classification accuracy (from 77.3%
to 79.7%), while having 17.1% fewer floating point operations (FLOPs) and 17.6% fewer parame-
ters to train. This performance gain is consistent for ResNet-101 (+2.5%), ResNeXt-50 (+1.4%) and
ResNet-101 (+2.4%). Compared with other local attention approaches, our LA-layer outperforms
all local attention methods with comparable FLOPs or parameters. For example, LA-ResNet-50
achieves higher top-1 accuracy (+1.3%) than Swin-ResNet-50 (Park & Kim, 2022) with 20% fewer
FLOPs. With similar FLOPs, our LA-ResNets outperform LR-Nets (Hu et al., 2019) by 2.4-2.5%.

4.2 OBJECT DETECTION

Setup: To understand how our local attention layer performs on a more fine-grained task, we ex-
periment on object detection on MS COCO (Lin et al., 2014). We use LA-ResNets pretrained on
ImageNet-1K as backbone with Faster R-CNN (He et al., 2017) and Cascade R-CNN (Cai & Vas-
concelos, 2018) as the detection heads, and the standard AP metric of single scale is adopted for
evaluation. For a fair comparison, we follow the method in Zhang et al. (2022) and train our models
on the COCO-2017 training set (118K images) and evaluate them on COCO-2017 validation set (5K
images). During the training process, the 1x learning rate schedule is utilized, and the size of the
shorter side is sampled from the range [640, 800] for each input image during the data augmentation
process. All the other hyper-parameters remain the same for fair comparison with backbones.

Method Model FLOPs AP AP50 AP75

Fa
st

er
R

-C
N

N

ResNet-50 (He et al., 2016) 180G 39.34 59.47 42.76
ResNet-101 246G 41.46 61.99 45.38

ResNeXt-50 (Xie et al., 2017) 279G 41.31 62.23 44.91
ResNeXt-101 406G 42.91 63.77 46.89

ResNeSt-50 (Zhang et al., 2022) 291G 42.39 63.73 46.02
ResNeSt-101 422G 44.13 61.91 47.67

LA-ResNet-50 (ours) 164G 44.28 (+4.94) 64.81 (+5.34) 47.98 (+5.22)
LA-ResNet-101 (ours) 215G 46.63 (+5.19) 67.25(+5.26) 49.34(+3.96)
LA-ResNeXt-50 (ours) 274G 44.60 (+3.29) 65.76(+3.53) 48.10(+3.19)

LA-ResNeXt-101 (ours) 384G 46.71 (+3.80) 67.43(+3.66) 50.75(+3.86)

C
as

ca
de

R
-C

N
N

ResNet-50 (He et al., 2016) 201G 42.45 59.76 46.09
ResNet-101 274G 44.13 61.91 47.67

ResNeXt-50 (Xie et al., 2017) 313G 44.53 62.45 48.38
ResNeXt-101 422G 45.83 63.61 49.89

ResNeSt-50 (Zhang et al., 2022) 336G 45.41 63.92 48.70
ResNeSt-101 451G 47.51 66.06 51.35

LA-ResNet-50 (ours) 173G 46.81 (+4.36) 64.80 (+5.04) 50.16 (+4.07)
LA-ResNet-101 (ours) 226G 48.83 (+4.70) 67.06 (+5.15) 52.61 (+4.94)
LA-ResNeXt-50 (ours) 301G 47.56 (+3.03) 65.43 (+2.98) 50.96 (+2.58)

LA-ResNeXt-101 (ours) 399G 49.64 (+3.81) 69.25 (+5.64) 53.39(+3.50)

Table 3: Object detection results on MS COCO validation set, with Fast R-CNN and Cascade R-CNN detection
heads. For LA models, the difference with the original ResNet/ResNext models is shown in parentheses. Best
results for each detection head in bold.

Results. We summarize our results in Table 3. Our LA-layer consistently shows better performance
than the baselines with either a Fast R-CNN or Cascase R-CNN detection head. For example,
compared to ResNeXt-101, our LA-ResNext-101 achieves 3.29% higher AP with Fast R-CNN, and
3.03% higher AP with Cascade R-CNN. The number of FLOPs for all methods is comparable.
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Again, these results demonstrate that the improvements are not achieved by using a more complex
model, but instead from the ability to encode more informative features.

4.3 INSTANCE SEGMENTATION

Setup: We also evaluate the effectiveness of the LA-layer on a challenging scene parsing dataset:
ADE20K (Zhou et al., 2017). We use DeepLabV3 (Chen et al., 2017) as the instance segmentation
approach with ResNet and ResNext backbones pretrained on ImageNet-1K. A resolution of 512 ×
2048 is used, and we report the pixel accuracy (pixAcc) and mean intersection-of-union (mIoU) for
comparison with backbones. For a fair comparison, we follow the method in Zhang et al. (2022) and
train the models for 120 epochs on the ADE20K training set (20K images). The trained networks
are evaluated on the ADE20K validation set.

Results: Results are shown in Table 4. We observe that networks with LA-layers consistently out-
perform their ResNet and ResNeSt baselines with solely convolution layers for both pixel accuracy
(Pix Acc.) and mean intersection-of-union (mIoU). The improvements for pixel accuracy are mod-
est but consistent. For the mIoU, the improvements are a bit higher. This further validates the
effectiveness of our LA-layer when applied to downstream tasks.

Figure 3: Ablation study of kernel size

Backbone Pix Acc. mIoU
ResNet-50 (He et al., 2016) 80.39 42.10

ResNet-101 81.11 44.14
ResNeSt-50 (Liu et al., 2021) 81.17 45.12

ResNeSt-101 82.07 46.91
LA-ResNet-50 (ours) 80.91 (+0.42) 43.31 (+1.21)

LA-ResNet-101 (ours) 81.73 (+0.62) 45.46 (+1.32)
LA-ResNeSt-50 (ours) 81.70 (+0.53) 46.22 (+1.10)

LA-ResNeSt-101 (ours) 82.59 (+0.52) 48.02 (+1.11)

Table 4: Results for semantic segmentation on ADE20K
validation split. For LA models, the difference with the
original ResNet/ResNeSt models is shown in parenthe-
ses. Best results in bold.

4.4 ABLATION STUDY

Effect of kernel size. We investigate how much the kernel size k × k of the LA-layer contributes
to the overall accuracy through an ablation study on the ImageNet-1K dataset. We use the LA-layer
to build a full attention network with the same hyper-parameters as ResNet-50, and compare with
the same constraint region (L = 7). As shown in Figure 3, the best performance is obtained when
kernel size is 9×9, while the performance decreases sharply for k > 11. This suggests that the larger
receptive field due to the larger kernel allows to extract more informative features. However, larger
kernels may also introduce additional features as noise to lower the performance. For example, on
the segmentation task for dogs, if there are two dogs in the same image, similar features in different
dogs may confuse the network and thus decrease the performance.

The effect of locality constraint We also investigate the effect of the value of the locality constraint
l on the overall accuracy through an ablation study on the ImageNet-1K dataset. We use the same
hyper-parameters as before. We vary l from 1 to 11, while the kernel size is fixed at 3× 3. Figure 4
shows that the accuracy gradually increases until a constraint region size of 7, after which it sharply
decreases. A possible assumption for this situation could be that the model weight for some specific
features is much higher than for others. When increasing the offset, kernels in different areas tend
to concentrate on these specific features and produce higher weights, thus lower the receptive field
of the network to some extent. In this case, informative features with lower weights are neglected,
which makes the model difficult to collect enough information, so that the performance starts to
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decrease. We therefore conclude that a good balance between focusing on more globally relevant
features and including more local features is optimal. Our LA-layer achieves just this balance.

4.5 QUALITATIVE ANALYSIS OF LA-LAYER ATTENTION MAP

To understand qualitatively how the LA-layer facilitates the extraction of spatially distributed image
patterns, we use Grad-CAM (Selvaraju et al., 2017) to visualize which parts of the input a trained
model attends to. We compare ResNet-50, DAT-ResNet-50, and LA-ResNet-50 models trained on
the image classification task on ImageNet-1K. Figure 5 shows heatmaps for these models on three
random samples. Both DAT and LA-layer models attend to more of the object regions than ResNet,
which explains the higher performance of these models (see Table 2). For DAT, since different pixels
in the same group use shared query offsets, the network tends to concentrate on specific regions,
which limits the receptive field. LA-layer covers more of the object of interest, which allows for the
integration of a multitude of informative features to contribute to the final classification.

Figure 4: Ablation study of constraint region size Figure 5: Grad-CAM visualizations for three images

5 CONCLUSION

This paper introduces a novel local attention layer (LA-layer), a basic image feature extractor that
overcomes the short-range problem of convolution layers and addresses limitations of self-attention
layers. LA-layers can straightforwardly replace convolution layers to obtain full attention models.
Experimentation on ImageNet-1K image classification demonstrates improved performance over
both original ResNet and ResNext backbones, as well as on current state-of-the-art models with
self-attention. LA-layers require fewer parameters and FLOPs than related methods. This suggests
that the improved performance is due to the extraction of more informative features, rather than being
the result of a more complex model. On object detection (MS COCO) and instance segmentation
(ADE20K) tasks, models with LA-layers also show significantly better performance compared to
the original networks. We expect that these performance gains of the LA-layer also extend to more
complex CNN architectures.
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