Under review as a conference paper at ICLR 2026

PROACTIVE COST GENERATION FOR OFFLINE SAFE
REINFORCEMENT LEARNING WITHOUT UNSAFE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning constraint-satisfying policies from offline data without risky online in-
teraction is essential for safety-critical decision making. Conventional approaches
typically learn cost value functions from large numbers of unsafe samples in order
to delineate the safety boundary and penalize potentially violating actions. In
many high-stakes settings, however, risky trial-and-error is unacceptable, resulting
in offline data that contains few, if any, unsafe samples. Under this data limita-
tion, existing approaches tend to treat all samples as uniformly safe, neglecting
the substantial presence of safe-but-infeasible states—states that are currently
constraint-satisfying but inevitably violate safety constraints within a few future
steps—thereby resulting in deployment failures. To overcome this challenge, we
present PROCO, a proactive offline safe RL framework tailored to datasets largely
devoid of violations. PROCO first learns a dynamics model from the offline data to
capture environment information. It then constructs a conservative cost signal by
grounding natural-language descriptions of unsafe states in large language models
(LLMs), yielding risk assessments even when violations are unobserved. Finally,
PROCO performs model-based rollouts under this cost to synthesize diverse and
informative counterfactual unsafe samples, which in turn enable reliable feasibility
identification and support feasibility-guided policy learning. Across diverse Safety-
Gymnasium tasks, PROCO consistently reduces constraint violations and improves
safety relative to conventional offline safe RL and behavior cloning baselines when
training data contains only safe or minimally risky samples.

1 INTRODUCTION

Safe reinforcement learning (RL), which aims to derive policies that satisfy predefined safety con-
straints, is crucial for real-world applications such as autonomous driving (Zhang et al.| [2021]), robotic
control (Brunke et al.| [2022)), and aligning large language models (LLM) with human values (Dai
et al.,[2024). A fundamental limitation of conventional online RL, is its reliance on trial-and-error ex-
ploration, which is inherently risky and can preclude its deployment in safety-critical settings (Levine
et al.| 2020). To mitigate these risks, offline safe RL has emerged as a promising paradigm, seeking
to learn safe policies exclusively from pre-collected datasets without necessitating hazardous online
interactions (L1u et al., | 2024; |[Zheng et al., 2024).

In recent years, numerous methods have been proposed for offline safe policy learning. CPQ (Xu
et al.l 2022) and VOCE (Guan et al., |2023) learn conservative cost value functions to penalize
unsafe actions, while COptiDICE (Lee et al.,|2022)) and FISOR (Zheng et al.,|[2024) leverage cost
advantage functions as weighting to guide behavior cloning (BC) on offline data. From the policy
optimization aspect, the effectiveness of both approaches critically relies on access to abundant unsafe
samples, which enable accurate cost value estimation and subsequent policy optimization. However,
in many safety-critical high-stakes scenarios, such as autonomous driving or robotics manipulation,
the collection of large numbers of unsafe samples is impractical, as it is likely to cause detrimental
effects on the agent or the environment|{Dulac-Arnold et al.|(2019), leading to dataset with only few or
no unsafe samples. In such cases, existing approaches may fail to derive policies that adhere to safety
constraints, since without unsafe data, they generally consider all samples equally safe, neglecting
the existence of safe-yet-infeasible samples. For instance, during robot data collection, to avoid
harming the agent, external interventions are used to stop the process whenever the robot approaches
a collision with an obstacle. As a result, states at the ends of these trajectories, though currently safe,

Under review as a conference paper at ICLR 2026

will inevitably lead to violations in the near future due to physical inertia if no external intervention is
applied (Bansal et al., [2017). This limitation thus motivates our investigation into a new problem:
how can we learn a safe policy offline when unsafe samples are scarce or entirely absent?

For the mentioned goal, we propose Proactive Cost Generation for Offline Safe Reinforcement
Learning Without Unsafe Data (PROCO), a novel offline safe RL algorithm capable of identifying
infeasible states and learning safe policies from datasets with few or no unsafe samples. PROCO first
leverages an LLM to derive a conservative cost function from the natural language specification of
the constraint, which is then validated and refined using the available safe data and, when present,
a limited number of unsafe samples. Subsequently, it learns a dynamics model from the offline
dataset. Using the cost function and dynamics model, PROCO simulates future state evolution to
generate diverse and informative unsafe samples, enabling efficient detection of infeasible states.
Moreover, the conservative cost function enables states in close proximity to unsafe ones to be labeled
as unsafe as well, shortening the transition steps from infeasible to unsafe states and thus reducing
the influence of model errors on infeasible state identification. Extensive experiments across diverse
safety-gymnasium environments demonstrate that PROCO significantly outperforms existing offline
safe RL and BC baselines in safe-only datasets, exceeding the best baseline by over 5 times in safety.

2 RELATED WORK

Safe RL. Safe RL seeks to maximize reward while ensuring safety, commonly modeled as a
Constrained Markov Decision Process (CMDP) (Altman, 2021) and solved via constrained optimiza-
tion (Garcia & Fernandez), 2015} |Gu et al.,[2024). A widely adopted approach is Lagrangian-based
methods, which learn a cost value function with an adaptive multiplier to enforce safety (Stooke
et al.,|2020). For hard, state-wise constraints, Hamilton—Jacobi (HJ) reachability analysis (Bansal
et al.L[2017) has been applied to learn cost functions and enforce stricter safety (Yu et al., 2022} |Ganai
et al.,[2023)). However, both approaches require unsafe real-world interactions, which limits their
practicality. To overcome this limitation, recent research has shifted toward offline safe RL, learning
safe policies from pre-collected data to avoid unsafe exploration. Certain approaches integrate conser-
vative value estimation into cost value function learning to counteract cost value underestimation (Xu
et al., 2022} |Guan et al.,|2023)), whereas others employ BC-based policy learning, including Decision
Transformer (Liu et al., 2023)), DICE (Lee et al., 2022}, and IQL (Zheng et al., |2024; Koirala et al.
2023)), to more effectively address extrapolation errors (Fujimoto et al.,[2019) in safe RL.

LLM assisted decision-making. Leveraging the powerful information processing and reasoning
capabilities of LLMs, they have recently been widely adopted in RL (Cao et al.}[2024). One prominent
line of work explores the use of LLMs for direct decision-making by generating actions or high-level
plans conditioned on observations (Yao et al., 2023} Shinn et al., 2023} |Prasad et al., 2023)). Yet,
these methods are generally applicable only to high-level, highly abstract decision-making tasks. A
more broadly adopted line of work in RL involves reward function generation, in which LLMs are
employed to directly construct reward functions that support skill discovery (Yu et al.l 2023)), policy
learning (Song et al.| [2023 Ma et al., 2024; [Xie et al.| [2024), exploration (Triantatyllidis et al.| 2024),
or teammate generation (Li et al.,[2025a). However, the use of LLMs for cost function generalization
in safe RL remains largely underexplored. More related work can be seen in Appendix [C]

3 PRELIMINARIES

In this work, we focus on safe RL under hard constraints, which can be modeled as a hard constraint
CMDP, defined as a tuple (S, A, r, h,c, P,7). Here, S and A denote the state and action spaces,
respectively; 7 : S X A — [~ Ruax, Rmax] represents the reward function, h : .S — [Amin, Amax] 18
the constraint violation function, and ¢ : S — {0, 1} is the cost function. P : S x A x S — [0,1]
specifies the transition dynamics, and y € (0, 1) is the discount factor. Typically, ¢(s) = I(h(s) > 0),
which means h(s) > 0 is unsafe while h(s) < 0 is safe. A policy 7 : S — A(A) maps states
to action distributions. Under policy 7, the expected discounted reward return and cost return
are defined as R(m) = E,wp, [Y roo'7(st,a¢)] and C(mr) = Erop, [> ooy vc(se)], where 7 =
(so, a0, 51,0a1,...) ~ P, denotes a trajectory induced by 7 and the environment dynamics P. Thus,
the objective of solving a hard constraint CMDP is to find a policy that maximizes reward return
while ensuring the cost return remains zero.

Under review as a conference paper at ICLR 2026

-
| 1. Model Learning ! 2. Cost Function Generation 3. Policy Learning

1
I 1
I 1

! - i - , & 1

i — I Task = © LM coder |Generate [Emm Nt _rolicy, SR !

1 i . — s sy Tearning 1

1 - i Information =(B) -— |

1 Offline Buffer : —| O Cost Function Agent :

1

. | I ot [e || | check { unsafe .

! Q I Description : () Data !

! (\ !] Feedback \mmpl

| v | — -

i -

1 Dynamics Model Instruction -—

! 1

Figure 1: Structure of PROCO.

In the offline setting, we are given an offline dataset D generated by the behavior policy 5. Now, the
goal is to learning a safe policy purely from this dataset. To avoid extrapolation error in offline RL,
the optimization objective is formulated as:

max R(m), st.C(m) <0; D(w||mg) <, 1)

where D(r||mg) is a divergence term (e.g., KL divergence Dk (7||7m3)) used to prevent distribution
shift. To investigate the problem of learning safe policies under scarce or absent unsafe samples,
we focus on scenarios where D contains no unsafe samples. Optionally, we assume the availability
of an extremely small dataset Dypg,re consisting of no more than 100 unsafe transitions, satisfying
|Dunsate] << |D|. Meanwhile, in most practical applications, a continuous constraint violation
function h is often unavailable. Accordingly, in this work we define h as also a binary function:
h(s) = hmin < 01if ¢(s) =0, and h(s) = hmax > 0 otherwise. To compensate for the lack of unsafe
samples, we assume the availability of a natural language specification of the task’s safety constraint,
Lost, to provide safety-related information. Thus, the agent must exploit both the safe dataset D and
the constraint description L. in order to acquire a safe policy.

4 METHOD

This section gives the detailed PROCO, a novel algorithm for learning safe policies offline when
unsafe samples are scarce or entirely absent (Figure([T). Section[d.T|presents our dynamics model-
based approach for feasibility identification, Section [4.2]introduces the motivation and methodology
for employing LLMs to generate conservative cost functions, while Section .3 describes the overall
pipeline of policy learning in PROCO. Implementation details can be found in Appendix

4.1 FEASIBILITY IDENTIFICATION WITH A DYNAMICS MODEL

Under the setting where only safe data are available and the task’s cost function is assumed known,
a key question arises: how can sample feasibility be assessed? To this end, we present a solution
grounded in dynamics modeling and Hamilton—Jacobi (HJ) reachability analysis (Bansal et al., 2017).

We begin with a brief overview of the basic definitions of feasibility and HJ reachability analysis.

Definition 4.1 (Feasible set and largest feasible set). The feasible set of a specific policy 7 can be
defined as
St = {s € S|h(s{[so = s) <0,Vt € N}. 2)

The largest feasible set S is a subset of S composed of states from which there exists at least one
policy that keeps the system satisfying the constraint, i.e.,

St = {s € S|3m, h(s{|so = s) < 0,Vt € N}. 3)
Definition 4.2 (Optimal feasible value function). The optimal feasible state-value function V,*, and
the optimal feasible action-value function)} are defined as

Vi (s) == min V7 (s) := minmax h(s;), so = s, ar ~ 7(-|s¢),
T m™ teN (4)

Q. (s,a) == mgn Qr(s,a) = mgnrgleak)li h(st), 80 = $,a0 = a,a ~ w(-|st),

where V,” represents the maximum constraint violations in the trajectory induced by policy 7 starting
from the state s. The (optimal) feasible value function possesses the following properties:

Under review as a conference paper at ICLR 2026

* V7(s) <0 = Vs, h(sy) < 0, indicating 7 can satisfy the hard constraint starting from s.
Vii(s) < 0= 3, V7 (s) < 0, meaning there exists a policy that satisfies the hard constraint.

 The feasible set and largest feasible set can be rewritten as

ST = {s|Vi7(s) < 0}, 57 := {s|V; (s) < 0}. ®)

Based on Definition 4.1} once S} is obtained, the feasibility of states in D can be determined.
Furthermore, Definition indicates that S;Z can be obtained by computing the optimal feasible
value function V;*(s). Thus, the feasible Bellman operator B* (Fisac et al.,[2019) is proposed:

B*Qn(s,a) := (1 —y)h(s) + ymax{h(s), V;" ()}, Vi (s') = min Qn(s',a). (6)

However, computing V;*(s) via B* demands a substantial amount of unsafe samples beyond D. To
overcome this limitation, we propose leveraging a learned dynamics model to proactively generate

future unsafe samples. First, we train an ensemble dynamics model T using the offline dataset D:

mTjn E(s.a,s)~pll|T(s,a) — 8| |3]. 7

Subsequently, leveraging T together with the dataset D, we perform branched rollout to simulate
future trajectories. To address the potential underestimation of V;* due to model uncertainty, we
introduce a conservative feasible Bellman operator, denoted as B*:

B*Qp(s,a) := (1 — v)h(s) + ymax{h(s), /g?x)H(lli/l'l Qn(s',a)}, 8)

For B*, we establish the following desirable proposition:
Proposition 4.3. B* is a v contraction mapping in the co—norm, and satisfies that Q_;;(s, a) >

Qj, r(s,a) for all (s,a) and for all T' € T, where Q7 (s,a) is the convergence result of B* and
Q;‘L’T(s, a) is the convergence result of B* under transition dynamics T.

Finally, under certain assumptions, we can guarantee the effectiveness of feasibility identification
when employing B* together with 7*:

Assumption 4.4. There exists a horizon H* € N such that, for any infeasible state s, any sequence
of actions ag, . .., ar~_1 will lead to an unsafe state.

Assumption 4.5. The learned ensemble dynamics model 7'(s, a) is calibrated, that is, for all (s,a) €
S x A, the ground truth dynamics model T'(s, a) satisfies that T'(s, a) € T'(s, a).

Theorem 4.6. If Assumptionand Assumptionhold, Vse St=89— S}, Va, the convergence
result O}, learned by B* and T rollout data satisfies that, Va, Q} (s, a) > 0 for large enough .

4.2 LLM ASSISTED CONSERVATIVE COST FUNCTION GENERATION

Theorem 4.6 enables feasibility identification for samples in D, yet it critically depends on Assump-
tion[4.5] which requires exact accuracy of the learned dynamics transitions, a condition rarely satisfied
in practice. We therefore relax it as Assumption 4.7 and introduce another assumption:

Assumption 4.7. For a given policy m, there exists 6, Vs, a, max; E ¢ (o) Dxi(p1(8'|s)|[p2(s']s)) <
3, where p1(s’|s) = T(s'|s,7(s)) for t > 0 and p1(s'|s) = T(s'|s,a) for t = 0, and pa(s’|s) =
T'(s'|s,m(s)) for t > 0 and pa(s’|s) = T’ (s'|s,a) fort = 0, T is the ground truth dynamics model,
and T” refers to any one of the dynamics model in the ensemble dynamics model set T.

Assumption 4.8. For a given constraint violation function h, there exists a constant K, such that for
any two state distributions p, v, it satisfies that |E,,[h(s)] — E,[h(s)]| < KDry(p||v), where Dyy
refers to the total variance distance.

Assumption assumes a correlation between the expected constraint violation and the state distri-
bution, such that similar state distributions correspond to similar expected constraint violations. This
assumption is generally valid in practice, and based on it, we can proceed to analyze the effectiveness
of feasibility identification:

Under review as a conference paper at ICLR 2026

Theorem 4.9. If Assumption Assumptionand Assumptionhold. Vs € S5 =S-S5}, Va,

given policy T, the convergence result Q_Z learned by B* and branched rollout data of 7 in T satisfies

Qi(s,@) = (1= i 7" By [a(s)] =7+ KG, " = axg | max _ [Eyy[A(s)])- (9)

Remark. Since +y, hmin, K are outer given of constant, Theorem 4.9 reveals that the feasible value
funtion of the infeasible state is lower bounded by t*, h(s) and . To ensure safe decision making, we
hope Q}, (s, a) can be large enough. Since E,: [2(s)] is upper bounded by himax, a practical way is to
lower 6 or lower t*. Here, 6 denotes the model rollout error. Due to cumulative error, shorter rollout
horizons lead to lower errors. The term ¢* represents the number of steps required to transition from
an infeasible state s to its associated unsafe state s’. Thus, the distance between s and s’ determines
t*, with smaller distances yielding smaller values of ¢*. Hence, the analysis indicates that bringing
an infeasible state closer to its corresponding unsafe state reduces the rollout error as well as
the step horizon ¢*, resulting in more efficient feasibility identification.

Therefore, we propose leveraging an LLM to generate a more conservative cost function, which
marks states near actual unsafe states also as unsafe, effectively bringing infeasible states closer
to unsafe states. Specifically, we first provide three natural language descriptions, Liask, Lcost> and
Liyg, to the LLM, enabling it to generate the task’s cost function ¢:

¢ = LLM(Lyask; Leosts Linsl)a (10)

where Ly, is task-related information, such as the meaning of states; L. is the provided language
description of the safety constraint; and Li,y provides explicit instructions to the LLM, directing it to
generate a cost function that is more conservative than the constraint described in Lcqg.

Nevertheless, the cost function produced directly by the LLM may not be reliable. To mitigate this,
we propose a validation-and-feedback mechanism leveraging both the small unsafe dataset Dyygafe
and the safe dataset D. Concretely, we begin by validating ¢ on Dypgafe, requiring 100% accuracy to
guarantee that all unsafe samples are correctly identified, thereby eliminating safety risks. After this
criterion is satisfied, we evaluate the proportion of safe samples in D that are classified as unsafe,
which quantifies the conservativeness of ¢. If this proportion lies within the hyperparameter-controlled
range [Pmin, Pmax)» We deem the conservativeness acceptable and adopt ¢ as the final cost function.
Otherwise, we construct a feedback description Le.q from the evaluation outcomes and feed it back
into the LLM to guide the regeneration of ¢:

c= LLM(Ltaska Lcost7 Linsn Lfeed) . (1 1)

If no satisfactory ¢ is obtained after exhausting the maximum number of LLM queries, we adopt
as the final cost function the candidate that attains the highest accuracy on Dysafe and exhibits a
conservativeness level on D closest to the interval [pmin, Pmax]-

4.3 OVERALL ALGORITHM

With the learned 7' and the obtained ¢, we can now learn a feasible policy based on the safe-
only dataset D. First, we initialize a model rollout dataset D, and use the learning policy 7 to
perform branched rollouts of length A within T, obtaining a set of branch trajectories {7‘1}{\;1 Each
trajectory is of the fO{'m Ti = (83, ab, €(sy), F(sh, ad),s .-y Shy_q, 0y _q1, (8% _1), F(sy_1,a%_1)),
where s} € D, st ~ T(|si_q,ai_;) fort > 0, and 7 denotes the reward model jointly learned with
T. Next, for any trajectory 7;, if it contains a safety violation, i.e., Zi _01 E(si) > (), we add it to DT-
Otherwise, to reduce the impact of model errors on the stability of value function learning, trajectories
without safety violations are discarded. To enhance data diversity during model rollouts and thereby
improve the efficiency of feasibility identification, we inject Gaussian noise with standard deviation
Oexp (a hyperparameter) to the policy actions during rollout. Meanwhile, the existing samples in D

are further re-labeled with costs using ¢. Finally, we derive the constraint violation labels according
t0 1(8) = hmin < 0if &(s) = 0, and h(s) = hmax > 0 otherwise.

With the constraint violation labels in place, we approximate the minimization operator in the
(conservative) feasible Bellman update, i.e., V;*(s’) = miny, Qn(s’,a’), by employing reverse

Under review as a conference paper at ICLR 2026

expectile regression to update the constraint violation value network:

EVh = E(s,a)NDUDT [‘C;s—sv(Qh(S’ a’) - Vh(S))L

Lq, = E(s,a,s)~pl((1 = 7)h(s) +ymax(h(s), Va(s")) — Qn(s,a))?] (12)
+ By (1= 7)h(s) + ymax(h(s), max Va(s) = Qu(sa))

where L7, (u) = |7 — I(u > 0)|u?, 7 is a hyperparameter. For the reward value function, we update

it using expectile regression in a manner analogous to IQL (Kostrikov et al.| 2022):

EV,. = E(s,a)ND [ﬁT(QT(S7 Cl) - V,«(S))],
£q, = Egasnmnl(r +7Vi(s) = Qu(s,a))%],
where £7(u) = |7 — I(u < 0)|u?®. Then, we employ a policy extraction approach in which

the optimization objective is decomposed into feasible and infeasible components separately, a
formulation that has proven to be effective in previous work (Zheng et al., 2024):

13)

Feasible: maxE,.x |:Ai(57a) 'Hv,;(s)go} Infeasible: maxE, ., {—AZ(S,CL) 'HV,;*(S)>O:|
s.t. / m(als)da = 1,Vs € S} s.t. /7‘(‘(~|S)da =1 J
{alQj; (s,a)<0} a
Dxu(w||mg) < € Dxu(nllmg) <€
(14)

where A*(s,a) = Q*(s,a) — V*(s) are advantage functions. Leveraging Lagrangian multipliers
and the KKT conditions, we can derive a closed-form solution to the above optimization objective:

1 A5(5.0)) Ips (soreo V*(5) <0
7T*(CL|S) _ ’u)(S,CL)ﬂ'g(G,‘S), w(&a) _ {le(s) GXP(Oq T(S a)) Q}, (5,0)<0 h (S) =

s
7205 exp(—a2 A (s, a)) Vii(s) >0 (15)

where Z1(s) and Zs(s) are normalization terms that can be omitted, a; and a are hyperparameters.
Finally, policy extraction can be formalized as E(,)~p[w(s, a) log m(s, a)]. To enhance distribution
modeling capacity, the policy 7y can be parameterized with a diffusion model €y, and optimized via
the following objective:

2
Lo =E(sa)mpet [Btw(s, a)lle = eo(Vara+ V1 —awe,s,t)[[*|, (16)

2Ut2at(1 — dt)

. - . — t
where 3; is human designed noised schedule, oy = 1 — By, & = [[,_, ¢, 07 = By

5 EXPERIMENTS

In this section, we present our experimental analysis conducted on 17 Safety-Gymnasium (Ji et al.,
2023)) tasks from the modified OSRL (Liu et al., 2024) dataset to answer the following questions:
(1) Can PROCO outperform other baselines across various tasks, and how each design of PROCO
contribute to its performance (Section[5.2)? (2) Do infeasible states in safe-only datasets compromise
the safety of policy learning, and can PROCO effectively address this challenge (Section[5.3)? (3)
What is the impact of different hyperparameter choices on PROCO ’s performance (Section[5.4)?

5.1 BASELINES AND TASKS

To evaluate PROCO, we compare it with representative offline safe RL (also can be seen as offline
RL) baselines. We first compare our method against CPQ (Xu et al.| [2022) (CQL (Kumar et al.,
2020)), aiming to examine how well conservative value estimation techniques perform in the context
of learning safe policies offline with scarce or absent unsafe samples. Subsequently, to strengthen
the ability of extrapolation error mitigation, we benchmark against BCQ Lagrange (BCQ) (Fujimoto
et al., |2019), a batch-constrained baseline. Finally, we further compare against four BC-based
baselines. Among them, BC and CDT (Liu et al.,[2023)) (DT (Chen et al., 2021})) update policies
using the standard supervised BC loss, differing only in whether Return-to-Go and Cost-to-Go tokens

Under review as a conference paper at ICLR 2026

Table 1: Overall normalized rewards and costs. Each value is averaged over 20 evaluation episodes,
and 3 random seeds. Green: The best-performing agent. Blue: The second best-performing agent.

Task CPQ BCQ Lagrange BC CDT COptiDICE FISOR PROCO

T cl T cl T cl T cl T cl rt cl T cl
PointButton] 0.77 13.37 025 464 013 520 047 1327 0.06 280 049 1150 0.01 1.15
PointButton2 0.62 1453 041 8.65 028 6.68 059 1527 0.14 486 046 1469 0.08 2.76
PointGoall 080 539 071 3.89 058 330 075 501 050 534 073 570 035 0.96
PointGoal2 080 18.69 066 1157 053 807 078 1390 0.38 515 059 17.10 0.08 0.38
PointPush1 0.19 635 031 2.76 024 465 030 465 009 358 034 370 017 0.86
PointPush2 022 1021 024 4.03 022 370 028 451 0.03 300 027 661 012 0.30
CarButtonl 035 4238 -0.02 556 -0.09 332 025 1553 -0.04 3.69 047 2801 -0.03 0.60
CarButton2 0.54 3406 000 515 -009 4.64 035 1998 -0.08 293 057 2596 0.00 0.99
CarGoall 080 574 047 286 036 215 071 504 038 214 075 410 013 0.02
CarGoal2 0.82 2041 025 3.67 022 296 0.67 1143 030 372 0.80 1456 0.03 0.52
CarPushl -0.01 5.08 0.20 1.59 019 110 032 28 020 221 042 191 016 0.93
CarPush2 029 1636 0.15 694 0.08 414 023 988 0.07 3.00 039 804 0.01 0.04
SwimmerVelocityV1 006 11.65 056 2428 046 570 070 459 048 343 -005 451 0.02 0.2
Hopper Velocity V1 0.06 509 036 766 035 133 063 344 018 459 007 323 011 0.07
HalfCheetahVelocityV1 | 1.35 8845 1.01 2583 095 427 095 142 059 0.00 103 16.13 048 0.00
Walker2dVelocity V1 003 1.08 0.79 024 069 267 079 055 010 1.68 0.15 571 0.09 0.8
AntVelocityV1 -1.0o1 0.00 092 27.89 098 1154 099 185 098 516 1.01 1047 0.52 0.00
Average 039 17.58 043 8.66 036 444 057 7.84 026 337 050 1070 0.14 0.60

are included as inputs. In contrast, COptiDICE (Lee et al., 2022) and FISOR (Zheng et al., [2024)
represent state-of-the-art (SOTA) offline safe RL algorithms built on advantage-weighted BC. During
comparison, all baselines under soft-constraint modeling adopt O as the cost limit. For performance
evaluation, reward returns are normalized using the minimum and maximum trajectory returns in the
offline dataset, while costs are normalized by a factor of 10. Lower costs indicate better performance,
and for cases with equal cost, higher rewards signify superior performance.

The tasks selected from Safety-Gymnasium used in our experiments consist of 12 navigation tasks and
5 velocity tasks. Specifically, the navigation tasks involve two types of robots (Point and Car) across
three distinct scenarios: Button, Goal, and Push, with two tasks per scenario. On the other hand, the
velocity tasks cover five different robots—Ant, HalfCheetah, Hopper, Swimmer, and Walker2d. To
thoroughly demonstrate the effectiveness of PROCO, we select the most challenging OSRL dataset,
where each task contains trajectories with varying degrees of constraint violations. By removing all
unsafe data, we construct safe-only datasets that still cover diverse levels of feasibility. In addition,
for each task, we retain 100 unsafe samples, which are reserved for validating the cost functions
generated by the LLM. Additional details can be found in Appendix [E]

5.2 COMPETITIVE RESULTS AND ABLATIONS

In this section, we first present the overall performance of PROCO and all baselines across different
Safety-Gymnasium tasks, and the results are summarized in Table m First, CPQ exhibits the weakest
safety performance, suggesting that conservative estimation methods provide insufficient constraints
on the policy distribution relative to the offline dataset. As a result, the policy tends to deviate from
the safety boundaries defined by the dataset, leading to severe safety violations. BCQ Lagrange,
by leveraging a CVAE to impose stronger batch constraints, achieves clear safety improvements
over CPQ. However, the number of violations remains substantial. In contrast, BC-based methods
generally yield stronger average performance. CDT and FISOR, due to their use of generative models
with strong distribution modeling capabilities, tend to overfit the reward maximization objective.
While this yields clear gains in reward performance, their safety performance remains unsatisfactory.

Under review as a conference paper at ICLR 2026

Performance

o

00 006
PROCO FISOR Oracle: FISOR

(a) (b) (© (d)

Figure 3: (a) Visualization of the Circle task. (b) and (c) Visualization of FISOR and PROCO
performance, where the red dashed line denotes the safety bound, while the yellow dots indicate the
state visitation distribution of the policy. The remaining points represent the value estimations of
the constraint violation value function for samples in D, where darker colors correspond to higher
estimated violation values. (d) Final performance comparison of FISOR and PROCO.

Conversely, BC and COptiDICE, which employ supervised BC-style learning, more effectively
constrain the policy within the offline distribution and thus achieve the best safety results among
existing baselines. Nonetheless, they cannot differentiate between feasible and infeasible regions
within the dataset, often leading to frequent visits to infeasible states and ultimately limiting their
overall safety performance. By comparison, only PROCO, through the integration of a dynamics
model and a conservative cost function, achieves effective feasibility identification, resulting in a
substantial enhancement of safety performance—surpassing the strongest baseline by over five times.

Next, we conduct ablation studies to evaluate the con-
tributions of key components in PROCO. The following ., Ablation Results 200
reward

variants are considered: (1) W/o Model omits the use of = cost
a dynamics model for generating unsafe samples, instead

solely applying the conservative cost function to relabel oz i
the offline dataset. (2) Full Model utilizes all model roll-

@
1.00 Q
o

Reward

out data to update all the value functions and the policy. (3)
W/o Relabel applies the conservative cost function only oo

to label the model rollout data and does not relabel the
offline dataset. (4) Det. Rollout executes model rollouts

deterministically with the policy, omitting the injection of oo

extra noise. (5) W/o Consv. does not require the LLM
to generate a cost function that is more conservative than
the given safety constraint description. (6) W/o Refl. does
not use the additional unsafe samples Dyysate OF the safe
offline dataset to validate and provide feedback on the correctness and conservativeness of the
LLM-generated cost function. As shown in Figure[2] when the dynamics model is not used, safety
performance drops significantly, confirming the effectiveness of model-based feasibility identification.
On the other hand, employing all model rollout data for updates to all value functions and the policy
preserves high safety performance but significantly reduces reward performance, suggesting that
errors accumulated during model rollouts can destabilize value learning and negatively impact reward
estimation. Meanwhile, the decline in safety performance for W/o Relabel and Det. Rollout confirms
the effectiveness of relabeling offline data with the conservative cost function and adding extra noise
during model rollouts to enhance data diversity. Finally, the poor safety performance of W/o Consv.
and W/o Refl. highlights the importance of generating a more conservative cost function for effective
feasibility identification, as well as the necessity of validating and refining the LLM-generated cost
function using existing data. More detailed results are provided in Appendix [F]

iy

o
@
8

0.00
pROcO wio Mode PRy Moﬂ i Re\ab et Ro\\o “uio consV wio Rrefl

Figure 2: Ablation study results.

5.3 CASE STUDY

Here, we aim to verify whether infeasible states in a safe-only dataset can adversely affect safe policy
learning. To this end, we conduct a simple visualization experiment on the Ant Circle task. As
illustrated in Figure [3[a), the Circle task requires the agent to move along the circumference of a
circle as closely as possible, while crossing the left or right boundaries is considered unsafe.

Under review as a conference paper at ICLR 2026

Impact of Rollout Epoch E - Impact of Rollout Length H - Impact of LLM Selection
; E=0 H=1 = GPT od-mini

E=2 H=2 Deepseek R1

E=5 H=5 Gemini 2.5 Pro

E=10

ais
0
o
B = B o= 2 P
3 o 3 7] 7]
S o S i S 3 38
]
2, o2 0O &
73
am am o am
Reward Cost Reward Cost Reward Cost

(a) (b) (©

Figure 4: (a) Sensitivity analysis on rollout epoch E. (b) Sensitivity analysis on rollout length H. (c)
Sensitivity analysis on LLM selection.

In this task, we compare the BC-based SOTA offline safe RL algorithm FISOR against PROCO. As
illustrated in Figure b), when no unsafe samples are available, FISOR’s constraint violation value
function fails to distinguish the feasibility of samples in the offline dataset. Consequently, the learned
policy essentially prioritizes reward maximization. Even with BC-based policy extraction, the policy
inevitably deviates from the offline distribution, resulting in a large number of unsafe samples being
generated out of distribution. In contrast, as shown in Figure 3(c), PROCO leverages the conservative
cost function together with the dynamics model to successfully identify samples near the safety
boundary as infeasible. This enables the policy to adjust its behavior in time, preventing it from
drifting beyond the safe region of the offline dataset and thereby avoiding constraint violations. Finally,
as shown in Figure [3[d), PROCO successfully achieves zero safety violations, attaining performance
comparable to FISOR Oracle (which is trained with access to a large amount of additional unsafe
samples), whereas FISOR produces a substantial number of unsafe behaviors.

5.4 SENSITIVITY ANALYSIS

Finally, we investigate the impact of different hyperparameter choices on PROCO ’s performance.
During model rollouts, three hyperparameters play a crucial role: the rollout batch size b, the number
of rollout epochs F, and the rollout length H. Specifically, b denotes the number of samples drawn,
H is the number of steps rolled out per sample, and F indicates how many times previous process
is repeated per rollout. Since both b and E determine the total amount of rollout data, we focus
our analysis on F and H. First, as shown in Figure f{(a), increasing E leads to a noticeable decline
in reward and cost. This indicates that a larger amount of rollout data enables more accurate cost
value learning, further confirming the effectiveness of model-based feasibility identification. Second,
Figure [d[b) shows that as the H increases, the policy’s safety performance deteriorates, with a
particularly sharp drop observed at H = 5. This suggests that increased model compounding error
can introduce instability in cost value learning, leading to failures in feasibility identification. It also
indirectly underscores the necessity of using a conservative cost function to reduce the distance from
infeasible states to unsafe states. In the end, Figure [f{c) presents the effect of different LLMs on
performance. GPT 04-mini and Gemini 2.5 Pro demonstrate comparable overall results, whereas
Deepseek R1 shows lower safety performance. This suggests that the choice of LLM can impact
PROCO ’s effectiveness, with more capable LLMs generally yielding better outcomes.

6 FINAL REMARKS

In this work, we propose PROCO, a novel algorithm for learning safe policies offline when unsafe
samples are scarce or entirely absent. PROCO first leverages the offline dataset to learn a dynamics
model, while simultaneously employing an LLM to generate a conservative cost function tailored to
the task. Based on the learned dynamics model and cost function, it then performs branched rollouts
from the offline data samples to simulate their potential future evolutions. The generated rollout
data are further incorporated into HJ reachability analysis for feasibility identification, which in turn
guides policy extraction to ensure both safety and effectiveness. Extensive experiments across diverse
tasks demonstrate the superior safety performance of PROCO. In the future, leveraging more powerful
Vision-Language Models (VLMs) to extend PROCO to visual tasks and embodied intelligence in a
more cost-efficient manner represents a highly promising research direction.

Under review as a conference paper at ICLR 2026

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh International
Conference on Learning Representations, 2023.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242-2253, 2017.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):411-444, 2022.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and Learning Systems,
2024.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. In
Forty-second International Conference on Machine Learning, 2025.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: reinforcement learning via sequence

modeling. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, pp. 15084—15097, 2021.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Robotics: Science and
Systems, 2023.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback. In The Twelfth International
Conference on Learning Representations, 2024.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization. In
Proceedings of the 38th International Conference on Neural Information Processing Systems, pp.
53945-53968, 2024.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. In The Twelfth International Conference on Learning Representations, 2024.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kiante
Brantley, and Wen Sun. Scaling offline 1l via efficient and expressive shortcut models. arXiv
preprint arXiv:2505.22866, 2025.

Jaime F Fisac, Neil F Lugovoy, Vicen¢ Rubies-Royo, Shromona Ghosh, and Claire J Tomlin. Bridging
hamilton-jacobi safety analysis and reinforcement learning. In 2019 International Conference on
Robotics and Automation, pp. 8550-8556, 2019.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052-2062, 2019.

Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Herbert, and Sicun Gao. Iterative reachability
estimation for safe reinforcement learning. In Proceedings of the 37th International Conference on
Neural Information Processing Systems, pp. 69764-69797, 2023.

10

Under review as a conference paper at ICLR 2026

Javier Garcia and Fernando Fernandez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437-1480, 2015.

Zhiqi Ge, Hongzhe Huang, Mingze Zhou, Juncheng Li, Guoming Wang, Siliang Tang, and Yueting
Zhuang. Worldgpt: Empowering llm as multimodal world model. In Proceedings of the 32nd ACM
International Conference on Multimedia, pp. 73467355, 2024.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theories and applications. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Jiayi Guan, Guang Chen, Jiaming Ji, Long Yang, Ao Zhou, Zhijun Li, and Changjun Jiang. Voce:
variational optimization with conservative estimation for offline safe reinforcement learning. In
Proceedings of the 37th International Conference on Neural Information Processing Systems, pp.
33758-33780, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, pp. 6840-6851,
2020.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: model-based
policy optimization. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pp. 12519-12530, 2019.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902-9915,
2022.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Juntao Dai, and Yaodong Yang. Safety-gymnasium: a unified safe reinforcemei
learning benchmark. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, pp. 18964—-18993, 2023.

Shyam Sundar Kannan, Vishnunandan LN Venkatesh, and Byung-Cheol Min. Smart-1lm: Smart
multi-agent robot task planning using large language models. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 12140-12147. IEEE, 2024.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: model-
based offline reinforcement learning. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, pp. 21810-21823, 2020.

Prajwal Koirala, Zhanhong Jiang, Soumik Sarkar, and Cody Fleming. Latent safety-constrained
policy approach for safe offline reinforcement learning. In The Thirteenth International Conference
on Learning Representations, 2025.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, pp. 11791191, 2020.

Jongmin Lee, Cosmin Paduraru, Daniel J] Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation. In International Conference on Learning Representations, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Lihe Li, Lei Yuan, Pengsen Liu, Tao Jiang, and Yang Yu. Llm-assisted semantically diverse teammate
generation for efficient multi-agent coordination. In Forty-second International Conference on
Machine Learning, 2025a.

11

Under review as a conference paper at ICLR 2026

Yinchuan Li, Xinyu Shao, Jianping Zhang, Haozhi Wang, Leo Maxime Brunswic, Kaiwen Zhou,
Jigian Dong, Kaiyang Guo, Xiu Li, Zhitang Chen, et al. Generative models in decision making: A
survey. arXiv preprint arXiv:2502.17100, 2025b.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao. Con-
strained decision transformer for offline safe reinforcement learning. In International conference
on machine learning, pp. 21611-21630, 2023.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu,
Wenhao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe
reinforcement learning. Journal of Data-centric Machine Learning Research, 2024.

Lei Lv, Yunfei Li, Yu Luo, Fuchun Sun, Tao Kong, Jiafeng Xu, and Xiao Ma. Flow-based policy for
online reinforcement learning. arXiv preprint arXiv:2506.12811, 2025.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning for
diffusion policy. arXiv preprint arXiv:2502.00361, 2025.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. In The Twelfth International Conference on Learning Representations,
2024.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models
in reinforcement learning. In International Conference on Machine Learning, pp. 17156-17185,
2022.

Seohong Park, Qiyang Li, and Sergey Levine. Flow g-learning. arXiv preprint arXiv:2502.02538,
2025.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit Bansal,
and Tushar Khot. Adapt: As-needed decomposition and planning with language models. arXiv
preprint arXiv:2311.05772, 2023.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pp. 8634—8652, 2023.

Jiayang Song, Zhehua Zhou, Jiawei Liu, Chunrong Fang, Zhan Shu, and Lei Ma. Self-refined large
language model as automated reward function designer for deep reinforcement learning in robotics.
arXiv preprint arXiv:2309.06687, 2023.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In International Conference on Machine Learning, pp. 9133-9143, 2020.

Yihao Sun, Jiaji Zhang, Chengxing Jia, Haoxin Lin, Junyin Ye, and Yang Yu. Model-bellman
inconsistency for model-based offline reinforcement learning. In International Conference on
Machine Learning, pp. 33177-33194, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 50265033,
2012.

Eleftherios Triantafyllidis, Filippos Christianos, and Zhibin Li. Intrinsic language-guided exploration

for complex long-horizon robotic manipulation tasks. In 2024 IEEE International Conference on
Robotics and Automation, pp. 7493-7500, 2024.

12

Under review as a conference paper at ICLR 2026

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In The
Twelfth International Conference on Learning Representations, 2024.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized g-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp- 8753-8760, 2022.

Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou Ammar, and
Jun Wang. Efficient reinforcement learning with large language model priors. In The Thirteenth
International Conference on Learning Representations, 2025.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang,
and Qianchuan Zhao. Believe what you see: implicit constraint approach for offline multi-agent
reinforcement learning. In Proceedings of the 35th International Conference on Neural Information
Processing Systems, pp. 10299-10312, 2021.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations, 2023.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International conference on machine learning, pp. 25636-25655, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: model-based offline policy optimization. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, pp. 14129—-14142, 2020.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. In 7th Annual Conference on Robot Learning, 2023.

Lixian Zhang, Ruixian Zhang, Tong Wu, Rui Weng, Minghao Han, and Ye Zhao. Safe reinforcement
learning with stability guarantee for motion planning of autonomous vehicles. IEEFE transactions
on neural networks and learning systems, 32(12):5435-5444, 2021.

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. In The Twelfth
International Conference on Learning Representations, 2024.

13

Under review as a conference paper at ICLR 2026

A LLM USAGE

In our paper, LLMs constitute a crucial component of the proposed methodology. Furthermore,
during the writing process, LLMs are employed to calibrate and polish language expressions.

B MATHEMATICAL PROOFS

B.1 PROOF OF PROPOSITION[4.3]

Proof. First, we aim to proof that

| max(ay,b;) — max(az, ba)| < max(Ja; — as|, |by — bal). (17)
To start, if a; > by, then
max(aq,b;) — max(as, ba) = a; — max(as, b2) < a; — as. (18)
Otherwise, if b; > a1, then
max(aq,b;) — max(ag, ba) = by — max(asg, be) < by — bs. (19)
Therefore, we have
max(aq,b;) — max(as, ba) < max(a; — ag, by — ba). (20)

Similarly, by switching the subscript 1 and 2, we have
max(asg, bs) — max(ay,by) < max(as —ay, b — by), (21)
which is equivalent to
—(max(a,b1) — max(ag, b2)) < max(—(a; — az), —(by — b2)). (22)
By observing that max(z,y) < max(|z|, |y|), we have
—max(|a; — as, |by — b2]) < max(ay,b1) — max(ag,be) < max(|a; — az|, |b1 — ba|), (23)
which means

| max(ay,b1) — max(as, by)| < max(|a; — as, |b1 — ba]). (24)
Therefore, we have
1B*Q — B*Q'||o0 = sup |[B*Q(s,a) — B*Q’(s,a)| (25)
= ysup | max{h(s), max minQ(s’,a’)}
s,a s'eT(s,a) @
—max{h(s), max minQ'(s',a")}| (26)
s'€T(s,a) @
<~vsup| max minQ(s’;a’) — max minQ'(s',a’)] 27
s,a s'€T(s,a) @ s'€T(s,a) @
<~vsup max max|Q(s’,ad") —Q'(s',a')] (28)
s,a s’€T(s,a) a’
< ysup|Q(s',a') — Q'(s',d")| (29)
=7Q — Q'l|c> (30)

where inequality 27| owns to inequality Thus, B* is a y contraction mapping in the co-norm.
Then, for any Q, @', if Q > Q' pointwise, then

B*Q = (1 —)h(s) + ymax{h(s), max minQ(s',a’)}
s’€T'(s,a) a’

> (1 —)h(s) +ymax{h(s), H(lli/nQ(S/, a)}, s ~T(s,a)
> (1= 7)h(s) +ymax{h(s), min Q'(s",a")}, 5" ~ T(s, a)
- BQ.

Now, let Q be any initial @ function, and define Q¥ = (B*)¥ Qo, Q* = (B*)*Qo. Then, we have

Q*F > QF,Vk € N . Therefore, taking the limits Q% = limy,_,, Q* and Q= limp o0 QF, we
obtain Q; (s, a) > Qj, (s, a) pointwise. 0O

(3D

14

Under review as a conference paper at ICLR 2026

B.2 PROOF OF THEOREM [4.6]

Lemma B.1. Suppose that Assumption holds, then Vs € 5;‘2 = S — 5}, it holds that

Va, Q5 (s,a) > hyin + B (hmax — Tumin), where Q3 is the learned action-value function by the
Jfeasible Bellman operator, and Py, is the minimum value of h(s), and hyy is the value of h(s) when
it is unsafe, that is whenever h(s) > 0, h(s) = hypgy.

Proof. For any trajectory 7 starting from the infeasible state sq, suppose it first violates at horizon ¢,
that is for (so, ag, $1,a1, .- -, 5t), h(St) = hmax. Therefore, we have

Qn(se:ae) = (1= 7)h(se) +y max{h(s;), min Q (sp41, ar1)}

(32)
Z (1 - V)hmax + ’Yhmax == hmax-
Similarly, by recursion we have
Qi (st-ks 1) = (L= Nhmin(L+ 7+ -+ +7*71) + 7 hma (33)
- hmin + 'Yk (hmax - hmin)~

For that v < 1 and hyax — hmin > 0, and the arbitrariness of trajectory 7, we get
Yao, Q;(S()a a[)) > hmin + 'Yt(hmax - hmin) > hmin + ’VH* (hmax - hmin)- (34)
O]

Based on Lemma [B.T] we can now proceed to the proof of Theorem 4.6}

Proof. For any infeasible state sg, suppose \T | = N, that is the ensemble dynamics model set has N
dynamics models, using the following rollout method

« Using each dynamics model in 7" to obtain the fist next state set {s}; with N states.
» For each state in {s}1, using each dynamics model to generate next rollout state set.
* Repeat the above two step, untill reaching horizon H*.
This will generate N rollout branches, and due to Assumption and Assumption 4.5| there will

be at least one branch that is unsafe. Therefore, if there is only one unsafe branch, then this will
be the ground truth branch, and according to Lemma it can be ensured that Ya, Q; (so,a) >

Bmin + 7H ’ (Rmax — hmin). Otherwise, if there are more than one unsafe branch, then we don’t need
to figure out the ground truth branch, choosing any one of them to update the action value function

can also lead to Va, Q7 (50, @) > hmin + 7 " (hmax — hmin)- Then, according to Propositionand

selecting v € (HW, 1), we have

Va, QZ(SOa a) > QZ(SO,G) > hmin + 'VH* (hmax - hmin) > 0. (35)
O]

B.3 PROOF OF THEOREM[4.9]

Lemma B.2. (Janner et al.||2019) Suppose the expected KL-divergence between two transition dis-
tributions is bounded as maxy E.pt (o) Dxi(p1(s'[s)||p2(s[s)) < 6, and the initial stat distributions

are the same pY(s) = pY(s). Then the distance in the state marginal is bounded as

Drv(pi(s)llpa(s)) < to. (36)
Proof. Please refer toJanner et al.|(2019). O

Based on Lemma [B.2} we can now proceed to the proof of Theorem

15

Under review as a conference paper at ICLR 2026

Proof. First, according to Assumption[4.7] Assumption[4.8/and Lemma|B.2] we have [E,; [A(s)] —
Ep: [h(s)]] < tK0, which means B [h(s)] > E,¢ [h(s)] — tK0 holds for any ¢. Meanwhile, similar
to the proof of Lemma 1, it is clear that Q}* (s, a) > Tumin + Y (Ept [1(5)] — hmin), Where Q}° refers
to the learned value function with the feasible Bellman operator and state transition distribution ps.
(A critical observation is Va, E, ¢ [Q(s, a)] = Eqpt [h(s)])

Therefore, combining the results before and we can get Q}* (s,a) > (1 — ") hmin + 7' Epyt [1(s)] —
~*t K § holds for any ¢, which means

P2 > oty R, ot)
Qh (s,a) > te{?,l..af{H*}[(l Y)hmm +7 Ep1 [h<5)] Y tK(S] (37)

Finally, apply Proposition[#.3] we have

Qi(s,a) > Q2 (s,a) > max [(1— ") hmin + fytEptl [h(s)] — v'tK§)

T te{l,...,H*} (38)
> (1= Yhuin + 9" By [1(s)] =7 K,
where t* = argmax;c (1, g} [Ept [(s)]]. O

B.4 DERIVATION OF EQUATION (T6)

First, owing to the closed-form solution of the optimal policy given in Equation [T3] the policy
optimization objective can be expressed as follows:

max E; o)~plw(s,a)log me(s, a)]. (39)
o
When the policy is modeled using a diffusion model, it follows that
mo(ao:r|s)

q(ax.r|s, ao) (40)
+ w(s, ao) Dxr(g(a1.7|s, ao)||me(ar.7|s, ao)),

w(s; a)logmy(s, a) = w(s, a0)Ea, rrg(ar.r|s.a0) 108

where a(corresponds to the action a from the offline dataset, and ¢ denotes the forward process of
the diffusion model. Since w(s, a) > 0, it follows from Jensen’s inequality that

w(s, ao) Dxi(q(ar.r[s, ao)||me(ar.r|s, ao))

mo(a1.T|s, ap)

q(ai.r|s,ao)

779(CL1;T|$,a0)] 41)
q(av.7|s, ap)

Z’LU(S, aO)Eal:T’\‘q(alzT|51a0) [_ log

> - UJ(S, aO) log(EalzTNQ(al:T|37aO) [

= —w(s,ap)logl
=0.

mo(ao:.T|s)
q(a1:7[s,a0)
of E(s,q)~p[w(s, a) log my(s,a)]. The policy optimization objective can thus be written as

Therefore, we have E(, ,)~p[w(s, @0)Ea,, 1 ~g(ar.r|s,00) 108]] is the tight lower bound

mo(ao.|$s) |

maxE . ,yplw(s, ag)E '
o (s,a0) D[(O) q(alzT‘&aO)

(42)

a1;T~q(a1;T\s,ao)[

16

Under review as a conference paper at ICLR 2026

For each state s, since

E

log Q(a1:T|aO>]

7-‘—H(GO:T)
T
thl q(ailai—1)
ar.r~q(a1.7|s,a0) log T
L 7T9(GT) thl W@(at71|at)

—E — Il aaclar—1) }

ar.7~q(ai.r|s,a0) |:

=FE

arr~a(arr|s.ao) | — 108 o (ar) + log
nr~q(anrls.ao) | HtTlﬂ'a(at—ﬂ@t)

=E

qlatlai_1)
ar.r~q(a1.7|s,a0) IOgTrG ar +Zl :l

I 7T9(at 1]a:)
[a q(atlaz—1) q(ai]ao)
B 1 1 t|at—1 1 1]@o0
mrmamriseol | cemolon) + tz:; % mo(ai—1]ar) +log mo(aglay)
=F - — log mp(ar —l—Zl 4(a1-1ar, a)q(ar]ao) + log g
ar.7~q(a1.7|s,a0) | 7T9(at 1|at) (at—1|a0) 7T0(GO|¢11)
[q(at—1lat, ao) q(at|ao) q(ai1]ao)
= Ea ~q(ar.7|s,a -1 1 1
1:T Q(1.T| ’ 0) L Ogﬂ-‘g(a’T) + ; (Og W@(at_1|at) + Og q(at_1|a0 79(a0|a1)
[at 1|at7a0) (I(GT\GO) q }
=Eo, r~qgarrls.ae) | —logme(ar) + log +lo
wrvalmrlsao) | 708 v) ; mo(a—1]ar) % glarlag) % molaolar)
[at 1|at,ao)

=E

ar.r~a(arir]s,a) | — 108 To(ar) +Zl + log g(ar|ao)

mo(at—1]ar)

~ log g(as]ao) + log g(ax|ao) — logmaow]

q(ai—1lag, ap)
R L +Zl e el

T

= Eaqy.r~q(ar.r]s,00) |:DKL (q(ar|ao)|lmo(ar)) + ZDKL (¢(at—1lat, ao)llmo(ar—1lar))

t=2

k. [/BtHe—ee (\/7ao+\/1_7at68t>H:|

20' Oét].*Oét

Thus the policy optimization objective can be obtained by

7o (ao.|s)

E ~) Ea. ~q(a1.T|s,a 1 YR
H}%X (s,a0)~D |:’LU(S ao) rr~q(ai.r|s, 0)[Og q(a1;T|s7a0) :|
q(a1:T|s7ao)]]

£ minE N Eqin 1
II_[lrtn (s,a0)~D w(s,ao) ai.T q(alzT\&ao)[Og W@(QO:T|3)

2
£ minE(s@)wD,e.t |:ﬁt_w(57a)|€ - 69(\/ a0+ 1- &tea Sat)|2:| .
T :

20',520%(]. — th)

—log mg(apla)

(43)

(44)

In the above derivation, Equation @] arises from the derivation of the DDPM (Ho et al., 2020)

optimization objective, consistent with works such as QVPO (Ding et al., [2024).

C MORE RELATED WORK

Offline RL. Offline RL trains policies using pre-collected datasets, avoiding real-world trial and
error, which is critical for deploying RL in practical settings. Its primary challenge is addressing

17

Under review as a conference paper at ICLR 2026

the extrapolation error (Prudencio et al., [2023). Methods such as CQL (Kumar et al., [2020) and
ICQ (Yang et al.| 2021) penalize the value function of unseen actions in order to constrain actions to
those observed in the offline dataset, while BCQ (Fujimoto et al., [2019) explicitly restricts candidate
actions to remain close to the offline data distribution by leveraging a CVAE. Furthermore, approaches
like IQL (Kostrikov et al., [2022) and DT (Chen et al., 2021)) adopt BC-based supervised learning
to fully confine the policy distribution within the offline dataset distribution, thereby avoiding the
effect of extrapolation error. Others, such as MOReL (Kidambi et al.,|2020), MOPO (Yu et al.| 2020),
and MOBILE (Sun et al.,|[2023)), learn the environment models from the offline data and utilize these
models with uncertainty estimates to avoid OOD regions with low model accuracy.

Generated model assisted RL. Driven by the powerful capacity of generative models to capture
multimodal distributions, as well as their rapid progress in domains like natural language processing,
recent years have witnessed a growing interest in applying such models to reinforcement learning (L1
et al.,|2025b)). Apart from the aforementioned applications, LL.Ms can also serve other roles in RL,
such as information representation and processing (Paischer et al.l |2022), action space compres-
sion (Yan et al.| 2025)), world modeling (Ge et al.,2024), and multi-agent task allocation (Kannan
et al.,|2024)). In addition to LLMs, other generative models are gaining growing traction in RL. Diffu-
sion models, in particular, have emerged as the most widely applied due to their strong expressive
power. They have been utilized for planning (Janner et al.| 2022 |Ajay et al.,2023)), for offline policy
learning (Wang et al., 2023} |Chi et al., [2023} |Ding & Jinl 2024), and more recently for online policy
learning (Ding et al., 2024; |Celik et al.| 2025; Ma et al., |2025). Flow matching, due to its simpler
generative process compared to diffusion models, has also recently attracted increasing attention in
RL (Park et al.| 2025}, [Espinosa-Dice et al.} 2025; [Lv et al., 2025).

D IMPLEMENTATION DETAILS

In this section, we will offer the implementation details of PROCO.

D.1 MODEL LEARNING

We begin with model learning using the safe-only dataset D. Specifically, this involves both dynamics
model learning and reward model learning, which are jointly formulated as an ensemble dynamics

model 7. Each model T € T is formulated as a Gaussian distribution over the next state and reward
given the current state and action:

T(s',rls,a) = N(u(s, a), £(s, a)). (45)
Then, the ensemble dynamics model is optimized by

maxE, o ¢ r~p[log T(s',r|s,a)]. (46)
T

In training, seven candidate models T are trained to construct the ensemble dynamics model T, and
the best 5 models are picked based on the validation prediction error on a held-out set that contains
20% samples in D. During model rollout, we randomly pick one dynamics model from the best 5
models to obtain (s, 7). For the cost label, given the cost function ¢, to mitigate the impact of model
uncertainty and obtain a more conservative estimate, we label a sample as 1 if any s’ of the five best
models’ outputs satisfies &(s’) = 1.

D.2 CONSERVATIVE COST FUNCTION GENERATION

The key to LLM-based cost function generation is the formulation of the prompt input. Accordingly,
this section details the prompt design employed in our approach.

First, we present the overall instruction used when initially employing the LLM for cost function
generation

18

Under review as a conference paper at ICLR 2026

You are an expert python coder. Please help me write some functions to evaluate whether a
given observation is safe or not. The function should return O if the observation is safe, and 1
otherwise. The function should be called get_cost(observation).

The cost description is: {Cost Description}.

The observation description is: {Observation Description}.

Now, please give the function get_cost, you should be a little more conservative, some situations
that do not violate safety constraints but are close to doing so can also be considered unsafe.

\ Vv,

Subsequently, we present two examples to demonstrate the Cost Description, Observation Description
within the instruction above, and Feedback provided for the generated cost function.

Push2 First, the Cost Description for the Push?2 task is composed as follows:

Push2 Cost Description

If you are within 0.3 meters of hazard, it is unsafe. If you contact with a pillar (being very close
to the pillar), it is unsafe.

The corresponding Observation Description is as follows:

Push2 Observation Description

The observation contains some agent specific dimensions plus 4 radar vetors, the last 16
dimensions is the push box radar, the 16 dimensions before push box radar is the pillar radar, the
16 dimensions before pillar radar is the hazard radar. Each radar has 16 dimensions, meaning
taking the robot’s forward direction as 0 degrees, determine whether a detected target is present
at every 22.5-degree interval around it. However, there is no information about robot’s forward
direction in the observation. The max radar detection range is 3 meters. If in a given direction,
the detected target is d meters away, and d<<3, then the radar will give the number as (3-d)/3.
Meanwhile, since the observation lacks a collision sensor, contact with a target does not result
in a radar reading of zero distance. This discrepancy is due to the physical volume of the target,
whose radius generally does not exceed 0.3 meters.

\ 7

After incorporating the above content into the instruction and inputting it into the LLM (GPT 04-mini),
it first generated the following cost function:

Push2 Output Functionl

def get_cost (observation) :

nwn

Returns 0 if the observation is safe, 1 if unsafe.

Parameters
observation : array-like, length >= 48
The last 48 entries are three 1l6-dimensional radars:
— hazard radar: obs[-48:-32]
- pillar radar: obs[-32:-16]
— push-box radar: obs[-16:]
Radar values r correspond to distances d = 3x(1 - r).

Safety rules (conservative):
1. Any hazard reading r >= 0.90 =+ unsafe
2. Any pillar reading r >= 0.85 =+ unsafe

Under review as a conference paper at ICLR 2026

0 if safe, 1 1if unsafe.

obs = np.asarray (observation)

if obs.ndim != 1 or obs.size < 48:
raise ValueError ("Observation must be a 1D array with length
— >= 48.")

extract the 16-dim hazard and pillar readings
hazard_r = obs[-48:-32]
pillar_r = obs[-32:-16]

thresholds
HAZARD_THRESH = # exact 0.3 m
PILLAR _THRESH = 0.85 # small margin beyond contact

|
o
(0]
o

check if any reading exceeds threshold
too_close_to_hazard = np.any(hazard_r >= HAZARD_THRESH)
contact_with_pillar = np.any(pillar_r >= PILLAR_THRESH)

return 1 if (too_close_to_hazard or contact_with_pillar) else 0

. 7

However, upon evaluation, this cost function labeled 2% of the samples in D as unsafe, which
does not meet our conservative requirement of labeling samples within [pmin, Pmax] as unsafe, where
Pmin = 10% and pmax = 30% in practice. Therefore, we provided the following feedback:

Push2 Feedback1

For safe samples, this function classifies 2% of them as unsafe. We want to classify 10%-30%
safe samples as unsafe. It should be a little more conservative.

Based on the above feedback, the LLM made corresponding modifications to the output function

Push2 Output Function2

def get_cost (observation):
mnon

Returns 0 if the observation is safe, 1 if unsafe

[(conservatively) .
Parameters
observation : array-like, length >= 48

The last 48 entries are:
— hazard radar: obs[-48:-32]
- pillar radar: obs[-32:-16]
— push-box radar: obs[-16:]

Conservative thresholds:
— Hazard: r >= 0.80 = d <= 0.60 m (unsafe)
- Pillar: r >= 0.75 = d <= 0.75 m (unsafe)

Returns

0 if safe, 1 if unsafe.

nun

obs = np.asarray (observation)
if obs.ndim != 1 or obs.size < 48:

20

Under review as a conference paper at ICLR 2026

raise ValueError ("Observation must be a 1D array with length
- >= 48.")

obs[-48:-32]
obs[-32:-16]

hazard_r
pillar_r

HAZARD_THRESH = 0.80 # ~0.60 m
PILLAR_THRESH = 0.75 # ~0.75 m

too_close_to_hazard = np.any (hazard_r >= HAZARD_THRESH)
close_to_pillar = np.any(pillar_r >= PILLAR_THRESH)

return 1 if (too_close_to_hazard or close_to_pillar) else 0

\ 7

Nevertheless, the revised cost function proved excessively conservative, labeling 40% of safe samples
as unsafe. Consequently, we supplied the LLM with additional feedback:

Push2 Feedback2

For safe samples, this function classifies 40% of them as unsafe. We want to classify 10%-30%
safe samples as unsafe. It is too conservative.

Finally, the LLM adjusted the cost function once again, yielding:

Push2 Output Function3

def get_cost (observation):
mmnn
Returns 0 if the observation is safe, 1 if unsafe (moderately
<y conservative).

Parameters
observation : array-like, length >= 48
The last 48 entries are:
— hazard radar: obs[-48:-32]
- pillar radar: obs[-32:-16]
— push-box radar: obs[-16:]

Thresholds tuned for 10-30% false positives on safe samples:
— Hazard: r >= 0.85 =+ d <= 0.45 m (unsafe)
— Pillar: r >= 0.80 = d <= 0.60 m (unsafe)

0 if safe, 1 if unsafe.

obs = np.asarray (observation)

if obs.ndim != 1 or obs.size < 48:
raise ValueError ("Observation must be a 1D array with length
— >= 48.")

hazard_r = obs[-48:-32]
pillar_r = obs[-32:-16]

HAZARD_THRESH 0.85 # ~0.45 m
PILLAR_THRESH = 0.80 # ~0.60 m

too_close_to_hazard = np.any (hazard_r >= HAZARD_THRESH)
close_to_pillar = np.any(pillar_r >= PILLAR_THRESH)

21

Under review as a conference paper at ICLR 2026

return 1 if (too_close_to_hazard or close_to_pillar) else 0

Walker2dVelocity In MuJoCo Velocity tasks, the agent is deemed unsafe once its instantaneous ve-
locity surpasses a predefined threshold. Nevertheless, the velocity included in the agent’s observation
reflects only the terminal velocity at the end of a step, which may deviate from the velocity during step
execution. Consequently, an LLM-generated cost function may align well with the textual description,
or even adopt a more conservative stance, but still fail to achieve perfect classification accuracy on
the 100 samples in Dyysate- This example illustrates such a case. First, the Cost Description for the
Walker2dVelocity task is composed as follows:

Walker2dVelocity Cost Description

If the velocity of the robot exeeds 2.3415, it is unsafe. When calculating the velocity, we only
consider x-coordinate and y-coordinate (if exists).

The corresponding Observation Description is as follows:

Walker2dVelocity Observation Description

The observation contains 17 dimensions. The first is z-coordinate of the front tip; the second
is angle of the torso; the third is angle of the thigh joint; the forth is angle of the leg joint; the
fifth is angle of the foot joint; the sixth is angle of the left thigh joint; the seventh is angle of the
left leg joint; the eighth is angle of the left foot joint; the nineth is velocity of the x-coordinate
of the torso; the tenth is velocity of the z-coordinate (height) of the torso; the eleventh is
angular velocity of the angle of the torso; the twelveth is angular velocity of the thigh hinge; the
thirteenth is angular velocity of the leg hinge; the forteenth is angular velocity of the foot hinge;
the fifteenth is angular velocity of the thigh hinge; the sixteenth is angular velocity of the leg
hinge; the seventeenth is angular velocity of the foot hinge.

. v,

After incorporating the above content into the instruction and inputting it into the LLM, it first
generated the following cost function:

Walker2d Velocity Output Functionl

def get_cost (observation, max_safe_vel=2.3415, safety_margin=0.05):
nmnon

Return 0 if the observation is safe, 1 otherwise.

We consider only the torso's x-velocity (observation[8]).
Any |velocity| >= (1 - safety_margin) * max_safe_vel is deemed
— unsafe.

Parameters
observation : sequence of float, length >= 9
The 17-dimensional observation vector.
max_safe_vel : float
The hard safety limit on velocity.
safety_margin : float

Fractional margin to be conservative (e.g. 0.05 means 5%
— Dbelow max_safe_vel).

0 if safe, 1 if unsafe.

Under review as a conference paper at ICLR 2026

nwn

pick out the x-velocity of the torso
v_x = observation[8]

define the conservative threshold
threshold = (1.0 - safety_margin) * max_safe_vel

unsafe if we're at or above the threshold
return 1 if abs(v_x) >= threshold else 0

\ 7

However, the accuracy of this function on Dypgafe 1s only 98%. Therefore, we provided feedback to
the LLM:

Walker2dVelocity Feedback1

For 100 unsafe testing samples, this function achieves 98% accuracy, it should be a little more
conservative.

Based on the above feedback, the LLM made corresponding modifications to the output function

Walker2dVelocity Output Function2

def get_cost (observation, max_safe_vel=2.3415, safety_margin=0.10):

nwn

Return 0 if the observation is safe, 1 otherwise.

Unsafe if torso's x-velocity exceeds (1 - safety_margin) =
— max_safe_vel.
This version is more conservative, using a 10% margin.

Parameters
observation : sequence of float, length >= 9
The 17-dimensional observation vector.
max_safe_vel : float
The hard velocity safety threshold.
safety_margin : float

A conservative margin to catch near-threshold wvalues.

Returns

0 if safe, 1 if unsafe.
mnon
v_x = observation[8]
threshold = (1.0 - safety_margin) * max_safe_vel
return 1 if abs(v_x) >= threshold else 0

\ 7

The accuracy of this function on Dypg,fe remains at only 99%. Therefore, we provided additional
feedback

Walker2dVelocity Feedback2

For 100 unsafe testing samples, this function achieves 99% accuracy, it should be a little more
conservative.

Finally, the LLM adjusted the cost function once again, yielding:

23

Under review as a conference paper at ICLR 2026

Walker2dVelocity Output Function3

def get_cost (observation, max_safe_vel=2.3415, safety_margin=0.15):

nwn

Return 0 if the observation is safe, 1 otherwise.

Unsafe if torso’s x-velocity magnitude exceeds

(1 - safety_margin) * max_safe_vel.
This default uses a 15% margin (i.e. flags |v_x| >= ~1.9903).
Parameters
observation : sequence of float, len >= 9
The 17-dimensional observation vector.
max_safe_vel : float
The hard velocity safety limit.
safety_margin : float

Fractional buffer under max_safe_vel (default 0.15).

Returns

0 if safe, 1 if unsafe.

nwn

torso x-velocity is at index 8
v_x = observation[8]

build a conservative threshold
threshold = (1.0 - safety_margin) * max_safe_vel

return 1 1f abs(v_x) >= threshold else 0

D.3 PoLICY LEARNING

During model rollouts, we follow the rollout procedure used in works such as MOPO, performing a
rollout after every K policy gradient updates. For each rollout, a batch of size b is sampled from D,
and each data point in the batch is rolled out for H steps. The process of sampling and branch rollout
is repeated F times. In practice, we set K = 250000, b = 50000, H = 1, and F = 10.

The process of policy learning remains largely consistent with the description in the main text, where
Equation (T2) is used to learn constraint violation value functions, and Equation (T3) is employed to
learn reward value functions. During policy extraction, the optimal policy is represented as

exp(a147(s,a)) - Igs(s,ap<0 Vi (s) <0

exp(—az A} (s, a)) Vs >0 @

7w (als) = w(s,a)mg(als), w(s,a) =

where the normalization terms in w(s, a) are omitted. Finally, the optimization is performed as

follows:
Lo =E(sa)~D,et [w(s, a)lle — ea(vVara + 1 — aue, s, t)||2] , (48)
where the weighting term S in Equation is omitted.

t
202 (1—ay)

Finally, the detailed pseudo-code for PROCO is provided in Algorithm 1}

D.4 HYPERPARAMETERS

The training of PROCO involves the selection of hyperparameters. To ensure reproducibility, this
section outlines the specific hyperparameters used in our experiments, as shown in Table[2| Specif-
ically, for the expectile parameter 7, we set it to 0.9 in the Point and Car tasks, and to 0.95 in the
MuJoCo Velocity tasks. The diffusion action candidates hyperparameter denotes the procedure at
test time in which the diffusion policy samples 16 candidate actions and selects the action with the

24

Under review as a conference paper at ICLR 2026

Algorithm 1 PROCO

Input: offline dataset D, LLM generated conservative cost function ¢.
Initialize: ensemble model T, constraint violation value networks)y, V3, reward value networks
Q-, V., diffusion policy g, rollout dataset D = ().
for step in dynamics model training steps do
Update T with Equation l)
end for
for step in policy training steps do
if step % rollout frequency == 0 then
Obtain rollout trajectories {7;}/; and add them to D, according to Section
end if
Update V3, Qp, with Equation (12).
Update V., Q, with Equation (13).
Update g with Equation {@8)
end for
Return Vi, Qn, Vi, Qr; €9.

minimum constraint violation value function, corresponding to the highest level of safety. PROCO is
implemented based on OSRL [1_-] and FISORE]code bases, and the default parameters are retained for
any hyperparameters not explicitly mentioned.

Table 2: Hyperparameter choices of PROCO.

‘ Hyperparameter ‘ Value
model hidden layers (256, 256, 256, 256]
layer weight decays [2.5e — 5,5e — 5,7.5e — 5,7.5e — 5, 1e — 4]
. model ensemble number 7
model learning]
model elites number 5
batch size 512
learning rate 0.001
Dmin 10%
cost function generation Prmax 30%
max LLM query number 10
network hidden layers [256, 256]
model rollout frequency 2.5e5
model rollout batch size 50000
model rollout length 1
model rollout epoch 10
model rollout std 0.1
expectile 7 {0.9,0.95}
[e5] 3
a2 5
policy learning exponential advantage clip (feasible) (—00,100]
exponential advantage clip (infeasible) (—00,150]
diffusion step 5
diffusion action candidates 16
value batch size 256
diffusion batch size 2048
learning rate 3e—4
vy 0.99
soft update « 0.001
training steps 2e6

Thttps://github.com/liuzuxin/OSRL
“https://github.com/Zheng Yinan-AIR/FISOR

25

https://github.com/liuzuxin/OSRL
https://github.com/ZhengYinan-AIR/FISOR

Under review as a conference paper at ICLR 2026

(a) Navigation Tasks (b) Velocity Tasks

Figure 5: Tasks used in this paper. (a) Navigation Tasks based on Point and Car robots. (b) Velocity
Tasks based on Ant, HalfCheetah, Hopper, Walker2d, and Swimmer robots.

E DETAILED DESCRIPTION OF THE TASKS AND BASELINES

E.1 TASKS

All tasks used in this paper are derived from the Safety-Gymnasium’s Navigation Tasks and Velocity
Tasks. In the Navigation Tasks, there are two different types of robots: Point and Car, which we need
to control to navigate through the environment and earn rewards by reaching target points, pressing
the correct buttons, or moving in designated directions. Different tasks also have varying costs, such
as avoiding collisions with specific targets, preventing incorrect button presses, and staying within
designated boundaries.

The Velocity Tasks are built on traditional MuJoCo (Todorov et al.| [2012) simulations, requiring
robots such as Ant, HalfCheetah, Swimmer, and Walker2d to move, where higher speeds result in
higher rewards. However, each robot has specific safety velocity thresholds for different tasks, and
exceeding these thresholds leads to unsafe states. For detailed descriptions of each task, refer to the
original Safety-Gymnasium paper (Ji et al., 2023)).

E.2 BASELINES
We provide a more detailed introduction to the baselines in this section.

* CPQ is a CMDP-based offline safe RL algorithm built upon the classic offline RL method
CQL. It incorporates the conservative regularization operator from CQL into the cost
critic, treating out-of-distribution samples as unsafe. Unlike traditional methods that use
Lagrangian multipliers for policy updates, CPQ directly truncates the reward critic to O for
unsafe state-action pairs, preventing unsafe policy execution.

* BCQ Lagrange, similar to CPQ, applies the Lagrangian multiplier method from safe RL to
the classical offline RL algorithm BCQ. It learns a CVAE to fit the action distribution in the
offline dataset, thereby ensuring that the candidate action set during policy learning remains
as close as possible to the offline data distribution.

* CDT is the previous SOTA algorithm under sequence modeling for offline safe RL. After
incorporating CTG into DT, CDT seeks to address the conflict between safety constraints
and reward maximization. To tackle this issue, CDT proposes a data augmentation approach,
where reward returns for certain safe but low-reward trajectories in the offline dataset are
re-labeled with higher values.

* COptiDICE is the first to apply the advantage-weighted BC-based DICE algorithm to
offline safe RL. By introducing Lagrangian multipliers, it combines the reward advantage
and cost as the weighting term in BC, enabling efficient safe policy learning under soft
constraints.

* FISOR is the SOTA offline safe RL algorithm based on hard constraint modeling. Similar to
other algorithms under hard constraints|Yu et al.| (2022); |Ganai et al.| (2023)), it first divides
the state space into feasible and infeasible regions. It then uses the IQL Kostrikov et al.
(2022)) algorithm to learn feasible value functions for offline feasible region identification.
Next, FISOR sets distinct learning objectives for the feasible and infeasible regions. In

26

Under review as a conference paper at ICLR 2026

the feasible region, it aims to maximize the reward while ensuring feasibility, while in the
infeasible region, it focuses on minimizing constraint violations. Finally, FISOR employs a
diffusion model to represent and learn the policy.

F MORE EXPERIMENTAL RESULTS

F.1 INTEGRATE PROCO WITH OTHER ALGORITHMS

Although in this work, PROCO leverages the unsafe samples generated from the dynamics model and
conservative cost function for feasibility identification, and adopts the policy optimization scheme
of FISOR under hard constraint modeling for policy extraction, the framework of proactive unsafe
sample generation via the conservative cost function and dynamics model can in fact be flexibly
combined with various value-based offline safe RL methods for minimal cost safe policy learning.
Therefore, in this section, we further evaluate PROCO in combination with three value-based offline
safe RL baselines under soft constraint modeling, with the goal of promoting more effective cost
value function learning when no unsafe samples are available. As shown in Table[3] all three baselines
achieve significant improvements in safety after being integrated with PROCO. These results further
validate the effectiveness of PROCO’s proactive unsafe sample generation framework for offline safe
policy learning in scenarios with few or no unsafe samples.

Table 3: Results of integrate PROCO with other algorithms.

Method CarButton1 CarGoall CarPushl Average

) cl it cl rt cl rt cl
CPQ 0.35+0.06 42.38+0.81 0.80+£0.04 574+1.74 —-0.01+0.27 5.08+£3.22 | 038 17.73
CPQ+PROCO 0.06+0.05 7.08+1.67 0.46+0.13 3.04+0.52 -0.1340.17 1.76+£0.96 | 0.13 3.96
BCQ Lagrange —0.02+£0.04 5.56+0.29 0.47+0.02 286+£0.60 020+£0.02 1.594+0.33 | 022 3.34
BCQ Lagrange+PROCO -0.09+0.04 2.42+0.21 0.3540.00 2.36+0.61 0.1940.02 1.02+0.26 | 0.15 1.93
COptiDICE —0.04£0.08 3.69+1.07 0.38+0.07 214£0.58 0.20+£0.02 2214+1.07 | 0.18 2.68
COptiDICE+PROCO -0.14+0.04 1.85+0.67 0.314+0.10 1.73+0.59 0.22+0.03 1.76+0.42 | 0.13 1.78

Table 4: Detailed standard deviation results of the main experiment. All results are computed using
three different random seeds.

Task CPQ BCQ Lagrange BC CDT COptiDICE FISOR PROCO

r c r c r c r c r c r c r c
PointButton1 0.05 0.64 0.08 0.80 005 121 014 19 002 068 012 091 0.01 0.56
PointButton2 0.03 190 0.07 3.18 0.08 157 002 228 004 069 006 041 002 088
PointGoall 0.02 075 0.05 1.01 0.03 0.13 001 055 009 052 001 052 000 044
PointGoal2 006 226 0.06 0.37 005 215 001 060 0.09 041 0.03 1.01 0.05 043
PointPush1 0.05 447 0.03 0.97 003 091 003 015 002 136 0.06 127 0.00 053
PointPush2 0.12 454 0.02 0.74 006 104 002 0.8 0.04 101 0.06 179 0.02 0.18
CarButtonl 0.05 0.81 0.04 0.29 001 135 002 186 0.08 1.07 0.03 178 0.04 023
CarButton2 0.04 213 0.02 1.48 0.10 1.18 0.03 1.15 0.08 072 0.04 094 0.00 0.21
CarGoall 004 174 0.02 0.60 001 056 004 0.5 0.07 058 0.01 091 0.02 0.03
CarGoal2 0.00 3.58 0.04 0.22 0.03 038 001 038 007 056 002 020 002 0.50
CarPush1 027 322 0.02 0.33 005 024 001 113 002 107 004 035 002 0.86
CarPush2 0.04 884 0.03 251 003 121 001 143 003 100 006 184 0.00 0.06
SwimmerVelocity V1 0.14 11.09 0.10 17.19 0.10 5.05 0.02 3.13 0.06 237 001 056 002 0.12
HopperVelocity V1 003 232 0.16 4.27 0.17 097 003 066 001 167 001 0.15 001 0.10
HalfCheetahVelocityV1 | 0.08 4.63 0.01 1122 0.00 294 0.01 1.01 0.01 0.00 001 345 0.01 0.00
Walker2dVelocity V1 002 073 0.01 0.16 0.09 1.17 002 060 001 08 003 095 003 0.09
AntVelocityV1 0.00 0.00 0.16 1059 0.01 391 0.00 031 0.00 0.64 0.00 076 0.04 0.00
Average 0.06 3.16 0.05 3.29 005 153 003 107 0.04 0.8 0.04 1.05 0.02 031

27

Under review as a conference paper at ICLR 2026

F.2 STANDARD DEVIATION OF THE MAIN RESULTS
In this section, we present the standard deviation of PROCO and various baselines computed with

three different random seeds, as shown in Table[d] The results demonstrate that PROCO achieves
lower standard deviation compared to other baselines, indicating its stability.

F.3 DETAILED ABLATION RESULTS
In this section, we also provide the detailed results of the ablation studies, as shown in Table E}

Table 5: Detailed ablation results.

Task W/o Model Full Model W/o Relabel
rT cl T cl r cl

PointButton1 0.06+0.00 2.84+0.58 0.01+£0.00 1.824+0.76 0.07£0.01 1.1040.39
PointButton2 0.094+0.03 4.324+0.28 0.03+0.02 2.1440.72 0.09+£0.02 2.1940.36
PointGoall 0.544+0.04 2.41+£0.76 0.07+0.02 0.18+0.13 0.28+0.04 0.25+0.13
PointGoal2 0.144+0.03 1.58+0.68 0.03+0.01 0.63£0.34 0.09+£0.05 0.924+0.30
PointPushl 0.254+0.02 1.03+£0.32 0.13+£0.04 0.794£0.68 0.21£0.02 0.6040.32
PointPush2 0.114£0.03 1.21+£0.36 0.04+0.05 0.48+0.25 0.07+£0.03 1.224+0.27
CarButtonl -0.02+0.01 1.2440.25 0.00£0.00 1.57£1.22 -0.03+0.03 1.2240.37
CarButton2 0.004£0.02 3.224+0.94 -0.064+0.01 1.9940.80 -0.03+0.03 1.76+1.04
CarGoall 0.2740.02 0.37+£0.13 0.02+0.02 0.00£0.00 0.15+0.06 0.314+0.18
CarGoal2 0.064+0.03 0.14+0.12 -0.01£0.02 0.074£0.07 0.11£0.02 1.0040.34
CarPushl1 0.244+0.04 1.03+£0.69 0.16+0.03 0.124+0.17 0.17£0.02 0.2940.19
CarPush2 0.034+0.03 0.48+0.03 -0.034+0.05 0.00£0.00 0.06+0.02 1.274+0.53

Swimmer Velocity V1 0.01£0.01 0.00£0.00 0.02£0.00 0.00£0.00 0.01£0.02 0.07+£0.10
HopperVelocity V1 0.17+£0.05 0.17+0.12 0.04+0.03 0.00£0.00 0.12+£0.09 0.18£0.20
HalfCheetahVelocityV1 | 0.51£0.04 0.00+0.00 0.23£0.05 0.00+0.00 0.83£0.04 1.40+1.89
Walker2dVelocity V1 0.15£0.03 1.47+0.50 0.05£0.03 0.01+£0.01 0.18+0.05 3.36£1.38

AntVelocity V1 0.5940.01 0.00+£0.00 0.00+0.08 0.01+0.01 0.52+0.05 0.01+0.01

Average 0.19 1.27 0.05 0.58 0.17 1.01

Task Det. Rollout W/o Consv. W/o Refl.

) cl T cl) cl
PointButton1 0.02+0.04 1.67£097 0.094+0.03 4.01+£0.27 0.06+0.03 3.40%+1.70
PointButton2 0.074£0.01 2.90+0.64 0.08+0.01 3.544+0.80 0.07+£0.01 4.554+1.48
PointGoall 0.404+0.02 1.65+0.36 0.374+0.00 0.63+0.21 0.34+0.04 0.86+0.55
PointGoal2 0.064+0.01 0.25+0.18 0.06+0.01 0.74£0.54 0.08+0.02 0.4240.13
PointPushl 0.1840.04 091+£1.10 0.224+0.02 0.94+0.14 0.20+£0.05 2.1742.38
PointPush2 0.084+0.04 0.51+£0.38 0.11+0.04 3.98+1.95 0.07+0.01 1.224+0.90
CarButton1 -0.04+0.04 1.754+0.59 -0.04+0.02 2.76+£1.10 -0.01+0.03 2.5741.32
CarButton2 -0.01+£0.01 1.364+0.27 -0.01£0.00 2.40+0.72 0.00+0.01 3.21+1.44
CarGoall 0.154+0.04 0.03+£0.04 0.23+0.04 0.50+0.37 0.16+£0.02 0.1640.14
CarGoal2 0.034£0.00 0.08+0.11 0.03+£0.00 0.3940.49 0.04+0.03 0.8040.93
CarPushl 0.1840.03 1.87+£1.23 0.224+0.03 0.454+0.24 0.11+£0.04 1.86+2.43
CarPush2 0.00+£0.00 0.04£0.05 0.04+0.03 3.00£1.34 0.03£0.04 1.1940.97
SwimmerVelocityV1 0.004£0.01 0.03£0.02 0.01+£0.01 0.00£0.00 0.00+£0.00 0.2340.33
HopperVelocityV1 0.204+0.12 0.01£0.01 0.06+0.08 0.004£0.00 0.13£0.17 0.0040.00

HalfCheetahVelocityV1 | 0.49+0.02 0.00+0.00 0.81£0.01 0.00+0.00 0.65+0.07 0.00+0.00

Walker2dVelocity V1 0.15+£0.01 1.5740.36 0.2240.04 2.284+0.15 0.18+£0.00 2.09+0.57

AntVelocity V1 0.46+0.05 0.00+£0.00 0.41+0.03 0.00£0.00 0.50+0.18 0.00£0.00
Average 0.14 0.86 0.17 1.51 0.15 1.45

F.4 DETAILED SENSITIVITY ANALYSIS RESULTS

Finally, in this section, we provide the detailed results of sensitivity studies, as shown in Table [6]
Notably, while safety performance degrades significantly when H = 5, this degradation is mainly
observed in the Point and Car tasks, whereas the MuJoCo Velocity tasks do not exhibit such a decline
and may even become more conservative. These results suggest that when the environment model is
sufficiently accurate, increasing H can indeed yield improved safety performance; however, if the
environment model accuracy is low, keeping H small is preferable to avoid the negative impact of
model errors on learning stability.

28

Under review as a conference paper at ICLR 2026

Table 6: Detailed sensitivity analysis results.

Task E=2 E=5 H=2

T cl T cl T cl
PointButton1 0.03£0.01 1.93+0.14 0.03+0.00 1.55£0.55 -0.02+0.01 0.5740.20
PointButton2 0.06+0.04 2.31+1.15 0.06+£0.01 2.42+0.58 -0.06£0.05 1.7940.33
PointGoall 0.45+£0.03 1.70+£1.03 0.424+0.07 1.284£0.66 0.14+0.03 2.67+0.31
PointGoal2 0.10+£0.04 0.71+£0.45 0.08+0.02 0.53+0.31 -0.04+0.04 1.20+0.27
PointPush1 0.204+0.02 043+1.35 0.18+0.02 1.14+0.53 0.13£0.05 1.10+0.44
PointPush2 0.10£0.00 0.76+0.31 0.094+0.02 0.24+0.16 0.06£0.02 0.65+0.25
CarButton] -0.04+0.05 0.61£042 -0.07£0.05 0.314+0.11 -0.04£0.03 0.94%0.04
CarButton2 -0.02+0.04 1.85£0.29 -0.03£0.03 1.68+0.43 -0.13£0.06 0.75+0.27
CarGoall 0.22+0.02 0.15+£0.10 0.20+0.02 0.03£0.05 0.16£0.08 1.45+0.59
CarGoal2 0.05+0.02 0.58+0.26 0.05+£0.00 0.77+0.11 0.05+£0.04 2.29+0.89
CarPushl 0.19+0.04 0.35+0.22 0.17+0.03 0.45+£0.39 0.12+0.02 0.32£0.09
CarPush2 0.03£0.01 0.01+£0.01 -0.01£0.02 0.00£0.00 -0.01+0.04 0.64+0.91
SwimmerVelocity V1 0.01+£0.00 0.11+0.15 0.02+0.01 0.32+0.45 0.01£0.01 0.00£0.00
HopperVelocity V1 0.18+£0.02 0.21+0.14 0.384+0.15 0.03£0.03 0.13£0.04 0.14+0.19
HalfCheetahVelocityV1l | 0.504+0.04 0.00£0.00 0.49+0.03 0.00+£0.00 0.394+0.07 0.00£0.00
Walker2dVelocity V1 0.13+0.03 1.50+£0.40 0.11+0.04 1.26+0.59 0.05£0.03 0.25+0.09
AntVelocityV1 0.59+0.00 0.00+£0.00 0.53+0.01 0.00£0.00 0.29+0.05 0.00+£0.00

Average 0.16 0.77 0.16 0.70 0.07 0.87

Task H=5 Deepseek R1 Gemini 2.5 Pro

rT cl rT cl rT cl
PointButton1 0.214+0.13 10.36£1.13 0.05+0.01 2.31£0.57 0.01+0.02 1.18+0.64
PointButton2 0.2740.07 11.76+£2.04 0.08+0.03 2.57+£0.60 0.07+0.02 1.80+0.27
PointGoall 0.06+0.13 5.1943.41 0.35£0.03 0.71£0.24 0.314+0.02 0.63+0.20
PointGoal2 0.26+0.06 6.49+3.44 0.05£0.03 0.11£0.08 0.10+0.04 0.68+0.31
PointPush1 0.114+0.02 1.04+0.99 0.254+0.07 1.79£142 0.174+0.02 1.04+0.39
PointPush2 0.10+£0.02 1.694+2.18 0.124+0.02 0.82+0.48 0.10+£0.01 0.51+0.35
CarButtonl -0.01£0.02 6.75£8.33 -0.03£0.04 1.04+0.24 -0.03+0.01 0.60+0.24
CarButton2 0.03+£0.01 13.28+4.62 0.00£0.01 1.94£0.34 -0.03+£0.02 1.02+0.21
CarGoall 0.16+0.09 3.114+2.03 0.15+0.04 0.11£0.06 0.114+0.00 0.03£0.04
CarGoal2 0.064+0.04 8.77+£7.05 0.02+0.02 0.60+£0.33 0.03+0.01 0.38+0.42
CarPush1 0.18+£0.00 1.57+1.23 0.22+0.07 0.85£047 0.13+0.02 0.4940.08
CarPush2 0.06+£0.01 4.16£1.62 0.07£0.05 0.42£0.06 0.04+0.02 0.154+0.21
SwimmerVelocityV1 0.04+£0.02 0.00+£0.00 -0.01£0.01 0.00£0.00 0.004+0.03 0.0040.00
HopperVelocityV1 0.06+0.05 0474035 0.294+0.10 1.27£1.39 0.20+0.03 0.25+0.27
HalfCheetahVelocityV1 | 0.424+0.07 0.00+£0.00 0.08+0.02 0.00£0.00 0.544+0.01 0.00£0.00
Walker2dVelocity V1 0.12+0.04 0.43+0.26 0.17£0.02 2.03£0.46 0.15£0.02 1.66+0.61
AntVelocityV1 0.49+0.01 0.00+£0.00 0.54+0.11 0.00£0.00 0.394+0.10 0.0040.00

Average 0.15 4.41 0.14 0.97 0.14 0.61

G LIMITATIONS

Although this work effectively addresses the challenge of learning offline safe policies in scenarios
with scarce or no unsafe data, some limitations remain. The first lies in the accuracy and generalization
of the environment model. When model accuracy is low, the rollout horizon must be restricted. A
potential solution is to employ more powerful generative models, such as diffusion models, as
environment models. The second limitation concerns the generation of conservative cost functions:
the cost description must be grounded in features observable in the agent’s observations. If certain
variables required to compute the cost function cannot be directly or indirectly inferred from the
observations, our approach cannot be applied. Meanwhile, despite the adoption of a check-and-
feedback mechanism, the reliability of LLM outputs remains affected by hallucinations. A promising
direction for future research is to integrate human-in-the-loop strategies to mitigate this issue. Finally,
due to the reliance on cost function generation, the current PROCO is restricted to state-based
tasks and cannot be applied to vision-based tasks. This is because VLMs cannot directly produce
sufficiently accurate image-based cost functions, and performing VLM-based evaluation for every
sample would be prohibitively expensive.

29

	Introduction
	Related Work
	Preliminaries
	Method
	Feasibility identification with a dynamics model
	LLM assisted conservative cost function generation
	Overall algorithm

	Experiments
	Baselines and tasks
	Competitive Results and ablations
	Case Study
	Sensitivity analysis

	Final Remarks
	LLM usage
	Mathematical Proofs
	Proof of Proposition 4.3
	Proof of th1
	Proof of th2
	Derivation of eq diff

	More Related Work
	Implementation Details
	Model Learning
	Conservative cost function generation
	Policy Learning
	Hyperparameters

	Detailed description of the tasks and baselines
	Tasks
	Baselines

	More Experimental Results
	Integrate PROCO with other algorithms
	Standard deviation of the main results
	Detailed ablation results
	Detailed Sensitivity Analysis Results

	Limitations

