
Published as a conference paper at ICLR 2023

FACTORIZED FOURIER NEURAL OPERATORS

Alasdair Tran1 Alexander Mathews 1 Lexing Xie 1 Cheng Soon Ong 1,2

1 Australian National University 2 Data61, CSIRO

ABSTRACT

We propose the Factorized Fourier Neural Operator (F-FNO), a learning-based
approach for simulating partial differential equations (PDEs). Starting from a
recently proposed Fourier representation of flow fields, the F-FNO bridges the
performance gap between pure machine learning approaches to that of the best
numerical or hybrid solvers. This is achieved with new representations – separable
spectral layers and improved residual connections – and a combination of training
strategies such as the Markov assumption, Gaussian noise, and cosine learning
rate decay. On several challenging benchmark PDEs on regular grids, structured
meshes, and point clouds, the F-FNO can scale to deeper networks and outperform
both the FNO and the geo-FNO, reducing the error by 83% on the Navier-Stokes
problem, 31% on the elasticity problem, 57% on the airfoil flow problem, and 60%
on the plastic forging problem. Compared to the state-of-the-art pseudo-spectral
method, the F-FNO can take a step size that is an order of magnitude larger in time
and achieve an order of magnitude speedup to produce the same solution quality.

1 INTRODUCTION

From modeling population dynamics to understanding the formation of stars, partial differential
equations (PDEs) permeate the world of science and engineering. For most real-world problems, the
lack of a closed-form solution requires using computationally expensive numerical solvers, sometimes
consuming millions of core hours and terabytes of storage (Hosseini et al., 2016). Recently, machine
learning methods have been proposed to replace part (Kochkov et al., 2021) or all (Li et al., 2021a) of
a numerical solver.

Of particular interest are Fourier Neural Operators (FNOs) (Li et al., 2021a), which are neural
networks that can be trained end-to-end to learn a mapping between infinite-dimensional function
spaces. The FNO can take a step size much bigger than is allowed in numerical methods, can perform
super-resolution, and can be trained on many PDEs with the same underlying architecture. A more
recent variant, dubbed geo-FNO (Li et al., 2022), can handle irregular geometries such as structured
meshes and point clouds. However, this first generation of neural operators suffers from stability
issues. Lu et al. (2022) find that the performance of the FNO deteriorates significantly on complex
geometries and noisy data. In our own experiments, we observe that both the FNO and the geo-FNO
perform worse as we increase the network depth, eventually failing to converge at 24 layers. Even
at 4 layers, the error between the FNO and a numerical solver remains large (14% error on the
Kolmogorov flow).

In this paper, we propose the Factorized Fourier Neural Operator (F-FNO) which contains an improved
representation layer for the operator, and a better set of training approaches. By learning features
in the Fourier space in each dimension independently, a process called Fourier factorization, we
are able to reduce the model complexity by an order of magnitude and learn higher-dimensional
problems such as the 3D plastic forging problem. The F-FNO places residual connections after
activation, enabling our neural operator to benefit from a deeply stacked network. Coupled with
training techniques such as teacher forcing, enforcing the Markov constraints, adding Gaussian noise
to inputs, and using a cosine learning rate scheduler, we are able to outperform the state of the art by
a large margin on three different PDE systems and four different geometries. On the Navier-Stokes
(Kolmogorov flow) simulations on the torus, the F-FNO reduces the error by 83% compared to the
FNO, while still achieving an order of magnitude speedup over the state-of-the-art pseudo-spectral
method (Figs. 3 and 4). On point clouds and structured meshes, the F-FNO outperforms the geo-FNO
on both structural mechanics and fluid dynamics PDEs, reducing the error by up to 60% (Table 2).

1

Published as a conference paper at ICLR 2023

Overall, we make the following three key contributions:

1. We propose a new representation, the F-FNO, which consists of separable Fourier represen-
tation and improved residual connections, reducing the model complexity and allowing it to
scale to deeper networks (Fig. 2 and Eqs. (7) and (8)).

2. We show the importance of incorporating training techniques from the existing literature,
such as Markov assumption, Gaussian noise, and cosine learning rate decay (Fig. 3); and
investigate how well the operator can handle different input representations (Fig. 5).

3. We demonstrate F-FNO’s strong performance in a variety of geometries and PDEs (Fig. 3
and Table 2). Code, datasets, and pre-trained models are available1.

2 RELATED WORK

Classical methods to solve PDE systems include finite element methods, finite difference methods, fi-
nite volume methods, and pseudo-spectral methods such as Crank-Nicholson and Carpenter-Kennedy.
In these methods, space is discretized, and a more accurate simulation requires a finer discretization
which increases the computational cost. Traditionally, we would use simplified models for specific
PDEs, such as Reynolds averaged Navier-Stokes (Alfonsi, 2009) and large eddy simulation (Lesieur
& Métais, 1996), to reduce this cost. More recently, machine learning offers an alternative approach
to accelerate the simulations. There are two main clusters of work: hybrid approaches and pure
machine learning approaches. Hybrid approaches replace parts of traditional numerical solvers with
learned alternatives but keep the components that impose physical constraints such as conservation
laws; while pure machine learning approaches learn the time evolution of PDEs from data only.

Hybrid methods typically aim to speed up traditional numerical solvers by using lower resolution
grids (Bar-Sinai et al., 2019; Um et al., 2020; Kochkov et al., 2021), or by replacing computationally
expensive parts of the solver with learned alternatives Tompson et al. (2017); Obiols-Sales et al. (2020).
Bar-Sinai et al. (2019) develop a data driven method for discretizing PDE solutions, allowing coarser
grids to be used without sacrificing detail. Kochkov et al. (2021) design a technique specifically
for the Navier-Stokes equations that uses neural network-based interpolation to calculate velocities
between grid points rather than using the more traditional polynomial interpolation. Their method
leads to more accurate simulations while at the same time achieving an 86-fold speed improvement
over Direct Numerical Simulation (DNS). Similarly, Tompson et al. (2017) employ a numerical solver
and a decomposition specific to the Navier-Stokes equations, but introduce a convolutional neural
network to infer the pressure map at each time step. While these hybrid methods are effective when
designed for specific equations, they are not easily adaptable to other PDE tasks.

An alternative approach, less specialized than most hybrid methods but also less general than pure
machine learning methods, is learned correction (Um et al., 2020; Kochkov et al., 2021) which
involves learning a residual term to the output of a numerical step. That is, the time derivative is
now ut = u∗

t + LC(u∗
t), where u∗

t is the velocity field provided by a standard numerical solver on a
coarse grid, and LC(u∗

t) is a neural network that plays the role of super-resolution of missing details.

Pure machine learning approaches eschew the numerical solver altogether and learn the field
directly, i.e., ut = G(ut−1), where G is dubbed a neural operator. The operator can include
graph neural networks Li et al. (2020a;b), low-rank decomposition Kovachki et al. (2021b), or
Fourier transforms (Li et al., 2021a;b). Pure machine learning models can also incorporate physical
constraints, for example, by carefully designing loss functions based on conservation laws (Wandel
et al., 2020). They can even be based on existing simulation methods such as the operator designed
by Wang et al. (2020) that uses learned filters in both Reynolds-averaged Navier-Stokes and Large
Eddy Simulation before combining the predictions using U-Net. However, machine learning methods
need not incorporate such constraints – for example, Kim et al. (2019) use a generative CNN model
to represent velocity fields in a low-dimensional latent space and a feedforward neural network
to advance the latent space to the next time point. Similarly, Bhattacharya et al. (2020) use PCA
to map from an infinite dimensional input space into a latent space, on which a neural network
operates before being transformed to the output space. Our work is most closely related to the Fourier

1https://github.com/alasdairtran/fourierflow

2

https://github.com/alasdairtran/fourierflow

Published as a conference paper at ICLR 2023

evolve
vorticity

compute
stress

compute
flow velocity

compute
displacement

over time

(a) Torus

(b) Elasticity

(c) Airfoil

(d) Plasticity

Figure 1: An illustration of the input and output of different PDE problems. See the accompanying
Table 1 for details. On the torus datasets (a), the operator learns to evolve the vorticity over time. On
Elasticity (b), the operator learns to predict the stress value on each point on a point cloud. On Airfoil
(c), the operator learns to predict the flow velocity on each mesh point. On Plasticity (d), the operator
learns the displacement of each mesh point given an initial boundary condition.

transform-based approaches (Li et al., 2021a; 2022) which can efficiently model PDEs with zero-shot
super-resolution but is not specific to the Navier-Stokes equations.

Fourier representations are popular in deep-learning due to the efficiency of convolution operators
in the frequency space, the O(n log n) time complexity of the fast Fourier transform (FFT), and the
ability to capture long-range dependencies. Two notable examples of deep learning models that
employ Fourier representations are FNet (Lee-Thorp et al., 2021) for encoding semantic relationships
in text classification and FNO (Li et al., 2021a) for flow simulation. In learning mappings between
function spaces, the FNO outperforms graph-based neural operators and other finite-dimensional
operators such as U-Net. In modeling chaotic systems, the FNO has been shown to capture invariant
properties of chaotic systems (Li et al., 2021b). More generally, Kovachki et al. (2021a) prove that
the FNO can approximate any continuous operator.

3 THE FACTORIZED FOURIER NEURAL OPERATOR

Solving PDEs with neural operators An operator G : A → U is a mapping between two infinite-
dimensional function spaces A and U . Exactly what these function spaces represent depends on the
problem. In general, solving a PDE involves finding a solution u ∈ U given some input parameter
a ∈ A, and we would train a neural operator to learn the mapping a 7→ u. Consider the vorticity
formulation of the 2D Navier-Stokes equations,

∂ω

∂t
+ u · ∇ω = ν∇2ω + f ∇ · u = 0 (1)

where u is the velocity field, ω is the vorticity, and f is the external forcing function. These are
the governing equations for the torus datasets (Fig. 1a). The neural operator would learn to evolve
this field from one time step to the next: ωt 7→ ωt+1. Or consider the equation for a solid body in
structural mechanics,

ρ
∂2u

∂t2
+∇ · σ = 0, (2)

where ρ is the mass density, u is the displacement vector and σ is the stress tensor. Elasticity (Fig. 1b)
and Plasticity (Fig. 1d) are both governed by this equation. In Plasticity, we would learn to map
the initial boundary condition sd : [0, L] → R to the grid position x and displacement of each grid
point over time: sd 7→ (x,u, t). In Elasticity, we are instead interested in predicting the stress value
for each point: x 7→ σ. Finally consider the Euler equations to model the airflow around an aircraft
wing (Fig. 1c):

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρu⊗ u+ pI) = 0

∂E

∂t
+∇ · ((E + p)u) = 0 (3)

3

Published as a conference paper at ICLR 2023

Figure 2: The architecture of the Factorized Fourier Neural Operator (F-FNO) for a 2D problem. The
iterative process (Eq. (4)) is shown at the top, in which the input function a(i, j) is first deformed
from an irregular space into a uniform space a(x, y), and is then fed through a series of operator
layers L in order to produce the output function u(i, j). A zoomed-in operator layer (Eq. (7)) is
shown at the bottom which shows how we process each spatial dimension independently in the
Fourier space, before merging them together again in the physical space.

where ρ is the fluid mass density, p is the pressure, u is the velocity vector, and E is the energy. Here
the operator would learn to map each grid point to the velocity field at equilibrium: x 7→ u.

Original FNO and geo-FNO architectures Motivated by the kernel formulation of the solution to
linear PDEs using Green’s functions, Li et al. (2020b; 2022) propose an iterative approach to map
input function a to output function u,

u = G(a) = (ϕ ◦ Q ◦ L(L) ◦ · · · ◦ L(1) ◦ P ◦ ϕ−1)(a), (4)
where ◦ indicates function composition, L is the number of layers/iterations, P is the lifting operator
that maps the input to the first latent representation z(0), L(ℓ) is the ℓ’th non-linear operator layer, and
Q is the projection operator that maps the last latent representation z(L) to the output. On irregular
geometries such as point clouds, we additionally define a coordinate map ϕ, parameterized by a small
neural network and learned end-to-end, that deforms the physical space of irregular geometry into a
regular computational space. The architecture without this coordinate map is called FNO, while the
one with the coordinate map is called geo-FNO. Fig. 2 (top) contains a schematic diagram of this
iterative process.

Originally, Li et al. (2021a) formulate each operator layer as

L(ℓ)
(
z(ℓ)

)
= σ

(
W (ℓ)z(ℓ) + b(ℓ) +K(ℓ)(z(ℓ))

)
, (5)

where σ : R → R is a point-wise non-linear activation function, W (ℓ)z(ℓ)+b(ℓ) is an affine point-wise
map in the physical space, and K(ℓ) is a kernel integral operator using the Fourier transform,

K(ℓ)
(
z(ℓ)

)
= IFFT

(
R(ℓ) · FFT(z)

)
(6)

The Fourier-domain weight matrices {R(ℓ) | ℓ ∈ {1, 2, . . . , L}} take up most of the model size,
requiring O(LH2MD) parameters, where H is the hidden size, M is the number of top Fourier
modes being kept, and D is the problem dimension. Furthermore, the constant value for M and the
affine point-wise map allow the FNO to be resolution-independent.

Our improved F-FNO architecture We propose changing the operator layer in Eq. (5) to:

L(ℓ)
(
z(ℓ)

)
= z(ℓ) + σ

[
W

(ℓ)
2 σ

(
W

(ℓ)
1 K(ℓ)

(
z(ℓ)

)
+ b

(ℓ)
1

)
+ b

(ℓ)
2

]
(7)

Note that we apply the residual connection (z(ℓ) term) after the non-linearity to preserve more of
the layer input. We also use a two-layer feedforward, inspired by the feedforward design used in
transformers (Vaswani et al., 2017). More importantly, we factorize the Fourier transforms over the
problem dimensions, modifying Eq. (6) to

K(ℓ)
(
z(ℓ)

)
=

∑
d∈D

[
IFFT

(
R

(ℓ)
d · FFTd(z

(ℓ))
)]

(8)

4

Published as a conference paper at ICLR 2023

Table 1: An overview of the datasets and the corresponding task.

Dataset Geometry Dim. Problem Input Output

TorusLi regular grid 2D Kolmogorov flow ωt ωt+1

TorusKochkov regular grid 2D Kolmogorov flow ωt ωt+1

TorusVis regular grid 2D Kolmogorov flow ωt and ν ωt+1

TorusVisForce regular grid 2D Kolmogorov flow ωt and ν and ft ωt+1

Elasticity point cloud 2D hyper-elastic material point cloud stress
Airfoil structured mesh 2D transonic flow mesh grid velocity
Plasticity structured mesh 3D plastic forging boundary condition displacement

The seemingly small change from R(ℓ) to R
(ℓ)
d in the Fourier operator reduces the number of parame-

ters to O(LH2MD). This is particularly useful when solving higher-dimensional problems such as
3D plastic forging (Fig. 1d). The combination of the factorized transforms and residual connections
allows the operator to converge in deep networks while continuing to improve performance (Fig. 3).
It is also possible to share the weight matrices Rd between the layers, which further reduces the
parameters to O(H2MD). Fig. 2 (bottom) provides an overview of an F-FNO operator layer.

Furthermore, the F-FNO is highly flexible in its input representation, which means anything that is
relevant to the evolution of the field can be an input, such as viscosity or external forcing functions
for the torus. This flexibility also allows the F-FNO to be easily generalized to different PDEs.

Training techniques to learn neural operators We find that a combination of deep learning
techniques are very important for the FNO to perform well, most of which were overlooked in Li et al.
(2021a)’s original implementation. The first is enforcing the first-order Markov property. We find Li
et al. (2021a)’s use of the last 10 time steps as inputs to the neural operator to be unnecessary. Instead,
it is sufficient to feed information only from the current step, just like a numerical solver. Unlike
prior works (Li et al., 2021a; Kochkov et al., 2021), we do not unroll the model during training but
instead use the teacher forcing technique which is often seen in time series and language modeling.
In teacher forcing, we use the ground truth as the input to the neural operator. Finally during training,
we find it useful to normalize the inputs and add a small amount of Gaussian noise, similar to how
Sanchez-Gonzalez et al. (2020) train their graph networks. Coupled with cosine learning rate decay,
we are able to make the training process of neural operators more stable. Ablation studies for the new
representation and training techniques can be found in Fig. 3.

4 DATASETS AND EVALUATION SETTINGS

PDEs on regular grids The four Torus datasets on regular grids (TorusLi, TorusKochkov, TorusVis,
and TorusVisForce, summarized in Table 1) are simulations based on Kolmogorov flows which have
been extensively studied in the literature (Chandler & Kerswell, 2013). In particular, they model
turbulent flows on the surface of a 3D torus (i.e., a 2D grid with periodic boundary conditions). TorusLi
is publicly released by Li et al. (2021a) and is used to benchmark our model against the original
FNO. The ground truths are assumed to be simulations generated by the pseudo-spectral Crank-
Nicholson second-order method on 64x64 grids. All trajectories have a constant viscosity ν = 10−5

(Re = 2000), use the same constant forcing function, f(x, y) = 0.1[sin(2π(x+y))+cos(2π(x+y))],
and differ only in the initial field.

Using the same Crank-Nicolson numerical solver, we generate two further datasets, called TorusVis
and TorusVisForce, to test the generalization of the F-FNO across Navier-Stokes tasks with different
viscosities and forcing functions. In particular, for each trajectory, we vary the viscosity between
10−4 and 10−5, and set the forcing function to

f(t, x, y) = 0.1

2∑
p=1

1∑
i=0

1∑
j=0

[
αpij sin

(
2πp(ix+ jy) + δt

)
+ βpij cos

(
2πp(ix+ jy) + δt

)]
, (9)

where the amplitudes αpij and βpij are sampled from the standard uniform distribution. Furthermore,
δ is set to 0 in TorusVis, making the forcing function constant across time; while it is set to 0.2 in
TorusVisForce, giving us a time-varying force.

5

Published as a conference paper at ICLR 2023

Finally, we regenerate TorusKochkov (Fig. 1a) using the same settings provided by Kochkov et al.
(2021) but with different initial conditions from the original paper (since the authors did not release
the full dataset). Here the ground truths are obtained from simulations on 2048x2048 grids using
the pseudo-spectral Carpenter-Kennedy fourth-order method. The full-scale simulations are then
downsampled to smaller grid sizes, allowing us to study the Pareto frontier of the speed vs accuracy
space (see Fig. 4a). TorusKochkov uses a fixed viscosity of 0.001 and a constant forcing function
f = 4 cos(4y)x̂ − 0.1u, but on the bigger domain of [0, 2π]. Furthermore, we generate only 32
training trajectories to test how well the F-FNO can learn on a low-data regime.

PDEs on irregular geometries The Elasticity, Airfoil, and Plasticity datasets (final three rows in
Table 1) are taken from Li et al. (2022). Elasticity is a point cloud dataset modeling the incompressible
Rivlin-Saunders material (Pascon, 2019). Each sample is a unit cell with a void in the center of
arbitrary shape (Fig. 1b). The task is to map each cloud point to its stress value. Airfoil models
the transonic flow over an airfoil, shown as the white center in Fig. 1c. The neural operator would
then learn to map each mesh location to its Mach number. Finally, Plasticity models the plastic
forging problem, in which a die, parameterized by an arbitrary function and traveling at a constant
speed, hits a block material from above (Fig. 1d). Here the task is to map the shape of the die to
the 101× 31 structured mesh over 20 time steps. Note that Plasticity expects a 3D output, with two
spatial dimensions and one time dimension.

Training details For experiments involving the original FNO, FNO-TF (with teaching forcing),
FNO-M (with the Markov assumption), and FNO-N (with improved residuals), we use the same
training procedure as Li et al. (2021a). For our own models, we train for 100,000 steps on the regular
grid datasets and for 200 epochs for the irregular geometry datasets, warming up the learning rate
to 2.5× 10−3 for the first 500 steps and then decaying it using the cosine function (Loshchilov &
Hutter, 2017). We use ReLU as our non-linear activation function, clip the gradient value at 0.1, and
use the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999, ϵ = 10−8. The weight
decay factor is set to 10−4 and is decoupled from the learning rate (Loshchilov & Hutter, 2019). In
each operator layer on the torus datasets, we always throw away half of the Fourier modes (e.g., on
a 64x64 grid, we keep only the top 16 modes). Models are implemented in PyTorch (Paszke et al.,
2017) and trained on a single Titan V GPU.

Evaluation metrics We use the normalized mean squared error as the loss function, defined as

N-MSE =
1

B

B∑
i=1

∥ω̂i − ω∥2
∥ω∥2

,

where ∥·∥2 is the 2-norm, B is the batch size, and ω̂ is the prediction of the ground truth ω.

In addition to comparing the N-MSE directly, for TorusKochkov, we also compute the vorticity
correlation, defined as

ρ(ω, ω̂) =
∑
i

∑
j

ωij

∥ω∥2
ω̂ij

∥ω̂∥2
,

and from which we measure the time until this correlation drops below 95%. To be consistent with
prior work, we use the N-MSE to compare the F-FNO against the FNO and geo-FNO Li et al. (2021a;
2022), and the vorticity correlation to compare against Kochkov et al. (2021)’s work.

5 RESULTS FOR NAIVER-STOKES ON A TORUS

Comparison against FNO The performance on TorusLi is plotted in Fig. 3, with the raw numbers
shown in Table A.3. We note that our method F-FNO is substantially more accurate than the FNO
regardless of network depth, when judged by N-MSE. The F-FNO uses fewer parameters than the
FNO, has a similar training time, but generally has a longer inference time. Even so, the inference
time for the F-FNO is still up to two orders of magnitude shorter than for the Crank-Nicolson
numerical solver.

In contrast to our method, Li et al. (2021a) do not use teacher forcing during training. Instead they
use the previous 10 steps as input to predict the next 10 steps incrementally (by using each predicted

6

Published as a conference paper at ICLR 2023

0 4 8 12 16 20 24
Number of layers

5.0

7.5

10.0

12.5

15.0

17.5

20.0

No
rm

al
ize

d
M

SE
 (%

)

0 4 8 12 16 20 24
Number of layers

2.5

3.0

3.5

4.0

4.5

5.0

5.5

FNO (proposed by Li et al. [2021a])
FNO-TF (FNO with teacher forcing)
FNO-M (FNO-TF with Markov assumption)
FNO-R (FNO-M with improved residuals)
FNO++ (FNO-R with a bag of tricks)
F-FNO (FNO++ with Fourier factorization)
F-FNO-WS (F-FNO with weight sharing)

(a) (b)

Figure 3: Performance (lower is better) on TorusLi, with error bars showing the min and max values
over three trials. We show the original FNO (Li et al., 2021a), along with variants that use: teacher
forcing, Markov assumption, improved residuals, a bag of tricks, Fourier factorization, and weight
sharing. Note that F-FNO and F-FNO-WS are presented on a separate plot (b) to make visualizing
the improvement easier (if shown in (a), F-FNO and F-FNO-WS would just be a straight line).

10 3 10 2 10 1 100 101 102

Runtime per time unit (s)

0

2

4

6

8

Ti
m

e
un

til
 c

or
re

la
tio

n
<

95
%

32x32

64x64

128x128

256x256

512x512

1024x1024

64x64

128x128
256x256

10 3 10 2 10 1 100

Step size

1

2

3

4

Ti
m

e
un

til
 c

or
re

la
tio

n
<

95
%

DNS (Carpenter-Kennedy 4th-order)
F-FNO-WS (F-FNO with weight sharing)

(a) (b)

Figure 4: Performance of F-FNO on TorusKochkov. In (a), we plot the time until the correlation
with the ground truths in the test set drops below 95% on the y-axis, against the time it takes to run
one second of simulation on the x-axis. In (b), we show how, on the validation set of TorusKochkov,
given a fixed spatial resolution of 64x64, changing the step size has no effect on the numerical solver;
however there is an optimal step size for the F-FNO at around 0.2.

value as the input to the next step). We find that the teacher forcing strategy (FNO-TF, orange line),
in which we always use the ground truth from the previous time step as input during training, leads to
a smaller N-MSE when the number of layers is less than 24. Furthermore, enforcing the first-order
Markov property (FNO-M, dotted green line), where only one step of history is used, further improves
the performance over FNO and FNO-TF. Including two or more steps of history does not improve the
results.

The models FNO, FNO-TF, and FNO-M do not scale with network depth, as seen by the increase
in the N-MSE with network depth. These models even diverge during training when 24 layers are
used. FNO-R, with the residual connections placed after the non-linearity, does not suffer from this
problem and can finally converge at 24 layers. FNO++ further improves the performance, as a result
of a careful combination of: normalizing the inputs, adding Gaussian noise to the training inputs, and
using cosine learning rate decay. In particular, we find that adding a small amount of Gaussian noise
to the normalized inputs helps to stabilize training. Without the noise, the validation loss at the early
stage of training can explode.

Finally, if we use Fourier factorization (F-FNO, yellow dashed line), the error drops by an additional
35% (3.73% → 2.41%) at 24 layers (Fig. 3b), while the parameter count is reduced by an order of
magnitude. Sharing the weights in the Fourier domain (F-FNO-WS, red line) makes little difference
to the performance especially at deep layers, but it does reduce the parameter count by another order
of magnitude to 1M (see Fig. A.1 and Table A.3).

Trade-off between speed and accuracy From Fig. 4a, we observe that our method F-FNO only
needs 64x64 input grids to reach a similar performance to a 128x128 grid solved with DNS. At the

7

Published as a conference paper at ICLR 2023

Without context With force With force and viscosity
0

10

20

30

40
N-

M
SE

 (%
)

TorusVis
TorusVisForce

(a) Performance of F-FNO on different input features:
having only vorticity as an input with no further con-
text (first group); having vorticity and the force field
as inputs (second group); and having vorticity, the
force field, and viscosity as inputs (third group). The
error bars are the standard deviation from three trials.

0 2 4 6 8 10
Simulation time

0.0

0.2

0.4

0.6

0.8

1.0

Vo
rti

cit
y

co
rre

la
tio

n

Vorticity
Vorticity + Coordinates
Vorticity + Coordinates + Velocity

(b) Effect of having the coordinates and velocity as
additional input channels on TorusKochkov. A higher
line corresponds to a model that can correlate with the
ground-truth vorticity for longer. Error bands corre-
spond to min and max values from three trials.

Figure 5: Performance of F-FNO on different contexts and input representations.

same time, the F-FNO also achieves an order of magnitude speedup. While the highly specialized
hybrid method introduced by Kochkov et al. (2021) can achieve a speedup closer to two orders of
magnitude over DNS, the F-FNO takes a much more flexible approach and thus can be more easily
adapted to other PDEs and geometries.

The improved accuracy of the F-FNO over DNS when both methods are using the same spatial
resolution can be seen graphically in Fig. A.4. In this example, the F-FNO on a 128x128 grid
produces a vorticity field that is visually closer to the ground truth than DNS running on the same
grid size. This is also supported by comparing the time until correlation falls below 95% in Fig. 4a.

Optimal step size The F-FNO includes a step size parameter which specifies how many seconds
of simulation time one application of the operator will advance. A large step size sees the model
predicting far into the future possibly leading to large errors, while a small step size means small
errors have many more steps to compound. We thus try different step sizes in Fig. 4b.

In numerical solvers, there is a close relationship between the step size in the time dimension and the
spatial resolution. Specifically, the Courant-Friedrichs-Lewy (CFL) condition provides an optimal
step size given a space discretization: ∆t = Cmax∆x/∥u∥max. This means that if we double the grid
size, the solver should take a step that is twice as small (we follow this approach to obtain DNS’s
Pareto frontier in Fig. 4a). Furthermore, having step sizes smaller than what is specified by the CFL
condition would not provide any further benefit unless we also reduce the distance between two grid
points (see purple line in Fig. 4b). On the other hand, a step size that is too big (e.g., bigger than 0.05
on a 64x64 grid) will lead to stability issues in the numerical solver.

For the F-FNO, we find that we can take a step size that is at least an order of magnitude bigger than
the stable step size for a numerical solver. This is the key contribution to the efficiency of neural
methods. Furthermore, there is a sweet spot for the step size – around 0.2 on TorusKochkov – and
unlike its numerical counterpart, we find that there is no need to reduce the step size as we train the
F-FNO on a higher spatial resolution.

Flexible input representations The F-FNO can be trained to handle Navier-Stokes equations
with viscosities (in TorusVis) and time-varying forcing functions (in TorusVisForce) provided at
inference time. Our model, when given both the force and viscosity, in addition to the vorticity, is
able to achieve an error of 2% (Fig. 5a). If we remove the viscosity information, the error doubles.
Removing the forcing function from the input further increases the error by an order of magnitude.
This shows that the force has a substantial impact on the future vorticity field, and that the F-FNO can
use information about the forcing function to make accurate predictions. More generally, different
datasets benefit from having different input features – Table A.7 shows the minimum set of features
to reach optimal performance on each of them. We also find that having redundant features does not
significantly hurt the model, so there is no need to do aggressive feature pruning in practice.

8

Published as a conference paper at ICLR 2023

Table 2: Performance (N-MSE, expressed as percentage, where lower is better) on point clouds
(Elasticity) and structured meshes (Airfoil and Plasticity) between our F-FNO and the previous
state-of-the-art geo-FNO (Li et al., 2022). Cells with a dash correspond to models which do not
converge. The N-MSE is accompanied by the standard deviation from three trials. More detailed
results are shown in Tables A.4 to A.6.

No. of layers Elasticity Airfoil Plasticity
geo-FNO F-FNO geo-FNO F-FNO geo-FNO F-FNO

4 layer 2.5± 0.1 3.16± 1.29 1.9± 0.4 0.79± 0.02 0.74± 0.01 0.48± 0.02
8 layer 3.3± 1.3 2.05± 0.01 1.4± 0.5 0.64± 0.01 0.57± 0.04 0.32± 0.01
12 layer 16.8± 0.7 1.96± 0.02 4.1± 4.4 0.62± 0.03 0.45± 0.03 0.25± 0.01
16 layer 16.3± 0.4 1.86± 0.02 - 0.61± 0.01 - 0.22± 0.00
20 layer 16.0± 0.7 1.84± 0.02 - 0.57± 0.01 - 0.20± 0.02
24 layer 15.9± 0.5 1.74± 0.03 - 0.58± 0.04 - 0.18± 0.00

Our experiments with different input representations also reveal an interesting performance gain from
the double encoding of information (Fig. 5b). All datasets benefit from the coordinate encoding – i.e.,
having the (x, y) coordinates as two additional input channels – even if the positional information is
already contained in the absolute position of grid points (indices of the input array). We hypothesize
that these two positional representations are used by different parts of the F-FNO. The Fourier
transform uses the absolute position of the grid points and thus the Fourier layer should have no need
for the (x, y) positional features. However, the feedforward layer in the physical space is a pointwise
operator and thus needs to rely on the raw coordinate values, since it would otherwise be independent
of the absolute position of grid points.

6 RESULTS FOR PDES ON POINT CLOUDS AND MESHES

As shown in Table 2, the geo-FNO (Li et al., 2022), similar to the original FNO, also suffers from
network scaling. It appears to be stuck in a local minimum beyond 8 layers in the Elasticity problem
and it completely fails to converge beyond 12 layers in Airfoil and Plasticity. Plasticity is the only
task in which the geo-FNO gets better as we go from 4 to 12 layers (0.74% → 0.45%). In addition
to the poor scaling with network depth, we also find during our experiments that the geo-FNO can
perform worse as we increase the hidden size H . This indicates that there might not be enough
regularization in the model as we increase the model complexity.

Our F-FNO, on the other hand, continues to gain performance with deeper networks and bigger hidden
size, reducing the prediction error by 31% on the Elasticity point clouds (2.51% → 1.74%) and by
57% on the 2D transonic flow over airfoil problem (1.35% → 0.58%). Our Fourier factorization
particularly shines in the plastic forging problem, in which the neural operator needs to output a 3D
array, i.e., the displacement of each point on a 2D mesh over 20 time steps. As shown in Table A.6,
our 24-layer F-FNO with 11M parameters outperforms the 12-layer geo-FNO with 57M parameters
by 60% (0.45% → 0.18%).

7 CONCLUSION

The Fourier transform is a powerful tool to learn neural operators that can handle long-range spatial
dependencies. By factorizing the transform, using better residual connections, and improving the
training setup, our proposed F-FNO outperforms the state of the art on PDEs on a variety of geometries
and domains. For future work, we are interested in examining equilibrium properties of generalized
Fourier operators with an infinite number of layers and checking if the universal approximation
property (Kovachki et al., 2021a) still holds under Fourier factorization.

9

Published as a conference paper at ICLR 2023

REFERENCES

Giancarlo Alfonsi. Reynolds-averaged navier–stokes equations for turbulence modeling. Applied
Mechanics Reviews, 62:040802, 2009.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data-driven
discretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1814058116. URL https:
//www.pnas.org/content/116/31/15344.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction
and neural networks for parametric PDEs. arXiv preprint arXiv:2005.03180, 2020.

Gary J. Chandler and Rich R. Kerswell. Invariant recurrent solutions embedded in a turbulent
two-dimensional kolmogorov flow. Journal of Fluid Mechanics, 722:554–595, 2013. doi: 10.1017/
jfm.2013.122.

S.M. Hosseini, R. Vinuesa, P. Schlatter, A. Hanifi, and D.S. Henningson. Direct numerical simulation
of the flow around a wing section at moderate reynolds number. International Journal of Heat and
Fluid Flow, 61:117–128, 2016. ISSN 0142-727X. doi: https://doi.org/10.1016/j.ijheatfluidflow.
2016.02.001. URL https://www.sciencedirect.com/science/article/pii/
S0142727X16300169. SI TSFP9 special issue.

Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer
Graphics Forum, volume 38, pp. 59–70. Wiley Online Library, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), 2021. ISSN 0027-8424. doi: 10.1073/pnas.2101784118. URL
https://www.pnas.org/content/118/21/e2101784118.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021a.
URL http://jmlr.org/papers/v22/21-0806.html.

Nikola B. Kovachki, Zong-Yi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Animashree Anandkumar. Neural operator: Learning maps between function
spaces. ArXiv, abs/2108.08481, 2021b.

J. Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontañón. Fnet: Mixing tokens with fourier
transforms. ArXiv, abs/2105.03824, 2021.

Marcel R. Lesieur and Olivier Métais. New trends in large-eddy simulations of turbulence. Annual
Review of Fluid Mechanics, 28:45–82, 1996.

Zong-Yi Li, Daniel Z. Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with
learned deformations for PDEs on general geometries. ArXiv, abs/2207.05209, 2022.

Zongyi Li, Nikola B. Kovachki, K. Azizzadenesheli, Burigede Liu, K. Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations. ArXiv, abs/2006.09535, 2020a.

Zongyi Li, Nikola B. Kovachki, K. Azizzadenesheli, Burigede Liu, K. Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations.
ArXiv, abs/2003.03485, 2020b.

Zongyi Li, Nikola B. Kovachki, K. Azizzadenesheli, Burigede Liu, K. Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. In
International Conference on Learning Representations, 2021a. URL https://openreview.
net/forum?id=c8P9NQVtmnO.

10

https://www.pnas.org/content/116/31/15344
https://www.pnas.org/content/116/31/15344
https://www.sciencedirect.com/science/article/pii/S0142727X16300169
https://www.sciencedirect.com/science/article/pii/S0142727X16300169
https://www.pnas.org/content/118/21/e2101784118
http://jmlr.org/papers/v22/21-0806.html
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=c8P9NQVtmnO

Published as a conference paper at ICLR 2023

Zongyi Li, Nikola B. Kovachki, K. Azizzadenesheli, Burigede Liu, K. Bhattacharya, Andrew Stu-
art, and Anima Anandkumar. Markov neural operators for learning chaotic systems. ArXiv,
abs/2106.06898, 2021b.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineering,
2022.

Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, and Aparna Chandramowliswharan. Cfd-
net: A deep learning-based accelerator for fluid simulations. In Proceedings of the 34th ACM
International Conference on Supercomputing, pp. 1–12, 2020.

João Paulo Pascon. Large deformation analysis of plane-stress hyperelastic problems via triangular
membrane finite elements. International Journal of Advanced Structural Engineering, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

Michael Poli, Stefano Massaroli, Federico Berto, Jinkyoo Park, Tri Dao, Christopher Re, and Stefano
Ermon. Transform once: Efficient operator learning in frequency domain. In ICML 2022 2nd AI for
Science Workshop, 2022. URL https://openreview.net/forum?id=x1fNT5yj41N.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. In International Conference on Machine Learning,
pp. 3424–3433. PMLR, 2017.

Kiwon Um, Robert Brand, Yun Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-Loop: Learning
from Differentiable Physics to Interact with Iterative PDE-Solvers. Advances in Neural Information
Processing Systems, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Nils Wandel, Michael Weinmann, and Reinhard Klein. Learning incompressible fluid dynamics from
scratch–towards fast, differentiable fluid models that generalize. arXiv preprint arXiv:2006.08762,
2020.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1457–1466, 2020.

11

https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=x1fNT5yj41N
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Published as a conference paper at ICLR 2023

A APPENDIX

Table A.1: An overview of the four fluid dynamics datasets on regular grids. Our newly generated
datasets, TorusVis and TorusVisForce, contain simulation data with a more variety of viscosities and
forces than TorusLi (Li et al., 2021a) and TorusKochkov (Kochkov et al., 2021). Note that Li et al.
(2021a) did not generate a validation set.

Dataset Train / valid / test
split

Trajectory
length Domain Viscosity Force varying across

samples time

TorusLi 1000 / 0 / 200 20 [0, 1] ν = 10−5

TorusKochkov 32 / 4 / 4 34 [0, 2π] ν = 10−3

TorusVis 1000 / 200 / 200 20 [0, 1] ν ∈ [10−5, 10−4) ✓
TorusVisForce 1000 / 200 / 200 20 [0, 1] ν ∈ [10−5, 10−4) ✓ ✓

Table A.2: An overview of the three PDE datasets on irregular geometries. These datasets were
generated by Li et al. (2022).

Dataset Train Valid Test Governing equation Problem dimension

Elasticity 1000 200 200 Equation of a solid body point cloud on 2D unit cell
Airfoil 1000 200 200 Euler’s equation 2D structured mesh
Plasticity 827 80 80 Equation of a solid body 2D structured mesh over 1D time

0 4 8 12 16 20 24
Number of layers

106

107

108

Pa
ra

m
et

er
 c

ou
nt

0 5 10 15 20
Normalized MSE (%)

10 4

10 3

10 2

Ru
nt

im
e

pe
r t

im
e

un
it

(s
)

DNS (Crank-Nicolson 2nd-order)
FNO (proposed by Li et al. [2021a])
FNO++ (with a bag of tricks)
F-FNO (without weight sharing)
F-FNO (with weight sharing)

(a) (b)

Figure A.1: The resource usage of four model variants, in terms of (a) the parameter count and (b)
inference time (the time it takes to run one second of simulation). Error bars, when applicable, show
the min and max values over three trials. In (b), as we move along a line, we increase the number of
layers. We observe that only our model variants (F-FNO) have the desired slope, that is, as we use
more resources (increasing the inference time), we obtain better predictions.

12

Published as a conference paper at ICLR 2023

0 2 4 6 8 10
Simulation time

0.0

0.2

0.4

0.6

0.8

1.0

Vo
rti

cit
y

co
rre

la
tio

n

F-FNO (32x32)
F-FNO (64x64)
F-FNO (super-resolution on 128x128)
F-FNO (super-resolution on 256x256)

(a) Zero-shot super-resolution performance of F-FNO.
We train the model on 32x32 and 64x64 grids of
TorusKochkov, and evaluate on the larger 128x128 and
256x256 grids. We observe some degradation in the
correlation with the ground truths on unseen grid sizes.

1014 × 100 6 × 100 2 × 101 3 × 101

Wavenumber

2 × 109

3 × 109

4 × 109

6 × 109

Sc
al

ed
 e

ng
er

y
sp

ec
tru

m

F-FNO (64x64)
F-FNO (128x128)
F-FNO (256x256)
DNS (128x128)
DNS (256x256)
DNS (512x512)
DNS (1024x1024)
DNS (2048x2048)

(b) Energy spectra of F-FNO and DNS on various grid
sizes. The spectra are computed by averaging the ki-
netic energy for each wavenumber between t = 12 and
t = 34, when the predictions from all methods have
decorrelated with the ground truths.

Figure A.2: Performance of F-FNO on zero-shot superresolution and its ability to capture the energy
spectrum of DNS on TorusKochkov.

Zero-shot super-resolution In Fig. A.2a, we train the F-FNO once on 32x32 and 64x64 grids
from TorusKochkov, and then perform inference and evaluation on 128x128 and 256x256 grids. This
extends the super-resolution setting presented by Li et al. (2021a) as they only worked on simple
PDEs such as the 1D Burger’s equation and the 2D Darcy flow. We find that although the F-FNO can
do zero-shot super-resolution – unlike a traditional CNN which by design cannot even accept inputs
of variable size – its performance does degrade on grid sizes not seen during training. This is seen
by the lower vorticity correlation of the super-resolution F-FNO settings in Fig. A.2a. We posit that
the super-resolution performance could be improved by training on a variety of grid sizes (e.g., by
downsampling each training example to a random size). We leave such exploration for future work.

Capturing the energy spectrum In addition to having a high vorticity correlation, a good model
should also produce predictions with an energy spectrum similar to the most accurate numerical
methods. Given the Fourier transform of a velocity field û = FFT(u), we can compute, for each
wavenumber k, the corresponding kinetic energy as E(k) = 1

2∥ûk∥2. Fig. A.2b shows the energy
spectrum of both the F-FNO and DNS at different resolutions. These multiple DNS resolutions
are included both as a reference solution in the case of DNS 2048x2048, and to demonstrate that
increasing the resolution of DNS further is not likely to substantially change the energy spectrum.

We observe that compared to DNS on 2048x2048, the F-FNO trained on 64x64 grids produces an
energy spectrum that has substantially lower energy at high wavenumbers. This is expected as at this
spatial resolution we only select the top 16 modes in each Fourier layer. Even so, the F-FNO can still
capture the long term trend much better than running DNS on a grid four times its size (see Fig. 4a).
As we select more Fourier modes on bigger grids (top 32 modes on 128x128 grids and top 64 modes
on 256x256 grids), the energy spectrum produced converges towards that of the reference solution
(DNS on 2048x2048). This gives some indication that the F-FNO is able to accurately predict both
high and low frequency details.

Effect of using cosine transforms As an alternative to the Fourier transform, Poli et al. (2022)
proposed using the cosine transform, which has the advantage of being real-valued, thus halving the
number of parameters. Let the Factorized Cosine Neural Operator (F-CNO) be the operator where
the Fourier transform is replaced with the cosine transform. In Fig. A.3, we observe that on Airfoil,
the F-CNO outperforms the F-FNO especially at deeper layers. On Plasticity, the F-CNO performs
comparably to the F-FNO on the same depth, while using fewer parameters. We have not had much
success in training the F-CNO on torus datasets such as TorusKochkov. We leave the investigation of
how stable the cosine transform is on different domains to future work.

13

Published as a conference paper at ICLR 2023

Table A.3: Detailed performance on TorusLi. These results are used to generate Fig. 3 in the main
paper. We run three trials for each experiment, each with a different random seed. We report the
mean N-MSE from the three trials, along with the min and max value. A dash indicates that the data
is not available.

No. of
layers

No. of
parameters

N-MSE (%) Training
time (h)Mean Min Max

ResNet (Li et al., 2021a) - 266,641 27.53 - -
TF-Net (Li et al., 2021a) - 7,451,724 22.68 - -
U-Net (Li et al., 2021a) - 7,451,724 19.82 - -
FNO (Li et al., 2021a) 4 414,517 15.56 - -

FNO (reproduced)

4 926,357 13.80 13.75 13.83 2
8 1,849,637 15.45 15.40 15.50 3

12 2,772,917 16.86 16.55 17.27 5
16 3,696,197 17.59 17.41 17.87 6
20 4,619,477 18.44 17.91 19.24 7
24 does not converge

FNO-TF (FNO with teacher forcing)

4 926,357 12.82 12.50 13.13 2
8 1,849,637 11.05 10.98 11.10 3

12 2,772,917 11.83 11.74 11.91 5
16 3,696,197 14.10 13.55 14.80 6
20 4,619,477 17.17 15.40 19.64 7
24 does not converge

FNO-M (FNO-TF with Markov assumption)

4 926,177 10.94 10.47 11.35 1
8 1,849,457 9.22 8.48 9.67 2

12 2,772,737 9.15 9.02 9.25 3
16 3,696,017 10.39 9.61 10.81 4
20 4,619,297 11.73 11.50 12.12 4
24 does not converge

FNO-R (FNO-M with improved residuals)

4 926,177 10.37 10.08 10.69 1
8 1,849,457 8.36 8.22 8.46 2

12 2,772,737 7.88 7.78 7.95 3
16 3,696,017 7.90 7.48 8.25 4
20 4,619,297 7.38 7.34 7.45 5
24 5,542,577 7.33 7.31 7.36 5

FNO++ (FNO-R with bags of tricks)

4 16,919,746 5.05 5.02 5.06 1
8 33,830,594 4.16 4.11 4.19 2

12 50,741,442 3.90 3.85 3.93 3
16 67,652,290 3.82 3.77 3.84 4
20 84,563,138 3.72 3.65 3.79 5
24 101,473,986 3.73 3.70 3.76 5

F-FNO (FNO++ with Fourier factorization)

4 1,191,106 5.05 5.00 5.09 1
8 2,373,314 3.22 3.17 3.29 2

12 3,555,522 2.75 2.70 2.77 3
16 4,737,730 2.58 2.57 2.59 4
20 5,919,938 2.39 2.37 2.42 5
24 7,102,146 2.41 2.37 2.47 6

F-FNO-WS (F-FNO with weight sharing)

4 404,674 5.74 5.69 5.79 1
8 538,306 3.43 3.42 3.44 2

12 671,938 2.87 2.84 2.90 3
16 805,570 2.56 2.54 2.57 4
20 939,202 2.42 2.38 2.45 5
24 1,072,834 2.37 2.31 2.45 6

14

Published as a conference paper at ICLR 2023

Table A.4: Detailed performance on Airfoil. These results are more detailed version of Table 2 in the
main paper. We run three trials for each experiment, each with a different random seed. We report the
mean N-MSE from the three trials, along with the min and max value.

No. of
layers

No. of
parameters

N-MSE (%) Training
time (h)Mean Min Max

geo-FNO (reproduced)
4 2,368,033 1.87 1.40 2.27 4
8 4,731,553 1.35 1.02 2.00 5

12 7,095,073 4.11 0.92 10.29 4

F-FNO

4 1,715,458 0.79 0.76 0.82 3
8 3,421,954 0.64 0.63 0.65 4

12 5,128,450 0.62 0.59 0.67 5
16 6,834,946 0.61 0.59 0.62 5
20 8,541,442 0.57 0.56 0.58 4
24 10,247,938 0.58 0.56 0.64 4

F-FNO-WS (F-FNO with weight sharing)

4 535,810 0.98 0.90 1.03 0.4
8 669,442 0.72 0.70 0.75 0.7

12 803,074 0.68 0.66 0.70 1
16 936,706 0.67 0.63 0.70 1
20 1,070,338 0.64 0.63 0.66 2
24 1,203,970 0.66 0.60 0.70 2

Table A.5: Detailed performance on Elasticity. These results are more detailed version of Table 2 in
the main paper. We run three trials for each experiment, each with a different random seed. We report
the mean N-MSE from the three trials, along with the min and max value. Note that for a given layer,
our F-FNO (whether with weight sharing or without) has slightly more parameters than the geo-FNO.
This is due to the F-FNO using a bigger hidden size H . We find that on the geo-FNO, increasing its
hidden size does not necessarily translate to a better performance.

No. of
layers

No. of
parameters

N-MSE (%) Training
time (h)Mean Min Max

geo-FNO (reproduced)
4 1,546,403 2.51 2.43 2.59 0.4
8 2,730,659 3.30 2.32 5.10 0.5

12 3,914,915 16.76 16.17 17.72 0.7

F-FNO

4 3,205,763 3.16 2.23 4.98 1
8 4,338,051 2.05 2.04 2.06 1

12 5,470,339 1.96 1.93 1.98 2
16 6,602,627 1.86 1.83 1.88 2
20 7,734,915 1.84 1.82 1.86 2
24 8,867,203 1.74 1.70 1.78 2

F-FNO-WS (F-FNO with weight sharing)

4 2,681,475 3.55 2.36 5.84 0.2
8 2,765,187 2.23 2.18 2.29 0.2

12 2,848,899 2.12 2.10 2.16 0.3
16 2,932,611 2.08 2.06 2.10 0.4
20 3,016,323 2.04 1.99 2.07 0.5
24 3,100,035 1.97 1.94 2.01 0.6

15

Published as a conference paper at ICLR 2023

Table A.6: Detailed performance on Plasticity. These results are more detailed version of Table 2 in
the main paper. We run three trials for each experiment, each with a different random seed. We report
the mean N-MSE from the three trials, along with the min and max value.

No. of
layers

No. of
parameters

N-MSE (%) Training
time (h)Mean Min Max

geo-FNO (reproduced)
4 18,883,492 0.74 0.73 0.75 2
8 37,762,084 0.57 0.55 0.63 4

12 56,640,676 0.45 0.41 0.49 5

F-FNO

4 1,846,920 0.48 0.47 0.51 4
8 3,684,488 0.32 0.31 0.34 8

12 5,522,056 0.25 0.24 0.26 12
16 7,359,624 0.22 0.21 0.22 16
20 9,197,192 0.20 0.18 0.22 20
24 11,034,760 0.18 0.17 0.18 24

F-FNO-WS (F-FNO with weight sharing)

4 568,968 0.58 0.57 0.60 4
8 702,600 0.50 0.46 0.52 8

12 836,232 0.44 0.42 0.48 12
16 969,864 0.40 0.36 0.44 16
20 1,103,496 0.34 0.31 0.37 19
24 1,237,128 0.30 0.28 0.35 21

Table A.7: The F-FNO is flexible in its input representation. We find that different datasets benefit
from having different features. Shown here is the optimal input combination for each dataset on the
torus.

Dataset Vort
ici

ty

Velo
cit

y

Coo
rdi

na
tes

Visc
os

ity

Forc
ing

TorusLi ✓ ✓
TorusKochkov ✓ ✓ ✓
TorusVis ✓ ✓ ✓
TorusVisForce ✓ ✓ ✓ ✓

2M 4M 6M 8M 10M
Parameter count

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 lo
ss

 (%
)

F-FNO
F-CNO

(a) Airfoil

1M 2M 3M 4M 5M
Parameter count

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 lo
ss

 (%
)

F-FNO
F-CNO

(b) Plasticity

Figure A.3: Effect of the cosine transform on Airfoil and Plasticity. We plot the test loss (y-axis)
against the model parameter count (x-axis). Error bars show the min-max values from three trials. As
we move a long each line, we make the network deeper, which increases the number of parameters.
On Airfoil (a), the F-CNO outperforms the F-FNO at deeper layers. On Plasticity (b), the performance
between the two is mostly similar for the same depth. Since cosine transforms are real-valued, the
F-CNO requires only half as many parameters as the F-FNO.

16

Published as a conference paper at ICLR 2023

Figure A.4: Similar to Kochkov et al. (2021), we visualize how the correlation with the ground truths
varies between different models. The heatmaps represent the surface of a torus mapped onto a 2D
grid, with color representing the vorticity (the spinning motion) of the fluid. We observe that the
vorticity fields predicted by the F-FNO trained on 128x128 grids (middle row) correlates with the
ground truths (top row) for longer than if we run DNS on the same spatial resolution (bottom row).
This is especially evident after 6 seconds of simulation time (compare the green boxes). In other
words, for the same desired accuracy, the F-FNO requires a smaller grid input than a numerical solver.
This observation is also backed up by Fig. 4a.

17

	Introduction
	Related Work
	The Factorized Fourier Neural Operator
	Datasets and evaluation settings
	Results for Naiver-Stokes on a torus
	Results for PDEs on point clouds and meshes
	Conclusion
	Appendix

