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Abstract

Machine learning models are often used to automate or support decisions in ap-
plications such as lending and hiring. In such settings, consumer protection rules
mandate that we provide a list of “principal reasons” to consumers who receive
adverse decisions. In practice, lenders and employers identify principal reasons by
returning the top-scoring features from a feature attribution method. In this work,
we study how such practices align with one of the underlying goals of consumer
protection — recourse — i.e., educating individuals on how they can attain a desired
outcome. We show that standard attribution methods can mislead individuals by
highlighting reasons without recourse — i.e., by presenting consumers with features
that cannot be changed to achieve recourse. We propose to address these issues
by scoring features on the basis of responsiveness — i.e., the probability that an
individual can attain a desired outcome by changing a specific feature. We develop
efficient methods to compute responsiveness scores for any model and any dataset
under complex actionability constraints. We present an extensive empirical study
on the responsiveness of explanations in lending, and demonstrate how responsive-
ness scores can be used to construct feature-highlighting explanations that lead to
recourse and to mitigate harm by flagging instances with fixed predictions.

1 Introduction

Machine learning models are now routinely used to automate or support decisions about people in
domains such as employment [9, 46], consumer finance [27], and public services [18, 25, 62]. In such
applications, explanations are often seen as an essential tool to protect consumers who are adversely
affected by the predictions of a machine learning model [6, 49, 54, 60]. Existing and proposed
laws and regulations include provisions that require lenders or employers to provide explanations to
individuals in such situations [1, 19, 54, 60]. In the United States, for example, the adverse action
notice requirement in the Equal Credit Opportunity Act mandates that lenders provide “principal
reasons” explaining why individuals are denied credit [1]. In the European Union, Article 86 of the
Al Act [19] grants individuals a right to obtain explanations to describe the “main elements” of their
decision in high-risk applications regarding employment, education, financial systems, government
benefits, law enforcement, and border control [see Annex III 19, for a definition of “high risk™].

The use of explanations in such settings reflects widespread beliefs about the effectiveness of
transparency for consumer protection [15] —i.e., that revealing information can protect and empower
consumers [49]. For example, the adverse action notice is motivated by the fact that presenting
consumers with “principal reasons” can: (1) promote anti-discrimination by highlighting potential
bias; (2) facilitate rectification, by allowing individuals to identify and correct data errors, and; (3)
support recourse by educating individuals on how to improve future outcomes [53]. Regulators
provide model deployers with substantial flexibility in complying with these requirements. In practice,
model owners comply with these regulations using feature attribution methods such as LIME and
SHAP [21]. These are general-purpose methods that can explain the predictions of a model after it
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Figure 1: Feature-highlighting explanations for an individual denied credit by a logistic regression
model for a lending task (see heloc, Section 4). We show explanations from top-scoring fea-
tures using SHAP [40] (left) and responsiveness scores (right). As shown, SHAP highlights fea-
tures immutable (Age, HistoryOfLatePayment, and HistoryOfDeliquency) or unresponsive
(CreditLineUtilization). In contrast, explanations build using responsiveness score (right) only two
features that provide recourse for the individual.

has been trained and generate explanations that can be communicated to consumers. These methods
output scores that reflect the importance of each feature for a given prediction. Given these scores,
model deployers can retrieve the top scoring features and present them to consumers as a list of
“principal reasons” or “main elements” (see Fig. 1).

In this work, we study how to explain model predictions in a way that can achieve one of the
main goals of consumer protection: recourse. We focus on achieving recourse through the use of
feature attribution — techniques that are widely used in practice. Our work is motivated by the fact
that regulations seek to achieve multiple goals; we claim that it is useful to align the design of an
explanatory method with the goals it seeks to achieve. To this end, we study how well existing
approaches for feature attribution methods support recourse, and develop an approach tailored to
communicating with respect to this goal. Our main contributions include:

1. We present a feature attribution method to measure the responsiveness of predictions from a
model. The responsiveness score measures the probability of changing the prediction of a model
by intervening on a given feature. Our approach highlights features that can be changed to receive
a better model outcome, and identifies instances that may lead to harm.

2. We develop model-agnostic methods to compute feature responsiveness scores using reachable
sets. Our methods can evaluate scores for any model, paired with theoretical guarantees that
support our ability to flag harm, and can be readily adapted to achieve other goals.

3. We conduct a comprehensive empirical study on the responsiveness of feature attribution in
consumer finance. Our results demonstrate that common feature attribution methods output
reasons without recourse by highlighting features that do not provide recourse, and underscore the
benefits of our approach.

Related Work Our work is related to a stream of research on post-hoc explanations [4, 39,
40, 41, 47, 48, 64]. We focus on methods for feature attribution, which are designed to evaluate
the importance of feature for a given prediction. Many methods are built for use cases in model
development [e.g., 3, 34, 37], but are now used to construct “feature-highlighting explanations” to
comply with regulations on explanations in consumer applications [see e.g., 6, 21].

Our work shows how feature attribution methods can inflict harm in such cases by highlighting
reasons without recourse — i.e., by highlighting features, when acted upon, do not change the
prediction — sometimes to consumers who are assigned fixed predictions. This is a failure mode
that affects a broad class of local explainability techniques — adding to a growing literature on how
local explanations are prone to manipulation [e.g., 5, 26, 38, 51, 52], and indeterminate [e.g., due
to multiplicity 8, 11, 42, 59]. Our work complements impossibility results on recourse and feature
attribution showing that attribution methods that satisfy completeness and linearity (e.g., SHAP)
perform no better than random guessing when inferring model behavior (e.g., recourse) [see e.g.,
7, 22]. Here, we establish the prevalence of this effect empirically and develop a principled approach
to mitigate it.

Our approach is related to a stream of work on algorithmic recourse [31, 57]. The vast majority
of work on this topic develops algorithms for recourse provision — i.e., to present consumers with
actions that can change the prediction a specific model [see e.g., 32]. Our goal is to highlight features



that can be reliably changed to achieve recourse. To this end, responsiveness scores measure the
number of actions on a single feature. Our approach builds on a line of work that elicits and enforces
complex actionability constraints [36, 57]. Here, we use this machinery to represent actionability
constraints at an instance level, and to generate a set of all points that a person can reach under a
set of actionability constraints [36]. Our approach outputs feature responsiveness scores that can be
used with any model, and can be adapted to address practical challenges in providing recourse — e.g.,
robustness [44, 45, 56] and causality [13, 24, 33].

2 Problem Statement

We formalize the problem of explaining the predictions of a machine learning model through
feature attribution. We consider a standard classification task where we wish to predict a label
y €Y = {0,1} from a set of d features © = [x1, T2, . ..,14] € X C R% We assume that we given
amodel h : X — ) where each instance represents a person, and their features x; € A encode
semantically meaningful characteristics for the task at hand (e.g., age or income). We assume that
the feature values are bounded so that ; € [I;, u;] and ||z|| < B for all z € X and B sufficiently

large. !

We consider a task where we provide explanations to individuals who are adversely affected by
the prediction of a given model (see e.g., [1, 55]). We assume that h(x;) = 1 represents a target
prediction that is desirable — e.g., h(x;) = 1 if applicant 7 is predicted to repay their loan within 2
years — and thus will explain the predictions for individuals where h(x;) = 0.

Feature-Highlighting Explanations Our goal is to construct explanations where each feature is
responsive — i.e., can be changed independently to achieve recourse.

The standard practice of explaining predictions is to use feature-highlighting explanations [see e.g.
6]. These explanations consist of a list of “most important” features using a given method that we
convert into a natural language description [e.g., a reason code 21].

Feature Attribution Methods The standard approach to construct feature-highlighting explanation
is to use feature attribution method [21].

Definition 1. Given a model » : X — Y and its training dataset D = {(x;,y;)}I,, a feature
attribution method for point x; is a function ¢(x; | h, D) : X — R?, where the jth element of the
output, ¢;(x; | h, D) is the attribution for feature j € [d].

In what follows, we write ¢(x;) instead of ¢(x; | h, D) when h and D are clear from context. This
function capture the behavior of several methods that are used to explain the prediction of a model in
terms of its features:

* Local Linear Explainers [see e.g., 16, 47, 63, 65]: Given a model h and a point x;, these methods
fit a linear model g : RY — R to approximate the decision boundary surrounding x; such that
g(x’") = (¢(x;), ’). The resulting attribution for each feature is its weight in g.

* Shapley Value Methods [see e.g., 23, 28, 40]: Given a model h and a point x;, these methods cast
features as players in a cooperative game, and estimate ¢;(x;) as the marginal contribution of
feature j to the prediction h(x;) under basic axioms of social choice [50].

Given a model h and its training dataset D, the scores ¢(x;) capture how each feature captures
the prediction of a model at the z; in different ways. In all cases, the scores satisfy the following
properties:

* Relevance: A feature with an attribution score ¢;(x;) = 0 is not relevant to the prediction for
x; —1.e., it can be changed arbitrarily without changing the prediction [see e.g., the “missingness”
axiom in 40].

o Strength: Features with larger attribution scores have larger impact on the prediction — i.e., if
|¢j(x:)| > |$;(x;)|, then feature j has a stronger contribution to the prediction than feature j'.

'This assumption holds for most semantically meaningful features [see 57]. Some features have bounds by
construction (i.e. binary features). In other cases, we can set loose bounds (e.g., for income).



These properties allow model developers to comply with consumer protection rules, but can promote
misinterpretation among consumers [34].

Reasons without Recourse One failure mode of ma-

chine learning in consumer-facing applications is that Table 1: Stylized lending task where the
models can assign fixed predictions — i.e., predictions that best model assigns fixed predictions. We
cannot be changed by their decision subjects (see e.g., predict y € {0,1} = repayment from
Table 1). In lending, for example, fixed predictions in- two binary features (1, z2) = ( age > 60,
flict harm through preclusion — i.e., permanently barring has_TRA). We fit a classifier data with no
consumers from access to credit. Fixed predictions are a negative labels and 7, posiuve labels for
recently-discovered failure mode [36], which must be mit- each (z1,22) € {0,1}". Individuals with
igated through changes in feature construction, model de- (xxll 22)1 éar% ((ini)y) c(hlanl%i ;?ﬁlrefgagzris 6t8
velopment,.or 1mplementat10n.(e. g.,using a separate model 7 table and ha S’_I RA is binary.
for re-applicants who are assigned fixed predictions). In

practice, these instances are often left undetected. We can Features Label Counts  Best Model
mitigate harm if instead of providing misleading explana-  age>60 nas_tra ng n h(z)
tions of fixed predictions they are flagged to model owners 0 0 51 10 0

or auditors. 0 ) 7 20 )
These issues stem from an oversight of actionability — how 1 0 21 8 0

we can change the features of a model. On the one hand, 1 1 31 17 0

models assign fixed predictions because they use features

that can only be changed in specific ways. On the other, we are unable to detect these instances
through feature attribution methods because they are designed to explain a prediction, rather than
how it can be changed.

Accounting for Actionability Given these challenges, we introduce machinery to capture how
features can be changed at the instance level. For example, a change in one feature might necessitate
a change in another; this makes strictly independent changes to certain features infeasible.

Definition 2. An action is a vector @ = [a1, . .., a4] € R? that a person can perform to change their
features from x; to ¢; + a = @’ € X. Given a point x; € X, the action set A(x;) contains all
possible actions for x;. We assume that every action set contains the null action @ € A(x;).

Action sets captures how we can change features from a given point as a set of actionability constraints.
We can elicit complex constraints from human experts in natural language, and convert them into
equations that we can embed into an optimization problem (for examples, see Table 4 in Appendix A).
In this way, we can enforce actionability in — for example — algorithms to find recourse actions [see
e.g., 36, 57].

To highlight features that are responsive, we must assign a score to features that accounts for
actionability constraints. In practice, the actionability constraints for a given feature will include
constraints that pertain to the feature as well as other features. We refer to the features that may
change as a result of interventions on feature j as downstream features, C;.

Definition 3. Given an action set A(x;) for a point ¢; € X, the action set for feature j € [d] is:
Aj(x;) ={acAlx;)|a; #0ANar =0,k € [d]\ C;}.

Here, the downstream set C; :={k € [d] \ {j} | a; #0 = ai # 0 Va € A(x)} is the subset of
all features that must change as a result of interventions on feature j.

Definition 3 captures cases where actions on a feature can induce changes in other features. Such cases
can stem from deterministic causal relationships — e.g., increasing years_of_account_history
should lead to a commensurate change in age. In general, they can capture dependencies that would
not be included in a traditional causal graph — e.g., changing a categorical attribute will require
switching a binary feature “off” while turning another binary feature “on” (sothatz; =1 — 0 =—
=0 1.

3 Measuring Feature Responsiveness

In this section, we introduce our main technical contribution — the responsiveness score. We first
define the responsiveness score, then discuss its interpretation and computation.



3.1 Responsiveness Scores

Our goal is to measure the responsiveness of the prediction of a model at a point &; with respect to
the set of feasible actions on specific features. We propose to measure the sensitivity for each feature
through the feature responsiveness score.

Definition 4. Given a model  : X — Y, a point x; with action set A(x;) and feature j € [d], the
responsiveness score for feature j is defined as:

wi(x; | h, A(z;)) :=Pr(h(z') =1 |z’ = z; + a,a € Aj(x;))

The responsive score for a feature j captures the proportion of single-feature actions on feature j that
change the prediction of a model h at ;. In what follows, we write 1, () instead of p; (x | h, A(x;))
when h and A(x;) are clear from context. Given a feature where ;(x;) = p, we know that 100(p) %
of the single-feature actions on j, a € A;(x;) will change the prediction of the model. Thus, all
actions to a feature where 1 (x;) = 0 would not change the prediction while all actions on a feature
where £ (2;) = 1 would result in a different prediction.

These interpretations are contingent on the actionability constraints used to compute the responsive-
ness score. In the simplest case, actionability constraints encode indisputable constraints on how a
feature can be changed (e.g., feature encoding or physical limits) and so the responsiveness score for
a given feature represent an upper bound on responsiveness: “at most 1004, (x;)% of single-feature
actions on feature j attain a desired prediction.” Such constraints let us flag undeniable instances
of harm. More generally, actionability constraints encode information about how other features are
expected to vary when a single feature is changed. For example, if a model has a feature indicating
the job rank of an individual, we can create actionability constraints that encode the expectation
that if job rank increases, so does income.

Safeguards for Consumer Protection One benefit of responsiveness scores is that we can reli-
ably use them to detect when consumers are assigned fixed predictions, and when feature-based
explanations can provide recourse.

Remark 1. Given amodel h : X — Y, let p1(x;), . . ., pa(x;) denote the responsiveness scores of
x; € X with respect to the action set A(x;).

S1 If pj(x;) > 0 for some feature j € [d], then h can provide recourse to x; through a single-feature
action on j.

S2 If pj(x;) = 0 for all features j € [d), then either: (a) h assigns a fixed prediction to x;, or (b) h
can only provide recourse to x; through actions that alter two or more features.

Remark 1 states that every person (x;) who receives a positive responsiveness score for at least one
feature has recourse. This implies that when we construct feature-highlighting explanations using
the top-k responsiveness scores, we will only provide explanations to individuals who have recourse.
Remark 1 also illustrates how the responsiveness scores can flag for potential harm when (1 (x;) = 0
and allows us to mitigate harm on a case by case basis. In case (a) — where a person is assigned fixed
predictions — we would refrain from providing explanations to avoid misleading consumers, and flag
the issue so that model development can be potentially revisited. In case (b) — where a person is
assigned predictions that can change through multiple actions — we could provide explanations that
highlight subsets of responsive features, include explicit warning against presumptions of feature
independence, or proceed in a similar manner to case (a).

3.2 Computing Scores with Reachable Sets

‘We compute responsiveness scores using a reachable set:

Definition 5. Given a point x; and its action set A(x;), we refer to the set of all points that are
attainable through actions in A(x) as the reachable set: R(x;) := {x;, + a | a € A(x;)}. We refer
to the subset of points that are reachable through actions on feature j € [d] as the reachable set for
feature j and denote it as: R;(x;) := {x; + a' | a’ € Aj(z;)}.

Reachable sets represents an alternative way to store and process information about actionability at
the instance level. In particular, a reachable set R(x;) encodes this information as a set of feature
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Figure 2: Simple example of how to compute responsiveness scores involving three independent features. age
is an immutable feature, n_loans is a discrete feature taking values from O to 3 and has_guarantorisa
binary feature. The original prediction of 0 is shown in the row highlighted in green. Single-feature actions for
n_loans, has_guarantor are highlighted yellow and red respectively. We can see that we can construct a
complete reachable set and directly calculate the responsiveness score for discrete datasets. The responsiveness
score for age is O since it is immutable.

vectors that can be reached through feasible actions. Given reachable sets for each feature R;(x;)
for j € [d], we can calculate responsiveness scores (see Definition 4) for a model by querying its
predictions (see Fig. 2). This has the benefits that: (1) it can work with any model; (2) we only need
to compute the reachable set once; and (3) it can allow us to evaluate other notions of responsiveness.

Enumeration for Discrete Features When dealing with discrete feature spaces, we can obtain
a complete reachable set through enumeration following an approach of Kothari et al. [36]. Given
a point x; and its action set A(x;), this approach returns a set of all reachable points. Given a
complete reachable set, we can calculate the responsiveness score of feature j by evaluating the
model & on points reachable via single-feature actions on j (see Fig. 2). This approach can certify
when an individual cannot change the prediction of a model. Unfortunately, the reachable set grows
exponentially with the number of actionable features, which can lead to practical challenges in storage
and compute.”

Sampling for Continuous Features The enumeration technique described above is infeasible when
we wish to evaluate the responsiveness of a continuous feature, or when a feature has downstream
effects on continuous features. In such cases, we estimate the responsiveness score for feature j by
drawing a uniform sample of reachable points from R;(x;). Given a feature without downstream
effects — i.e., without downstream features so that |C;| = 0 — we can sample values from [l;, u;].
When features have downstream effects, we can apply a rejection sampling procedure where we first
sample values for all features from [l;, u;] and reject values that violate actionability constraints.

Definition 6. Given a point x; € X, let R](a:,) denote a sample of NV points drawn uniformly
from the reachable set for feature j, Rj(a:i). Given any model h : X — ), we can estimate the
responsiveness score for feature j as

B =~ S 1) = 1)

=

When the samples are drawn uniformly from R;(x;), the number of responsive predictions S ~
Bin(N, p;(x;)). We can then quantify the uncertainty associated with our estimate fi;(x;):

Proposition 2. Given a level of significance o € (0,1), the 100(1 — )% confidence interval for
s (@) s

o) + | 501 = ()

Kothari et al. [36] propose to enumerate reachable sets for subsets of features that can be altered indepen-
dently. In practice, this can allow construction of reachable set for real-world classifcation datasets with discrete
features. However, it may require considerable compute and storage. For example, on the heloc dataset which
contains 31 actionable features and 5,616 distinct points, enumerating all reachable sets requires roughly 1 hour
and storing them requires 18.8GB



Here: k:= ®~ (1 — %), ®(-) is the Normal CDF, and [i;(x;) := ﬁ (S + %2) is the corrected
estimator.

We can alter two parameters to adjust the uncertainty: the level of significance « and the sample size
N. For a fixed NV, a larger o will yield a narrower confidence interval at a lower confidence level.
Similarly, with a fixed a,, we can adjust the N to attain a desired level of certainty for the estimate
{1 (x;). For example, given o = 0.05, N > 42 would ensure that the width of the confidence interval
surrounding /i;(z;) is at most 0.1 when we don’t observe any points with the target prediction —i.e.
S = 0. Note that we use a correction upon the standard binomial confidence interval formulation to
improve coverage when p;(x;) = 0 or 1[see 10].

This is a general-purpose approach that can compute responsiveness scores for features that are
continuous or discrete. In settings where we are computing the responsiveness score of a discrete
feature, we can reap the benefits of responsiveness using a small sample of reachable points. This
approach avoids the computation and storage costs of enumeration but sacrifices the ability to identify
individuals with fixed predictions with complete certainty.

4 Experiments

We present an empirical study on the responsiveness of explanations. Our goals are: (1) to evaluate
how our approach can support recourse and flag fixed predictions; and (2) to demonstrate the
limitations of existing feature attribution methods in practice. We include additional results and
details in Appendices B and C, and code to reproduce these results at the project repository.

Setup We work with three classification datasets from consumer finance that are publicly available
and used in prior work (see Appendix B for details). Here, each instance represents a consumer
and each label indicates whether they will repay a loan. For each dataset, we define inherent
actionability constraints that capture indisputable requirements and that apply to all individuals —
e.g., no changes for immutable and protected attributes, changes must preserve feature encoding and
adhere to deterministic causal effects (see Appendix B).

We split each dataset into a training sample (80%; to train models and tune hyperparameters) and
a test sample (20%; to evaluate out-of-sample performance). We train classifiers using (1) logistic
regression (LR), (2) XGBoost (XGB), and (3) random forests (RF). For each model, we construct a
feature-based explanation for each individual who is denied credit by listing the top-k highest-scoring
features from the following methods:

* Feature Responsiveness Score (RESP): We compute the score in Definition 4 using the procedure
in Section 3.2, and the actionability constraints in Appendix B.

* Standard Feature Attribution: We consider local feature attribution methods that are model-agnostic
and widely used in the lending industry [21]: Shapley additive explanation (SHAP) [40]; and local
interpretable model-agnostic explanations (LIME) [47].

* Actionable Feature Attribution: We also consider action-aware variants of feature attribution
methods SHAP-AW and LIME-AW, which seek to promote responsiveness by setting the scores for
immutable features to O such that ¢, (x;) <— 0 when feature j is immutable.

We summarize the viability of promoting recourse using feature-highlighting explanations in Table 2,
and the responsiveness of explanations from each method in Table 3. We evaluate explanations
built using the top-4 scoring features from each method, which reflects the recommended number of
reasons to include in an adverse action notice required by the U.S. Equal Credit Opportunity Act [see
2,6].

Our results in Table 2 show that models admit features that allow some individuals to change them to
attain a desired prediction (29.8% to 93.2% across models and datasets). At the same time, they reveal
their potential to mislead individuals who are assigned fixed predictions (i.e., 0.2% to 49.1% across
all models and datasets). For example, given the LR model for the heloc dataset, we would present
an explanation to 56.1% of individuals who are a denied loan. Among them, 44.4% can achieve
recourse through single-feature actions; 35.6% can only achieve recourse through joint actions; and
19.1% have no path to recourse because they receive a fixed prediction.
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Results Table 2: Recourse feasibility across datasets and model
classes. % Denied — the fraction of individuals denied
credit by a model; % I-D — the fraction of denied in-
dividuals who can achieve recourse with actions that
alter a single feature; % n-D — the fraction of denied
individuals who can achieve recourse with actions that
alter 2 or more features; and % Fixed — the fraction of

denied individuals who are assigned a fixed prediction

On Responsiveness Scores Our results in Ta-
ble 3 show how our approach can support con-
sumers by presenting responsive features and by
flagging instances where explanations may be
misleading. Explanations are only provided to

individuals who can achieve recourse through a  (in red if > 0).

single-feature action, and are given to all such in-

dividuals (the values for % Presented with Rea- _Paaset Metrics LR RF  XGB

sons in Table 3 match the values for % [-D Rec  neloc % Denied 56.1% 583% 57.0%

in Table 2). When we construct feature-based 7 = 5,842 b % Fixed

explanations using responsiveness scores, we ¢ =43(da =31 L% I-DRec 44.4% 34.6% 29.8%

present individuals with explanations that only _F€© 120 b%n-DRec 366% 374% 21.2%

contain responsive features, achieving 100% on ~ german % Denied  22.9% 17.5%  22.0%

the % All Reasons Responsive metric across "= 1,000 b % Fixed

datasets and models. This may result in ex- 9¢=30(a=9 —L%1-DRec 73.4% 514% 65.5%
. . . Dua and Graff [14] L % n-DRec 192% 19.4% 19.1%

planations that highlight fewer reasons on aver-

age—for example, individuals receiving expla- ~ givemecredit % Denied — 24.6% 24.7% 24.8%

nations from the LR model on german recei.ve 3:21;(&168: - t Z/‘; lFf]X)e(]ieC 4 932%  76.0%

1.9 out of 4 reasons on average. This behavior Kaggle [29] L%nDRec 120% 66% 125%

can mitigate harm as we avoid presenting expla-
nations to individuals with fixed predictions or
those who require joint actions to change their
outcomes.

On Feature Attribution Scores Our results show how standard methods for feature attribution can
output explanations that are ineffective and potentially misleading. For example, under the LR model
for the heloc dataset, we find that 82% and 75.6% of explanations from LIME and SHAP include 4/4
unresponsive features respectively. This behavior arises as a result of algorithm design, as the scores
do not account for responsiveness nor actionability. This results in two key problems:

Low Scores for Responsive Features: Methods can assign low scores to responsive features. On the
heloc dataset, for example, 44.4% of denied individuals by the LR model can achieve recourse by
altering a single feature. However, explanations built using LIME and SHAP fail to include them since
their scoring mechanisms do not account for feature responsiveness. For instance, an individual could
achieve recourse by acting on NumRevolvingTrades, but a feature-based explanation produced by
LIME does not include it, as it assigns higher scores to four other features that are unresponsive. We
also observe this phenomenon beyond the top-4 features in 2?.

Reasons without Recourse: Methods provide explanations to individuals with fixed predictions. On
the heloc dataset, the LR model assigns a fixed prediction to 19.1% of denied individuals. In such
cases, LIME and SHAP, and their variants offer explanations, even though it is impossible for them
to achieve recourse. These explanations may mislead individuals by highlighting features that are
salient to the prediction and could be changed, but would not lead to recourse. For example, an
explanation from SHAP for an individual with a fixed prediction includes AvgYearsInFile and
NetFractionRevolvingBurden.

On Adapting Existing Methods Seeing how responsiveness is inherently tied to actionability, we
study the potential to improve responsiveness through action-aware variants of SHAP and LIME —
SHAP-AW and LIME-AW. We consider a simple post-processing strategy where we only construct
explanations using features that are mutable. This reflects a common belief surrounding actionability
is that we can find ways to account for it by post-processing [e.g., 30, 43]. Our results show this
approach can improve the responsiveness of explanations — as we observe marginal improvements
when switching from SHAP and LIME to SHAP-AW and LIME-AW for all models and datasets in
Table 3. For example, when we provide explanations for LR model on heloc, switching from SHAP
to SHAP-AW improves the proportion of explanations that contain at least one responsive feature
from 24.4% to 35.3%. As a result, more consumers could achieve recourse based on explanations
with at least one responsive feature. Nevertheless, SHAP-AW and LIME-AW explanations still contain
unresponsive reasons. In the heloc dataset, SHAP-AW and LIME-AW returned explanations where



Table 3: Responsiveness of feature-based explanations for LR and XGB models across all methods and datasets
(We defer results for RF to Appendix C.2 for clarity). For each model, we generate feature-based explanations for
individuals denied a loan, highlighting up to 4 top-scoring features from a given feature attribution method. For
each method, we report the proportion of individuals receiving an explanation (% Presented with Explanations);
the mean number of features per explanation (Mean # of Features); and the proportion of explanations that
highlight only unresponsive features (% All Unresponsive), include at least one responsive feature (At Least
1 Responsive), or highlight only responsive features (All Responsive, in bold). Methods that return only
unresponsive explanations are marked in

LR XGB
All Features Actionable Features All Features Actionable Features

Dataset Metrics LIME SHAP LIME-AW  SHAP-AW  RESP LIME SHAP LIME-AW  SHAP-AW  RESP
het % Presented with Explanations  100.0% 100.0%  100.0% 100.0% 44.4% 100.0% 100.0% 100.0% 100.0% 29.8%
eior_c 849 L, % All Unresponsive 0.0% 0.0%
Z B 4)3 (d_ — 31 L, % At Least 1 Responsive 180%  24.4%  353% 35.3% 100.0% 7.4% 193%  22.5% 24.9% 100.0%
FIEO‘[?O]A o L, % All Responsive 0.0% 0.0% 0.2% 0.2% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0%
- L. Mean # of Features 4.0 4.0 4.0 4.0 2.4 4.0 4.0 4.0 4.0 2.7
% Presented with Explanations  100.0% 100.0%  100.0% 100.0% 73.4% 100.0% 100.0% 100.0% 100.0% 65.5%
oo b, % All Unresponsive 0.0% 0.0%
Z: 36 (s =9) L, % At Least 1 Responsive 0.0% 0.0% 37.1% 33.6% 100.0% 0.0% 16.8% 35.5% 33.2% 100.0%
Di/ and C‘i/‘ ;‘ [14] L, % All Responsive 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0%
uaand . Mean # of Features 40 40 40 40 1.9 40 40 40 40 20
. X % Presented with Explanations ~ 100.0%  100.0% 100.0% 100.0% 72.4% 100.0% 100.0% 100.0% 100.0% 76.0%

givemecredit .

n = 120268 L, % All Unresponsive 0.0% 0.0%
ri, : 23 (;i —13) L, % At Least 1 Responsive 44.2% 54.5% 49.3% 68.2% 100.0% 59.1% 48.7% 69.1% 59.4% 100.0%
K; ](e [2317 L. % All Responsive 0.0% 0.0% 5.5% 23.1% 100.0% 0.0% 0.0% 5.4% 3.7% 100.0%
e L Mean # of Features 40 40 40 40 24 40 40 40 40 26

every reason is responsive 0.2% of the time under the LR model. In other words, 98% of the
explanations given to denied consumers contained at least one unresponsive feature. This occurs
because LIME-AW and SHAP-AW still suffer from the same drawbacks as their original counterparts,
albeit to a lesser extent. They attribute scores to features that are not responsive when there are other
responsive features or have exhausted the list of such features. Overall, these results show that they
still fall short in providing responsive explanations.

S5 Concluding Remarks

Explanations are often seen as a strategy to protect individuals from harm when machine learning
models are applied in domains like lending and hiring. Our work reveals how this strategy can
backfire by highlighting unresponsive features and overlooking fixed predictions. We find that
common feature attribution methods exhibit both of these failure modes, leading to situations where
consumers are given reasons without recourse. Our work addresses these limitations by developing a
feature attribution method that measures responsiveness—i.e., the probability that a feature can be
changed in a way that leads to recourse. These scores can readily replace the scores currently used to
comply with regulations. In doing so, we can strengthen consumer protection by highlighting features
that enable recourse when possible and flagging instances where recourse is unattainable. Our results
demonstrate the benefits of developing standalone methods to address specific goals—whether for
recourse, rectification, or anti-discrimination. By adopting specialized approaches, we can achieve
more effective consumer protection.

Limitations The main limitations of our work stem from assumptions about actionability and
responsiveness. Our approach relies on the validity of actionability assumptions within an action set.
When defining this set to encode indisputable constraints, as in Section 4, responsiveness scores can
flag individuals with fixed predictions. However, presented features may not achieve recourse due to
individual constraints. To mitigate this, we can highlight features achieving a threshold responsiveness
or elicit constraints from decision subjects [see e.g., 12, 17, 35]. A broader limitation is that our
machinery only represents a subset of constraints considered in causal algorithmic recourse literature.
It can represent cases with deterministic causal effects but excludes scenarios where interventions
induce probabilistic effects on downstream features [13, 33, 58]. In principle, our approach can
incorporate such assumptions: given an individual probabilistic graphical model, we can compute a
responsiveness score reflecting the expected recourse rate. The key challenge lies in validating causal
assumptions at an individual level. This reflects a practical bottleneck that requires further study and
may require an approach to measure responsiveness in a way that is robustness to misspecifcation.
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A Example of Actionability Constraints

Class Example Features Actionability Constraint
Immutability age cannot change T; = age a; =0

Monotonicity recent_payment can only increase Z; = recent_payment a; >0

Integrality late_payments must be positive integer < 12 z; = late_payments aj €ZY N[0 — 12,12 — a]

. . X = housing_status=own .
preserve one-hot encoding of categorical feature K using usTow aj + x; € {0,1} for j € {k,I,m}

Encoding Validity
D ietkamy @ T T =1

X 2] = housing_status=rent
housing_status € {own, rent, other}

ZTm = housing_status=other

if has_savings_account = TRUE X aj +xj € {(J, 1}
2; = has_savings_account 12
ar + x, € [0,10%2]

a; +x; < 1012(:1:k + ag)

Logical Implication  then savings_account_balance > 0 _
i I = savings_account_balance
else savings_account_balance = 0

L if years_of_account_history increases T = years_of_account_history &; +a; < oy +
Causal Implication S
then age will increase commensurately ) = age dr, € [0,100]

Table 4: Examples of actionability constraints on semantically meaningful features for a lending task (see
Appendix B for additional examples). Each constraint can be expressed in natural language and embedded into
an optimization problem using standard techniques in mathematical programming [see, e.g., 61].

B Datasets and Actionability Constraints

B.1 heloc

B.1.1 Dataset Description

The FICO dataset was created to predict repayment on Home Equity Line of Credit (HELOC)
applications. HELOC credit lines are loans that use people’s homes as collateral. The dataset is used
by lenders to determine how much credit should be granted. The anonymized version of the HELOC
dataset was created by FICO to present an explainable machine learning challenge for a prize.

Each instance in the dataset is a real credit application for HELOC credit; it’s an application that
a single person submitted and contains information about that person. There are n = 10,459
instances, each consisting of d = 23 features. These features are either binary or discrete. The label,
RiskPerformance, is a binary assessment of the risk of repayment based on the 23 predictors.
A value of 1 means the person hasn’t been more than 90 days overdue on their payments in the last
2 years; a value of 0 means they have at least once. There are some repeated instances; there are
9,871 unique rows. The dataset is self-contained and has been anonymized for public use in the
explainability challenge. It doesn’t use any protected attributes like race and gender.

B.1.2 Actionability Constraints

Joint Actionability Constraints:

1. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>2 will induce to actions on
[NumRevolvingTrades>2’]. Each unit change in NumRevolvingTradesWBalance>2 leads
to:1.00-unit change in NumRevolvingTrades>2

2. DirectionalLinkage: Actions on NumInstallTradesWBalance>2 will induce to actions on
[NumInstallTrades>2’]. Each unit change in NumInstallTradesWBalance>2 leads
to:1.00-unit change in NumInstallTrades>2

3. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>3 will induce to actions on
[NumRevolvingTrades>3’]. Each unit change in NumRevolvingTradesWBalance>3 leads
to0:1.00-unit change in NumRevolvingTrades>3

4. DirectionalLinkage: Actions on NumInstallTradesWBalance>3 will induce to actions on
[NumInstallTrades>3’]. Each unit change in NumInstallTradesWBalance>3 leads
to:1.00-unit change in NumInstallTrades>3

5. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>5 will induce to actions on
[NumRevolvingTrades>5’]. Each unit change in NumRevolvingTradesWBalance>5 leads
to:1.00-unit change in NumRevolvingTrades>5
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Name Type LB UB mutability
ExternalRiskEstimate_geq_40 {0,1} O 1 no
ExternalRiskEstimate_geq_50 {0,1} O 1 no
ExternalRiskEstimate_geq_60 {0,1} O 1 no
ExternalRiskEstimate_geq_70 {0,1} O 1 no
ExternalRiskEstimate_geq_80 {0,1} 0O 1 no
YearsOfAccountHistory Z 0 50 no
AvgYearsInFile_geq_3 {0,1} O 1 only increases
AvgYearsInFile_geq_5 {0,1} O 1 only increases
AvgYearsInFile_geq_7 {0,1} O 1 only increases
MostRecentTradeWithinLast Year {0,1} 0 1 yes
MostRecentTradeWithinLast2 Years {0,1} © 1 yes
AnyDerogatoryComment {0,1} O 1 no
AnyTrade120DaysDelq {0,1} O 1 no
AnyTrade90DaysDelq {0,1} O 1 no
AnyTrade60DaysDelq {0,1} 0O 1 no
AnyTrade30DaysDelq {0,1} O 1 no
NoDelqEver {0,1} O 1 no
YearsSinceLastDelqTrade_leq_1 {0,1} O 1 only increases
YearsSinceLastDelqTrade_leq_3 {0,1} O 1 only increases
YearsSinceLastDelqTrade_leq_5 {0,1} 0O 1 only increases
NumlInstallTrades_geq_2 {0,1} O 1 only increases
NumlInstallTradesWBalance_geq_2 {0,1} O 1 only increases
NumRevolvingTrades_geq_2 {0,1} O 1 only increases
NumRevolvingTradesWBalance_geq_2 {0,1} O 1 only increases
NumlInstallTrades_geq_3 {0,1} 0O 1 only increases
NumlInstallTradesWBalance_geq_3 {0,1} O 1 only increases
NumRevolvingTrades_geq_3 {0,1} O 1 only increases
NumRevolvingTradesWBalance_geq_3 {0,1} O 1 only increases
NumlnstallTrades_geq_5 {0,1} O 1 only increases
NumlnstallTradesWBalance_geq_5 {0,1} 0O 1 only increases
NumRevolvingTrades_geq_5 {0,1} O 1 only increases
NumRevolvingTradesWBalance_geq_5 {0,1} O 1 only increases
NumlnstallTrades_geq_7 {0,1} O 1 only increases
NumlnstallTradesWBalance_geq_7 {0,1} O 1 only increases
NumRevolvingTrades_geq_7 {0,1} O 1 only increases
NumRevolvingTradesWBalance_geq_7 {0,1} O 1 only increases
NetFractionInstallBurden_geq_10 {0,1} O 1 only increases
NetFractionlnstallBurden_geq_20 {0,1} O 1 only increases
NetFractionInstallBurden_geq_50 {0,1} O 1 only increases
NetFractionRevolvingBurden_geq_10 {0,1} O 1 only increases
NetFractionRevolvingBurden_geq_20 {0,1} O 1 only increases
NetFractionRevolvingBurden_geq_50 {0,1} O 1 only increases
NumBank2NatlTradesWHighUtilizationGeq2 ~ {0,1} 0 1 only increases

Table 5: Table of Separable Actionability Constraints for the heloc dataset. Includes bounds and monotonicity
constraints.

6. DirectionalLinkage: Actions on NumInstallTradesWBalance>5 will induce to actions on
[NumInstallTrades>5’]. Each unit change in NumInstallTradesWBalance>5 leads
to:1.00-unit change in NumInstallTrades>5

7. DirectionalLinkage: Actions on NumRevolvingTradesWBalance>7 will induce to actions on
[NumRevolvingTrades>7’]. Each unit change in NumRevolvingTradesWBalance>7 leads
to:1.00-unit change in NumRevolvingTrades>7

8. DirectionalLinkage: Actions on NumInstallTradesWBalance>7 will induce to actions on
[NumInstallTrades>7’]. Each unit change in NumInstallTradesWBalance>7 leads
to:1.00-unit change in NumInstallTrades>7

9. DirectionalLinkage: Actions on YearsSinceLastDelgTrade<1 will induce to actions on
[YearsOfAccountHistory’]. Each unit change in YearsSinceLastDelqgTrade<1 leads
to:-1.00-unit change in YearsOfAccountHistory
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

DirectionalLinkage: Actions on YearsSincelLastDelgTrade<3 will induce to actions on
[YearsOfAccountHistory’]. Each unit change in YearsSinceLastDelgTrade<3 leads
t0:-3.00-unit change in YearsOfAccountHistory

DirectionalLinkage: Actions on YearsSinceLastDelgTrade<5 will induce to actions on
[YearsOfAccountHistory’]. Each unit change in YearsSinceLastDelgTrade<5 leads
t0:-5.00-unit change in YearsOfAccountHistory

ReachabilityConstraint: The values of [MostRecentTradeWithinLastYear,
MostRecentTradeWithinLast2Years] must belong to one of 4 values with custom
reachability conditions.

ThermometerEncoding: Actions on [YearsSincelLastDelqTrade<1,
YearsSinceLastDelgTrade<3, YearsSinceLastDelgTrade<5] must preserve ther-
mometer encoding of YearsSinceLastDelqTradeleq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where YearsSinceLastDelgTrade<1 is the
lowest-level dummy and YearsSinceLastDelgTrade<5 is the highest-level-dummy.

ThermometerEncoding: Actions on [AvgYearsInFile>3, AvgYearsInFile>5,
AvgYearsInFile>7] must preserve thermometer encoding of AvgYearsInFilegeq., which
can only increase. Actions can only turn on higher-level dummies that are off, where
AvgYearsInFile>3 is the lowest-level dummy and AvgYearsInFile>7 is the highest-level-
dummy.

ThermometerEncoding: Actions on [NetFractionRevolvingBurden>10,
NetFractionRevolvingBurden>20, NetFractionRevolvingBurden>50] must preserve
thermometer encoding of NetFractionRevolvingBurdengeq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where NetFractionRevolvingBurden>10 is
the lowest-level dummy and NetFractionRevolvingBurden>50 is the highest-level-dummy.

ThermometerEncoding: Actions on [NetFractionInstallBurden>10,
NetFractionInstallBurden>20, NetFractionInstallBurden>50] must preserve
thermometer encoding of NetFractionInstallBurdengeq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where NetFractionInstallBurden>10 is the
lowest-level dummy and NetFractionInstallBurden>50 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumRevolvingTradesWBalance>2,
NumRevolvingTradesWBalance>3, NumRevolvingTradesWBalance>5,
NumRevolvingTradesWBalance>7] must preserve thermometer encoding of NumRe-
volvingTradesWBalancegeq., which can only decrease. Actions can only turn off higher-level
dummies that are on, where NumRevolvingTradesWBalance>2 is the lowest-level dummy
and NumRevolvingTradesWBalance>7 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumRevolvingTrades>2, NumRevolvingTrades>3,
NumRevolvingTrades>5, NumRevolvingTrades>7] must preserve thermometer encoding
of NumRevolvingTradesgeq., which can only decrease. Actions can only turn off higher-
level dummies that are on, where NumRevolvingTrades>2 is the lowest-level dummy and
NumRevolvingTrades>7 is the highest-level-dummy.

ThermometerEncoding: Actions on [NumInstallTradesWBalance>2,
NumInstallTradesWBalance>3, NumInstallTradesWBalance>5,
NumInstallTradesWBalance>7] must preserve thermometer encoding of Numlnstall-
TradesWBalancegeq., which can only decrease. Actions can only turn off higher-level
dummies that are on, where NumInstallTradesWBalance>2 is the lowest-level dummy and
NumInstallTradesWBalance>7 is the highest-level-dummy.

ThermometerEncoding:  Actions on [NumInstallTrades>2, NumInstallTrades>3,
NumInstallTrades>5, NumInstallTrades>7] must preserve thermometer encoding of Nu-
mlnstallTradesgeq., which can only decrease. Actions can only turn off higher-level dummies that
are on, where NumInstallTrades>2 is the lowest-level dummy and NumInstallTrades>7
is the highest-level-dummy.
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B.2 german
B.2.1 Dataset Description

The german dataset was created in 1994 and contains information about loan history, demographics,
occupation, payment history, and whether or not somebody is a good customer.

Each instance is a real person with credit. There are n = 1, 000 instances, each consisting of d = 20
features. The features are all either categorical or discrete. The label, class, is a binary indicator of
whether somebody is a good’ (y; = 1) or ’bad’ (y; = 2) customer. We changed these labels to be 0
and 1.

There are no missing values in the dataset. We renamed some of the features to be indicative of
the values they represent. The dataset is self-contained and anonymous, and it includes features
describing gender, age, and marital status.

B.2.2 Actionability Constraints

Name Type LB UB Actionability Sign
Age Z 19 75 No

Male {0,1} O 1 No

Single {0,1} O 1 No
ForeignWorker {0,1} O 1 No
YearsAtResidence Z 0 7 Yes +
LiablePersons Z 1 2 No
Housing=Renter {0,1} O 1 No
Housing=Owner {0,1} O 1 No
Housing=Free {0,1} © 1 No
Job=Unskilled {0,1} O 1 No
Job=skilled {0,1} © 1 No
Job=Management {0,1} O 1 No
YearsEmployed>1 {0,1} O 1 Yes +
CreditAmt>1000K {0,1} O 1 No
CreditAmt>2000K {0,1} O 1 No
CreditAmt>5000K {0,1} O 1 No
CreditAmt>10000K {0,1} © 1 No
LoanDuration<é {0,1} O 1 No
LoanDuration>12 {0,1} O 1 No
LoanDuration>24 {0,1} O 1 No
LoanDuration>36 {0,1} © 1 No

LoanRate Y/ 1 4 No
HasGuarantor {0,1} © 1 Yes +
LoanRequiredForBusiness {0,1} O 1 No
LoanRequiredForEducation {0,1} O 1 No
LoanRequiredForCar {0,1} O 1 No
LoanRequiredForHome {0,1} O 1 No
NoCreditHistory {0,1} O 1 No
HistoryOfLatePayments {0,1} © 1 No
HistoryOfDelinquency {0,1} O 1 No
HistoryOfBankInstallments {0,1} © 1 Yes +
HistoryOfStoreInstallments {0,1} O 1 Yes +
CheckingAcct_exists {0,1} © 1 Yes +
CheckingAcct>0 {0,1} O 1 Yes +
SavingsAcct_exists {0,1} O 1 Yes +
SavingsAcct>100 {0,1} O 1 Yes +

Table 6: Table of Separable Actionability Constraints for the ge rman dataset. Includes bounds and monotonicity
constraints.

Joint Actionability Constraints:
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. DirectionalLinkage: Actions on YearsAtResidence will induce to actions on ['Age’]. Each
unit change in YearsAtResidence leads to:1.00-unit change in Age

. DirectionalLinkage: Actions on YearsEmployed>1 will induce to actions on [’Age’]. Each unit
change in YearsEmployed>1 leads to:1.00-unit change in Age

. ThermometerEncoding: Actions on [CheckingAcctexists, CheckingAcct>0] must preserve
thermometer encoding of CheckingAcct., which can only increase. Actions can only turn on
higher-level dummies that are off, where CheckingAcctexists is the lowest-level dummy and
CheckingAcct >0 is the highest-level-dummy.

. ThermometerEncoding: Actions on [SavingsAcctexists, SavingsAcct>100] must preserve
thermometer encoding of SavingsAcct., which can only increase. Actions can only turn on
higher-level dummies that are off, where SavingsAcctexists is the lowest-level dummy and
SavingsAcct>100 is the highest-level-dummy.
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B.3 givemecredit
B.3.1 Dataset Description

The givemecredit dataset is used to determine whether a loan should be given or denied. The
label indicates whether someone was 90 days past due in the two years following data collection.
Delinquency refers to a debt with an overdue payment; this dataset is used to predict if someone will
experience financial distress in the next two years.

It contains information about n = 120, 268 loan recipients, and each instance represents a borrower.
There are d = 10 features before preprocessing. The label is SeriousDlgin2yrs, meaning serious
delinquency in two years. In preprocessing, we change the label to NotSeriousDlgin2yrs so that
y; = 11s a positive classification and y; = 0 is negative.

The data is self-contained and anonymous, and it contains features describing age, income, and the
number of dependents.

B.3.2 Actionability Constraints

Name Type LB UB mutability
Age_leq_24 {0,1} © 1 no
Age_bt_25_to_30 {0,1} © 1 no
Age_bt_30_to_59 {0,1} © 1 no
Age_geq_60 {0,1} © 1 no
NumberOfDependents_eq_0 {0,1} © 1 no
NumberOfDependents_eq_1 {0,1} © 1 no
NumberOfDependents_geq_2 {0,1} © 1 no
NumberOfDependents_geq_5 {0,1} © 1 no
DebtRatio_geq_1 {0,1} © 1 only increases
MonthlyIncome_geq_3K {0,1} © 1 only increases
MonthlyIncome_geq_5K {0,1} © 1 only increases
MonthlyIncome_geq_10K {0,1} O 1 only increases
CreditLineUtilization_geq_10.0 ~ {0,1} 0 1 yes
CreditLineUtilization_geq_20.0  {0,1} 0 1 yes
CreditLineUtilization_geq_50.0  {0,1} 0 1 yes
CreditLineUtilization_geq_70.0  {0,1} 0 1 yes
CreditLineUtilization_geq_100.0 {0,1} 0 1 yes
AnyRealEstateLoans {0,1} © 1 only increases
MultipleRealEstateLoans {0,1} © 1 only increases
AnyCreditLinesAndLoans {0,1} O 1 only increases
MultipleCreditLinesAndLoans {0,1} © 1 only increases
HistoryOfLatePayment {0,1} O 1 no
HistoryOfDelinquency {0,1} O 1 no

Table 7: Table of Separable Actionability Constraints for the givemecredit dataset. Includes bounds and
monotonicity constraints.

Joint Actionability Constraints:

1. ThermometerEncoding: Actions on [MonthlyIncome>3K, MonthlyIncome>5K,
MonthlyIncome>10K] must preserve thermometer encoding of Monthlylncomegeq.,
which can only increase. Actions can only turn on higher-level dummies that are off,
where MonthlyIncome>3K is the lowest-level dummy and MonthlyIncome>10K is the
highest-level-dummy.

2. ThermometerEncoding: Actions on [CreditLineUtilization>10.0,
CreditLineUtilization>20.0, CreditLineUtilization>50.0,
CreditLineUtilization>70.0, CreditLineUtilization>100.0] must preserve
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thermometer encoding of CreditLineUtilizationgeq., which can only decrease. Actions can
only turn off higher-level dummies that are on, where CreditLineUtilization>10.0 is the
lowest-level dummy and CreditLineUtilization>100.0 is the highest-level-dummy.

3. ThermometerEncoding: Actions on [AnyRealEstatelLoans, MultipleRealEstateLoans]
must preserve thermometer encoding of continuousattribute., which can only decrease. Actions
can only turn off higher-level dummies that are on, where AnyRealEstateLoans is the lowest-
level dummy and MultipleRealEstateLoans is the highest-level-dummy.

4. ThermometerEncoding: Actions on [AnyCreditLinesAndLoans,
MultipleCreditLinesAndLoans] must preserve thermometer encoding of continu-
ousattribute., which can only decrease. Actions can only turn off higher-level dum-
mies that are on, where AnyCreditLinesAndLoans is the lowest-level dummy and
MultipleCreditLinesAndLoans is the highest-level-dummy.
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C Supplementary Experiment Results
C.1 Overview of Model Performance

LR XGB RF

Dataset Train  Test Train  Test Train  Test

heloc
n=>5,842
d=143(d4 = 31)
FICO [20]

0.772  0.788 0.859 0.785 0.780 0.790

german
n = 1,000
d=36(ds =9)
Dua and Graff [14]

0.819 0.760 0971 0.794 0.828 0.766

givemecredit
n = 120, 268
d=23(ds =13)
Kaggle [29]

0.841 0.844 0.875 0.793 0.864 0.835

Table 8: Train and Test AUC for models across all datasets. We optimized the model’s hyperparameters through
randomized search and divided the data into training and testing sets at an 80% and 20% ratio.

C.2 Responsiveness of Explanations for RF Models

RF
All Features Actionable Features

Dataset Metrics LIME SHAP LIME SHAP RESP
el % Presented with Explanations  100.0% 100.0% 100.0% 100.0% 34.6%
e705c 849 L % All Unresponsive 0.0%
Z: 4é (ds = 31) L % At Least 1 Responsive 149%  21.8%  259%  25.6% 100.0%
FIEO [20]A - L % All Responsive 0.0% 0.0% 0.0% 0.0% 100.0%
L Mean # of Features 4.0 4.0 4.0 4.0 2.5
% Presented with Explanations  100.0% 100.0% 100.0% 100.0% 51.4%
gejmlaré 00 L % All Unresponsive 0.0%
Z: 3é (s = 9) L % At Least 1 Responsive 0.0% 12.6%  28.6%  40.0% 100.0%
D_ nd é }[14] L % All Responsive 0.0% 0.0% 0.0% 0.0% 100.0%
uaand b L, Mean # of Features 40 40 40 40 25
) dit % Presented with Explanations  100.0% 100.0% 100.0% 100.0% 93.2%
zlzelr;eocgz 8l L % All Unresponsive 0.0%
d : 93 (;i —13) L % At Least 1 Responsive 40.0% 60.4% T713%  82.4% 100.0%
K_ ) [23]_ L % All Responsive 0.0% 0.0% 0.8% 12.7% 100.0%
aege L, Mean # of Features 40 40 40 40 2.9

Table 9: Responsiveness of feature-based explanations for RF models for all methods and all datasets. Given a
model, we construct an explanation for each individuals who are denied a loan using the top-4 scoring features
from a specific feature attribution method. We report: % Presented with Explanations, the proportion of
individuals who receive an explanation; Mean # of Features, the number of features in each explanation; and %
All Unresponsive | At Least 1 Responsive | All Responsive, the proportion of explanations where all features are
unresponsive/at least 1 feature is responsive/all features are responsive. For each dataset and model class, we
show the approach that provides the most responsive explanations in bold, and highlight instances where all
explanations are unresponsive in

D Additional Plots
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Dataset: fico, Model: LR, Method: SHAP
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Figure 3: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.

Dataset: fico, Model: XGB, Method: SHAP
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Figure 4: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Dataset: fico, Model: RF, Method: SHAP Dataset: fico, Model: RF, Method: LIME
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Figure 5: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Figure 6: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Dataset: german, Model: XGB, Method: SHAP Dataset: german, Model: XGB, Method: LIME
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Figure 7: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Figure 8: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Dataset: givemecredit, Model: LR, Method: SHAP Dataset: givemecredit, Model: LR, Method: LIME
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Figure 9: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Figure 10: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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Dataset: givemecredit, Model: RF, Method: SHAP Dataset: givemecredit, Model: RF, Method: LIME
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Figure 11: The percent of times where the feature at the shown rank from LIME, LIME-AW, SHAP, SHAP-AW
and RESP is responsive — i.e. has at least one single-feature action that leads to recourse — for denied individuals.
Only features with a non-zero score under the feature attribution method are shown. Individuals who receive a
score of zero do not appear in the chart.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction reflect our contributions in Section 3 and our empirical
results in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions for the problem statement are provided in Section 2. As for
theoretical results, they are either definitions or trivial remarks that do not need written proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include a project repository that includes code to run the experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

» While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

1. If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

2. If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

3. If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

4. We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We include a project repository that includes code and the datasets required to run
the experiment.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.
. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We outline all training and test details in Section 4 and additional details in ??.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not included due to running the experiment several times will be
computationally expensive.

Guidelines:
* The answer NA means that the paper does not include experiments.

» The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of
errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: We provide computer resource details in ??.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimen-
tal runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the Code of Ethics. Our work does not violate the Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: We discuss the societal impact of our work in Section 1 and Section 5.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]
Justification: Our work does not pose risk for misuse of datasets and models.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

» We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]
Justification: We have cited the original sources of code packages and datasets used in our work.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We include a project repository of our code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: Our work does not involve human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.
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* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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