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Abstract

Adapting large language models (LLMs) as001
agents for new tasks or domains remains002
a central challenge in NLP. Traditional ap-003
proaches such as fine-tuning or parameter-004
efficient adaptation can be costly, inflexible,005
and opaque. In this work, we propose a flexible006
memory-augmented framework that enables007
LLM agents to continuously learn from both008
supervised signals and structured critiques with-009
out updating model parameters. Our framework010
distinguishes between semantic and episodic011
memory, and introduces two forms of reflective012
insights, instance-level critiques and generaliz-013
able principles, to capture and organize knowl-014
edge from labeled examples and their neighbor-015
hoods. We investigate how memory should be016
structured and how it can be effectively used to017
adapt agents to new scenarios. Across diverse018
tasks, our method yields up to 12.5% accuracy019
gains. We also introduce suggestibility, a new020
metric quantifying how readily models inter-021
nalize feedback. Our findings highlight the022
promise of memory-driven reflective learning023
for building more adaptive and interpretable024
LLM agents.025

1 Introduction026

027

Large language models (LLMs) have demon-028

strated impressive generalization capabilities029

across a wide range of tasks. These AI agents030

rely on intelligence embedded in their pretrained031

parameters, and increasingly, on learning from task-032

specific signals, whether explicit (e.g., labeled su-033

pervision) or implicit (e.g., user interactions, feed-034

back). A key challenge is enabling agents to contin-035

uously improve their performance and generalize036

to unseen domains or tasks by distilling knowledge037

from such signals and storing them in a reusable038

and interpretable form.039

All code is available here.

Traditional approaches to learning from new 040

signals often involve updating model parame- 041

ters through fine-tuning (Radford et al., 2018; 042

Howard and Ruder, 2018) or adaptation mecha- 043

nisms such as parameter-efficient methods (e.g., 044

LoRA adapters) (Houlsby et al., 2019; Hu et al., 045

2022). While effective, these approaches incur 046

computational cost, require retraining for every 047

new signal or task, and often lack interpretability or 048

controllability. Furthermore, they provide limited 049

support for never-ending learning, where an agent 050

must continuously adapt without retraining from 051

scratch or storing large sets of models. 052

An alternative paradigm is memory-augmented 053

learning (Weston et al., 2015; Zhong et al., 2024), 054

where the underlying model remains frozen, and 055

adaptation occurs through interaction with an ex- 056

ternal memory. This memory stores relevant task 057

knowledge, examples, demonstrations, or expla- 058

nations, that can be retrieved at inference time to 059

inform the model’s decisions. Among such ap- 060

proaches, in-context learning (ICL) (Dong et al., 061

2024) has emerged as a simple yet powerful mech- 062

anism, where the model is conditioned on a prompt 063

consisting of a small number of examples (few-shot 064

learning). However, directly incorporating super- 065

vised signals in the LLM context often relies on 066

only few-shot input-output examples and tends to 067

result in shallow pattern mimicking, due to a lack 068

of deeper abstraction or conceptual understanding. 069

Recent work (Madaan et al., 2023; Yao et al., 070

2023; Shinn et al., 2023) has highlighted the ca- 071

pacity of LLMs to not only perform tasks but also 072

critique them, generating feedback and identifying 073

patterns of errors in their own outputs. Inspired 074

by human tutoring, where feedback often includes 075

explanations of mistakes and guidance for improve- 076

ment, we explore whether such reflective insights 077

can be distilled into reusable knowledge for fu- 078

ture tasks. Instead of merely memorizing example 079

responses, we hypothesize that an agent that inter- 080
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Figure 1: Agents learn from supervised signals by incorporating them into memory. At inference time, both task-
level insights (semantic memory) and context-specific information (episodic memory) can support more informed
decision-making.

nalizes structured feedback can develop a deeper081

understanding of task requirements and generalize082

more effectively to new examples.083

In this paper, we investigate how LLM agents084

can effectively and continuously learn from super-085

vised signals and deeper reasoning provided by086

critiques, incorporating these insights into mem-087

ory. We introduce a flexible framework that models088

both semantic and episodic memory, and propose089

two forms of reflective insights: critiques and prin-090

ciples. These insights capture knowledge from091

labeled instances and their local neighborhoods,092

enabling more adaptive and reflective reasoning.093

Grounded in this framework, our empirical inves-094

tigation is guided by two central research questions:095

(i) If LLM-based agents are to learn to improve096

continuously, then how should their memory097

be structured, generated, and represented? (ii)098

How can memory be effectively used to adapt099

agents to unseen scenarios? Through extensive100

empirical evaluations across diverse datasets, we101

observe up to a 12.5% improvement in accuracy102

with memory-augmented reasoning, demonstrat-103

ing the effectiveness of our learning strategies. In-104

depth analyses reveal that while generic semantic105

memory is often less effective than instance-based106

episodic memory, combining both types yields ad-107

ditional benefits. We further explore how task char-108

acteristics, the components of reflective insights,109

and the quantity of labeled data influence perfor-110

mance.111

Additionally, we introduce a new metric, sug-112

gestibility, to quantify the extent to which mod-113

els internalize and adapt to critique-based insights. 114

Our findings show that suggestibility varies by 115

task type, with preference-oriented tasks showing 116

greater responsiveness to critiques than fact-based 117

tasks. We also find that the presence of rationale 118

within critiques significantly enhances model sug- 119

gestibility. 120

2 Learning from Supervised Signals 121

For large language model (LLM)-based agents, the 122

availability of supervised signals, in the form of 123

labeled datasets and continuously incoming feed- 124

back from users or the environment, presents a 125

wide range of opportunities for building agents that 126

can learn and improve continuously. 127

As illustrated in Figure 1, we refer to our task- 128

solving agent as the performance agent (PA). The 129

PA consists of a backbone model, which it queries 130

to perform tasks, and a memory module, which it 131

can read from and write to. Given a new task to 132

which we want to adapt the agent, we begin with 133

an initial labeled dataset: 134

Dinit
train = {(xi, yi)}Ni=1, where each xi represents 135

a task-related question or request, and yi denotes 136

the corresponding correct label or answer. The 137

performance agent processes inputs xi from a test 138

set Dtest and produces initial predictions denoted 139

by PA(xi). 140

To enhance the capabilities of the PA, we intro- 141

duce a second component: the critic agent (CA). 142

The CA takes as input one tuple (xi, yi) along with 143

the PA’s prediction PA(xi), and outputs a text cri- 144
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tique aimed at improving the PA’s performance.145

3 What to Remember?146

We explore how to extract useful information from147

supervised signals to populate the memory module.148

We introduce two strategies for knowledge distil-149

lation: critiques, which provide instance-specific150

feedback, and principles, which capture generaliz-151

able patterns to guide future predictions.152

3.1 Critique153

Critique is a widely used approach for improving154

model performance and guiding iterative refine-155

ment by identifying errors, uncovering blind spots,156

and providing actionable feedback for enhance-157

ment. (Shinn et al., 2023; Gou et al., 2024; Chen158

et al., 2024) In our setup, we employ an external,159

label-driven critique generation process, where the160

critic agent is distinct from the performance agent161

and uses the ground-truth answers as part of its162

input to generate critiques. For each question in163

the dataset, the performance agent first produces an164

initial prediction. The critique agent is then given165

the correct answer and asked to critique the perfor-166

mance agent’s output. Each critique is structured167

into the following fields:168

• Assertion: A reiteration of the correct answer169

to the question. and a judgment regarding170

the correctness of the performance agent’s re-171

sponse.172

• Rationale: An instance-specific explanation173

detailing why the correct answer is valid and174

why the performance agent’s response was cor-175

rect or incorrect.176

• Reflection: A broader, generalizable insight177

that may be applicable to similar questions in178

the future.179

This design addresses a key challenge observed180

in our empirical studies: critic agents sometimes181

persist in their own incorrect understanding from its182

underlying model when generating critiques, even183

after being shown the correct answer. Because the184

critic agent draws on the model’s parametric knowl-185

edge, it can inherit pretraining biases that reinforce186

such confirmation. To mitigate this, we require the187

critic agent to explicitly restate the correct answer188

and make a clear assertion about the correctness189

of the initial prediction before offering a rationale190

or reflection. This explicit structure significantly191

reduces confirmation bias.192

We further decompose critiques into two con- 193

ceptual layers—rationale (local) and reflection 194

(global)—to balance specificity and generalizabil- 195

ity. An ideal rationale should provide a detailed 196

explanation tailored to the specific instance, while 197

a reflection should capture broader insights that 198

can be applied to unseen examples in the future. 199

This structured format resulted in noticeably higher- 200

quality critiques. 201

Example Critique

Question: Which of these is a learned be-
havior of a crow?
Choice 0: Having excellent hearing
Choice 1: Dropping nuts in front of cars
Choice 2: Having black feathers
...
(PA chose Choice 1)
Critique:

• Assertion: Choice 1
• Rationale: Crows dropping nuts in front

of cars is a learned behavior that shows
their ability to adapt and mimic effective
strategies, as it involves...

• Reflection: Learned behaviors result from
experience or environmental interaction,
unlike innate traits, which are inherited.

202

While these critiques were informative and de- 203

tailed, their pointwise nature, operating on a single 204

data point at a time, limits their ability to identify 205

patterns across examples. To complement this, we 206

introduce a second form of insight: principles. 207

3.2 Principle 208

Principles are learning artifacts designed to general- 209

ize across multiple examples. We define a principle 210

as “a fact, pattern, preference, or any other insight 211

that can help answer similar questions in the fu- 212

ture.” This intentionally flexible definition allows 213

the critic agent to discover trends across instances. 214

While conceptually similar to the reflections of cri- 215

tiques, principles are grounded in patterns observed 216

across multiple examples rather than a single one. 217

For each data instance in the training set, we 218

sample K = 10 additional instances selected based 219

on embedding similarity using retrieval-augmented 220

generation (RAG) (details in Appendix A.1). The 221

K + 1 instances and their associated ground-truth 222

answers are provided as input to the critic agent, 223

which then produces a single principle that applies 224
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to all K + 1 examples. This setup encourages225

the principles to capture patterns or insights that226

generalize beyond the original instance compared227

to the critiques.228

Example Principle

Question: For user 1679, are they more
likely to buy or not buy the game The Cave?
Principle: Users who have shown a prefer-
ence for indie or unique gaming experiences
(like "Gratuitous Space Battles" and "Ham-
merwatch") are more likely to buy similar
games, while they tend to avoid more main-
stream or well-known titles (like "Grand
Theft Auto IV" and "Star Wars - Jedi Knight
II Jedi Outcast").

229

3.3 Incorporating Insights into Memory230

Next, we investigate how learned insights, whether231

critiques or principles, can be effectively incor-232

porated into the agent’s memory. We adopt two233

primary forms of agent memory: semantic mem-234

ory and episodic memory, both of which are well-235

established in agentic learning literature (Sumers236

et al., 2024).237

Semantic memory encodes generalizable knowl-238

edge across the entire dataset. In this work, we239

construct semantic memory by summarizing the240

contents of critiques or principles into a unified241

knowledge representation. This allows the perfor-242

mance agent to draw on abstract insights during243

inference in future tasks.244

Episodic memory, by contrast, captures instance-245

specific knowledge grounded in concrete exam-246

ples and the performance agent’s initial behavior.247

For each example, we store the supervised signal248

(xi, yi) along with its corresponding critique and249

principle as an episodic memory entry.250

4 Memory Utilization Strategies251

With the addition of semantic and episodic mem-252

ory, the agent gains the ability to reason using both253

the parametric knowledge embedded in its underly-254

ing model and the externally provided supervised255

signals, represented as various forms of memory. A256

central question that arises is how to best leverage257

these memories to improve decision-making dur-258

ing inference on new data. To this end, we explore259

several memory utilization strategies to study the260

impact of different memory representations.261

4.1 Semantic Memory 262

Semantic memory is designed to encode generaliz- 263

able insights that are broadly applicable across the 264

entire task domain. To utilize it at inference time, 265

we augment the performance agent’s prompt with 266

these insights in the form of additional instructions. 267

Concretely, the SEM_CRIT variant incorporates sum- 268

marized critiques derived from the training data, 269

while SEM_PRIN uses summarized principles ex- 270

tracted from the same data. These prompts provide 271

high-level guidance aimed at improving generaliza- 272

tion on unseen examples. 273

4.2 Episodic Memory 274

While semantic memory offers concise and broadly 275

applicable knowledge, it often fails to capture nu- 276

anced patterns or context-specific behaviors, par- 277

ticularly in diverse datasets. Episodic memory ad- 278

dresses this by enabling the agent to recall specific 279

past instances, effectively allowing it to "revisit" 280

similar scenarios where successes or failures oc- 281

curred, along with accompanying context and criti- 282

cal reasoning. 283

The key to effective use of episodic memory lies 284

in the retrieval of relevant examples. The agent re- 285

trieves relevant memories from similar prior cases 286

and conditions on both the original examples and 287

their critiques, learning to weigh and incorporate 288

only the most pertinent critiques rather than attend- 289

ing to all examples equally. Following the retrieval- 290

augmented generation (RAG) paradigm, we iden- 291

tify the top K = 5 most similar data points to a test 292

input xi using semantic embeddings. The corre- 293

sponding memory entries, containing critical think- 294

ing artifacts are then used as additional demonstra- 295

tions for the performance agent. As with semantic 296

memory, EP_CRIT and EP_PRIN differ in the nature 297

of their episodic content: the former emphasizes 298

critiques on individual examples, while the latter 299

captures localized principles distilled from a neigh- 300

borhood of similar instances. 301

4.3 Combining Semantic and Episodic 302

To harness the complementary strengths of both 303

memory types, we introduce EP+SEM_PRIN and 304

EP+SEM_CRIT. These hybrid strategies present the 305

performance agent with both high-level semantic 306

instructions and context-specific episodic examples. 307

By unifying generalizable principles with detailed 308

situational context, these approaches aim to support 309

more robust and adaptive reasoning during infer- 310
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ence. These are unified by simply concatenating311

the semantic memory to the end of the episodic312

memory. There is also a variant to this approach,313

EP+SEM_CRIT_LOCAL, which creates a new seman-314

tic memory entry at prediction time. Instead of315

summarizing critiques over the entire training set,316

EP+SEM_CRIT_LOCAL includes a summary of only317

the retrieved episodic entries. This presents a trade-318

off between the generality of the global semantic319

memory, and the specificity of the local semantic320

memory.321

5 Empirical Evaluation322

5.1 Datasets323

To evaluate the effectiveness of various memory-324

augmented learning strategies under diverse condi-325

tions, we conduct empirical studies across datasets326

spanning multiple domains. The tasks cover a327

range of settings, including fact-oriented question328

answering, ranking, retrieval-based QA.329

MMLU (Hendrycks et al., 2021) Given a fact-330

based, straightforward question on one of many331

different domains (such as math, science, history,332

or logic) select the correct answer out of 4. Ques-333

tions were sampled evenly across all subjects.334

Multi-Condition Ranking (Pezeshkpour and Hr-335

uschka, 2025) Given a list of 5 items, sort them336

in order along 3 logical conditions. Converted into337

a 4-choice multiple-choice task.338

NFCorpus (Boteva et al., 2016) Given a medical339

article and two medical papers, determine which340

paper is cited directly by the article’s bibliography.341

PubMed (Jin et al., 2019) Determine if a highly342

technical medical statement is true or false, across343

many different medical domains.344

345

To mitigate potential bias from LLMs being ex-346

posed to public datasets during pretraining, we347

additionally evaluated our strategies on four per-348

sonal preference datasets. The task was to predict349

whether a given item belonged to a user’s history.350

Even if the model had encountered these datasets351

during training, it would be unlikely to memorize352

preferences associated with individual user IDs.353

Steam Pref (Tamber) Video game playtime per354

user on the PC platform Steam. Sampled only355

games that were played for at least 5 hours.356

Book Pref (Ziegler et al., 2005) Book ratings 357

per user. Actual ratings were not used - the task 358

was formatted as predicting whether a user is more 359

or less likely to read a given title. 360

Anime Pref (Union) Anime ratings per user 361

from the website MyAnimeList. Actual ratings 362

were not used - the task was formatted as predict- 363

ing whether a user is more or less likely to watch a 364

given title. 365

Movie Pref (Parashar) Movie ratings per user, 366

based on the MovieLens dataset. Sampled only 367

movies rated 3/5 or higher. 368

369

For the preference datasets, we randomly se- 370

lected three users per dataset. For each user, 250 371

items were sampled from their history and 250 372

from outside it, prioritizing favorites when possible. 373

Users were treated independently, with no mem- 374

ory shared across them. For all other datasets, 500 375

questions were randomly sampled and evenly split 376

into training and testing sets. Additional dataset- 377

specific preprocessing details are provided in Ap- 378

pendix A.2 379

5.2 Experimental Setup 380

Most of our experiments were conducted using 381

OpenAI’s gpt-4o-mini (OpenAI, 2024) as the 382

base LLM, chosen for its strong balance between 383

cost and performance. Additionally, we ran a sub- 384

set of experiments using LLaMA 4 Scout (Meta, 385

2025) and OpenAI’s o4-mini (OpenAI, 2025) to 386

examine how results vary across open-source mod- 387

els and compute-constrained test-time settings. 388

We compared our learning pipeline against two 389

baseline setups: zero-shot and few-shot. The 390

zero-shot baseline reflects the performance agent’s 391

output without any memory or demonstrations. 392

The few-shot baseline includes K = 5 example 393

question-answer pairs (xi, yi) sampled from the 394

training set (the same as in episodic memory ex- 395

periments, for consistency), where xi is the input 396

and yi the corresponding answer. Note that both 397

baselines rely solely on the original supervised sig- 398

nals and do not include any additional insights or 399

memory augmentation. 400

5.3 Results 401

Table 1 compares various learning strategies 402

against the baselines across all eight datasets. We 403

observe substantial variance across datasets, both 404

in baseline performance and in the effectiveness 405
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Model and
Experiment MMLU

Multi-
Condition
Ranking

NFCorpus PubMed Steam
Pref

Book
Pref

Anime
Pref

Movie
Pref

gpt-4o-mini
Zero-shot 88.7 56.8 85.6 62.4 52.8 52.0 47.9 49.9
Few-shot 88.0 67.6 85.6 62.0 55.8 50.9 51.1 53.2
EP_CRIT 88.0 65.2 83.6 62.0 62.7 53.8 54.4 57.7
EP_PRIN 92.0 66.4 85.2 61.2 68.3 50.7 55.1 56.4
SEM_CRIT 87.3 58.4 87.2 59.6 60.1 45.5 48.8 58.7
SEM_PRIN 87.3 58.4 85.6 59.2 62.0 51.5 46.3 57.1
EP+SEM_CRIT 86.0 56.8 85.2 61.6 62.4 54.2 61.7 59.3
EP+SEM_PRIN 84.0 62.0 83.2 61.2 67.6 52.1 56.9 61.6

Llama 4 Scout
Zero Shot 82.0 66.4 57.2 66.8 49.9 51.9 47.9 49.2
Few Shot 90.7 74.4 69.6 66.4 61.3 54.5 58.1 58.4
EP_CRIT 92.0 77.6 82.8 70.0 61.5 51.2 59.1 57.2
SEM_CRIT 84.7 62.8 66.8 63.2 48.9 47.8 48.8 51.3
EP+SEM_CRIT 91.3 78.4 82.8 68.8 57.8 51.9 55.9 57.6

o4-mini
Zero Shot 92.7 87.6 89.2 62.0 50.4 49.3 51.1 51.6
Few Shot 91.3 90.0 91.6 66.8 60.0 49.7 63.9 59.3
EP_CRIT 92.7 80.8 89.2 64.8 60.6 50.5 68.1 60.7
SEM_CRIT 92.0 69.6 88.8 60.4 48.0 48.2 48.9 50.9
EP+SEM_CRIT 91.3 90.4 90.8 61.2 61.5 52.4 68.3 57.6

Table 1: Agent accuracy across datasets and models. We use EP, SEM, and EP+SEM to denote episodic, semantic, and
combined memory. Suffixes _CRIT and _PRIN indicate critique- or principle-based entries. Results on preference
datasets are averaged across all users. For each model and dataset, the highest score is bolded and the second-highest
is underlined.

of memory-augmented learning. The first four406

datasets are more fact-oriented and show mini-407

mal to no improvement from our learning pipeline408

when using gpt-4o-mini. Although we signifi-409

cantly outperform the zero-shot baseline on the410

Multi-Condition Ranking task, failing to exceed411

the few-shot baseline suggests that improvements412

stem from few-shot prompting rather than from the413

insights themselves.414

In contrast, three out of four preference-based415

datasets exhibit clear gains. Incorporating insights416

yields over 10% improvement on all three pref-417

erence datasets, except for Book Pref. For inter-418

pretability, results are averaged over the three users419

per dataset, though notable variation exists across420

users (see Figure 2 for per-user results).421

Episodic memory generally outperforms seman-422

tic memory, indicating that the model benefits more423

from a few specific examples than from a sum-424

mary of the entire training set—suggesting limi-425

tations in the quality of the semantic summaries.426

Still, combining the specificity of episodic memory427

with the generalizations of semantic memory some-428

times yields the strongest performance. Principle-429

based methods tend to perform well in domains430

where knowledge is more clustered and are often431

more effective with episodic memory. This may432

be because summarizing over principles can pro- 433

duce overly generic representations that lack the 434

actionable specificity needed for effective decision- 435

making. 436

5.4 Results with Different Models 437

We observe substantial variation in how the three 438

backbone models respond to memory-augmented 439

learning. In principle, the critic and performance 440

agents may use different models; however, to con- 441

strain experimental complexity, we use the same 442

model for both. Additionally, we select one repre- 443

sentative strategy per memory type for each model. 444

LLaMA 4 Scout (Meta, 2025) exhibits 445

lower baselines on fact-oriented datasets but 446

stronger few-shot performance, particularly on 447

preference data—an opposite trend compared to 448

gpt-4o-mini. We attribute these differences to 449

model size and variations in pretraining empha- 450

sis. Llama 4 Scout is a mixture-of-experts model 451

with 17B active parameters and 109B total pa- 452

rameters. This opens different opportunities for 453

memory-augmentated learning: we observe strong 454

gains on NFCorpus and modest improvements on 455

Multi-Condition Ranking and PubMed. On pref- 456

erence datasets, while seeing improvements over 457

zero-shot, it shows little to no gain. Semantic mem- 458
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ory alone is consistently uncompetitive, whereas459

episodic memory often yields the best performance.460

Adding semantic memory to episodic memory oc-461

casionally helps, notably in Multi-Condition Rank-462

ing.463

O4-mini (OpenAI, 2025), a reasoning-focused464

model, achieves the highest baselines on fact-465

oriented tasks—even in the zero-shot setting, leav-466

ing minimal room for improvement via utilizing467

memory. Only EP_SEM_CRIT provides marginal468

gains over this strong baseline. However, on pref-469

erence datasets, combining episodic and semantic470

memory consistently outperforms both zero- and471

few-shot baselines, suggesting this model is particu-472

larly capable of integrating complementary signals473

from both memory types.474

Experiment
(Training

Percentage)

Steam
Pref

Book
Pref

Anime
Pref

Movie
Pref

Baselines
Zero-shot 52.8 52.0 47.9 49.9
Few-shot 55.8 50.9 51.1 53.2

EP_CRIT
25% 61.6 49.5 55.7 56.1
50% 62.9 51.3 54.9 57.3
75% 64.1 53.4 57.6 57.1
100% 62.7 53.8 54.4 57.7

EP+SEM_CRIT
25% 57.8 48.5 55.1 57.1
50% 60.1 51.2 55.6 56.8
75% 59.7 50.6 58.9 60.5
100% 62.4 54.2 61.7 59.3

Table 2: Accuracy with varying size of training dataset
on preference datasets using gpt-4o-mini. For each
strategy, the highest score is bolded.

5.5 Dataset Size Scaling475

One of the strengths of this learning approach is476

how it is able to significantly improve performance477

over baseline with a very small amount of labeled478

data, especially using episodic memory. To test479

how much data is required, we ran gpt-4o-mini480

through the pipeline again on each of the preference481

datasets, using only 25%, 50%, and 75% of the orig-482

inal training data. Both the EP and EP+SEM methods483

begin to show improvement at 25%, with accuracy484

continuing to increase as more data is incorporated485

into memory. Methods utilizing semantic mem-486

ory are more affected by the lack of training data,487

as this can lead to lower-quality summary-level488

insights. Performance frequently begins leveling489

off between 75% and 100%, implying that we are490

reaching saturation with these datasets.491

5.6 Suggestibility 492

In memory-augmented agentic learning, it is cru- 493

cial not only to generate the best possible insight 494

(critique or principle) for inclusion in memory, but 495

also to ensure that the model is actually receptive 496

to it, i.e., that it can be “persuaded” by the insight. 497

This receptivity, which we term suggestibility, is 498

influenced by a compound of factors: the model 499

architecture, the nature of the task, and the format 500

in which the memory is represented. 501

To better quantify this phenomenon, we define a 502

suggestibility metirc S, which captures the differ- 503

ence in an agent’s performance when given a best- 504

effort insight versus when given an intentionally 505

misleading one (generated by flipping the ground- 506

truth label). Formally, 507

S =
1

|D|
∑
xi∈D

1 [PA(xi | Ins(xi, yi)) = yi]− 508

1

|D|
∑
xi∈D

1 [PA(xi | Ins(xi,¬yi)) = yi] 509

where PA denotes the performance agent, Ins refers 510

to the insight generation agent (which may produce 511

a critique or principle), and D is the evaluation 512

dataset. Note that in real-world settings, the true 513

label yi is not available to either PA or Ins; thus, 514

this metric represents an idealized or “cheating” 515

scenario, using artificially constructed best and ad- 516

versarial insights for controlled experimentation. 517

To explore how different components affect a 518

model’s suggestibility, we report S across five 519

experimental conditions, varying the context pro- 520

vided to the performance agent. As shown in Ta- 521

ble 3, X indicates the presence of the question, Y 522

denotes inclusion of the ground-truth label, and 523

Crit/Prin represent whether a critique or princi- 524

ple is included. 525

Model suggestibility exhibits strong dependence 526

on task characteristics. Fact-based datasets tend 527

to produce low suggestibility, consistent with ex- 528

pectations. These models are fine-tuned to resist 529

misinformation and are generally reluctant to give 530

confidently incorrect answers. A notable excep- 531

tion is the PubMed dataset, where the technical 532

complexity of medical queries appears to introduce 533

enough ambiguity for insights to meaningfully in- 534

fluence the model’s output. In contrast, preference- 535

based datasets reveal high levels of suggestibility 536

in nearly all conditions, except when only a princi- 537

ple is presented without an accompanying answer. 538
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MMLU
Multi-

Condition
Ranking

NFCorpus PubMed Steam
Preference

Book
Preference

Anime
Preference

Movie
Preference

XY 16.7 45.6 6.4 98.4 100.0 100.0 100.0 100.0
XY+Crit 48.7 98.4 40.0 99.6 100.0 100.0 100.0 100.0
XY+Prin 16.0 40.4 4.8 98.4 99.4 99.7 98.2 99.5
X+Crit 58.0 100.0 70.8 93.2 100.0 99.8 100.0 100.0
X+Prin 0.7 -2.0 0.0 8.0 10.6 17.6 18.0 13.8

Table 3: Suggestibility scores across datasets averaged across users. X represents the question, Y denotes the presence
of an answer, and Crit/Prin represent whether additional insights are present.

This, too, is expected: the model lacks specific539

knowledge about the user’s preferences and will540

often adopt whichever answer it is guided toward.541

Models demonstrate a marked increase in sug-542

gestibility when explanations are provided. This is543

evidenced by higher S in the XY+Crit condition rel-544

ative to both XY alone and XY+Prin. Furthermore,545

providing the true label substantially improves546

suggestibility in principle-based settings (compare547

XY+Prin with X+Prin), but yields smaller improve-548

ments—or even slight declines—in critique-based549

settings (compare XY+Crit with X+Crit). This550

may be because critiques already contain pointwise551

assertions, whereas principles tend to express more552

general, future-oriented guidance. Detailed accu-553

racy values for the performance agent under both554

true and false insight conditions are included in the555

appendix (Table 4).556

6 Related Work557

Agentic Memory Recent LLM-based agent re-558

search has focused on memory management chal-559

lenges due to context length limitations. The pre-560

dominant approach is retrieval-based augmenta-561

tion (RAG), using embedding similarity for mem-562

ory retrieval. Memories range from simple in-563

put/output copies to complex structures: Reflexion564

(Shinn et al., 2023) stores agent self-reflections,565

Voyager (Wang et al., 2024) maintains reusable566

agent-created tools, and Generative Agents (Park567

et al., 2023) employs a two-tier system of event568

streams and higher-level reflections.569

Fine-tuning While fine-tuning is a well-570

established way of improving a model’s perfor-571

mance in a specific area (Dodge et al., 2020), it572

presents challenges such as: extensive labeled data573

requirements (Vieira et al., 2024), catastrophic574

forgetting (Luo et al., 2025), computational575

expense (Hu et al., 2022), and inapplicability to576

closed-source models.577

In-Context Learning In-context learning treats 578

models as black boxes, adjusting inputs to influence 579

outputs (Dong et al., 2024). Simple prompt modifi- 580

cations like appending “Let’s think step by step” 581

can significantly improve performance (Kojima 582

et al., 2022). Few-shot learning enhances results by 583

providing question-answer examples (Brown et al., 584

2020). Reflection-based approaches, where mod- 585

els reason over feedback about their decisions, en- 586

able autonomous improvement (Shinn et al., 2023; 587

Yao et al., 2023). However, most research focuses 588

on feedback from simulated environments (Wang 589

et al., 2024), with limited exploration of other feed- 590

back mechanisms. 591

7 Conclusion 592

In summary, we present a memory-augmented 593

framework for enabling LLM agents to continu- 594

ously learn from supervised signals and structured 595

critiques. By modeling both semantic and episodic 596

memory and introducing reflective insights in the 597

form of critiques and principles, our approach en- 598

hances generalization without modifying model 599

parameters. Empirical results demonstrate substan- 600

tial performance gains and reveal the importance 601

of memory structure and critique quality. Our pro- 602

posed metric, suggestibility, offers a new lens for 603

understanding how models internalize feedback. 604

This work highlights the potential of reflective 605

memory as a lightweight, interpretable, and exten- 606

sible mechanism for continual adaptation in LLMs. 607

Limitations 608

Our analysis has centered on the accuracy of differ- 609

ent agentic learning strategies, but design choices 610

also impact computational cost and the ability to in- 611

corporate ongoing supervision. Semantic memory 612

typically requires greater training-time computa- 613

tion due to summarization or distillation, whereas 614

episodic memory simply stores past experiences 615

8



with minimal processing. At inference time, how-616

ever, semantic memory offers more readily appli-617

cable knowledge, while episodic memory relies618

on retrieval quality. This trade-off suggests that619

the optimal strategy may depend on the size of620

the supervised dataset and the frequency of infer-621

ence—semantic memory may be better suited for622

frequent inference under sparse supervision, while623

episodic memory may be preferable when supervi-624

sion is abundant and retrieval is reliable.625

An additional interesting direction for exploring626

model suggestibility is to disentangle how much627

a model’s behavior changes due to genuinely in-628

corporating supervised signals into its internal be-629

liefs versus merely adapting its responses to please630

the user. In our empirical study, we observed that631

models exhibited higher suggestibility scores when632

critiques were attributed to the user, compared to633

when the same critiques were believed to originate634

from the model itself or another model. This sug-635

gests that the perceived source of feedback plays636

a significant role in how seriously the model treats637

the signal, opening up opportunities to better un-638

derstand and guide belief formation in interactive639

learning systems.640

The agentic learning tasks we explore primarily641

involve constraints on classification tasks, particu-642

larly in question answering and preference predic-643

tion. We observed significant performance varia-644

tions across different domains, and it remains un-645

clear whether these findings will generalize beyond646

the tasks and domains studied. Additionally, we647

found that performance generally improved with648

larger training sizes. Although this improvement649

appeared to plateau, larger datasets are needed to650

better understand how these techniques scale be-651

yond the sampled training sets used in this study.652

To reduce computational costs, we used the same653

model for both the performance agent and the critic654

agent. The impact of using different models within655

the memory-augmented learning setup remains un-656

explored. It is possible that combining models of657

varying capacities could yield many of the benefits658

of a more powerful model, particularly in terms of659

insight generation.660

Ethics Statement661

This research on memory-augmented learning for662

large language model agents raises several impor-663

tant ethical considerations that we wish to acknowl-664

edge.665

Though our suggestibility work was focused on 666

how the model’s instruction-following ability var- 667

ied with dataset, this kind of approach could also be 668

used to more efficiently jailbreak models to spread 669

misinformation. Future work should be careful to 670

avoid developing tools to improve the suggestibil- 671

ity of models to the point that they spread harmful 672

misinformation. 673

We also recognize that improved adaptation ca- 674

pabilities may exacerbate existing biases in these 675

agents. Because the insights are generated by the 676

agent itself, even with feedback from the labeled 677

data, it could cause the agent to reinforce its pre- 678

conceptions about the world, which may perpetuate 679

harmful stereotypes. Future work should explore 680

safeguards to identify and mitigate such bias am- 681

plification. 682
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A Implementation Details852

A.1 RAG Implementation853

We used blevlabs/stella_en_v5 as our encoder854

model and FAISS as our vector database. Simi-855

larity was based purely on the encodings of the856

questions in each dataset.857

Though we did experiment with fine-tuning an858

encoder model to increase the separation of the859

classes in each dataset (for example, bought vs not-860

bought games for each Steam user) in embedding861

space, we did not see significant improvements in862

performance.863

A.2 Dataset: Additional Details864

NFCorpus: The original NFCorpus data source865

associated each article with many papers with vary-866

ing degrees of separation, which we transformed867

into this pairwise setup by choosing one paper at868

the closest and furthest level of separation possible869

for each paper. Sampled 500 shortest combina-870

tions of articles and papers to avoid context-length871

issues.872

Steam and Book Preference: Due to limitations873

in the number of games/books per user, the training874

and test sizes are smaller for these datasets than oth-875

ers. The train-test split percentage was maintained876

at 50%.877

Steam User 1679: 104 samples in train set 878

Steam User 3188: 129 samples in train set 879

Steam User 6839: 116 samples in train set 880

Book User 63: 218 samples in train set 881

Book User 123: 183 samples in train set 882

Book User 2642: 206 samples in train set 883

A.3 Models 884

Default hyperparameters were used for all models. 885

OpenAI models were queried through the OpenAI 886

API, Llama 4 Scout was queried through the fire- 887

works.ai API. 888

B Prompts 889

Critique Generation

User: {Question}
Agent: {PA Initial Prediction}
User: The correct answer is {Ground Truth
Answer}. Explain why this is the correct
answer, following the following JSON format
{

correct_answer: correct_answer,
local_reason: Specific reasons why this

answer is correct in this particular case.,
global_reason: General reasons why this

answer is correct that can be applied to other
questions.
}.
Respond only with JSON.

890

Principle Generation

Your task is to identify trends in data
to improve your ability to make correct
predictions in the future.

For example in examples:
{Question} {Answer}

Identify one and only one guiding principle
explaining why the given answers are correct.
If there are no obvious connections between
the questions, give a principle for the first
example only.
A guiding principle may be a fact, a pattern,
a preference, or anything else that will
help you answer questions like these in the
future. With that in mind, principles should
be focused on information that you do not
already know. It should be very specific and
not generic advice.
Respond only with the principle, nothing
else.

891

Semantic Memory Generation

Your job is to summarize a set of
self-critiques made by some agent as they
perform different instances of their task.
For each instance you will be shown the output
of the agent, followed by the critiques made

892
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by the agent after they were told the correct
answer. Distill those critiques into a
helpful summary of advice to the agent, paying
particular attention to instances where the
agent outputs an incorrect answer. Produce
your output in a form that can be used
directly as instructions to the agent. You
should summarize the key points in these
critiques. Be precise and concise. Do not
repeat yourself.
For example in train_set:

{Question} {Answer} {Critique}
893

Performance Agent with Semantic Memory

{Question}
Here is some helpful advice that will help
you make your decision: {Summary}

894

Performance Agent with Episodic Memory

For example in examples:
User: {Example Question}
Agent: {PA Initial Prediction}
User: {Critique Generation Prompt}
Agent: {Critique}

User: Here is your final question, make sure
to learn from your past mistakes! {Question}

895

Performance Agent with Episodic and Seman-
tic Memory

For example in examples:
User: {Example Question}
Agent: {PA Initial Prediction}
User: {Critique Generation Prompt}
Agent: {Critique}

User: Here is your final question, make sure
to learn from your past mistakes! {Question}
Also, here is some additional advice to guide
your response: {Summary}

896

C Examples897

Example Critique Summary (NFCorpus)

1. **Focus on Relevance**: Always choose
the reference that directly relates to the sub-
ject matter of the article. Look for refer-
ences that support the main claims made in
the article.
2. **Identify Key Themes**: Ensure that
the reference paper closely aligns with the
key themes discussed in the article, such
as specific health effects, mechanisms of
action, or relevant population studies.
3. **Avoid General Topics**: Select ref-
erences that do not deviate into unrelated
topics. If one reference discusses founda-
tional knowledge or statistics that do not

898

support the article’s claims, it’s likely not
the correct choice.
4. **Highlight Specific Effects**: When
discussing studies, emphasize specific ef-
fects or outcomes that are directly addressed
in the article. Look for quantitative data or
direct correlations that would affirm the ar-
ticle’s claims.
5. **Example Comparison**: When there
are multiple choices, conduct a clear com-
parison between them. If one reference ex-
plicitly discusses the same variables out-
lined in the article, that should be favored.
6. **Review Findings**: When evaluat-
ing findings from referenced studies, ensure
they corroborate the arguments or recom-
mendations presented in the article. This
can include discussing potential risks, bene-
fits, or mechanisms.
7. **Address Opinions and Recommenda-
tions**: When the article discusses guide-
lines or opinions (such as on health recom-
mendations), favor references that critique
or analyze these points directly.
8. **Check for Clinical Relevance**: In
clinical or scientific discussions, emphasize
studies that provide empirical evidence that
can be tied back to practical outcomes re-
lated to the topic of the article.
9. **Nutritional Context**: In discussions
around diet, ensure the references speak to
the nutritional context being examined, such
as the impact of specific foods on health,
rather than unrelated dietary patterns.
10. **Summarizing Connections**: When
concluding which reference is correct,
clearly summarize why the chosen refer-
ence aligns best with the article’s content.
Discuss how it supports or expands upon
the article’s key points.
By following these instructions, you will
ensure that your references are relevant and
provide strong support for the claims made
in the articles you analyze.

899

Example Principle Summary (Anime Pref-
erence)

User 1635 exhibits a strong preference for
anime that features strong character devel-

900
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opment, emotional depth, and complex nar-
ratives. Their ratings indicate enjoyment of
series such as "Clannad: After Story," "Gin-
tama," "Higurashi no Naku Koro ni," and
"Kimi ni Todoke," while they tend to rate
simpler or less character-driven titles lower,
such as "Skip Beat!" and "Nyan Koi!".
They are particularly drawn to genres that
blend action, adventure, and psychologi-
cal themes, often rating these series highly
(8/10 or above). Titles like "Naruto,"
"Psycho-Pass," and "Fairy Tail" resonate
well with them, while they show less enthu-
siasm for slice-of-life or lighter narratives.
User 1635 also tends to favor critically ac-
claimed or popular series, indicating a pref-
erence for well-regarded storytelling and
character arcs.
Overall, their anime preferences reflect a
consistent inclination towards emotionally
engaging and character-driven narratives,
while they are less likely to enjoy works
that lack depth or complexity.

901

D Additional Results902

On the fact-based datasets in Table 4, the accuracy903

on the False trials is much higher than on the prefer-904

ence datasets. This supports the theory that the low905

suggestibility on these datasets is primarily due to906

the models being fine-tuned specifically to avoid907

giving disinformation.908

In Figure 2 there is significant variation between909

users on the same dataset. It is expected that some910

users will have more eclectic interests and be more911

difficult to predict, but it is notable how much the912

best strategy differs between each user. On the913

Steam Preference dataset, despite the overall im-914

provements being similar, the best approach varies915

from EP+SEM_CRITto EP_PRINto EP+SEM_PRIN.916
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Experiment MMLU
Multi-

Condition
Ranking

NFCorpus PubMed Steam
Preference

Book
Preference

Anime
Preference

Movie
Preference

XY True 96.0 92.0 89.6 99.2 100.0 100.0 100.0 100.0
XY False 79.3 46.4 83.2 0.8 0.0 0.0 0.0 0.0
XY+Crit True 98.7 100.0 98.0 100.0 100.0 100.0 100.0 100.0
XY+Crit False 50.0 1.6 58.0 0.4 0.0 0.0 0.0 0.0
XY+Prin True 94.7 93.6 86.8 99.2 99.7 99.7 99.9 99.9
XY+Prin False 78.7 53.2 82.0 0.8 0.3 0.0 1.7 0.4
X+Crit True 99.3 100.0 99.6 96.8 100.0 100.0 100.0 100.0
X+Crit False 41.3 0.0 28.8 3.6 0.0 0.2 0.0 0.0
X+Prin True 90.0 60.0 83.6 58.8 57.2 61.4 58.4 56.9
X+Prin False 89.3 62.0 83.6 50.8 46.6 43.8 40.4 43.1

Table 4: Raw accuracy in suggestibility analysis, showing specific accuracy scores when given the True or False
answer. X represents the question to answer, Y represents whether the answer to the question is given or not, and
Crit/Prin represent whether additional insights are present. Results on preference datasets are averaged across all
users.

Figure 2: Preference data accuracy results by user. We use EP, SEM, and EP+SEM to denote episodic, semantic, and
combined memory. Suffixes _CRIT and _PRIN indicate critique- or principle-based entries.
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