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Abstract

Adapting large language models (LLMs) as
agents for new tasks or domains remains
a central challenge in NLP. Traditional ap-
proaches such as fine-tuning or parameter-
efficient adaptation can be costly, inflexible,
and opaque. In this work, we propose a flexible
memory-augmented framework that enables
LLM agents to continuously learn from both
supervised signals and structured critiques with-
out updating model parameters. Our framework
distinguishes between semantic and episodic
memory, and introduces two forms of reflective
insights, instance-level critiques and generaliz-
able principles, to capture and organize knowl-
edge from labeled examples and their neighbor-
hoods. We investigate how memory should be
structured and how it can be effectively used to
adapt agents to new scenarios. Across diverse
tasks, our method yields up to 12.5% accuracy
gains. We also introduce suggestibility, a new
metric quantifying how readily models inter-
nalize feedback. Our findings highlight the
promise of memory-driven reflective learning
for building more adaptive and interpretable
LLM agents.

1 Introduction

Large language models (LLMs) have demon-
strated impressive generalization capabilities
across a wide range of tasks. These Al agents
rely on intelligence embedded in their pretrained
parameters, and increasingly, on learning from task-
specific signals, whether explicit (e.g., labeled su-
pervision) or implicit (e.g., user interactions, feed-
back). A key challenge is enabling agents to contin-
uously improve their performance and generalize
to unseen domains or tasks by distilling knowledge
from such signals and storing them in a reusable
and interpretable form.

All code is available here.

Traditional approaches to learning from new
signals often involve updating model parame-
ters through fine-tuning (Radford et al., 2018;
Howard and Ruder, 2018) or adaptation mecha-
nisms such as parameter-efficient methods (e.g.,
LoRA adapters) (Houlsby et al., 2019; Hu et al.,
2022). While effective, these approaches incur
computational cost, require retraining for every
new signal or task, and often lack interpretability or
controllability. Furthermore, they provide limited
support for never-ending learning, where an agent
must continuously adapt without retraining from
scratch or storing large sets of models.

An alternative paradigm is memory-augmented
learning (Weston et al., 2015; Zhong et al., 2024),
where the underlying model remains frozen, and
adaptation occurs through interaction with an ex-
ternal memory. This memory stores relevant task
knowledge, examples, demonstrations, or expla-
nations, that can be retrieved at inference time to
inform the model’s decisions. Among such ap-
proaches, in-context learning (ICL) (Dong et al.,
2024) has emerged as a simple yet powerful mech-
anism, where the model is conditioned on a prompt
consisting of a small number of examples (few-shot
learning). However, directly incorporating super-
vised signals in the LLM context often relies on
only few-shot input-output examples and tends to
result in shallow pattern mimicking, due to a lack
of deeper abstraction or conceptual understanding.

Recent work (Madaan et al., 2023; Yao et al.,
2023; Shinn et al., 2023) has highlighted the ca-
pacity of LLMs to not only perform tasks but also
critique them, generating feedback and identifying
patterns of errors in their own outputs. Inspired
by human tutoring, where feedback often includes
explanations of mistakes and guidance for improve-
ment, we explore whether such reflective insights
can be distilled into reusable knowledge for fu-
ture tasks. Instead of merely memorizing example
responses, we hypothesize that an agent that inter-
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Figure 1: Agents learn from supervised signals by incorporating them into memory. At inference time, both task-
level insights (semantic memory) and context-specific information (episodic memory) can support more informed

decision-making.

nalizes structured feedback can develop a deeper
understanding of task requirements and generalize
more effectively to new examples.

In this paper, we investigate how LLM agents
can effectively and continuously learn from super-
vised signals and deeper reasoning provided by
critiques, incorporating these insights into mem-
ory. We introduce a flexible framework that models
both semantic and episodic memory, and propose
two forms of reflective insights: critiques and prin-
ciples. These insights capture knowledge from
labeled instances and their local neighborhoods,
enabling more adaptive and reflective reasoning.

Grounded in this framework, our empirical inves-
tigation is guided by two central research questions:
(i) If LLM-based agents are to learn to improve
continuously, then how should their memory
be structured, generated, and represented? (ii)
How can memory be effectively used to adapt
agents to unseen scenarios? Through extensive
empirical evaluations across diverse datasets, we
observe up to a 12.5% improvement in accuracy
with memory-augmented reasoning, demonstrat-
ing the effectiveness of our learning strategies. In-
depth analyses reveal that while generic semantic
memory is often less effective than instance-based
episodic memory, combining both types yields ad-
ditional benefits. We further explore how task char-
acteristics, the components of reflective insights,
and the quantity of labeled data influence perfor-
mance.

Additionally, we introduce a new metric, sug-
gestibility, to quantify the extent to which mod-

els internalize and adapt to critique-based insights.
Our findings show that suggestibility varies by
task type, with preference-oriented tasks showing
greater responsiveness to critiques than fact-based
tasks. We also find that the presence of rationale
within critiques significantly enhances model sug-
gestibility.

2 Learning from Supervised Signals

For large language model (LLM)-based agents, the
availability of supervised signals, in the form of
labeled datasets and continuously incoming feed-
back from users or the environment, presents a
wide range of opportunities for building agents that
can learn and improve continuously.

As illustrated in Figure 1, we refer to our task-
solving agent as the performance agent (PA). The
PA consists of a backbone model, which it queries
to perform tasks, and a memory module, which it
can read from and write to. Given a new task to
which we want to adapt the agent, we begin with
an initial labeled dataset:

init — {(@;,y;)}Y . where each x; represents
a task-related question or request, and y; denotes
the corresponding correct label or answer. The
performance agent processes inputs x; from a test
set Diegt and produces initial predictions denoted
by PA(z;).

To enhance the capabilities of the PA, we intro-
duce a second component: the critic agent (CA).
The CA takes as input one tuple (z;, y;) along with
the PA’s prediction PA(x;), and outputs a text cri-



tique aimed at improving the PA’s performance.

3 What to Remember?

We explore how to extract useful information from
supervised signals to populate the memory module.
We introduce two strategies for knowledge distil-
lation: critiques, which provide instance-specific
feedback, and principles, which capture generaliz-
able patterns to guide future predictions.

3.1 Critique

Critique is a widely used approach for improving
model performance and guiding iterative refine-
ment by identifying errors, uncovering blind spots,
and providing actionable feedback for enhance-
ment. (Shinn et al., 2023; Gou et al., 2024; Chen
et al., 2024) In our setup, we employ an external,
label-driven critique generation process, where the
critic agent is distinct from the performance agent
and uses the ground-truth answers as part of its
input to generate critiques. For each question in
the dataset, the performance agent first produces an
initial prediction. The critique agent is then given
the correct answer and asked to critique the perfor-
mance agent’s output. Each critique is structured
into the following fields:

» Assertion: A reiteration of the correct answer
to the question. and a judgment regarding
the correctness of the performance agent’s re-
sponse.

* Rationale: An instance-specific explanation
detailing why the correct answer is valid and
why the performance agent’s response was cor-
rect or incorrect.

* Reflection: A broader, generalizable insight
that may be applicable to similar questions in
the future.

This design addresses a key challenge observed
in our empirical studies: critic agents sometimes
persist in their own incorrect understanding from its
underlying model when generating critiques, even
after being shown the correct answer. Because the
critic agent draws on the model’s parametric knowl-
edge, it can inherit pretraining biases that reinforce
such confirmation. To mitigate this, we require the
critic agent to explicitly restate the correct answer
and make a clear assertion about the correctness
of the initial prediction before offering a rationale
or reflection. This explicit structure significantly
reduces confirmation bias.

We further decompose critiques into two con-
ceptual layers—rationale (local) and reflection
(global)—to balance specificity and generalizabil-
ity. An ideal rationale should provide a detailed
explanation tailored to the specific instance, while
a reflection should capture broader insights that
can be applied to unseen examples in the future.
This structured format resulted in noticeably higher-
quality critiques.

Example Critique

Question: Which of these is a learned be-
havior of a crow?

Choice 0: Having excellent hearing
Choice 1: Dropping nuts in front of cars
Choice 2: Having black feathers

(PA chose Choice 1)

Critique:

e Assertion: Choice 1

* Rationale: Crows dropping nuts in front
of cars is a learned behavior that shows
their ability to adapt and mimic effective
strategies, as it involves...

* Reflection: Learned behaviors result from
experience or environmental interaction,
unlike innate traits, which are inherited.

. 7

While these critiques were informative and de-
tailed, their pointwise nature, operating on a single
data point at a time, limits their ability to identify
patterns across examples. To complement this, we
introduce a second form of insight: principles.

3.2 Principle

Principles are learning artifacts designed to general-
ize across multiple examples. We define a principle
as “a fact, pattern, preference, or any other insight
that can help answer similar questions in the fu-
ture.” This intentionally flexible definition allows
the critic agent to discover trends across instances.
While conceptually similar to the reflections of cri-
tiques, principles are grounded in patterns observed
across multiple examples rather than a single one.

For each data instance in the training set, we
sample K = 10 additional instances selected based
on embedding similarity using retrieval-augmented
generation (RAG) (details in Appendix A.1). The
K + 1 instances and their associated ground-truth
answers are provided as input to the critic agent,
which then produces a single principle that applies



to all K + 1 examples. This setup encourages
the principles to capture patterns or insights that
generalize beyond the original instance compared
to the critiques.

Example Principle

Question: For user 1679, are they more
likely to buy or not buy the game The Cave?
Principle: Users who have shown a prefer-
ence for indie or unique gaming experiences
(like "Gratuitous Space Battles" and "Ham-
merwatch") are more likely to buy similar
games, while they tend to avoid more main-
stream or well-known titles (like "Grand
Theft Auto IV" and "Star Wars - Jedi Knight
IT Jedi Outcast").

\

3.3 Incorporating Insights into Memory

Next, we investigate how learned insights, whether
critiques or principles, can be effectively incor-
porated into the agent’s memory. We adopt two
primary forms of agent memory: semantic mem-
ory and episodic memory, both of which are well-
established in agentic learning literature (Sumers
et al., 2024).

Semantic memory encodes generalizable knowl-
edge across the entire dataset. In this work, we
construct semantic memory by summarizing the
contents of critiques or principles into a unified
knowledge representation. This allows the perfor-
mance agent to draw on abstract insights during
inference in future tasks.

Episodic memory, by contrast, captures instance-
specific knowledge grounded in concrete exam-
ples and the performance agent’s initial behavior.
For each example, we store the supervised signal
(24, y;) along with its corresponding critique and
principle as an episodic memory entry.

4 Memory Utilization Strategies

With the addition of semantic and episodic mem-
ory, the agent gains the ability to reason using both
the parametric knowledge embedded in its underly-
ing model and the externally provided supervised
signals, represented as various forms of memory. A
central question that arises is how to best leverage
these memories to improve decision-making dur-
ing inference on new data. To this end, we explore
several memory utilization strategies to study the
impact of different memory representations.

4.1 Semantic Memory

Semantic memory is designed to encode generaliz-
able insights that are broadly applicable across the
entire task domain. To utilize it at inference time,
we augment the performance agent’s prompt with
these insights in the form of additional instructions.
Concretely, the SEM_CRIT variant incorporates sum-
marized critiques derived from the training data,
while SEM_PRIN uses summarized principles ex-
tracted from the same data. These prompts provide
high-level guidance aimed at improving generaliza-
tion on unseen examples.

4.2 Episodic Memory

While semantic memory offers concise and broadly
applicable knowledge, it often fails to capture nu-
anced patterns or context-specific behaviors, par-
ticularly in diverse datasets. Episodic memory ad-
dresses this by enabling the agent to recall specific
past instances, effectively allowing it to "revisit"
similar scenarios where successes or failures oc-
curred, along with accompanying context and criti-
cal reasoning.

The key to effective use of episodic memory lies
in the retrieval of relevant examples. The agent re-
trieves relevant memories from similar prior cases
and conditions on both the original examples and
their critiques, learning to weigh and incorporate
only the most pertinent critiques rather than attend-
ing to all examples equally. Following the retrieval-
augmented generation (RAG) paradigm, we iden-
tify the top X' = 5 most similar data points to a test
input z; using semantic embeddings. The corre-
sponding memory entries, containing critical think-
ing artifacts are then used as additional demonstra-
tions for the performance agent. As with semantic
memory, EP_CRIT and EP_PRIN differ in the nature
of their episodic content: the former emphasizes
critiques on individual examples, while the latter
captures localized principles distilled from a neigh-
borhood of similar instances.

4.3 Combining Semantic and Episodic

To harness the complementary strengths of both
memory types, we introduce EP+SEM_PRIN and
EP+SEM_CRIT. These hybrid strategies present the
performance agent with both high-level semantic
instructions and context-specific episodic examples.
By unifying generalizable principles with detailed
situational context, these approaches aim to support
more robust and adaptive reasoning during infer-



ence. These are unified by simply concatenating
the semantic memory to the end of the episodic
memory. There is also a variant to this approach,
EP+SEM_CRIT_LOCAL, which creates a new seman-
tic memory entry at prediction time. Instead of
summarizing critiques over the entire training set,
EP+SEM_CRIT_LOCAL includes a summary of only
the retrieved episodic entries. This presents a trade-
off between the generality of the global semantic
memory, and the specificity of the local semantic
memory.

5 Empirical Evaluation

5.1 Datasets

To evaluate the effectiveness of various memory-
augmented learning strategies under diverse condi-
tions, we conduct empirical studies across datasets
spanning multiple domains. The tasks cover a
range of settings, including fact-oriented question
answering, ranking, retrieval-based QA.

MMLU (Hendrycks et al., 2021) Given a fact-
based, straightforward question on one of many
different domains (such as math, science, history,
or logic) select the correct answer out of 4. Ques-
tions were sampled evenly across all subjects.

Multi-Condition Ranking (Pezeshkpour and Hr-
uschka, 2025) Given a list of 5 items, sort them
in order along 3 logical conditions. Converted into
a 4-choice multiple-choice task.

NFCorpus (Boteva et al., 2016) Given a medical
article and two medical papers, determine which
paper is cited directly by the article’s bibliography.

PubMed (Jin et al., 2019) Determine if a highly
technical medical statement is true or false, across
many different medical domains.

To mitigate potential bias from LLMs being ex-
posed to public datasets during pretraining, we
additionally evaluated our strategies on four per-
sonal preference datasets. The task was to predict
whether a given item belonged to a user’s history.
Even if the model had encountered these datasets
during training, it would be unlikely to memorize
preferences associated with individual user IDs.

Steam Pref (Tamber) Video game playtime per
user on the PC platform Steam. Sampled only
games that were played for at least 5 hours.

Book Pref (Ziegler et al., 2005) Book ratings
per user. Actual ratings were not used - the task
was formatted as predicting whether a user is more
or less likely to read a given title.

Anime Pref (Union) Anime ratings per user
from the website MyAnimeList. Actual ratings
were not used - the task was formatted as predict-
ing whether a user is more or less likely to watch a
given title.

Movie Pref (Parashar) Movie ratings per user,
based on the MovieLens dataset. Sampled only
movies rated 3/5 or higher.

For the preference datasets, we randomly se-
lected three users per dataset. For each user, 250
items were sampled from their history and 250
from outside it, prioritizing favorites when possible.
Users were treated independently, with no mem-
ory shared across them. For all other datasets, 500
questions were randomly sampled and evenly split
into training and testing sets. Additional dataset-
specific preprocessing details are provided in Ap-
pendix A.2

5.2 Experimental Setup

Most of our experiments were conducted using
OpenAl’s gpt-4o-mini (OpenAl, 2024) as the
base LLM, chosen for its strong balance between
cost and performance. Additionally, we ran a sub-
set of experiments using LLaMA 4 Scout (Meta,
2025) and OpenAl’s 04-mini (OpenAl, 2025) to
examine how results vary across open-source mod-
els and compute-constrained test-time settings.

We compared our learning pipeline against two
baseline setups: zero-shot and few-shot. The
zero-shot baseline reflects the performance agent’s
output without any memory or demonstrations.
The few-shot baseline includes K = 5 example
question-answer pairs (z;,y;) sampled from the
training set (the same as in episodic memory ex-
periments, for consistency), where x; is the input
and y; the corresponding answer. Note that both
baselines rely solely on the original supervised sig-
nals and do not include any additional insights or
memory augmentation.

5.3 Results

Table 1 compares various learning strategies
against the baselines across all eight datasets. We
observe substantial variance across datasets, both
in baseline performance and in the effectiveness



Multi-

Model and i Steam Book Anime Movie
Experiment MMLU (g)nlelon NFCorpus  PubMed Pref Pref Pref Pref
anking
gpt-40-mini
Zero-shot 88.7 56.8 85.6 62.4 52.8 52.0 47.9 49.9
Few-shot 88.0 67.6 85.6 62.0 55.8 50.9 51.1 53.2
EP_CRIT 88.0 65.2 83.6 62.0 62.7 53.8 54.4 57.7
EP_PRIN 92.0 66.4 85.2 61.2 68.3 50.7 55.1 56.4
SEM_CRIT 87.3 58.4 87.2 59.6 60.1 45.5 48.8 58.7
SEM_PRIN 87.3 58.4 85.6 59.2 62.0 51.5 46.3 57.1
EP+SEM_CRIT 86.0 56.8 85.2 61.6 62.4 54.2 61.7 59.3
EP+SEM_PRIN 84.0 62.0 83.2 61.2 67.6 52.1 56.9 61.6
Llama 4 Scout
Zero Shot 82.0 66.4 57.2 66.8 49.9 519 47.9 49.2
Few Shot 90.7 74.4 69.6 66.4 613 54.5 58.1 58.4
EP_CRIT 92.0 77.6 82.8 70.0 61.5 51.2 59.1 57.2
SEM_CRIT 84.7 62.8 66.8 63.2 48.9 47.8 48.8 51.3
EP+SEM_CRIT 91.3 78.4 82.8 68.8 57.8 519 55.9 57.6
o4-mini
Zero Shot 92.7 87.6 89.2 62.0 50.4 49.3 51.1 51.6
Few Shot 91.3 90.0 91.6 66.8 60.0 49.7 63.9 593
EP_CRIT 92.7 80.8 89.2 64.8 60.6 50.5 68.1 60.7
SEM_CRIT 92.0 69.6 88.8 60.4 48.0 48.2 48.9 50.9
EP+SEM_CRIT 91.3 90.4 90.8 61.2 61.5 52.4 68.3 57.6

Table 1: Agent accuracy across datasets and models. We use EP, SEM, and EP+SEM to denote episodic, semantic, and
combined memory. Suffixes _CRIT and _PRIN indicate critique- or principle-based entries. Results on preference
datasets are averaged across all users. For each model and dataset, the highest score is bolded and the second-highest

is underlined.

of memory-augmented learning. The first four
datasets are more fact-oriented and show mini-
mal to no improvement from our learning pipeline
when using gpt-4o-mini. Although we signifi-
cantly outperform the zero-shot baseline on the
Multi-Condition Ranking task, failing to exceed
the few-shot baseline suggests that improvements
stem from few-shot prompting rather than from the
insights themselves.

In contrast, three out of four preference-based
datasets exhibit clear gains. Incorporating insights
yields over 10% improvement on all three pref-
erence datasets, except for Book Pref. For inter-
pretability, results are averaged over the three users
per dataset, though notable variation exists across
users (see Figure 2 for per-user results).

Episodic memory generally outperforms seman-
tic memory, indicating that the model benefits more
from a few specific examples than from a sum-
mary of the entire training set—suggesting limi-
tations in the quality of the semantic summaries.
Still, combining the specificity of episodic memory
with the generalizations of semantic memory some-
times yields the strongest performance. Principle-
based methods tend to perform well in domains
where knowledge is more clustered and are often
more effective with episodic memory. This may

be because summarizing over principles can pro-
duce overly generic representations that lack the
actionable specificity needed for effective decision-
making.

5.4 Results with Different Models

We observe substantial variation in how the three
backbone models respond to memory-augmented
learning. In principle, the critic and performance
agents may use different models; however, to con-
strain experimental complexity, we use the same
model for both. Additionally, we select one repre-
sentative strategy per memory type for each model.

LLaMA 4 Scout (Meta, 2025) exhibits
lower baselines on fact-oriented datasets but
stronger few-shot performance, particularly on
preference data—an opposite trend compared to
gpt-4o0-mini. We attribute these differences to
model size and variations in pretraining empha-
sis. Llama 4 Scout is a mixture-of-experts model
with 17B active parameters and 109B total pa-
rameters. This opens different opportunities for
memory-augmentated learning: we observe strong
gains on NFCorpus and modest improvements on
Multi-Condition Ranking and PubMed. On pref-
erence datasets, while seeing improvements over
zero-shot, it shows little to no gain. Semantic mem-



ory alone is consistently uncompetitive, whereas
episodic memory often yields the best performance.
Adding semantic memory to episodic memory oc-
casionally helps, notably in Multi-Condition Rank-
ing.

O4-mini (OpenAl, 2025), a reasoning-focused
model, achieves the highest baselines on fact-
oriented tasks—even in the zero-shot setting, leav-
ing minimal room for improvement via utilizing
memory. Only EP_SEM_CRIT provides marginal
gains over this strong baseline. However, on pref-
erence datasets, combining episodic and semantic
memory consistently outperforms both zero- and
few-shot baselines, suggesting this model is particu-
larly capable of integrating complementary signals
from both memory types.

Experiment

(Trainin Steam Book Anime Movie
g Pref Pref Pref Pref

Percentage)

Baselines

Zero-shot  52.8 52.0 479 49.9

Few-shot 55.8 50.9 51.1 532
EP_CRIT

25% 61.6 49.5 55.7 56.1

50% 62.9 513 54.9 57.3

75% 64.1 534 57.6 57.1

100% 62.7 53.8 54.4 57.7
EP+SEM_CRIT

25% 57.8 48.5 55.1 57.1

50% 60.1 51.2 55.6 56.8

75% 59.7 50.6 58.9 60.5

100% 62.4 54.2 61.7 59.3

Table 2: Accuracy with varying size of training dataset
on preference datasets using gpt-4o-mini. For each
strategy, the highest score is bolded.

5.5 Dataset Size Scaling

One of the strengths of this learning approach is
how it is able to significantly improve performance
over baseline with a very small amount of labeled
data, especially using episodic memory. To test
how much data is required, we ran gpt-4o-mini
through the pipeline again on each of the preference
datasets, using only 25%, 50%, and 75% of the orig-
inal training data. Both the EP and EP+SEM methods
begin to show improvement at 25%, with accuracy
continuing to increase as more data is incorporated
into memory. Methods utilizing semantic mem-
ory are more affected by the lack of training data,
as this can lead to lower-quality summary-level
insights. Performance frequently begins leveling
off between 75% and 100%, implying that we are
reaching saturation with these datasets.

5.6 Suggestibility

In memory-augmented agentic learning, it is cru-
cial not only to generate the best possible insight
(critique or principle) for inclusion in memory, but
also to ensure that the model is actually receptive
to it, i.e., that it can be “persuaded” by the insight.
This receptivity, which we term suggestibility, is
influenced by a compound of factors: the model
architecture, the nature of the task, and the format
in which the memory is represented.

To better quantify this phenomenon, we define a
suggestibility metirc S, which captures the differ-
ence in an agent’s performance when given a best-
effort insight versus when given an intentionally
misleading one (generated by flipping the ground-
truth label). Formally,

1
S = W Z 1[PA(z; | Ins(xs, vi)) = vi] —
x; €D
1
x; €D

where PA denotes the performance agent, Ins refers
to the insight generation agent (which may produce
a critique or principle), and D is the evaluation
dataset. Note that in real-world settings, the true
label g; is not available to either PA or Ins; thus,
this metric represents an idealized or “cheating”
scenario, using artificially constructed best and ad-
versarial insights for controlled experimentation.

To explore how different components affect a
model’s suggestibility, we report S across five
experimental conditions, varying the context pro-
vided to the performance agent. As shown in Ta-
ble 3, X indicates the presence of the question, Y
denotes inclusion of the ground-truth label, and
Crit/Prin represent whether a critique or princi-
ple is included.

Model suggestibility exhibits strong dependence
on task characteristics. Fact-based datasets tend
to produce low suggestibility, consistent with ex-
pectations. These models are fine-tuned to resist
misinformation and are generally reluctant to give
confidently incorrect answers. A notable excep-
tion is the PubMed dataset, where the technical
complexity of medical queries appears to introduce
enough ambiguity for insights to meaningfully in-
fluence the model’s output. In contrast, preference-
based datasets reveal high levels of suggestibility
in nearly all conditions, except when only a princi-
ple is presented without an accompanying answer.



Multi-

o Steam Book Anime Movie
MMLU COHlelOH NFCorpus  PubMed Preference  Preference  Preference  Preference
Ranking

XY 16.7 45.6 6.4 98.4 100.0 100.0 100.0 100.0
XY+Crit 48.7 98.4 40.0 99.6 100.0 100.0 100.0 100.0
XY+Prin 16.0 40.4 4.8 98.4 99.4 99.7 98.2 99.5
X+Crit 58.0 100.0 70.8 93.2 100.0 99.8 100.0 100.0
X+Prin 0.7 -2.0 0.0 8.0 10.6 17.6 18.0 13.8

Table 3: Suggestibility scores across datasets averaged across users. X represents the question, Y denotes the presence
of an answer, and Crit/Prin represent whether additional insights are present.

This, too, is expected: the model lacks specific
knowledge about the user’s preferences and will
often adopt whichever answer it is guided toward.

Models demonstrate a marked increase in sug-
gestibility when explanations are provided. This is
evidenced by higher .S in the XY+Crit condition rel-
ative to both XY alone and XY+Prin. Furthermore,
providing the true label substantially improves
suggestibility in principle-based settings (compare
XY+Prin with X+Prin), but yields smaller improve-
ments—or even slight declines—in critique-based
settings (compare XY+Crit with X+Crit). This
may be because critiques already contain pointwise
assertions, whereas principles tend to express more
general, future-oriented guidance. Detailed accu-
racy values for the performance agent under both
true and false insight conditions are included in the
appendix (Table 4).

6 Related Work

Agentic Memory Recent LLM-based agent re-
search has focused on memory management chal-
lenges due to context length limitations. The pre-
dominant approach is retrieval-based augmenta-
tion (RAG), using embedding similarity for mem-
ory retrieval. Memories range from simple in-
put/output copies to complex structures: Reflexion
(Shinn et al., 2023) stores agent self-reflections,
Voyager (Wang et al., 2024) maintains reusable
agent-created tools, and Generative Agents (Park
et al., 2023) employs a two-tier system of event
streams and higher-level reflections.

Fine-tuning While fine-tuning is a well-
established way of improving a model’s perfor-
mance in a specific area (Dodge et al., 2020), it
presents challenges such as: extensive labeled data
requirements (Vieira et al., 2024), catastrophic
forgetting (Luo et al., 2025), computational
expense (Hu et al., 2022), and inapplicability to
closed-source models.

In-Context Learning In-context learning treats
models as black boxes, adjusting inputs to influence
outputs (Dong et al., 2024). Simple prompt modifi-
cations like appending “Let’s think step by step”
can significantly improve performance (Kojima
et al., 2022). Few-shot learning enhances results by
providing question-answer examples (Brown et al.,
2020). Reflection-based approaches, where mod-
els reason over feedback about their decisions, en-
able autonomous improvement (Shinn et al., 2023;
Yao et al., 2023). However, most research focuses
on feedback from simulated environments (Wang
et al., 2024), with limited exploration of other feed-
back mechanisms.

7 Conclusion

In summary, we present a memory-augmented
framework for enabling LLM agents to continu-
ously learn from supervised signals and structured
critiques. By modeling both semantic and episodic
memory and introducing reflective insights in the
form of critiques and principles, our approach en-
hances generalization without modifying model
parameters. Empirical results demonstrate substan-
tial performance gains and reveal the importance
of memory structure and critique quality. Our pro-
posed metric, suggestibility, offers a new lens for
understanding how models internalize feedback.
This work highlights the potential of reflective
memory as a lightweight, interpretable, and exten-
sible mechanism for continual adaptation in LLMs.

Limitations

Our analysis has centered on the accuracy of differ-
ent agentic learning strategies, but design choices
also impact computational cost and the ability to in-
corporate ongoing supervision. Semantic memory
typically requires greater training-time computa-
tion due to summarization or distillation, whereas
episodic memory simply stores past experiences



with minimal processing. At inference time, how-
ever, semantic memory offers more readily appli-
cable knowledge, while episodic memory relies
on retrieval quality. This trade-off suggests that
the optimal strategy may depend on the size of
the supervised dataset and the frequency of infer-
ence—semantic memory may be better suited for
frequent inference under sparse supervision, while
episodic memory may be preferable when supervi-
sion is abundant and retrieval is reliable.

An additional interesting direction for exploring
model suggestibility is to disentangle how much
a model’s behavior changes due to genuinely in-
corporating supervised signals into its internal be-
liefs versus merely adapting its responses to please
the user. In our empirical study, we observed that
models exhibited higher suggestibility scores when
critiques were attributed to the user, compared to
when the same critiques were believed to originate
from the model itself or another model. This sug-
gests that the perceived source of feedback plays
a significant role in how seriously the model treats
the signal, opening up opportunities to better un-
derstand and guide belief formation in interactive
learning systems.

The agentic learning tasks we explore primarily
involve constraints on classification tasks, particu-
larly in question answering and preference predic-
tion. We observed significant performance varia-
tions across different domains, and it remains un-
clear whether these findings will generalize beyond
the tasks and domains studied. Additionally, we
found that performance generally improved with
larger training sizes. Although this improvement
appeared to plateau, larger datasets are needed to
better understand how these techniques scale be-
yond the sampled training sets used in this study.

To reduce computational costs, we used the same
model for both the performance agent and the critic
agent. The impact of using different models within
the memory-augmented learning setup remains un-
explored. It is possible that combining models of
varying capacities could yield many of the benefits
of a more powerful model, particularly in terms of
insight generation.

Ethics Statement

This research on memory-augmented learning for
large language model agents raises several impor-
tant ethical considerations that we wish to acknowl-
edge.

Though our suggestibility work was focused on
how the model’s instruction-following ability var-
ied with dataset, this kind of approach could also be
used to more efficiently jailbreak models to spread
misinformation. Future work should be careful to
avoid developing tools to improve the suggestibil-
ity of models to the point that they spread harmful
misinformation.

We also recognize that improved adaptation ca-
pabilities may exacerbate existing biases in these
agents. Because the insights are generated by the
agent itself, even with feedback from the labeled
data, it could cause the agent to reinforce its pre-
conceptions about the world, which may perpetuate
harmful stereotypes. Future work should explore
safeguards to identify and mitigate such bias am-
plification.
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A Implementation Details

A.1 RAG Implementation

We used blevlabs/stella_en_v5 as our encoder
model and FAISS as our vector database. Simi-
larity was based purely on the encodings of the
questions in each dataset.

Though we did experiment with fine-tuning an
encoder model to increase the separation of the
classes in each dataset (for example, bought vs not-
bought games for each Steam user) in embedding
space, we did not see significant improvements in
performance.

A.2 Dataset: Additional Details

NFCorpus: The original NFCorpus data source
associated each article with many papers with vary-
ing degrees of separation, which we transformed
into this pairwise setup by choosing one paper at
the closest and furthest level of separation possible
for each paper. Sampled 500 shortest combina-
tions of articles and papers to avoid context-length
issues.

Steam and Book Preference: Due to limitations
in the number of games/books per user, the training
and test sizes are smaller for these datasets than oth-
ers. The train-test split percentage was maintained
at 50%.
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Steam User 1679: 104 samples in train set
Steam User 3188: 129 samples in train set
Steam User 6839: 116 samples in train set
Book User 63: 218 samples in train set
Book User 123: 183 samples in train set
Book User 2642: 206 samples in train set

A.3 Models

Default hyperparameters were used for all models.
OpenAl models were queried through the OpenAl
API, Llama 4 Scout was queried through the fire-
works.ai API.

B Prompts

Critique Generation

User: {Question}
Agent: {PA Initial Prediction}
User: The correct answer is {Ground Truth
Answer}. Explain why this is the correct
answer, following the following JSON format
{
correct_answer: correct_answer,
local_reason: Specific reasons why this
answer is correct in this particular case.,
global_reason: General reasons why this
answer is correct that can be applied to other
questions.
3.
Respond only with JSON.

\

Principle Generation

Your task is to identify trends in data
to improve your ability to make correct
predictions in the future.

For example in examples:
{Question} {Answer}

Identify one and only one guiding principle
explaining why the given answers are correct.
If there are no obvious connections between
the questions, give a principle for the first
example only.

A guiding principle may be a fact, a pattern,
a preference, or anything else that will
help you answer questions like these in the
future. With that in mind, principles should
be focused on information that you do not
already know. It should be very specific and
not generic advice.

Respond only with the principle, nothing
else.

Semantic Memory Generation

Your job is to summarize a set of

self-critiques made by some agent as they
perform different instances of their task.
For each instance you will be shown the output
of the agent, followed by the critiques made
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by the agent after they were told the correct
answer. Distill those critiques into a
helpful summary of advice to the agent, paying
particular attention to instances where the
agent outputs an incorrect answer. Produce
your output in a form that can be used
directly as instructions to the agent. You
should summarize the key points in these
critiques. Be precise and concise. Do not
repeat yourself.

For example in train_set:

{Question} {Answer} {Critique}

{Question}
Here is some helpful advice that will help
you make your decision: {Summary}

Performance Agent with Semantic Memory

For example in examples:

User: {Example Question}

Agent: {PA Initial Prediction}

User: {Critique Generation Prompt}

Agent: {Critique}
User: Here is your final question, make sure
to learn from your past mistakes! {Question}

Performance Agent with Episodic Memory

Performance Agent with Episodic and Seman-

tic Memory

For example in examples:

User: {Example Question}

Agent: {PA Initial Prediction}

User: {Critique Generation Prompt}

Agent: {Critique}
User: Here is your final question, make sure
to learn from your past mistakes! {Question}
Also, here is some additional advice to guide
your response: {Summary}

\.

C Examples

Example Critique Summary (NFCorpus)

1. **Focus on Relevance**: Always choose
the reference that directly relates to the sub-
ject matter of the article. Look for refer-
ences that support the main claims made in
the article.

2. **Identify Key Themes**: Ensure that
the reference paper closely aligns with the
key themes discussed in the article, such
as specific health effects, mechanisms of
action, or relevant population studies.

3. **Avoid General Topics**: Select ref-
erences that do not deviate into unrelated
topics. If one reference discusses founda-
tional knowledge or statistics that do not

support the article’s claims, it’s likely not
the correct choice.

4. **Highlight Specific Effects**: When
discussing studies, emphasize specific ef-
fects or outcomes that are directly addressed
in the article. Look for quantitative data or
direct correlations that would affirm the ar-
ticle’s claims.

5. **Example Comparison**: When there
are multiple choices, conduct a clear com-
parison between them. If one reference ex-
plicitly discusses the same variables out-
lined in the article, that should be favored.
6. **Review Findings**: When evaluat-
ing findings from referenced studies, ensure
they corroborate the arguments or recom-
mendations presented in the article. This
can include discussing potential risks, bene-
fits, or mechanisms.

7. **Address Opinions and Recommenda-
tions**: When the article discusses guide-
lines or opinions (such as on health recom-
mendations), favor references that critique
or analyze these points directly.

8. **Check for Clinical Relevance**: In
clinical or scientific discussions, emphasize
studies that provide empirical evidence that
can be tied back to practical outcomes re-
lated to the topic of the article.

9. **Nutritional Context**: In discussions
around diet, ensure the references speak to
the nutritional context being examined, such
as the impact of specific foods on health,
rather than unrelated dietary patterns.

10. **Summarizing Connections**: When
concluding which reference is correct,
clearly summarize why the chosen refer-
ence aligns best with the article’s content.
Discuss how it supports or expands upon
the article’s key points.

By following these instructions, you will
ensure that your references are relevant and
provide strong support for the claims made
in the articles you analyze.

Example Principle Summary (Anime Pref-

erence)

User 1635 exhibits a strong preference for
anime that features strong character devel-
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opment, emotional depth, and complex nar-
ratives. Their ratings indicate enjoyment of
series such as "Clannad: After Story," "Gin-
tama," "Higurashi no Naku Koro ni," and
"Kimi ni Todoke," while they tend to rate
simpler or less character-driven titles lower,
such as "Skip Beat!" and "Nyan Koi!".
They are particularly drawn to genres that
blend action, adventure, and psychologi-
cal themes, often rating these series highly
(8/10 or above). Titles like "Naruto,"
"Psycho-Pass," and "Fairy Tail" resonate
well with them, while they show less enthu-
siasm for slice-of-life or lighter narratives.
User 1635 also tends to favor critically ac-
claimed or popular series, indicating a pref-
erence for well-regarded storytelling and
character arcs.

Overall, their anime preferences reflect a
consistent inclination towards emotionally
engaging and character-driven narratives,
while they are less likely to enjoy works
that lack depth or complexity.

\. J

D Additional Results

On the fact-based datasets in Table 4, the accuracy
on the False trials is much higher than on the prefer-
ence datasets. This supports the theory that the low
suggestibility on these datasets is primarily due to
the models being fine-tuned specifically to avoid
giving disinformation.

In Figure 2 there is significant variation between
users on the same dataset. It is expected that some
users will have more eclectic interests and be more
difficult to predict, but it is notable how much the
best strategy differs between each user. On the
Steam Preference dataset, despite the overall im-
provements being similar, the best approach varies
from EP+SEM_CRITto EP_PRINto EP+SEM_PRIN.
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Multi-

. . Steam Book Anime Movie

Experiment MMLU Conlelon NFCorpus  PubMed Preference  Preference  Preference  Preference
Ranking

XY True 96.0 92.0 89.6 99.2 100.0 100.0 100.0 100.0
XY False 79.3 46.4 83.2 0.8 0.0 0.0 0.0 0.0
XY+Crit True 98.7 100.0 98.0 100.0 100.0 100.0 100.0 100.0
XY+Crit False 50.0 1.6 58.0 0.4 0.0 0.0 0.0 0.0
XY+Prin True 94.7 93.6 86.8 99.2 99.7 99.7 99.9 99.9
XY+Prin False 78.7 532 82.0 0.8 0.3 0.0 1.7 0.4
X+Crit True 99.3 100.0 99.6 96.8 100.0 100.0 100.0 100.0
X+Crit False 413 0.0 28.8 3.6 0.0 0.2 0.0 0.0
X+Prin True 90.0 60.0 83.6 58.8 57.2 61.4 58.4 56.9
X+Prin False 89.3 62.0 83.6 50.8 46.6 43.8 40.4 43.1

Table 4: Raw accuracy in suggestibility analysis, showing specific accuracy scores when given the True or False
answer. X represents the question to answer, Y represents whether the answer to the question is given or not, and
Crit/Prin represent whether additional insights are present. Results on preference datasets are averaged across all

users.
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Figure 2: Preference data accuracy results by user. We use EP, SEM, and EP+SEM to denote episodic, semantic, and
combined memory. Suffixes _CRIT and _PRIN indicate critique- or principle-based entries.
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