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Abstract

Object–context shortcuts remain a persistent challenge in vision-language mod-
els, undermining zero-shot reliability when test-time scenes differ from familiar
training co-occurrences. We recast this issue as a causal inference problem and
ask: Would the prediction remain if the object appeared in a different environment?
To answer this at inference time, we estimate object and background expectations
within CLIP’s representation space, and synthesize counterfactual embeddings by
recombining object features with diverse alternative contexts sampled from external
datasets, batch neighbors, or text-derived descriptions. By estimating the Total
Direct Effect and simulating intervention, we further subtract background-only
activation, preserving beneficial object–context interactions while mitigating hal-
lucinated scores. Without retraining or prompt design, our method substantially
improves both worst-group and average accuracy on context-sensitive benchmarks,
establishing a new zero-shot state of the art. Beyond performance, our frame-
work provides a lightweight representation-level counterfactual approach, offering
a practical causal avenue for debiased and reliable multimodal reasoning. The
implementation is available at https://github.com/peipeng98.

1 Introduction

Vision language models, such as CLIP [1], have demonstrated impressive success by embedding
images and textual descriptions into a shared semantic space, enabling strong zero-shot recognition
across diverse datasets [2, 3, 4]. By training on large-scale natural image-text pairs, these models
aim to generalize beyond finite training distributions. However, recent studies [5] highlight a critical
limitation: Real-world datasets inherently encode strong co-occurrence patterns between target classes
and contextual cues, including background scenes and their complex interactions. These spurious
correlations provide shortcut signals during training [6, 7], leading models to rely on context rather
than the true causal semantics, and ultimately degrading their zero-shot recognition performance,
particularly when the test-time context diverges from familiar training distribution.

The issue is especially pronounced in CLIP, where training objectives that maximize mutual informa-
tion across modalities unintentionally reinforce object-context entanglement. During optimization,
frequent co-occurrence patterns amplify semantic signals from contextual features, causing back-
ground cues, co-occurring entities and scene-specific interactions to dominate the learned representa-
tions. This focus shift skews decision boundaries away from intrinsic object feature. As shown in
Fig. 1(a), although such biases may enhance performance on in-distribution data, they substantially
degrade model performance when confronted with novel backgrounds [8, 9, 10, 11].

In response to the contextual entanglement, particularly the visual hallucinations induced by back-
ground signals, recent strategies generally fall into two directions. A common and lightweight
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Figure 1: Bias and hallucinations caused by co-occurrence in CLIP. (a) Accuracy decreases
significantly from the best to worst group across backbones in Waterbirds dataset, with groups defined
by different class–context co-occurrence patterns. (b) The Attention maps show image responses
under the prompt “a photo of an albatross,” comparing CLIP and our counterfactual embedding C(x),
and context-only images trigger hallucinated score on ImageNet labels, highlighting vision-side bias.

indirect solution is to augment the textual modality, typically by enriching prompts with additional
contextual descriptors [12, 13, 14, 15]. However, two fundamental challenges remain: (i) generating
comprehensive and accurate descriptions of the visual context is inherently challenging, and (ii) the
text encoder itself inherits co-occurrence biases from pretraining, which may further entangle object
and context semantics rather than disentangle them. On the other hand, directly operating on the
visual modality provides a more principled alternative that avoids the challenges in textual prompt-
based methods. Yet current approach [16, 17, 18, 19] often rely on generative models, complex
augmentation pipelines, or fine-tuning of pretrained backbones, resulting in increased computational
cost and limited scalability in practice. Detailed work is available in Appendix A.

Thus, motivated by causal inference [20, 21, 22], we propose a novel framework: instead of retraining
models or textual augmentation, we enable model to imagine counterfactual scenarios directly at
inference time and let it autonomously answer the causal question: "Would this prediction remain
consistent if the object appeared in a different environment?" Specifically, we separately estimate the
conditional expectations of object (target entity) and background (contextual cues), then construct
their respective optimal estimation in the representation space. It will intervene objects by simulating
in alternative contexts, derived from external scene datasets, internal scene from batch neighbors, or
virtual scene descriptions constructed within the model’s semantic space.

Additionally, to suppress hallucinated background effects while preserving the beneficial interaction
effects captured by the model, we introduce an image-level Total Direct Effect (TDE) computation,
which explicitly quantifies and removes the illusory influence arising from high-frequency object-
context co-occurrences. Notably, our method requires no additional training, no external generative
modules, and no handcrafted prompts, offering a lightweight, scalable, and causal solution for
real-world deployment. In summary, our contributions are as follows:

• We demonstrate a causal perspective to model co-occurrence biases in terms of beneficial interac-
tions and potential hallucinations, and explain the sensitivity of prompt-based strategies.

• We propose a counterfactual estimation method to operate directly at the representation level and
develop a lightweight, inference-only debias scheme. It synthesizes counterfactual embeddings by
leveraging skills (e.g. scene descriptions), and employs targeted interventions and TDE estimation
to eliminate hallucinated effects while preserving beneficial object-context interactions.

• We present our method achieves state-of-the-art zero-shot recognition performance across multiple
context-sensitive datasets, significantly improving model’s reliability under distribution shifts.
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Figure 2: Context-induced gender bias in CLIP. (a) Zero-shot accuracy gap on COCO-GB v1
across genders and contextual objects. (b) Corresponding PMI revealing co-occurrence bias pattern.

2 Revisiting Object–Context Bias in CLIP

Setup. Let X ∈ X and Z ∈ Z denote, respectively, the object category (labeled as Y ∈ Y) and
contextual background.2 Each image instance i ∈ I is generated from p(i | X=x, Z=z). CLIP
transforms image via a visual encoder fi : I→Rd and prompt T via a textual encoder ft : T →Rd.
For brevity, we let E[fi | X=x] abbreviate to Ei∼p(i|X=x)[fi(i)], and similarly for Z = z.

Two-Factor Decompositions in CLIP Modalities. Following the Hoeffding perspective (a.k.a.
ANOVA decompositions) [23, 24, 25], with respect to object–context factors, the instance i can be
decomposed into the following structural causal function:

fi(i) = ei(x) + ei(z) + ri(x, z) + ηi, (1)

where ei(x)=Ei∼p(i|X=x)[fi(i) | X=x] and ei(z)=Ei∼p(i|Z=z)[fi(i) | Z=z] are the first–order
main effects of the object and background, ri(x, z) is the interaction effects, and ηi summarizes
the higher-order residual. It is proved in Appendix. B.1.1 that this is the only pairwise orthogonal
expansion of these terms of Eq. (1).

Similarly, the composite prompt T = (Tx, Tz) is embedded as

ft(T ) = et(x) + et(z) + rt(x, z) + ηt, (2)

where ei(x) and ei(z) are the textual modal main effects; rt(x, z) and ηt are respectively interaction
terms and residual. Detailed derivations of Eq. (2) appear in Appendix B.1.2.

Co-occurrence Bias Emerges from Contrastive Learning. The InfoNCE objective used in CLIP
maximizes the alignment between paired image and text embeddings while pushing apart mismatched
ones. When representations are decomposed into object and context components, the InfoNCE
gradient reveals a distinct structure: for any object–scene pair (x, z), high co-occurrence frequency
leads to large gradient contributions on amplifying the interaction terms ri, rt, and the cross-modal
similarity of ⟨ei(z), et(x)⟩, proved in Appendix B.2 and B.3. These components widen the margin
between positive samples and their single-factor negatives (e.g., (x, z′) or (x′, z)).

Thus, the biases are enhanced during training and governed by the statistical co-occurrence of (x, z),
which can be quantified by the Pointwise Mutual Information (PMI):

PMI(x, z) = log
p(x, z)

p(x) p(z)
, (3)

which measures the extent to which a pair of variables co-occurs more frequently than expected under
statistically independent. Since mutual information I(X;Z) is the expectation of PMI over (x, z),
and the InfoNCE loss is a lower bound on I(X,Z;T ), minimizing InfoNCE inherently promotes
high PMI pairs in cross-modal alignment. The detail are shown in Appendix B.4.

2Both label sets are finite, with Z enumerating all scenes present in the dataset.
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As a result, unless a dataset samples objects and contexts uniformly, minimizing the InfoNCE loss
will inherently entangle them, amplifying both interaction energy and cross-modal similarity. This
dependency is difficult to avoid in practice and is a key source of context-induced misclassifications in
vision–language models. Fig. 2 provides a empirical evidence: on a gender-balanced subset COCO-
GB v1 [10], the zero-shot accuracy gap between female and male correlates with their PMI to context,
revealing similar gender–context co-occurrence biases shared between COCO and LAION-2B [26].
These results confirm that CLIP models internalize context-driven associations, which persist even
under zero-shot settings and impact fair prediction across different groups.

Causal Explanation for Hallucination-Induced Misclassification. At inference, the relationship of
causal effect can be constructed as shown in Fig. 3, where node I feeds two children: object X and
scene Z; a solid arrow X→Y represents the ideal decision path, whereas the dashed links between
Z and X indicate statistical co-occurrence learned during contrastive training. When conditioning on
I, extra predictive paths emerge, including Z→Y and (X,Z)→R→Y . Thus, the CLIP score3 for
any class c ∈ Y with an object-only prompt expands to

S(i, Tc) = ⟨ei(x), ft(Tc)⟩+ ⟨ei(z), ft(Tc)⟩+ ⟨ri(x, z), ft(Tc)⟩+ ⟨ηi, ft(Tc)⟩. (4)

X

Z

Y

R

X :  target object

:  image instance

Z  :  co-occurring context

R  :  interactive feature

Y  :  model prediction

:  causal path

Figure 3: The schematic of causal graph.
Dashed line denotes X and Z co-occurring in
the same image. R represents the interaction
as observable features.

The inner product ⟨ei(z), ft(Tc)⟩ is the pure context
score. It remains non-zero even for “background-
only” images due to image encoder bias (see
Fig. 1(b)), and may thus produce hallucination when
the score favors a class in which the image does not
exist. The term ⟨ei(x), ft(Tcx)⟩ is the ideal target,
and the interaction term ⟨ri(x, z), ft(Tcx)⟩ acts as
an object-specific prior when (x, z) really co-occur,
but drops to low-level for totally novel pairs.

When (x, z) follows the training distribution, the
ideal target dominates the CLIP score, and the scene
score and ri reinforce correct decision boundaries,
just as contrastive training dose. However, for a novel
pairing (x, z′) which rarely or never co-occurred during training, the interaction ri remains a low
level. Meanwhile the frequent scene z′ favors the class cx′ that often co-occurred with it during
training stage. The decision margin between the correct class cx and the confusable class cx′ is

δ = S(ix,z, Tcx)− S(ix,z, Tcx′ )

≈
(
⟨ei(x), ft(Tcx)⟩ − ⟨ei(x), ft(Tcx′ )⟩

)
−
(
⟨ei(z′), ft(Tcx′ )⟩ − ⟨ei(z′), ft(Tcx)⟩

)
,

(5)

If the contextual effect inherited from co-occurrence pairs (x′, z′) dominates target evidence, then
δ < 0 and prediction incorrectly favors cx′ , shown by zero-shot recognition failures cases in Fig. 1(a).

Causal Explanation of Prompt-Based Context Intervention. With the object-only prompt, the
prediction implicitly marginalizes over all possible contexts, as a priors in encoder, which are derived
from the training set and influenced by co-occurrence patterns, that is p(Y | I, Tcx) =

∑
Z p(Y |

I, Tcx , Z=z) p(Z=z |I) , so the shortcut I→Z→Y remains active. Appending an explicit scene
token Tz amounts to conditioning on (equivalently intervening in) Z:

p
(
Y |I, Tcx , Tz

)
= p

(
Y |I, Tcx , Z=z

)
, (6)

thus clamping the latent context and cutting off the spurious branch I→Z→Y . The classifier then
relies solely on the legitimate I→X→Y pathway. But these methods [12, 13, 14, 15] have to use
an accurate Tz neutralizes the Z→ Y shortcut. Imprecise or mismatched Tz′ only partially cancels
the bias and may divert information to unrelated classes, even bringing more bias by Tz , which is
accounting for the empirical sensitivity of prompt engineering. Details are shown in Appendix B.5.

Towards a Counterfactual Solution. Causal inference provides a principled approach to mitigating
spurious correlations by identifying and suppressing causally irrelevant signals. However, existing
methods often rely on generative models [27, 28], auxiliary networks [29, 30], or counterfactual
losses terms [31], which increase model complexity and limit applicability in zero-shot setting. Con-
sidering these limitations, as shown in Fig. 4, we propose a lightweight, inference-only framework

3In practice, the CLIP score is normalized, and we simplify the derivation by omitting the scaling factor 1/τ .
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that intervenes directly within the CLIP representation space. Inspired by the principle of randomized
experiments, our method synthesizes counterfactual embeddings by recombining the object with di-
verse, label-agnostic scene contexts, thus suppressing background-induced illusions while preserving
useful object–context interactions. This allows for causal debiasing without modifying the model
architecture or relying on handcrafted prompts.
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Figure 4: Overall architecture. Our method consists of two components: the upper branch computes
TDE by subtracting the predictive contribution of context; the lower branch constructs counterfac-
tual embeddings by recombining object with diverse alternative contexts embeddings, simulating
intervention. Aggregating those yields a robust, decoupled prediction. The gray dashed line, and red
arrows denote blocked, preserved casual effect to prediction respectively. A detailed step-by-step
description of our inference pipeline can be found in Algorithm 1 in Appendix E.4.

3 Counterfactual Inference at Representation Level for Zero-shot Learning

3.1 Estimating Counterfactual at Representational Level

A basic challenge in counterfactual reasoning lies in its numerical computation. From a novel angle,
we estimate the counterfactual embedding directly from the original image without any extra model.

Token-Level Direct-Effect Decomposition. We focus on ViT [32] as the backbone of CLIP, built
from L layers, each of which contains a Multi-Head self-Attention (MSA) followed by an MLP block.
The representation fi(i) is a linear projection P ∈ Rd′×d of ViT output to joint vision-and-language
space. The matrix t0 ∈ Rd×(N+1), with tokens t0cls, t

0
1, . . . , t

0
N as columns, constitutes the initial

state of residual stream. 4 Following the residual updates, fi(i) is split into

fi(i) = P t0cls +

L∑
l=1

P
[
MSAl(LNl

1(t
l−1))

]
cls

+

L∑
l=1

P
[
MLPl(LNl

2(̂t
l))

]
cls
, (7)

where pre–projection LayerNorm LN(·) can be absorbed into P and its bias is evenly spread across
all summations. Thus, the image embedding are divided into three direct-effect terms of initial class
token, MSAs and MLPs. Following previous work [33, 18], MSA output rewrites a sum over H
attention heads and N tokens as

P
[
MSAl(LNl

1(t
l−1))

]
cls

=

H∑
h=1

N∑
j=0

ul,h
j , ul,h

j = αl,h
j W l,h

VOLN l
1(t

l−1
j ), (8)

where W l,h
VO ∈ Rd×d are transition matrices and αl,h

j ∈ R are the attention weights from class token
to the j-th token, which satisfy

∑N
j=0 α

l,h
j =1. More algebraic proofs are provided in Appendix B.6.

To investigate the effect of the component, we used average ablation [34], replacing the component
with its average over batch, for measuring the decrease in accuracy after ablation. Experiments on

4The exact form t̂l = MSAl(LNl
1(tl−1)) + tl−1, tl = MLPl(LNl

2(̂t
l)) + t̂l.
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Figure 5: The attention map revealed by C(x)-based embeddings on NICO.

ImageNet with multiple backbones in Tab. 5 found that the accuracy changed to less than 0.1% after
MSA ablation, whereas after ablation for the effect of initial class token and MLP, it only decreased
by about 1% compared to the baseline. Therefore, it is reasonable to design the main effect of each
token t0j on fi(i) as a direct effect of the MSAs and a bias terms on the initial class token and MLPs
after ablation. Hence, we define the semantic token effect:

vj(i) =

L∑
l=1

H∑
h=1

ul,h
j +

1

N
ε, (9)

where ε is constant for batch about class token and MLPs after mean ablation.

Optimal First-Order Estimates for Counterfactual Embeddings. Let an image i be partitioned
into N patch-tokens {t1, t2, . . . , tN}, and their semantic effect obtain from Eq. (9). We define the
counterfactual embedding as C(x, z′). Specifically, when z′ is set to base state, 5 it simplifies to
C(x), which contains only the embedding of x. Analogously, C(z) is defined in the same way.

We introduce a Bernoulli latent variable G indicate semantic property of image i whether it is
context z or target object x. Its corresponding conditional distribution on instance i is defined as
p(fi(i) | G=z), which means when we focus on background parts, how does embedding distribution
look like. This exactly corresponds to C(z), representing the case there is only the background
without any target objects. Formally, define C(z) as expectation vector under this condition:

C(z) = E[fi(i) | G = z] =

∫
τp(τ | G = z)dτ, (10)

It is the center of gravity in the embedding space when “looking only at the background”, and the
optimal first-order estimate for the background counterfactual embedding in the image. Detailed
proofs are provided in the Appendix B.7. And from visualization in Fig. 5, it confirms that C(x) can
enable better attentional focus on target objects.

In practice, we discretize Eq. (10). Assuming image is sampled uniformly and that all token priors are
equal, Bayes’ theorem gives p(vj(i) | G = z) ∝ p(G = z | vj(i)). Therefore, the counterfactual
embedding C(z) can be computed as:

C(z) ≈
N∑
j

vj(i)p(tj | G = z) =

∑N
j wz(tj)vj(i))∑N

j wz(tj)
, wz(tj) = p(G = z | vj(i)), (11)

where normalizes the weights wz(tj) to ensure the results in the expectation form. And, to stay
aligned with the rest of the CLIP embedding (which are all in the unit sphere), we usually do another
L2 normalization for C(z). C(x) can obtain in the same way by wx and vj(i).

Then, as for each token tj and class cx , we compute its sigmoid score:

wx(tj) = p(G = cx | vj(i)) = σ(S(tj | Tcx)), (12)

5The base state sets the variable’s effect to a fixed constant, defaulting to zero in this paper.
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where σ is sigmoid function, S is the CLIP score mentioned before. We prefer sigmoid (over softmax)
because it treats each class one-vs-rest, yielding independent probabilities and avoiding the need for
any hand-crafted “background” prompt. We thus define the token’s background probability by

wz(tj) = p(G = z | vj(i)) = 1−max
c∈Y

σ(S(tj | Tc)), (13)

This mutual-exclusion rule treats background as the complement of the most likely foreground class,
which empirically provides a sharp, unambiguous estimate of wz .

3.2 TDE-Driven Context Preservation and Hallucination Suppression

Let ix,z contains object x and context z, as for any class c ∈ Y , conventional reasoning is for
computing the Total Effect: TE(ix,z; c)=p(Y=c | i) − p(Y=c | ix0,z0), where ix0,z0 means base
state image. As shown in Fig. 3, TE-based predictions are influenced by both benign interaction effects
and malignant hallucination effects. Total Direct Effect (TDE) provides the most straightforward
approach: preserving useful pathways (X,Z) → R → Y and suppressing hallucination channel
Z → Y , we obtain:

TDE(i; c) = p(Y = c | ix,z)− p(Y = c | ix0,z) = p(Y = c | ix,z)− p(Y = c | C(x0, z)), (14)

Obviously, counterfactual embedding via Eq. (11) can isolate malignant hallucinatory effect. In CLIP,
the posterior takes the form p(Y=c | i)=σ(S(i, Tc)). We thus update the TDE in logit space as

TDE(i; c) = S(ix,z, Tc)− λ̂S(C(z), Tc), (15)

where λ̂ is a suppression coefficient controlling the contribution of background-only signals. Because
of the strictly increase of σ(·), the form of Eq. (15) satisfies order preservation and avoids the
numerical saturation of sigmoid. Therefore, the logit-based TDE is used throughout our experiments
to isolate beneficial object–scene cues and suppress hallucination.

3.3 Effortless Counterfactual Construction and Intervention on Inference

From the other side, we tent to simulate intervention that apply the do-operator on X for eradicating
the path X ← I → Y , leaving only the genuine object–label causal edge X→Y . Unlike the soft
mitigation approach in the previous section, it presents a direct solution to yield a more purified
ideal effect X → Y . To be exact, we select a set of optimal context embeddings to synthesize
counterfactual image embeddings, which serve as classifier inputs to simulate intervention. As the
causal graph Fig. 3 satisfies the back-door criterion [20, 35], we define:

p(Y = c | do(x)) =
M∑

m=1

p(Y = c | X = x, Z = zm)p(Z = zm), (16)

where M denotes counterfactual sample size, and do-operator [20, 35] formally models intervention.

Sources of Candidate Context Embedding. More comprehensive candidate context embeddings
yield enhanced intervention disentanglement. We consider three pools of context embeddings
{fi(zb)}Bb=1 corresponding to three experimental setups. (I) External scene datasets (e.g. Places-365
[36]): It samples dataset directly by CLIP image encoder to get fi(z). (II) Internal scene from
batch: It samples counterfactual context embedding C(zb) in a batch by Eq. (11). (III) Virtual scene
by description: Leveraging CLIP’s shared semantic space enables effortless generation of scene
descriptions ft(Tzb) to serve as virtual counterfactual context embeddings.

For context embeddings obtained above, a filter sampler is designed to improve its quality. It evaluates
each candidate embedding for image ix,y , using scoring function based on cosine similarities between
fi(zb) and C(x) as well as fi(zb) and C(z), preferentially selecting embeddings with lower combined
scores to maximize scene diversity. Thus, define the synthesized counterfactual embeddings 6 as

C(x, zm) = αC(x) + (1− α)fi(zm), α ∈ (0, 1), (17)

Then, assuming a uniform sampling and considering the new bias from fi(z), Eq. (16) turns into

1

M

M∑
m=1

TDE(C(x, zm); c) =
1

M

M∑
m=1

(
S(C(x, zm), Tc)− λ̂S(fi(zm), Tc)

)
, (18)

6The synthesized embedding will be L2 normalized by default.
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This form can effectively prevent potential bias about Zm → Y in introduced scenes. Combining
Eq. (15) and (18), we obtain

argmax
c∈Y

y(ix,z; c), y(ix,z; c) = (1− λ)TDE(i; c) + λ
1

M

M∑
m=1

TDE(C(x, zm); c), (19)

where λ controls for the extent to which interactions in the original image i affect prediction. From
another angle, Eq. (19) is interpreted as the model’s imagination beyond image i. By conceptualizing
different scenarios zm, combining the original scene z through weights, a more robust and fair
prediction result can be obtained.

4 Experiment

Settings. We evaluate our method on four widely adopted benchmarks that target context-sensitive dis-
tribution shifts: Waterbirds [8], UrbanCars [9], COCO-GB [10], and NICO [11]. These datasets span
various real-world correlations, including different out-of-distribution context. We report average and
worst-group accuracy to assess both overall performance and vulnerability to specific context–label
combinations under zero-shot classification. Detailed dataset information, implementation details,
and variant configurations are provided in Appendix C.

Performance on Waterbirds. In Tab. 1, Our methods consistently achieve the SOTA in both average
and worst-group accuracy across all backbones. Compared to vanilla CLIP, it improves worst-group
accuracy by an average of +32.3%, with a remarkable gain of +44.6% on ViT-B/32. Meanwhile,
average accuracy also sees significant improvement, with an average increase of +14.3%, and a
maximum gain of +19.1% on ViT-B/32. In contrast, other methods such as PC+ introduces textual
bias (see Fig. 8) when limited fine-grained prompt is used, trading off average accuracy to improve
worst-group performance. Detailed results about Waterbirds are shown in Appendix D.1.

Table 1: Average and worst-group accuracy (%) on Waterbirds on CLIP backbones. Best results
are in bold, top-2 in gray. PC+ selects limited fine-grained prompts than coarse-grained PC.

Method ViT-B/32 ViT-B/16 ViT-L/14 ViT-H/14
Avg.↑ Worst↑ Avg.↑ Worst↑ Avg.↑ Worst↑ Avg.↑ Worst↑

CLIP (CVPR′21 [1]) 64.88 34.55 77.20 50.93 75.65 52.51 77.55 41.28
TBD (ICLR′24 [18]) 66.98 38.63 83.88 64.17 85.04 75.25 84.98 48.91
PC (ICLR′24 [15]) 71.73 57.25 81.79 55.45 87.83 70.72 82.05 45.02
PC+ (ICLR′24 [15]) 65.27 46.12 79.06 66.67 81.65 75.08 76.35 66.82
B2T (CVPR′24 [14]) 68.59 56.23 77.46 64.64 84.12 48.13 77.25 46.57

Ours (External) 79.96 79.16 86.40 70.87 91.08 82.09 88.23 63.40
Ours (Internal) 81.93 71.81 85.43 82.71 90.71 85.67 87.66 67.45
Ours (Virtual) 83.69 65.73 89.47 67.13 91.94 80.84 88.70 68.38

Table 2: Performance on COCO-GB v1 on
ViT-B/16. We report average, female, and male
subgroup accuracies, as well as the gender per-
formance gap. And a smaller gap indicates bet-
ter fairness across gender groups.

Method Avg.↑ Female↑ Male↑ Gap↓
CLIP 88.70 85.60 91.80 6.20
TBD 90.80 89.60 92.00 2.40
PC 90.50 89.00 92.00 3.00
PC+ 90.40 88.20 92.60 4.40
B2T 90.10 89.40 90.80 1.40

Ours (external) 91.10 89.80 92.40 2.60
Ours (internal) 91.25 90.50 92.00 1.50
Ours (virtual) 91.40 91.80 91.00 0.80

Table 3: Performance on UrbanCars on ViT-
B/16. We report accuracy on the original co-
occurrence (I.D.), background shifted (BG), and
Co-object shifted (Co-Obj) subsets, along with
overall average accuracy.

Method Avg.↑ I.D.↑ BG↑ Co-Obj↑
CLIP 63.07 82.00 37.20 70.00
TBD 53.87 58.00 50.80 52.80
PC 64.67 79.60 46.40 68.00
PC+ 65.33 83.60 43.20 69.20
B2T 63.40 78.40 44.40 67.40

Ours(External) 68.53 86.40 45.60 73.60
Ours(Internal) 68.27 88.00 45.60 71.20
Ours(Virtual) 71.87 89.60 48.00 78.00
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(a) Accuracy on External variant
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(b) Accuracy on Internal variant
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(c) Accuracy on Virtual variant

Figure 6: Per-Class worst-group accuracy with CLIP (ViT-B/16) on NICO. Comparison of
worst-group accuracy across 19 categories on NICO (ViT-B/16) using CLIP and our external, internal,
and virtual variants. Our method consistently improves the lowest-performing context for each class.

Performance on COCO-GB and UrbanCars. Tab. 2 presents results of a subset about gender
on the MS-COCO, demonstrating that although CLIP is pre-trained on large-scale real-world data,
it remains vulnerable to contextual co-occurrence bias, particularly evident in gender prediction
(see Fig. 2). For example, CLIP exhibits a notable performance gap of 6.20% between male and
female samples. While PC+ improves male accuracy, it further amplifies gender disparity. Tab. 3
further evaluates performance on UrbanCars. By analyzing samples with background shifts and
co-occurring object shifts, we observe substantial accuracy drops for CLIP, revealing its reliance on
spurious, non-discriminative features. Although TBD enhances robustness against background bias,
it significantly deteriorates performance on identity-preserving samples (I.D.) due to architectural
disruption. In contrast, our method maintains high average accuracy while consistently improving
model generalization and stability. Additional results can be found in Appendix D.2 and D.3.

Performance on NICO. Fig. 6 shows performance improvements of our three variants over CLIP
(ViT-B/16), demonstrating consistent gains across diverse class within context-shifted dataset. The
detailed comparisons are shown in Appendix D.4. Besides, we compare attention maps [37] of the
counterfactual Cx , with CLIP in NICO, and the Fig. 5 proves that the counterfactual module captures
more complete embeddings about target object. Details are shown in Appendix D.4.

Table 4: Ablation study on Waterbirds. Average zero-shot accuracy (%) under different module
configurations. ✗ indicates the ablation of the component: the TDE module in Eq. (15), sampler and
intervention module via counterfactual calibration in Eq. (18).

Method Variant Sampler TDE Intervention ViT-B/32 ViT-B/16 ViT-L/14 ViT-H/14
CLIP – – – – 64.88 77.20 75.65 77.55

Random 65.19 59.94 77.36 69.55

Ours

External

✗ 75.70 79.57 87.26 84.21
✗ 76.10 83.85 89.96 85.38

✗ 79.92 84.97 90.89 87.50
79.96 86.40 91.08 88.23

Internal

✗ 75.46 79.38 84.09 84.21
✗ 77.94 82.29 87.80 82.10

✗ 80.79 85.33 88.90 87.57
81.93 85.43 90.71 87.66

Virtual

✗ 75.39 79.03 86.71 84.28
✗ 82.21 88.47 88.16 86.38

✗ 83.66 88.18 89.51 87.69
83.69 89.47 91.94 88.70

Ablation. To assess the contribution of each module, we conduct ablations on three components. In
Tab. 4, removing any component consistently degrades performance, and the full model achieves the
highest gains, it confirms that these module are synergistic in mitigating contextual bias. Moreover,
using sampler-filtered random vectors to ablate context pool confirms semantically specific contexts
are required for counterfactual synthesis, while still outperforming the baseline in certain backbones.
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More parameter setting and analysis are shown in Appendix C.2 and E.3. In addition, Appendix E.1
provides an extended comparison with multiple augmentation based baselines (e.g., Mixup, CutMix,
AugMix, Cutout, and ALIA [28]), showing our method surpasses these zero-shot variants in accuracy.

Efficiency. Our method achieves significant improvements with remarkably low computational cost.
A key advantage lies in performing counterfactual reasoning entirely at the representation level, which
incurs much lower cost compared to conventional data augmentation methods. This design makes our
approach highly scalable for large-scale datasets and high-throughput inference. For instance, on a
single GPU, we can generate 100,000 counterfactual embeddings for a batch of 1,000 samples in less
than 3 seconds, with effortless context embedding construction, particularly for the virtual variant.

To quantify efficiency further, Appendix E.2 provides detailed FLOPs analysis per image, assuming
pre-computed text embeddings. Compared to diffusion-based ALIA and common augmentation
methods, our representation-level variants incur only marginal additional cost (+0.002 ∼ 0.004 G),
while consistently improving accuracy across all backbones. In contrast, pixel-level approaches
require several orders of magnitude more computation (+103 ∼ 106 G), demonstrating the scalability
and efficiency of our approach.

5 Conclusion

We propose a lightweight, inference-only framework that mitigates contextual hallucinations in
vision–language models via representation-level causal reasoning. By estimating image embeddings
into object and background components, we subtract spurious effects by the Total Direct Effect (TDE)
measure, and simulate intervention by constructing counterfactual embeddings via recombining
object features with diverse alternative contexts from external data, batch neighbors, and textual
descriptions. Without requiring retraining, prompt tuning, or generative models, ours method achieves
strong zero-shot performance and sets a new state-of-the-art on context-sensitive benchmarks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly claim our contributions about counterfactual calibration in both
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a discussion of limitations in the Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the references of our assumptions and proofs for our proposed
propositions in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose our implementation details in Section 4 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will upload our code in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We disclose our experimental setting in Section 4 and Appendix C.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct experiments with a fixed random seed and select the best round as
the result.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We disclose our experimental setting in Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics adequately and we make sure we
followed the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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deviation from the Code of Ethics.
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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image generators, or scraped datasets)?
Answer: [NA]
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Guidelines:
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the open-source code and dataset, and they are explicitly cited in the
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Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Answer: [NA]
Justification: We do not release new assets.
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• The answer NA means that the paper does not release new assets.
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well as details about compensation (if any)?
Answer: [NA]
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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Answer: [NA]
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guidelines for their institution.
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A Extended Related Work

Co-occurrence Bias in Vision–Language Models. Vision–language models (VLMs) often learn
spurious correlations from frequent concept co-occurrences in training data [7, 38], leading them
to rely on context cues or stereotypes as shortcuts [5, 39]. For example, if men frequently appear
repairing appliances, the model may incorrectly associate the activity with male gender [40]. Such
biases degrade performance on unbiased cases and raise fairness concerns. Recent work shows that
popular zero-shot VLMs exhibit notable gender disparities in retrieval and classification tasks [19],
largely due to underrepresented attributes like gender, ethnicity, or background context. These issues
highlight the need for effective debiasing strategies.

Prompt-Based Bias Mitigation Techniques. Prompt engineering mitigates bias in vision–language
models by injecting context-aware cues into textual inputs. Some methods learn prompt embeddings
adversarially to suppress spurious features such as gender or stereotypes [12], while others rewrite
biased captions with more balanced phrasing [13]. These techniques are lightweight and compatible
with pre-trained models, requiring no additional image data or architectural changes. However, their
effectiveness depends heavily on task-specific keywords or priors. Poorly designed prompts may
reduce performance or introduce new biases. To address this, recent work explores generating high-
quality prompts, such as estimating contextual probabilities from images [15] or deriving targeted
keywords through misclassification analysis [14].

Data Augmentation and Model-level Strategies. Data-centric methods mitigate bias by enrich-
ing the training distribution with additional image–text pairs that disrupt spurious co-occurrences.
Concept graph-guided augmentation [16] targets rare object–context pairs but depends on generative
models, raising concerns about output quality and scalability.

At the model level, contrastive approaches like CNC [17] align same-class samples across biases
while separating spurious correlations, improving feature discrimination. Other methods prune biased
classification heads [18] to reduce reliance on shortcut signals, though this may impair generalization.
MEMO [41] adapt model predictions across multiple augmented views of each input by minimizing
the entropy of their aggregated output distribution, thereby encouraging consistency under distribution
shifts. While effective, these strategies typically require retraining or external modules, limiting their
use in zero-shot settings.

Causal and Counterfactual Reasoning Approaches. Causal inference offers a principled way to
mitigate spurious correlations by modeling the data-generating process. Unlike prompt tuning or
data augmentation, causal methods operate directly on variables to estimate and suppress undesired
biases. In vision–language tasks, counterfactual reasoning has been used to reweight or subtract
biased modality signals, such as in counterfactual VQA [42], which isolates language priors using
Total Direct Effect (TDE).

Recent methods extend this idea by decomposing representations via generative models [27], training
dual-branch architectures to decouple confounders [29], or applying TDE at the patch level to weaken
local shortcuts [31]. However, these approaches often require segmentation, auxiliary branches, or
retraining, limiting their practicality in zero-shot or inference-only settings.

In contrast, representation-level counterfactual methods are well-suitable to zero-shot VLMs due
to their simplicity and compatibility. Combining causal reasoning with efficient inference-time
interventions offers a promising direction for scalable bias mitigation in open-world vision–language
applications.

B Theoretical Supplements

B.1 Decomposition for CLIP Embeddings

This section provides a compact derivation of the object–context factorization for both visual and
textual encoders and explains, from an information-theoretic viewpoint, how interaction terms emerge
under the InfoNCE objective which is the training loss for CLIP.
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Notation Restatement. X ∈ X and Z ∈ Z denote the object and context random variables re-
spectively.For completeness we write p(i,x,z) for the training distribution and assume the image
embedding fi(i) ∈ Rd and text embedding ft(T ) ∈ Rd belong to the Hilbert space L2

(
p(i,x,z)

)
. 7

Then, we use the shorthand E[· | X=x] for Ei∼p(i|X=x)[ · ] and similar for Z or (X,Z). All
embeddings from dataset are assumed centered: E[fi(i)] = E[ft(T )] = 0.

B.1.1 Visual Two–Factor Hoeffding Decomposition

Let gi(x, z) = E[fi(i) | X=x, Z=z] denote the conditional mean embedding obtained from
dataset information, which encapsulates the complete statistical memory of the training set for (x, z)
pairs. Projecting g onto the two one-factor subspaces {gi(x, ·)} and {gi(·, z)} of the Hilbert space
L2(p(x, z)) yields the object and context main effect functions:

ei(x) = E[fi(i) | X = x], ei(z) = E[fi(i) | Z = z]. (20)

Subtracting the two one–way projections from the joint expectations we obtain the interaction residue
ri(x, z) = gi(x, z)− ei(x)− ei(z). By construction, for every fixed x we have

E
[
ri(X,Z)

∣∣ X = x
]
= E

[
gi(x, Z) | X = x

]
− ei(x)− E

[
ei(Z)

]
= ei(x)− ei(x)− 0 = 0,

(21)

and similarly E[ri | Z=z] = 0. Orthogonality follows directly from this property: let VX={h(X) :
h ∈ L2(p(x))} and VZ={k(Z) : k ∈ L2(p(z))} be the two one-factor subspaces of L2(p(x, z)).
For any h(X) ∈ VX , according to Law of Total Expectation:

⟨ri, h(X)⟩ = E
[
ri · h(X)

]
= E

{
h(X)E[ ri | X]

}
= 0, (22)

and the same argument with k(Z) shows ⟨ri,VZ⟩ = 0. Hence ri is orthogonal to VX ∪ VZ .

The residual term ηi = fi(i) − gi(X,Z) satisfies E[ηi | X,Z] = 0, which for any function
q1(X) + q2(Z) + q3(X,Z) belonging to the direct sum VX ⊕ VZ ⊕ VXZ (with q3 centered in both
arguments), the inner product with ηi vanishes after taking conditional expectations. It essentially
captures higher-order variability orthogonal to all lower-order components (i.e., object, background,
and interaction terms).

Consequently the four components ei(X), ei(Z), ri(X,Z), ηi are pairwise orthogonal, giving rise
to the unique expansion reported in Eq. (1) of the main text:

fi(i) = ei(x) + ei(z) + ri(x, z) + ηi. (23)

When the data distribution is ideal distribution where the pairs of (x, z) appears in dataset evenly,
the joint mean embedding factorizes into the sum of margins and ri collapses to 0, i.e. X⊥Z which
means object and background are then fully “decoupled” in this model. In practice, ri measures the
extent to which this ideal fails because of systematic co-occurrence.

What are fi(i) and gi(x, z). The mapping fi : I →Rd is a deterministic encoder produced by
CLIP after contrastive training. For any concrete image i it outputs an instance–level embedding fi(i).
The quantity gi(x, z) = E

[
fi(i) | X=x, Z=z

]
is the conditional mean embedding: it averages

the encoder output over all images in the training distribution that share the same object–context label
pair (x, z). Formally,

gi(x, z) =

∫
I
fi(i) p(i | X=x, Z=z) di, (24)

which can be estimated in practice by empirical averaging across the mini-batch samples carrying the
label (x, z). Hence g may be viewed as the “prototype” or population center of all albatross-in-ocean,
crane bird-in-forest, . . . images that the encoder has seen during training. Because the encoder is
fixed, the only randomness in fi(i) comes from the data distribution; conditioning on (X,Z) therefore
yields a well-defined mean element gi(x, z) ∈ L2

(
p(i)

)
.

7The ℓ2 normalization in CLIP is applied after the embedding is fed into the contrastive loss; the Hoeffding
expansion applies to the pre-normalized vectors. For clarity, we omit this distinction in symbols.
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B.1.2 Textual Two–Factor Hoeffding Decomposition

Let gt(x, z) = E[ft(T ) | X=x, Z=z] denote the conditional mean embedding of the text encoder
over all prompts T=(Tx, Tz) generated from label pair (x, z). Projecting gt onto the two one-factor
subspaces {gt(x, ·)} and {gt(·, z)} of the Hilbert space L2

(
p(x, z)

)
yields the object and context

main effect functions:

et(x) = E[ft(T ) | X=x], et(z) = E[ft(T ) | Z=z]. (25)

Subtracting these from the joint expectations gives the text interaction remainder rt(x, z) =
gt(x, z) − et(x) − et(z), which, by construction, E[rt | X=x] = E[rt | Z=z] = 0 and is
therefore orthogonal to both one-way subspaces.

Finally the residual terms ηt = ft(T )− gt(X,Z) satisfies E[ηt | X,Z] = 0. Collecting these pieces
yields the unique orthogonal expansion:

ft(Tx, Tz) = et(x) + et(z) + rt(x, z) + ηt, (26)

which analogous to Eq. (9) for the visual encoder but on the text side.

B.2 Interaction Amplification under InfoNCE

We now place the two–factor decompositions Eq. (23) and Eq. (26) into the CLIP training loss and
give a self-contained argument that, whenever an object–context pair (x, z) appears abnormally
frequent than other pairs, gradient optimization enlarges the interaction terms ri(x, z) and rt(x, z).

Score Decomposition. Insert the two–factor decomposed embeddings into the normalized inner
product S(i, T ) = ⟨fi, ft(T )⟩/τ appearing in CLIP’s InfoNCE loss. For a “positive” pair, where
i ∼ p(i | X = x, Z = z) is an image whose true object label is x and context label is z, we obtain:

S++ := S(i, Tx,z)

=
1

τ

[
⟨ei(x), et(x)⟩+ ⟨ei(z), et(z)⟩︸ ︷︷ ︸

main effects

+ ⟨ei(z), et(x)⟩+ ⟨ei(x), et(z)⟩︸ ︷︷ ︸
cross–alignment

+ ⟨ei(x) + ei(z), rt⟩+ ⟨et(x) + et(z), ri⟩+ ⟨ri, rt⟩︸ ︷︷ ︸
interaction

+ ⟨ηi, ft⟩+ ⟨ηt, fi⟩︸ ︷︷ ︸
residual

]
.

(27)

The two one-factor hard negatives (x, z′) and (x′, z) share exactly one main effect vector with the
positive sample, hence S+− = S(ix,z′ , Tx,z′) and S−+ = S(ix′,z, Tx′,z) differ from S++ primarily
in the interaction terms. Explicitly,

S++ − S+− =
1

τ

[
⟨ei(z), et(z)⟩ − ⟨ei(z′), et(z

′)⟩

+ ⟨ei(z)− ei(z
′), et(x)⟩+ ⟨et(z)− et(z

′), ei(x)⟩
+ ⟨ei(z), rt(x, z)− rt(x, z

′)⟩+ ⟨et(z), ri(x, z)− ri(x, z
′)⟩

+ ⟨ri(x, z), rt(x, z)− rt(x, z
′)⟩+ ε

]
.

(28)

where ε is a higher-order residual term about ηi and ηt. Thus the margin separating the positive from
its hardest negatives is governed by both the cross–alignment and interaction components. A similar
expression holds for S++ − S−+.

InfoNCE Gradient on ri(x, z), rt(x, z). For a mini-batch data D, minimizing the InfoNCE loss: 8

−
[
S++ − log

∑
(x′,z′)∈D eS(i,T ′)

]
yields the gradient

∇riLnce = −
1

τ

[
rt(x, z)− αt,+− rt(x, z

′)− αt,−+ rt(x
′, z)

]
,

∇rtLnce = −
1

τ

[
ri(x, z)− αi,+− ri(x, z

′)− αi,−+ ri(x
′, z)

]
.

(29)

8To facilitate display, T ′ consist of Tx′ and Tz′
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where αi,±∓ and αt,±∓ are softmax weights for the two hardest negatives for visual and textual
model. If (x, z) occurs more frequently than (x, z′) or (x′, z) in data distribution, then α+−, α−+

are small and the gradient term −rt dominates, pushing ri in the +rt direction. By symmetry, an
analogous expression holds for∇rtLnce. Iterated SGD steps therefore inflate the terms ri(x, z) and
rt(x, z) until the margin S++ −max{S+−, S−+} is large enough to satisfy the batch softmax.

B.3 Cross–modal Attraction on Co-occurring Context and Object under InfoNCE

In addition to the interaction gradients on ri,rt, InfoNCE also induces cross–alignment gradients
on the one–way main effects ei(z) and et(x) whenever (x, z) co-occurs more frequently than its
one-factor negatives (x, z′) and (x′, z).

Recall that one of the positive score cross–alignment term ⟨ei(z), et(x)⟩ and the negative ones for
(x′, z): ⟨ei(z), et(x′)⟩. All other negatives either involve z′ ̸= z (do not dependence on ei(z)) or
only marginal effects. For a mini-batch data, minimizing the InfoNCE loss and its gradient projected
onto ei(z) is

∇ei(z)Lnce =−
1

τ

[
et(x) + et(z)

− α+−
(
et(x) + et(z

′)
)
− α−+ et(z) +

∑
T ′/∈{T++,T+−,T−+}

αT ′ et(zT ′)
]
.

(30)

Since αi,±∓ is the softmax weight on the hardest negative (x, z′) and (x′, z), when (x, z) is a
high-PMI (high -frequency co -occurrence) pair αi,±∓ ≪ 1. The dominant terms are −et(x), so the
net gradient points approximately toward +et(x).
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Figure 7: The illustration of cross–modal attrac-
tion. It compares the textual similarity of two
scenes and a part of objects from ImageNet, shown
by using ft(Tz) as a bridge.

Symmetrically, ∇et(x)Lnce contains −ei(z) +
β−+ ei(z), also pulling et(x) toward +ei(z)
in case of high-PMI pair. Hence frequent
co-occurrences induce a cross–modal attrac-
tion between background main effect ei(z) and
object main effect et(x), explaining why the
background vector can align with the object
dictionary entry and thereby raise the spurious
score ⟨ei(z), ft(Tx)⟩ in Eq. (4).

These cross–alignment gradients demonstrate
that InfoNCE training actively aligns the back-
ground main effect ei(z) with the object prompt
embedding et(x) whenever (x, z) co-occurs
frequently. Together with the interaction am-
plification on ri, rt, this mechanism explains
why the spurious shortcut I → Z → Y grows
stronger under frequent co-occurrence and un-
derpins the observed hallucination bias in novel
scenes.

B.4 Information Entropy Perspective for Co-occurrence Shortcuts.

The InfoNCE loss minimizes a tractable lower bound of the mutual information I(X;Z) between
objects and scenes:

I(X;Z) ≥ log(K+1)− LInfoNCE(θ), (31)
where K denotes the number of negative samples per positive pair (typically K = N−1 for a batch
size of N ), it therefore implies that training maximizes the average pointwise mutual information
across observed pairs.

I(X;Z) = Ep(x,z)[PMI(x, z)] = Ep(x,z)

[
log

p(x, z)

p(x)p(z)

]
. (32)

The CLIP score in Eq. (27) can be decomposed into three main parts: one-way terms, cross-modal
terms, and interaction term involving residuals. These components are directly affected by the local
PMI(x, z).
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When (x, z) is a frequently co-occurring object–scene pair (i.e., high PMI(x, z)), the InfoNCE
gradient includes attractive forces:

−∇riL ∝ rt, −∇rtL ∝ ri ⇒ ri(x, z), rt(x, z) ↑
Meanwhile, the cross-modal alignment terms are also reinforced:

−∇ei(z)L ∝ et(x), −∇et(x)L ∝ ei(z) ⇒ ⟨ei(z), et(x)⟩ ↑
This "double boost" both magnifies the margin between positives and hard negatives, and strengthens
the shortcut path which is a key mechanism underlying hallucination under co-occurrence bias.

In contrast, when (x, z) is rare or anti-correlated, the PMI becomes negative or zero, causing the
attractive gradient to vanish or reverse. The optimizer keeps:

ri(x, z), rt(x, z)→ 0, ei(z) ⊥ et(x),

On the other hand, if pairs come with an almost fair and uniform data distribution, it also allows the
model to learns a decoupled, object-centric representation.

In conclusion, by maximizing the expectation of PMI, InfoNCE selectively increases interaction
energy and cross-modal alignment only for high-PMI object–scene pairs. These components including
ri, rt, and ⟨ei(z), et(x)⟩ serve as faithful proxies for dataset co-occurrence bias. When the joint
distribution p(x, z) is decomposed by independence, the learned representation is robust and object-
aligned; but when p(x, z) is skewed, InfoNCE implicitly injects shortcut dependencies exactly where
the bias is strongest.

B.5 Prompt-Induced Mitigation of Bias

This section shows formally how appending an explicit scene token Tz blocks the spurious causal
path I→Z→Y , shown in Fig. 3, and also characterizes the effect of an imprecise or incorrect T ′

z .

Causal-Intervention View for Prompt-Based Method. Let Z be the latent scene label inferred
from image I, and Y the target class. In the object-only regime the model effectively computes the
probability of class c:

p(Y | I, Tcx) =
∑
z∈Z

p(Y | I, T, Z = z) p(Z = z | I), (33)

so the pathway I → Z → Y remains open and can introduce spurious hallucination whenever
p(Z | I) favors classes co-occurring with certain scenes.

By appending Tz , we intervene on Z, clamping it to the observed value:

p(Y | I, Tc, Tz) = p
(
Y | I, Tc, Z = z

)
× p(Z = z |I, Tc, Tz),

where p(Z = z | I, Tc, Tz) = 1. This removes the marginalization over Z and thus blocks the
I→Z→Y shortcut entirely, leaving only the legitimate I→X→Y path.

However, if instead one uses an imprecise or incorrect scene token Tz′ ̸= Tz , the intervention locks
Z at the wrong value. The causal path is still blocked, but now the model conditions on Z = Tz′

which mismatches the true scene, shifting probability mass toward classes co-occurring with Tz′ and
potentially introducing new misclassifications.

As the experiment in Fig. 8 demonstrates, using a simple object-only T0 fails on both object predic-
tions. The model recovers the desired predictions when using the full scene descriptions T bird

2 (in a
forest with dense vegetation and massy stones on riverbank) and T cat

2 (in the ocean with gentle waves
and surrounded by green hills and clear sky), whereas the situation only improves to some extent
when using the vague descriptions T cat

1 (with trees) and T cat
1 (in water). Alarmingly, the use of wrong

descriptions can make the model predictions worse and introduce new misclassification targets, i.e.,
T bird
3 (in the zoo with lush green grass), T bird

4 (in a foggy swamp, wading through murky water) and
T cat
3 (in the art gallery with a starry oil painting on the wall), T cat

4 (in the zoo with lush green grass).

B.6 Proof of the Direct-Effect Decomposition

We provide the algebraic details omitted from the main text, showing how the residual stream unrolls
into additive direct-effect terms and why all LayerNorm (LN) operations can be absorbed into a
single projection matrix R up to a constant bias.
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Figure 8: Impact of context-match level in Tz on prediction scores. Analysis performed on CLIP
(ViT-B-16) for two images about albatross and tabby cat under novel contextual conditions. Five kinds
of prompt variants were tested: T0 is baseline (object-only, no context); T1 and T2 are ambiguous
and precise scene descriptions; T3 and T4 are incorrect or even adversarial scene descriptions

Residual Stream Induction Let t0cls, t
0
1, . . . , t

0
N be the token matrix t0 ∈ R(N+1)×d fed to the first

Transformer block. Each layer l ∈ {1, . . . , L} consists of:

t̂l = MSAl(LNl
1(t

l−1)) + tl−1, tl = MLPl(LNl
2(̂t

l)) + t̂l. (34)

Let the residual contributions applying the shared projection P , and substitute the first into the second,
then the Eq. 34 become:

P [tl]cls = P [tl−1]cls + P [MSAl(LNl
1(t

l−1))]cls + P [MLPl(LNl
2(̂t

l))]cls. (35)

By simple induction), we obtain:

P [tL]cls = P t0cls + P

L∑
l=1

[MSAl(LNl
1(t

l−1))]cls + P

L∑
l=1

[MLPl(LNl
2(̂t

l))]cls. (36)

Noting that P [tL]cls = fi(i) recovers Eq. (7) and thus exhibits the desired additive decomposition
into CLS, MSA, and MLP direct effects.

Absorbing the Pre-projection LayerNorm Most CLIP variants apply an LN after tL but before the
projection layer,this term gives:

LN(t) = γ√
σ2+ϵ︸ ︷︷ ︸
I

·t−
(

µγ√
σ2+ϵ

− β
)

︸ ︷︷ ︸
II

. (37)

where t ∈ RN is token, µl, σlare the mean and standard deviation, and γ, β are learned vectors. We
absorb the scale I into the projection P and distribute the constant bias II equally to every direct-effect
term in Eq. (36). Since II is image-independent, this constant shift changes neither cosine similarities
nor downstream zero-shot decisions.

Justification of the MSA Dominated Semantic Effect We follow mean-ablation way: each compo-
nent (CLS, all MLPs, or a set of MSAs) is replaced by its batch mean, leaving the remainder of the
network untouched. Formally, for a batch D of size D and we substitute a component vector:

x← 1

D

∑
x′∈D

x′. (38)

From Tab. 5, while the decomposition in Eq. (36) is algebraically exact, not all components contribute
equally to semantic alignment with the textual prompt in zero-shot classification. The initial class
token t0cls acts as a global visual prior and does not encode class-specific cues. Empirically, its
mean-ablation results weakly decreases (around 0.5% on ImageNet)), suggesting that it plays a
stabilizing but non-discriminative role. The MLP blocks, which apply non-linear transformations to
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Table 5: Mean-ablation results on CLIP–ViT components. We evaluate zero-shot top-1 accuracy
on ImageNet by ablating different architectural components in four ViT structures. Each ablation
[34] replaces the corresponding residual stream component (e.g. class token, MLPs, MSAs) with its
mean over the batch, in Eq. (38).

Model Base accuracy Class token ablation MLPs ablation Class token + MLPs MSA ablation
ViT-B/32 65.63 64.96 64.52 64.27 0.18
ViT-B/16 68.58 68.16 67.73 67.09 0.13
ViT-L/14 74.01 73.72 73.22 73.15 0.05
ViT-H/14 76.40 75.88 75.36 75.28 0.03

each token independently, serve primarily to normalize and rescale features. They do not aggregate
new semantic content and result weakly decreases (around 1.0% on ImageNet)).

In contrast, the MSA blocks perform dynamic, content-dependent token mixing. For each layer and
attention head, patch tokens that are semantically aligned with the class description receive higher
attention scores and are explicitly pooled into the CLS token. This operation introduces the main
class-relevant signal into the residual stream. Quantitatively, when ablated for MSAs, it leads to
the most significant drop in zero-shot classification accuracy. This clearly indicates that the MSA
component is the principal driver of semantic alignment in CLIP–ViT.

Thus, in the way of Eq. (9), we isolate the semantically meaningful path through which each patch
contributes to the final image embedding, and excludes the residuals (class token and MLPs) whose
contributions are either generic or semantically neutral.

B.7 The Proof of Conditional Expectation as the Minimum-MSE Predictor

Without loss of generality, this section focuses on C(z) as our object of study. The proof leads to the
following conclusions. The vector C(z) is the unique minimizer of mean-squared error, the centroid
of the conditional background manifold, making Eq. (11) the optimal first-order solution in both
theoretical senses.

Notation. Let (Ω,F ,P) be a probability space and

X : Ω→RD, X ∈ L2(Ω)
(
i.e. E∥X∥22 <∞

)
.

Let G ⊂ F be a sub-σ–algebra that represents the information available to a predictor. A map
a : Ω→RD is G-measurable when it depends only on G.

Orthogonality (Pythagoras) Identity. For every G-measurable a,

E
∥∥X − a

∥∥2
2

= E
∥∥X − E[X | G]

∥∥2
2
+
∥∥a− E[X | G]

∥∥2
L2 . (39)

The first term is the irreducible error; the second is the non-negative excess error that vanishes only if
a = E[X | G]. Hence

a⋆ := E[X | G]
is the unique minimiser of MSE among all G-measurable predictors [43].

Instantiation for Counterfactual Embeddings. Let v(i) ∈ RD be the image embedding of input i.
Define:

X = fi(i), G = σ(G = z) (token is background).
Applying (39) yields the centroid of the conditional background manifold

C(z) := E
[
fi(i) | G = z

]
=

∫
RD

τ p[fi(i)|G=z](τ | z) dτ. (40)

which uniquely minimizes:

E
∥∥fi(i)− a

∥∥2
2
, a ∈ L2(Ω), a is G-measurable.

Equivalently, after sampling for Eq. (40), each token can be written as E[vj(i) | G = z] . And, the
summation is composed of C(z). Thus, when only the background information G = z is known, C(z)
is the MMSE-optimal first-order mean approximation to the true embedding v(i). This provides a
principled baseline for constructing counterfactual representations.
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C Details of the Experiment Setting

C.1 Dataset Description

We evaluate our methods on four widely adopted benchmark datasets specifically designed to assess
contextual robustness under spurious correlations and distribution shifts. These datasets span synthetic
and real-world biases and provide controlled setups for evaluating zero-shot generalization under
strong object–context entanglement:

Waterbirds [8]. It constructed by compositing bird foregrounds from CUB-200-2011 with natural
scenes from Places [36], focuses on background–label correlation. It comprises a total of 10,589 im-
ages, including 4,795 training images and 5,794 test images, categorized into the classes: waterbirds
and landbirds." In the training set reflecting reality, over 95% of waterbirds appear in water back-
grounds and landbirds in land backgrounds, presenting strong spurious context–class associations.
The test set balances background distributions to evaluate generalization beyond shortcuts.

UrbanCars [9]. It derived from Stanford Cars, Places, and LVIS datasets, introduces multi-bias
settings by synthetically composing each image with a car object, a background (urban or rural),
and a co-occurring object (e.g., fire hydrants, cows). The training set contains 8,000 images, with
strong three-way correlations between class, background, and co-occurring object. Both validation
and test sets contain 1000 balanced samples where the spurious cues have extra tags which enables
fine-grained analysis of shortcut reliance and interaction among multiple biases.

COCO-GB [10]. It reorganized from MS-COCO [44], targets gender–context co-occurrence biases
in image captioning. Based on gender annotation inferred from captions and manual verification, two
versions are constructed: v1 includes a test set of images with equal male and female representation
across balanced contexts for fairness analysis. These setups expose hallucinated gender attributions
when models rely excessively on contextual priors rather than visual cues, shown in Fig. 2.

NICO [11]. It is a real-world dataset contains over 25,000 images spanning 19 object classes
(10 animals, 9 vehicles) across 188 distinct contexts (e.g., “dog on grass”, “car in snow”). Each
class appears in 10 different environmental or situational contexts. It serves as a benchmark built
specifically to study context bias and causal learning, aiming at exploring causal relationships between
objects and their contexts (e.g., background, scene, co-occurring objects) in object recognition tasks.

Together, these datasets enable rigorous and controlled evaluation of models’ ability to disentangle
semantic representations from contextually entangled signals, particularly under zero-shot and
distribution-shifted scenarios. Fig. 9 displays a subset of images from those dataset.

C.2 Implementation Details

We use four CLIP vision backbones: ViT-B/32, ViT-B/16, ViT-L/14, and ViT-H/14, all publicly avail-
able via OpenCLIP and pretrained on the LAION-2B-en dataset [26], which contains over 2.3 billion
image–text pairs. The pretrained model are: laion2b_s34b_b79k for ViT-B/32, laion2b_s34b_b88k
for ViT-B/16, laion2b_s32b_b82k for both ViT-L/14 and laion2b_s32b_b79k for ViT-H/14. Follow-
ing CLIP’s original setting [1], we adopt 80 hand-crafted text prompts per class to support standard
zero-shot evaluation.

Then, we implement three versions of CounterfactualCLIP in this paper, distinguished by the source
of counterfactual scene embeddings. Each follows a unified architecture and inference procedure,
differing only in how background contexts are collected:

External Scene Variant. This variant uses scene images sampled from the Places dataset. For
each target dataset (e.g., Waterbirds), we manually select 16 relevant scene categories based on
background diversity observed in the data (see Tab. 6). For each category, 50 images are randomly
drawn from Places, yielding a fixed pool of 800 candidate backgrounds. At inference time, for each
test image, We employed two constraints to uniformly select a total of M scenes from 16 relevant
scene categories in the scene pool: (1) maximized scene dissimilarity with the original input; and (2)
Maximized visual dissimilarity with the foreground object class. The selected scenes are embedded
via the CLIP image encoder and used to synthesize counterfactual image representations.

Internal Scene Variant. Here, the candidate pool is constructed online using other samples in the
same test-time batch. We exclude the current image and select M candidates from remaining batch
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Figure 9: Examples from four datasets: Waterbirds, UrbanCars, COCO-GB and NICO.

Table 6: Selected scene categories from the Places dataset for each target dataset in the External
Scene Variant.

Dataset Scene Categories (16 total)

Waterbirds marsh, pond, lake-natural, river, swamp, creek, canal-natural, fishpond, forest-broadleaf,
bamboo_forest, orchard, field-cultivated, field-wild, pasture, farm, forest_path

UrbanCars street, downtown, parking_lot, parking_garage-outdoor, highway, gas_station, viaduct,
crosswalk, field-cultivated, field_road, forest_road, village, farm, pasture, barn

COCO-GB living_room, bedroom, kitchen, bathroom, dining_room, office, classroom, hotel_room,
restaurant, shopping_mall-indoor, bus_station-indoor, supermarket, park, street,
playground

NICO beach, bridge, desert_road, forest_path, river, snowfield, street, residential_neighborhood,
home_office, mountain_snowy, pasture, airplane_cabin, train_station-platform,
garage-outdoor, amphitheater, corral

samples by Eq. (11), applying the same semantic dissimilarity filters as the external variant. This
variant is more dynamic and requires no external data but depends on batch diversity.

For both external and internal variants Mcontexts are selected uniformly across categories (external)
or available pool entries (internal) after dissimilarity filtering. This helps maintain scene diversity
and avoid sampling dominant or overly similar backgrounds.

Virtual Scene Variant. This variant constructs a purely text-based counterfactual pool. For each
dataset, we generate 400 diverse scene descriptions using a large language model. The prompt is
phrased as:

Generate [NUMBER] unique, single-sentence scene descriptions that together span the full range of
environments found in [DATASET], without referring to any [CLASS] specific content.

These descriptions, partly shown in Tab. 7, are then encoded via the CLIP text encoder to obtain virtual
scene embeddings, which act as background surrogates during counterfactual synthesis. This variant
is lightweight, label-agnostic, and easily extensible. In the experiment, we sample M background
scenes from a candidate pool of size B = 400 for each image to synthesize the virtual counterfactuals,
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Table 7: Examples of generated scene descriptions for the Virtual scene variant on Waterbirds
and COCO-GB.

Waterbirds COCO-GB

# Scene Description # Scene Description

1 A clear coast near a tidal pool in the early morn-
ing.

1 A sidewalk café with metal chairs and small
round tables facing the street.

2 A misty floodplain near a gravel path on a rainy
day.

2 A hospital room with medical equipment, a mon-
itor, and a bed by the window.

3 A shimmering marsh near a grassy bank at dawn. 3 A forest clearing surrounded by tall trees and a
carpet of fallen leaves.

4 A glassy wetland near a coastal bluff on a rainy
day.

4 A classroom with desks arranged in rows and a
whiteboard covered in diagrams.

5 A foggy sea near a gravel path on a rainy day. 5 A theater stage with drawn curtains and lights
focused on the center.

6 A shaded lagoon near a dune on a rainy day. 6 A public plaza with a fountain in the center and
benches arranged around it.

7 A tranquil river near a reed bed under midday
sun.

7 A mountain hiking trail winding between large
boulders and dense pine trees.

8 A glassy lake near a wooden pier in the early
morning.

8 A shopping mall interior with decorative plants
and store signs on every side.

for instance, with M = {270, 270, 190, 90} for ViT-B/32, ViT-B/16, ViT-L/14, and ViT-H/14 on
Waterbirds, respectively.

Additional Hyper-parameters. During counterfactual synthesis we blend the object and background
embeddings with a fusion weight α. We find α selects 0.5-0.7 yields the best trade-off. The coefficient
λ in Eq. (19) regulates how much of the learned object–context interaction is retained in the final
score; values 0.6-0.8 consistently work well. In Eq. (15), we introduce an additional factor λ̂ to
control the malignant hallucination term, normally selecting 1 unless stated otherwise.

When forming a counterfactual image embedding in Eq. (11) we optionally discard token contributions
whose probability is below a threshold, which can be tightened for unknown noisy. It sets around
0.3 usually provides a good balance. Finally, to limit inference overhead, the operation of Eq. (18)
are applied only to the top-5 classes returned by the initial softmax; all other classes still receive the
TDE correction. The intuition stems from the observation that the model only needs to imagine the
top-K most confusable categories in alternative contexts to achieve robust predictions. A sensitivity
analysis of some of parameters above is presented in Appendix E.3.

D Details of the Experiment Results

D.1 More Results on Waterbirds

Tab. 8 reports per-group accuracy on Waterbirds for all ViT backbones, where each sample is defined
by its object label (landbird: LB or waterbird: WB) and background (land: L or water: W). The
diagonal cells (LB–L, WB–W) correspond to familiar object–background pairs, whereas off-diagonal
cells (LB–W, WB–L) represent the hardest OOD compositions that expose context bias.

Across backbones, vanilla CLIP shows strong degradation on LB–W and WB–L groups. For example,
only 34.6% on LB–W with ViT-B/32 confirms its reliance on background cues. CounterfactualCLIP
substantially lifts these two worst groups while maintaining or improving the in-distribution pairs.
These detailed results above further illustrate that our method suppresses spurious scene shortcuts
and restores object-centric decision making.

D.2 More Results on COCO-GB

Tab. 9 presents the average and subgroup accuracy on COCO-GB v1 across ViT-B/32, ViT-L/14, and
ViT-H/14 backbones. We observe that vanilla CLIP suffers from notable gender gaps (e.g.,6.00% on
ViT-B/32), indicating that model predictions are influenced by gender–context co-occurrence bias.
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Table 8: Performance on Waterbirds across different ViT backbones. LB: landbird, WB: water-
bird; L: land background, W: water background.

Backbone Method LB-L↑ LB-W↑ WB-L↑ WB-W↑ Avg.↑

ViT-B/32

CLIP-base 88.47 34.55 59.03 94.39 64.88
Ours(External) 79.16 80.67 79.91 80.37 79.96
Ours(Internal) 87.32 78.98 71.81 83.49 81.93
Ours(Virtual) 90.64 82.93 65.73 79.91 83.69

ViT-B/16

CLIP-base 95.57 63.81 50.93 85.98 77.20
Ours(External) 92.90 86.39 70.87 79.13 86.40
Ours(Internal) 88.16 82.88 82.71 87.54 85.43
Ours(Virtual) 95.30 94.41 67.13 73.99 89.47

ViT-L/14

CLIP-base 95.30 52.51 71.03 92.52 75.65
Ours(External) 92.82 93.13 86.76 82.09 91.08
Ours(Internal) 93.84 89.00 85.67 90.81 90.71
Ours(Virtual) 95.61 93.97 83.02 80.84 91.94

ViT-H/14

CLIP-base 96.27 71.65 41.28 68.85 77.55
Ours(External) 93.75 93.92 73.68 63.40 88.23
Ours(Internal) 92.24 92.68 74.14 67.45 87.66
Ours(Virtual) 97.21 91.18 68.38 70.40 88.70

Table 9: Average and gender-specific accuracy (%) across three CLIP backbones on COCO-GB
v1. Gap denotes gender performance differences.

Backbone Method Avg.↑ Female↑ Male↑ Gap↓

ViT-B/32

CLIP 86.20 83.20 89.20 6.00
TBD 86.60 82.20 91.00 8.80
PC 86.30 84.80 87.80 3.00
PC+ 86.80 83.40 90.20 6.80
B2T 86.60 81.40 91.80 10.40

Ours (External) 87.30 85.80 88.80 3.00
Ours (Internal) 87.00 85.40 88.60 3.20
Ours (Virtual) 87.20 84.80 89.60 4.80

ViT-L/14

CLIP 91.05 90.50 91.60 1.10
TBD 91.60 91.00 92.20 1.20
PC 91.80 92.60 91.00 1.60
PC+ 91.50 90.40 92.60 2.20
B2T 91.50 90.00 93.00 3.00

Ours (External) 91.70 91.80 91.60 0.20
Ours (Internal) 91.75 92.10 91.40 0.70
Ours (Virtual) 92.15 92.60 91.70 0.90

ViT-H/14

CLIP 92.70 93.40 92.00 1.40
TBD 92.30 93.40 91.20 2.20
PC 92.80 92.60 93.00 0.40
PC+ 93.10 92.60 94.00 1.40
B2T 91.70 92.20 91.20 1.00

Ours (External) 92.90 92.60 93.20 0.60
Ours (Internal) 93.20 93.40 93.00 0.40
Ours (Virtual) 93.00 93.20 92.80 0.40
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CounterfactualCLIP maintains competitive or better average accuracy while significantly narrowing
the gender gap across all backbones. On ViT-L/14, for example, our external variant achieves a gap of
only 0.20%, and on ViT-H/14, the virtual variant reduces the gap to just 0.40%. These results confirm
that our method effectively mitigates gender-associated spurious correlations without sacrificing
overall performance. Results for ViT-B/16 are reported separately in Tab. 2).

Table 10: Average and factor-specific accuracy (%) on UrbanCars across three CLIP backbones.
We report accuracy on the original co-occurrence (I.D.), background shifted (BG), and Co-object
shifted (Co-Obj) subsets, along with overall average accuracy.

Backbone Method Avg.↑ I.D.↑ BG↑ Co-Obj↑

ViT-B/32

CLIP 63.73 79.60 36.40 75.20
TBD 59.33 74.00 37.60 66.40
PC 69.73 83.20 52.40 73.60
PC+ 70.93 84.40 48.00 80.40
B2T 67.47 84.80 36.80 80.80

Ours (External) 71.60 84.40 50.00 80.40
Ours (Internal) 72.00 86.40 48.00 81.60
Ours (Virtual) 71.07 86.80 44.00 82.40

ViT-L/14

CLIP 62.27 80.40 32.80 73.60
TBD 55.60 66.00 44.80 56.00
PC 62.67 77.60 45.60 64.80
PC+ 64.40 84.80 36.00 72.40
B2T 61.60 79.60 32.00 73.20

Ours (External) 63.07 83.20 35.60 70.40
Ours (Internal) 64.40 84.00 34.80 74.40
Ours (Virtual) 66.00 88.40 36.00 73.60

ViT-H/14

CLIP 62.27 84.00 34.40 68.40
TBD 60.53 72.80 49.60 59.20
PC 63.20 82.00 39.60 68.00
PC+ 64.13 82.80 38.40 71.20
B2T 60.93 78.40 31.20 73.20

Ours (External) 66.00 85.20 44.00 68.80
Ours (Internal) 68.27 90.00 46.00 68.80
Ours (Virtual) 68.40 88.80 47.20 69.20

D.3 More Results on UrbanCars

Tab. 10 presents a detailed breakdown on the UrbanCars dataset across ViT-B/32, ViT-L/14, and
ViT-H/14 backbones. The three columns (I.D., BG, Co-Obj) respectively represent accuracy on
original co-occurring samples, background-shifted samples, and co-object-shifted samples. CLIP
shows sharp performance drops under distribution shifts—for example, on ViT-B/32, accuracy
drops from 79.6% (I.D.) to only 36.4%(BG), highlighting vulnerability to background bias. In
contrast, CounterfactualCLIP maintains strong performance across all settings. On ViT-B/32, our
internal variant achieves the highest average accuracy (72.00%), while our virtual variant yields
the best balance on ViT-H/14, reaching 68.40% average and 47.20% BG accuracy—substantially
outperforming CLIP by over 12 points. For ViT-B/16 results, refer to Appendix Tab. 3.

D.4 More Results on NICO

NICO is a standard benchmark for evaluating contextual robustness, as it includes diverse object
categories across varying backgrounds. Tab. 11 and 12 report both average and worst-group accuracy
on ViT-B/32 and ViT-B/16. Across both backbones, all three variants of ours methods consistently
outperform the baselines in worst-group accuracy, particularly for context-sensitive categories such
as “cat” and “sheep.” Notably, the virtual variant achieves the best balance between maintaining high
average accuracy and significantly improving worst-group performance, highlighting its effectiveness

32



in mitigating context-induced failures. This improvement stems from ours ability to simulate diverse
scene interventions during inference without disrupting semantic alignment.

Table 11: Average and worst-group accuracy (%) per-category on NICO (ViT-B/32).
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Average

CLIP 96.19 96.44 98.76 97.28 98.96 96.60 93.45 94.04 98.17 95.17 99.75 98.23 97.88 98.57 97.07 94.06 98.16 98.54 93.45

TBD 93.76 95.64 98.46 96.73 98.56 95.92 94.41 90.76 97.84 95.65 99.75 97.72 97.33 98.66 96.05 94.29 98.05 98.54 87.60

P 97.78 95.83 98.52 97.47 99.14 96.40 93.74 93.12 98.25 95.59 99.83 97.42 97.80 98.66 97.13 93.82 98.16 98.41 94.05

PC+ 97.35 95.64 98.10 97.59 99.14 96.70 93.45 93.64 98.09 94.74 99.75 97.57 97.88 98.75 97.96 94.64 98.16 98.41 93.85

B2T 96.72 94.54 98.46 97.22 96.44 96.79 90.75 94.69 97.92 94.80 99.66 97.87 98.35 98.84 97.13 93.94 96.85 97.49 94.15

Ours(external) 96.72 95.95 98.87 96.85 98.87 96.79 92.39 94.69 98.67 95.11 99.66 98.23 97.72 98.66 97.64 94.06 98.05 98.54 94.74

Ours(internal) 96.72 95.15 98.70 96.60 98.60 96.70 91.81 94.63 98.67 94.98 99.66 98.16 97.80 98.57 97.96 94.76 97.94 98.41 95.04

Ours(virtual) 98.10 96.62 99.11 97.28 98.83 96.70 91.62 94.63 98.59 94.68 99.66 97.79 97.80 98.48 97.13 93.24 97.94 98.28 94.94

Worst

CLIP 87.50 88.73 96.55 92.24 97.06 66.67 77.78 73.20 94.78 93.36 97.78 96.30 92.21 93.97 89.11 84.71 93.94 95.05 70.45

TBD 78.57 90.08 96.03 92.24 95.59 62.22 75.00 68.18 91.07 90.71 97.78 92.59 89.61 92.24 90.10 85.88 95.45 93.48 70.45

P 91.47 88.73 95.86 92.65 97.96 64.44 80.56 72.55 94.85 94.06 97.78 94.44 91.49 94.83 89.11 83.53 93.94 95.24 79.55

PC+ 88.37 88.73 93.79 93.47 97.96 66.67 77.78 71.24 92.86 92.66 97.78 94.44 92.20 95.69 95.05 84.71 93.94 95.24 81.82

B2T 89.29 84.51 94.67 90.61 89.22 71.11 72.84 77.12 94.85 92.62 97.78 95.37 92.91 96.00 90.10 86.00 92.00 95.24 85.57

Ours(external) 89.29 90.14 95.86 91.84 97.96 71.11 77.78 74.51 96.27 91.88 97.78 96.93 89.36 93.97 91.09 84.00 93.94 95.24 75.00

Ours(internal) 89.29 88.73 95.86 91.43 97.79 71.11 77.78 74.51 96.27 91.51 97.78 96.62 89.36 93.97 92.08 85.88 93.94 95.24 77.27

Ours(virtual) 91.07 91.90 96.55 92.65 97.96 71.11 77.78 74.51 96.27 90.71 97.78 96.30 89.36 93.97 91.09 82.35 93.94 95.24 77.27

Table 12: Average and worst-group accuracy (%) per-category on NICO (ViT-B/16).
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Average

CLIP 96.83 97.11 99.47 98.09 99.14 96.89 93.45 94.82 98.17 96.62 99.83 98.38 99.21 99.11 97.71 95.57 98.92 99.60 95.63

TBD 89.10 95.70 98.93 97.84 94.28 96.89 94.32 94.36 98.42 96.31 99.92 97.57 98.66 98.66 94.59 95.10 98.48 98.68 92.06

P 97.78 96.44 99.17 98.02 99.41 96.79 94.80 94.56 98.17 96.07 99.92 98.09 99.29 99.11 98.22 94.76 98.70 99.07 94.74

PC(+) 97.10 96.50 99.17 98.33 99.28 96.79 94.22 94.89 98.17 96.13 99.92 97.94 99.21 99.11 98.20 95.45 99.02 99.07 94.84

B2T 94.18 95.21 99.05 98.21 97.16 96.79 91.52 95.41 98.25 96.31 99.92 98.38 99.37 98.84 97.77 95.10 98.37 93.39 95.54

Ours(external) 97.14 97.11 99.47 98.21 99.32 98.64 87.86 97.71 98.84 98.13 100.0 99.48 99.37 99.82 97.83 97.32 99.35 99.47 95.44

Ours(internal) 97.25 98.04 99.59 98.33 99.41 98.83 90.66 97.38 98.67 97.82 100.0 99.34 99.21 99.91 98.22 96.74 99.24 99.60 95.93

Ours(virtual) 97.78 98.40 99.70 98.64 99.41 98.64 90.46 97.38 98.67 97.70 100.0 99.04 99.21 99.73 98.03 96.62 99.24 99.60 95.83

Worst

CLIP 87.50 91.90 98.22 93.88 96.94 73.33 69.44 74.51 95.52 94.25 98.55 96.30 95.74 96.55 93.07 86.05 95.45 98.41 72.73

TBD 59.69 86.64 97.62 93.06 81.12 77.78 72.22 75.16 92.86 94.25 98.55 95.37 93.62 95.69 83.17 86.05 95.45 95.83 79.55

P 90.70 88.66 96.45 94.29 97.96 77.78 72.22 72.55 96.27 91.95 98.55 96.30 96.45 96.55 95.60 84.88 95.45 97.83 77.27

PC(+) 91.47 89.47 95.86 94.69 96.94 77.78 77.78 74.51 94.64 94.25 98.55 96.30 96.45 96.55 95.05 84.88 95.45 96.83 79.55

B2T 85.71 85.02 96.45 94.69 92.16 75.56 72.84 78.43 96.27 94.44 98.55 96.55 97.78 95.69 95.05 86.05 95.45 54.17 84.54

Ours(external) 87.50 91.90 98.65 95.10 97.45 91.11 69.44 84.97 97.44 95.20 100.0 98.28 96.45 99.41 93.07 90.70 96.00 98.41 81.82

Ours(internal) 87.50 95.14 98.22 95.10 97.45 91.11 75.00 82.35 97.01 94.46 100.0 96.55 96.45 99.41 94.06 88.37 96.00 98.41 79.55

Ours(virtual) 91.07 95.55 98.82 95.92 97.45 91.11 72.22 82.35 97.01 94.46 100.0 96.55 96.45 98.70 94.06 88.37 96.00 98.41 79.55

D.5 Visualization on NICO

We include extended visualization experiment in Fig. 10.

E More Discussion at CounterfactualCLIP

E.1 Comparison with Image augmentation Variants under Zero-shot Classification

We further benchmark our method against four classical image augmentation techniques including
Mixup, CutMix, AugMix, and Cutout and adapted into counterfactual variants compatible with
zero-shot settings. Specifically, instead of retraining, we apply each augmentation multiple times to a
test image during inference, and aggregate their prediction logits, obtaining the revisions to prediction.
Low-quality augmented samples are filtered [28] to ensure the relevance of counterfactual variations.

Among these, Mixup performs linear interpolation image pairs; CutMix pastes patches from another
image; AugMix applies diverse augmentation chains followed by probabilistic blending; and Cutout
randomly masks out rectangular regions. All operate at the pixel level, without using pretrained
semantic priors. Results in Tab. 13, 14 and 15 show some augmentation variants offer partial
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Figure 10: More Attention Map Revealed by C(x)-based Embeddings on NICO.

improvements. For example, AugMix reduces the gender gap to 1.6% on COCO-GB and pushes
Co-Object accuracy to 78.0% on UrbanCars. However, these improvements are inconsistent and
highly dataset-dependent. In contrast, our method consistently outperforms all baselines: the virtual
variant improves Waterbirds average accuracy by +14.1%, and narrows COCO gender gap to just
0.8%.

Table 13: Performance comparison with image enhancement variants on Waterbirds (ViT-B/16).
LB: landbird, WB: waterbird; L: land background, W: water background.

Method LB-L↑ LB-W↑ WB-L↑ WB-W↑ Avg.↑
CLIP 95.57 63.81 59.03 85.98 77.20
Mixup 88.60 57.12 64.33 90.50 73.87
CutMix 95.21 57.87 47.04 85.98 74.32
AugMix 91.53 52.28 59.50 90.03 72.54
Cutout 97.12 55.65 38.16 86.45 73.27
Ours (External) 92.90 86.39 70.87 79.13 86.40
Ours (Internal) 88.16 82.88 82.71 87.54 85.43
Ours (Virtual) 95.30 94.41 67.13 73.99 89.47

E.2 Analysis of Module efficiency

As shown in Table 16, the computational cost introduced by our method is minimal, especially
compared to diffusion based methods. While our method introduces additional inference steps, we
emphasize that all operations are performed in the embedding space, with no image re-encoding or
pixel-level augmentation required. CLIP performs a single forward pass through a frozen encoder,
and our method preserves this efficiency: it constructs counterfactual embeddings using closed-form
computations in Eq. (10), (18) over precomputed token features, followed by lightweight TDE fusion
in Eq. (19). All operations involve only matrix multiplications and element-wise computations,
without any backpropagation or additional network training. Moreover, since the context candidate
pool can be prepared offline, our method remains highly efficient in large-scale data deployment.
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Table 14: Performance comparison with image enhancement variants on COCO-GB v1 (ViT-
B/16). Gap denotes gender performance differences.

Method Avg.↑ Female↑ Male↑ Gap↓
CLIP 88.70 85.60 91.80 6.20
Mixup 87.30 91.00 83.60 7.40
CutMix 88.00 89.60 86.40 3.20
AugMix 90.00 89.20 90.80 1.60
Cutout 89.50 88.90 90.10 1.20
Ours (External) 91.10 89.80 92.40 2.60
Ours (Internal) 91.25 90.50 92.00 1.50
Ours (Virtual) 91.40 91.80 91.00 0.80

Table 15: Performance comparison with image enhancement variants on UrbanCars (ViT-B/16).
We report accuracy on the original co-occurrence (I.D.), background shifted (BG), and Co-object
shifted (Co-Obj) subsets, along with overall average accuracy.

Method Avg.↑ I.D.↑ BG↑ Co-Obj↑
CLIP 63.07 82.00 37.20 70.00
Mixup 61.73 78.40 36.80 70.00
CutMix 62.00 77.20 38.40 70.40
AugMix 64.13 84.00 30.40 78.00
Cutout 62.80 80.00 36.40 72.00
Ours (External) 68.53 86.40 45.60 73.60
Ours (Internal) 68.27 88.00 45.60 71.20
Ours (Virtual) 71.87 89.60 48.00 78.00

Table 16 and 17 summarize the computational cost and efficiency analysis. Table 16 shows the
FLOPs per image required for different methods, with the increments relative to the CLIP baseline
in Waterbirds dataset. Our method’s overhead is negligible compared to ALIA [28] and other
augmentation-based methods, highlighting the advantages of representation-level reasoning.

Table 16: Efficiency Comparison on Waterbirds across Different ViT Backbones. GFLOPs per
image is reported as increments relative to the CLIP baseline (“+” indicates additional GFLOPs). M
represents the number of counterfactual samples per image.

Method M ViT-B/32 ViT-B/16 ViT-L/14 ViT-H/14
CLIP (base) – 8.8214 35.1417 162.0866 334.6752
ALIA (diffusion-based) 7 +1448068 +1452343 +1478801 +1512448
AugMix 7 +390.5 +3995.7 +28467 +67880
Ours (External) 100 +0.0027 +0.0033 +0.0053 +0.0071
Ours (Internal) 100 +0.0015 +0.0023 +0.0035 +0.0043
Ours (Virtual) 100 +0.0019 +0.0025 +0.0041 +0.0055

Table 17 further evaluates the efficiency of our method as a function of the number of counterfactual
samples (M ) per image. As shown, while increasing M generally improves performance, the
additional computation cost remains very low, especially compared to conventional data augmentation
methods. This demonstrates the scalability and efficiency of our approach, even for large datasets and
high-throughput inference scenarios.

E.3 Analysis of Module Parameters

We conduct ablation studies to analyze the sensitivity of our method to key hyperparameters under
the virtual variant setting. Experiments are performed across four CLIP backbones, and results are
reported in Fig. 11. We examine the following factors: the number of sampled counterfactual scenes
M used in the intervention module via Eq. (18); the hallucination suppression coefficient λ̂ from
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Table 17: Efficiency with Varying Counterfactual Samples M on Waterbirds (ViT-B/16). FLOPs
per image is reported as increments relative to the CLIP baseline.

Method M = 50 M = 100 M = 200 M = 300

Ours (External) +0.0028 +0.0033 +0.0042 +0.0051
Ours (Internal) +0.0018 +0.0023 +0.0032 +0.0041
Ours (Virtual) +0.0020 +0.0025 +0.0034 +0.0043

Eq. (15); and the predictive balance coefficient λ controlling the weight of interaction terms in final
classification in Eq. (19).

Impact of the Number of Counterfactual Scenes M . As shown in the left panels of each figure
in Fig. 11, increasing M initially improves performance across all backbones by introducing more
diverse context embeddings, which enhances the effectiveness of the intervention. However, beyond
a certain point, accuracy saturates and slightly declines. We attribute it to two factors: first, excessive
samples may introduce redundant or noisy descriptions, especially in the virtual variant; second, the
filtering mechanism becomes less effective as the number of samples increase, allowing lower-quality
scenes to influence the final embedding. Notably, larger backbones such as ViT-L/14 and ViT-H/14
reach optimal performance with fewer samples, indicating that stronger models can generalize with
smaller but higher-quality interventions.

Impact of Predictive Balancing Coefficient λ. The rightmost plots in Fig. 11 illustrate the influence
of λ, which balances the predictive weight between the interaction in original image i and its
intervention terms (see Eq. (19)). As λ increases, performance improves initially, benefiting from
richer imagined scenarios. However, overly high λ may dilute the grounded signal in i, slightly
hurting prediction reliability due to excessive dependence on synthetic embeddings.

Impact of Hallucination Suppression Coefficient λ̂. As reflected in the center plots of Fig. 11,
increasing λ̂ leads to improved performance up to a moderate range (typically λ̂ ∈ [0.5, 1.5]). This
coefficient controls the suppression of background-induced hallucination during the TDE computation
(see Eq. (15)), by down-weighting contributions from background-only hallucination effects. Larger
values of λ̂ more aggressively remove spurious context effects, improving model reliability. However,
if λ̂ is set too high, it may overly penalize useful signals, causing slight drops in accuracy.

E.4 Counterfactual Framework Pseudo-code

Algorithm 1 reflects our inference method combining representation-level counterfactual construction
and total direct effect computation. Candidate object scores on token p(y = c | vj) are computed
via sigmoid activation, while background likelihood is defined as pbg(j) = 1−maxc p(y = c | vj).
Tokens with pbg(j) > τ are used to construct the background embedding C(z), while class-conditional
object tokens satisfying p(y = ck | vj) > τ yield C(xck). We adopt thresholds for background and
object embeddings.

The base prediction score is computed as Eq. (15), where the hallucinated contribution of background-
only signals is controlled by suppression coefficient λ̂. For each top-K class on original prediction,
we select M counterfactual contexts {zm} that are jointly dissimilar to C(z) and C(xc), ensuring
semantic orthogonality of intervention. Counterfactual embeddings C(xc, zm) are generated by
linearly combining C(xc) and fi(zm) with mixing ratio α, and then used in Eq. (18) to simulate
interventions. We note that although it aggregates over M counterfactuals, practical implementation
applies a filtering mechanism prior to sampling to avoid noisy or entangled contexts.

In Eq. (19), only top-K predicted classes undergo counterfactual imagination and fusion, while others
retain their base TDE scores, achieving robust calibration with minimal overhead. The entire inference
is free of additional training, leveraging only frozen CLIP representations and batch-accessible or
externally precomputed scene embeddings.
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(a) Virtual variant on ViT-B/32
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(b) Virtual variant on ViT-B/16
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(c) Virtual variant on ViT-L/14
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(d) Virtual variant on ViT-H/14

Figure 11: Parameter analysis of the virtual variant on Waterbirds across different backbones.
Each panel shows the impact of (left) number of sampled counterfactual scenes M , (middle) halluci-
nation suppression coefficient λ̂ and (right) predictive balance coefficient λ̂ on zero-shot accuracy.
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Algorithm 1: INFERENCE WITH TDE AND REPRESENTATION-LEVEL COUNTERFAC-
TUAL CALIBRATION

Input :Token embeddings {vj(i)}Nj=1, text embeddings {ft(Tc)}c∈Y ;
parameters α, λ, λ̂, τ,K; context pool Zsrc=fi(zb)}Bb=1

Output :Predicted label ŷ
1. Estimate Main Effects from Image Tokens :

Compute per-token class probabilities: p(y = c | vj) = σ(S(vj , Tc)) ;
Background score: pbg(j) = 1−maxc p(y = c | vj) ;
Background weights: wz(j) = I(pbg(j) > τ) ;
Candidate object weights (per class): w(c)

x (j) = I(p(y = c | vj) > τ) ;
2. Compute First-Order Embeddings :

Background embedding:C(z) = Normalize
(∑

j wz(j) · vj/
∑

j wz(j)
)

;

foreach top-K class ck do
Object embedding: C(xck) = Normalize

(∑
j w

(ck)
x (j) · vj/

∑
j w

(ck)
x (j)

)
3. Compute Base TDE score by Eq. (15) :

Simg = S(fi(i), Tc), Sbg = S(C(z), Tc) ;
TDEbase(c) = Simg − λ̂ · Sbg ;

4. Construct Representation-Level Counterfactuals by Eq. (11) :
foreach top-K class ck do

Sample M scenes {zm} ⊂ Zsrc ;
Filter by dissimilarity to C(z) and C(xck) ;
Construct: C(xck , zm) = α · C(xck) + (1− α) · fi(zm) ;

5. Compute the intervention on object by Counterfactuals via Eq. (18) :
TDEcf(ck) =

1
M

∑M
m=1

[
S(C(xck , zm), Tck)− λ̂ · S(fi(zm), Tck)

]
;

6. Final Prediction Score by Eq. (19) :
foreach class c ∈ Y do

if c ∈ top-K then
y(i; c) = (1− λ) · TDEbase(c) + λ · TDEcf(c)

else
y(i; c) = TDEbase(c)

return ŷ = argmaxc∈Y y(i; c)

F Limitation and Future Work

Our method operates entirely at the embedding level and relies on estimating object and background
prototypes through linear aggregation. While effective, it may overlook certain spatial interactions to
some extent. Additionally, performance gains depend partially on the diversity and representativeness
of the available alternative contexts (external scenes, batch samples, or textual descriptions); thus,
effectiveness may vary if suitable context alternatives are limited. Future work could extend our
causal approach to multi-label and dynamic visual scenarios, refine nonlinear estimation methods
for representation, and develop adaptive context-selection strategies to further enhance reliabilty and
generalization.
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