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SEMANTIC SEGMENTATION BASED UNSUPERVISED
DOMAIN ADAPTATION VIA PSEUDO-LABEL FUSION

ABSTRACT

In this paper, we propose a pseudo label fusion framework (PLF), a learning
framework developed to deal with the domain gap between a source domain and
a target domain for performing semantic segmentation based UDA in the unseen
target domain. PLF fuses the pseudo labels generated by an ensemble of teacher
models. The fused pseudo labels are then used by a student model to distill
out the information embedded in these fused pseudo labels to perform semantic
segmentation in the target domain. To examine the effectiveness of PLF, we perform
a number of experiments on both GTA5→Cityscapes and SYNTHIA→Cityscapes
benchmarks to quantitatively and qualitatively inspect the improvements achieved
by employing PLF in performing semantic segmentation in the target domain.
Moreover, we provide a number of parameter analyses to validate that the choices
made in the design of PLF is both practical and beneficial. Our experimental results
on both benchmarks shows that PLF indeed offers superior performance benefits in
performing semantic segmentation in the unseen domain, and is able to achieve
competitive performance when compared to the contemporary UDA techniques.

1 INTRODUCTION

In the past few years, semantic segmentation has been attracting the attention of computer vision
researchers. Many supervised semantic segmentation methods have been proposed and achieved
remarkable performance (Yu et al., 2017; Lin et al., 2017; Yu & Koltun, 2016; Badrinarayanan
et al., 2017; Long et al., 2015; Yuan et al., 2019; Wu et al., 2019; Sandler et al., 2018; Chen et al.,
2014; 2017a;b; 2018; Zhao et al., 2017). A number of them have even already been applied to
real-life applications such as autonomous vehicles (Hong et al., 2018). However, supervised semantic
segmentation methods typically require abundant labeled training data, which are usually expensive
to annotate and are commonly unavailable in most real-world scenarios. Furthermore, models trained
in simulated environments or other scenes often fail to generalize to the domain of deployment,
especially when there exists a significant domain gap between the source and target domains (Tsai
et al., 2018). To address this issue, unsupervised domain adaptation (UDA) methods have been
introduced to bridge different domains (Ganin & Lempitsky, 2015; Liu et al., 2019a; Saito et al.,
2018a; Tzeng et al., 2017; Zellinger et al., 2017; Long et al., 2018; Pinheiro, 2018; Shu et al., 2018;
Saito et al., 2018b; Hoffman et al., 2016; 2018; Luo et al., 2019a; Gong et al., 2019; Dundar et al.,
2020; Chen et al., 2019a; Wu et al., 2018; Tsai et al., 2018; Luo et al., 2019b; Chen et al., 2019b; Li
et al., 2019; Du et al., 2019; Yang et al., 2020; Tsai et al., 2019; Vu et al., 2019a; Zhang et al., 2018;
Chen et al., 2017c; Zheng & Yang, 2020a; Choi et al., 2019). UDA models learn to generalize to a
target domain by training with the annotated data from a source domain and the unlabeled data from
a target domain. If the domain gap can be effectively filled, intelligent machines such as autonomous
vehicles and robots trained in virtual worlds can be transferred to the real world with relative ease.
A number of past endeavors have been dedicated to improving the performance of semantic seg-
mentation based UDA through different approaches, and have achieved impressive results (Hoffman
et al., 2016; 2018; Luo et al., 2019a; Gong et al., 2019; Wu et al., 2018; Tsai et al., 2018; Yang
et al., 2020; Tsai et al., 2019; Vu et al., 2019a; Zhang et al., 2018; Chen et al., 2017c; Zheng & Yang,
2020a; Choi et al., 2019; Zou et al., 2018b;a; 2019; Zheng & Yang, 2020b; Tranheden et al., 2020;
Luo et al., 2019b; Lee et al., 2018; Chen et al., 2019a; Vu et al., 2019b). The authors in (Luo et al.,
2019b; Hoffman et al., 2016; 2018; Luo et al., 2019a; Gong et al., 2019; Wu et al., 2018; Tsai et al.,
2018; Yang et al., 2020; Tsai et al., 2019; Vu et al., 2019a; Zhang et al., 2018; Chen et al., 2017c;
Zheng & Yang, 2020a; Chen et al., 2019b; Li et al., 2019; Du et al., 2019) resorted to adversarial
domain adaptation (ADA) methods, through which the domain discrepancy is minimized by training
a generator and a discriminator against each other. These attempts were effective in bridging the
domain gap as they demonstrated superior performance over models trained solely in their source
domains. More recent works have opted for pseudo labelling and self-training frameworks (Choi
et al., 2019; Zou et al., 2018b;a; 2019; Zheng & Yang, 2020b; Tranheden et al., 2020), which aim
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Figure 1: The distributions of the accuracy achieved by several semantic segmentation based UDA methods
evaluated in Cityscapes. The IoUs of them are shown in colored bars, while the IoUs of their envelope and our
method are plotted in gray and blue dashed lines, respectively. The mIoUs for the methods are denoted as ‘Mean’
in the figure, and are illustrated as the colored bars on the rightmost end.

to minimize the entropy of a model’s predictions in the target domain. Previous works have shown
that these self-training methods were able to outperform ADA methods by a considerable margin
while maintaining their simplicity. Unfortunately, most of them learn from only one distribution of
semantic classes produced by a single model, and the performance is therefore upper-bounded by the
performance of that specific model, leaving space for improvements. Moreover, previous works have
shown that with ensemble learning, the prediction quality can be improved if there exist significant
differences between the decision boundaries of the models (Opitz & Maclin, 1999). Furthermore, it is
observed that the per-class accuracy tend to vary by a substantial margin for different UDA training
methods, even if their average accuracy is very similar, as shown in Fig. 1. This indicates that there
might exist significant differences in the decision boundaries for different methods, making ensemble
learning a promising and potentially effective approach for semantic segmentation based UDA. In
light of these properties and the shortcomings of the prior methods, we argue that the performance
of semantic segmentation based UDA can be further enhanced if ensemble learning is employed to
incorporate knowledge from different models.
In this work, we propose an ensemble learning framework that distills the knowledge of an ensemble
of teacher models to a single student model. Instead of being constrained by a teacher model, we
introduce an aggregation procedure, called pseudo label fusion (PLF), to approximate the ground
truth distribution by leveraging the advantages of different teacher models in predicting different
semantic classes. The dashed lines in Fig. 1 reveal that it is possible to derive a distribution that
better interprets the target domain by PLF. Rather than directly using the fused PLs themselves as the
prediction result, we employ the proposed PLF approach to train our student model to learn from
the fused PLs (denoted as ‘PLF (Ours)’ in Fig. 1). This enables us to effectively reduce the model
size and the computational cost of the student, allowing it to be deployed in real-world applications.
We evaluate our framework with two commonly-adopted metrics, GTA5 (Richter et al., 2016) to
Cityscapes (Cordts et al., 2016) and SYNTHIA (Ros et al., 2016) to Cityscapes, and report the results
both quantitatively and qualitatively against a number of baselines. We validate the generalizability
of our framework by evaluating it on the test set of Cityscapes. In addition, we provide an analysis on
the fusion methods, the threshold, and the backbone model used. Moreover, we demonstrate that our
results are fully stable and reproducible. The primary contributions are thus summarized as follows:

• We introduce a framework utilizing ensemble learning and output-level knowledge distilla-
tion for enhancing the performance of semantic segmentation based UDA.

• We propose a pseudo label fusion procedure that utilizes the clustering property of semantic
classes.

• We evaluate our framework under various configurations, and demonstrate its superior
performance over the baselines in terms of its effectiveness and efficiency.

2 RELATED WORKS

2.1 UNSUPERVISED DOMAIN ADAPTATION

A number of methods has been proposed to bridge the domain gap between different domains (Tsai
et al., 2018). There have been several approaches to this problem. One branch of these works adopted
the ADA framework (Hoffman et al., 2016; 2018; Luo et al., 2019a; Gong et al., 2019; Dundar et al.,
2020; Chen et al., 2019a; Wu et al., 2018; Tsai et al., 2018; Luo et al., 2019b; Chen et al., 2019b;
Li et al., 2019; Du et al., 2019; Yang et al., 2020; Tsai et al., 2019; Vu et al., 2019a; Zhang et al.,
2018; Chen et al., 2017c; Zheng & Yang, 2020a; Choi et al., 2019) to learn a representation of the
target domain. These approaches enable significant improvements over those trained directly in their
source domains. Due to the relatively higher training complexity and larger model sizes, recent
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researchers have turned their attention to self-training methods to tackle UDA tasks. These works
utilize the technique of pseudo labeling (PL) along with techniques such as regularization (Zou et al.,
2019; Zheng & Yang, 2020b), class-balancing (Zou et al., 2018a), data augmentations (Tranheden
et al., 2020), and distillation (Tranheden et al., 2020) methods. The results presented in the literature
demonstrated that the adoption of pseudo label self-training improves the performance significantly.

2.2 PSEUDO LABELING

Pseudo labeling is a self-training method that was originally proposed to improve the performance
of classification networks (Lee, 2013). It is accomplished by minimizing the entropy of model
predictions, resulting in a better decision boundary. Subsequent works (Xie et al., 2020) have also
shown promising results in image classification using pseudo labeling. Pseudo labeling was then
further extended to the field of semantic segmentation (Yu et al., 2017; Lin et al., 2017; Yu & Koltun,
2016; Badrinarayanan et al., 2017; Long et al., 2015; Yuan et al., 2019; Wu et al., 2019; Sandler et al.,
2018; Chen et al., 2014; 2017a;b; 2018; Zhao et al., 2017; Hung et al., 2018; Huang et al., 2018;
Cholakkal et al., 2016; Kolesnikov & Lampert, 2016; Wei et al., 2017; Saleh et al., 2016; Shimoda &
Yanai, 2016; Pinheiro & Collobert, 2015; Qi et al., 2016; Hong et al., 2016; Wei et al., 2016; Fan et al.,
2020; Wang et al., 2020), and has gained successs by incorporating the information of the unlabeled
data to improve performance. Since self-training via PL and UDA shares many similar characteristics
in terms of problem formulation, it has been extensively used to solve UDA problems. In this paper,
we mainly focus on semantic segmentation based UDA. The authors in (Zou et al., 2019; Zheng &
Yang, 2020b; Zou et al., 2018a) showed promising results of semantic segmentation based UDA by
PL. The authors in (Tranheden et al., 2020) further extended the fine tuning training procedure of the
prior works and proposed a semi-supervised teacher-student training framework. They showed that
their method could outperform their prior works when data augmentation techniques are incorporated.

2.3 KNOWLEDGE DISTILLATION

The main idea of knowledge distillation is to use a smaller, faster model to learn knowledge from
one or more teacher models Buciluǎ et al. (2006). The authors in Hinton et al. (2015) studied how
training on a soft transfer set and alternation settings of the teacher model ensemble can improve the
image classification performance of the student network. The authors in Cho & Hariharan (2019)
investigated how a well-trained model may not be an ideal teacher model. They also elaborated on
how the mismatch of the model sizes between the teachers and the student can potentially degrade
the performance of the latter. Although knowledge distillation has been well-explored by prior
endeavors in other domains such as Buciluǎ et al. (2006); Hinton et al. (2015); Cho & Hariharan
(2019); Furlanello et al. (2018); Balan et al. (2015); Nguyen-Meidine et al. (2020a); Orbes-Arteainst
et al. (2019); Liu et al. (2019b), the use of knowledge distillation in semantic segmentation based
UDA remains relatively less explored. Although a few previous works Chen et al. (2019c); Nguyen-
Meidine et al. (2020b); Gholami et al. (2020) have explored the use of knowledge distillation in
multi-target UDA, single-source-single-target UDA methods utilizing knowledge distillation were
still concentrated on the realm of image classification Nguyen-Meidine et al. (2020a); Ruder et al.
(2017). The authors in Shen et al. (2019) devised framework that combines ensemble learning and
knowledge distillation to solve the problem of computational cost incurred by ensemble learning.
The authors in Zhai et al. (2020) adopted similar framework to solve person re-identification UDA
problems. However, our work is different from Zhai et al. (2020); Shen et al. (2019) in terms of
motivation and methodology. The emphasis of our work is dedicated to the adaptation of the output
labels, where the information generated by the ensemble is interpretable. This enables the adoption
of the proposed pseudo label fusion method, through which the advantages from the ensemble are
combined, and the entropy minimization process can be accomplished.

3 PROPOSED FRAMEWORK

In this section, we introduce the proposed framework. We first describe the problem definition.
Then, we walk through the proposed method as well as the workflow of it. Finally, we explain the
implementation details of PLF, which is designed to incorporate knowledge from multiple teachers.

3.1 PROBLEM DEFINITION

In general, the predictions of any semantic segmentation model can be interpreted as a distribution
of semantic classes. Given a training procedure Γ, a model µ, and a set of input image-label pairs
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ΩΓ,µ
{X,Y } → Ω∗ (1) ΩΓ,µ

{Xsrc,Ysrc,Xtgt} → Ω∗tgt (2) Ωfused = Λ
[
ΩΓi,Ti

{Xsrc,Ysrc,Xtgt}

]
(3)

Ωfused → Ω∗tgt (4) ΩΓS ,S

{Xtgt,Y
fused
tgt }

→ Ωfused (5) ΩΓS ,S

{Xtgt,Y
fused
tgt }

→ Ω∗tgt (6)

{X,Y }, the distribution of the predictions from µ can be written as ΩΓ,µ
{X,Y }. The objective of Γ is to

guide ΩΓ,µ
{X,Y } to approach the distribution of the ground truth annotation Ω∗, formulated as Eq. (1).

Under the context of UDA, Γ has access to the image-label pairs (Xsrc, Ysrc) from a source domain,
but only the images Xtgt from a target domain. The goal is to train a model µ through a training
procedure Γ with {Xsrc, Ysrc, Xtgt}, such that it can best approximate the distribution of ground
truth annotation Ω∗tgt in the target domain. Thus, the training objective can be described as Eq. (2).

If only a single model is used to approximate Ω∗tgt, the approximation capability may be limited. In
this work, Γ employs multiple pre-trained teachers {T} and a single student S. {T} can be trained by
any arbitrary methods that do not include the information of the semantic labels in the target domain.

3.2 PROPOSED METHOD

In order to achieve the objective of Eq. (2), our method consists of two stages: fusion and distillation.

3.2.1 FUSION

Previous works have shown that, with ensemble learning, Ω∗tgt can be better approximated if the
predictions from multiple models are combined (Opitz & Maclin, 1999). The same concept can be
extended to semantic segmentation based UDA, where a better distribution of semantic labels in the
target domain can be obtained by fusing the predictions from different UDA models. Specifically,
such a distribution, denoted as Ωfused, can potentially be obtained by applying an aggregation
function Λ to the distributions of the predictions from a set of UDA models {Ti}i∈[i,N ], where N
denotes the number of models. Each of these UDA models is separately trained with a corresponding
training procedure in{Γi}i∈[i,N ], using the annotated source domain data and unlabeled target domain
images {Xsrc, Ysrc, Xtgt}. Under such a formulation, the distribution of the predictions for a tuple
{Γi, Ti} is represented as ΩΓi,Ti

{Xsrc,Ysrc,Xtgt}, and Ωfused can therefore be formulated as Eq. (3). As
the objective of Ωfused is to approximate Ω∗tgt in the target domain, it can be expressed as Eq. (4).

3.2.2 DISTILLATION

To avoid using the entire ensemble in the target domain and to reduce the model size, Ωfused is used
to train a compact S. This is realized via a procedure ΓS , which trains S by the fused prediction
Y fusedtgt for each Xtgt. It allows the distribution of the prediction of S to approach Ωfused as Eq. (5).

Combining the objectives of the two stages, i.e., Eqs. (4) and (5), the overall objective of the proposed
method can be expressed as Eq. (6). It implies that the student model is able to learn to approach the
distribution of the annotation Ω∗tgt by learning to approximate Ωfused. In order to perform semantic
segmentation based UDA, the fusion and the distillation methods are required to be properly defined.

3.2.3 WORKFLOW

Fig. 2 (a) illustrates the workflow of our proposed framework, which is composed of two stages: the
fusion and the distillation stages, highlighted in blue and purple, respectively. In the fusion stage,
each teacher model in {Ti}i∈[i,N ] performs semantic segmentation prediction on an RGB input image
Xtgt, where the predicted confidence map (i.e., the predicted certainty channels of semantic classes)
is denoted as {Pi}i∈[i,N ]. Then, {ΩΓi,Ti

{Xsrc,Ysrc,Xtgt}}i∈[1,N ], are aggregated by Λ, which is practically

implemented by the proposed PLF process, to fuse {Pi}i∈[i,N ] into a one-hot map Y fusedtgt . Please
note that there exist other possible implementations for Λ. Next, in the distillation stage, S is trained
and updated by minimizing the cross-entropy loss LS between Y fusedtgt and the predicted certainty
tensor PS of S on Xtgt. The loss function LS is formulated as LS = cross entropy(PS , Y

fused
tgt ).

For more details of the derivation procedure, please refer to the appendix at the end of the manuscript.
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Figure 2: (a) The workflow of the proposed framework. (b) The pseudo label fusion procedure.
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Figure 3: The three PLF procedures discussed in this work: (a) certainty, (b) priority, and (c) majority.

3.3 PSEUDO LABEL FUSION PROCEDURE

PLF as a whole can be viewed as a procedure that takes {Pi}i∈[i,N ] as its input and outputs
Y fusedtgt . PLF is divided into three steps, the preprocessing, the fusion, and the filtering steps,
as illustrated in Fig. 2 (b). In the first step, {Pi}i∈[i,N ] is preprocessed on a per-class basis to
separate and extract the per-class confidence map {Hc

i }i∈[1,N ],c∈[1,C] and its corresponding PL
{Rci}i∈[1,N ],c∈[1,C], where c ∈ [1, C] and C is the number of classes. To carry the semantic
knowledge of {Rci}i∈[1,N ],c∈[1,C] to S, in this work, we propose three different PLF processes:
certainty, priority, and majority fusion. In the second step, {Rci}i∈[1,N ],c∈[1,C] are fused into
one single PL by one of the proposed PLF processes η = {ηcertainty, ηpriority, ηmajority}. The
process η uses {Rci}i∈[1,N ],c∈[1,C] and {Hc

i }i∈[1,N ],c∈[1,C] as the fusion criteria and produces
the tuple (Rfused, Hfused), which represents the fused semantic PL and its corresponding
confidence map. The last step involves filtering Rfused generated in the second step by applying
a pixel-wise filtering threshold τ to remove the labels in Rfused whose certainty are below
τ . The final result is a rectified PL Y fusedtgt . The whole PLF procedure is formulated as:

η({Hc
i }, {Rci}) = (Hfused, Rfused)

, where c ∈ [1, C] and i ∈ [1, N ]
(7) Y fusedtgt =

{
Rfused, if Hfused > τ

unlabeled, otherwise
(8)

The three fusion procedures are plotted in Fig. 3, and separately explained in the following sections.

3.3.1 CERTAINTY FUSION

Certainty fusion employs an intuitive approach to integrate {Rci}i∈[1,N ],c∈[1,C] and
{Hc

i }i∈[1,N ],c∈[1,C], in which the labels with the highest certainty are chosen. It is accomplished by
taking argmax over c on {Hc

i }i∈[1,N ],c∈[1,C] and max over c on {Hc
i }i∈[1,N ],c∈[1,C], respectively,

to obtain Rfused and Hfused, formulated as: Rfused = argmaxc(H
c
i ), Hfused =

∑N
i=1H

c
i ×Rci .

3.3.2 PRIORITY FUSION

Priority fusion aims to create a (Rfused, Hfused) tuple that is able to take the most advantages
of the per-class IoU of {Ti}i∈[1,N ]. If there exists no disagreement among {Rci}i∈[1,N ],c∈[1,C] on
a pixel, the value of Rfused for that pixel is determined by the consensus. However, if there is a
disagreement on the same pixel among {Rci}i∈[1,N ],c∈[1,C], the value of Rfused is decided according
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to the class IoU of the predictions of the teacher models. More specifically, if a pixel is labeled by
two or more teacher models as different semantic classes, the teacher with the highest class IoU is
chosen. As for Hfused, it is determined by Hfused =

⋃
k∈K H

c
i (k), where K is the pixels in the

confidence map, k is the index of a pixel, and the values of c and i correspond to the chosen Rci (k).⋃
denotes the union operator, and represents ‘the collection of the corresponding certainty values

from the teacher models.’ Since the pseudo labels of different semantic classes are generated by the
corresponding best-performing models, (Rfused, Hfused) is able to leverage the advantages provided
by the ensemble {Ti}i∈[1,N ].

3.3.3 MAJORITY FUSION

Majority fusion targets at creating a (Rfused, Hfused) tuple using an approach based on majority
voting that takes the surroundings of a pixel in to consideration. Similar to priority fusion, the value
of a pixel in Rfused is determined by the consensus among {Rci}i∈[1,N ],c∈[1,C] when all of them
agree on the semantic prediction. If a disagreement is present among them, the value of that pixel is
determined by performing majority voting on a fixed-sized receptive field around location where the
disagreement happens. The same as the priority fusion procedure, in majority fusion, the confidence
map Hfused is constructed by Hfused =

⋃
k∈K H

c
i (k), where the values of c and i correspond to the

chosen Rci (k).

4 EXPERIMENTAL SETUP

4.1 BASELINES AND EVALUATION METHODS

We compare the results of our method against a number of baselines in terms of mIoU (mean
intersection over union). The semantic segmentation based UDA baselines include AdaptSegNet (Tsai
et al. (2018)), SIBAN (Luo et al. (2019a)), CLAN (Luo et al. (2019b)), APODA (Yang et al. (2020)),
PatchAlign (Tsai et al. (2019)), AdvEnt (Vu et al. (2019a)), FDA-MBT (Yang & Soatto (2020)),
PIT (Lv et al. (2020)), CBST (Zou et al. (2018b)), MRKLD (Zou et al. (2019)), MRNet (Zheng
& Yang (2020a)), R-MRNet (Zheng & Yang (2020b)), and DACS (Tranheden et al. (2020)). We
evaluate our method and the baselines on two commonly adopted benchmarks: GTA5 Richter et al.
(2016)→Cityscapes Cordts et al. (2016) and SYNTHIA Ros et al. (2016)→Cityscapes. For the
former, we train the models with 24,966 images-label pairs in the training set of GTA5 and 2,975
images in the training set of Cityscapes, and evaluate the per-class IoU of the nineteen semantic
classes and the mIoU in the validation set of Cityscapes. For the latter, we train the models with 9,400
images-label pairs in the training set of SYNTHIA and 2,975 images in the training set of Cityscapes,
and report the per-class IoU and mIoUs of 13 and 16 classes for comparing with different baselines.

4.2 TRAINING DETAILS

We adopt two widely-used semantic segmentation network architectures, Deeplabv2 (Chen et al.
(2017a)) and Deeplabv3+ (Chen et al. (2018)), with three different backbones, ResNet-101 (?),
DRN-D-54 (Yu et al. (2017)), and MobileNetV2 (Sandler et al. (2018)), as our student network. The
teacher ensemble includes DACS, R-MRNe, MRKLD, CBST for GTA5→Cityscapes, and R-MRNet,
MRKLD, CBST for SYNTHIA→Cityscapes. In the distillation stage, the student model is pretrained
on the source domain and finetuned with the fused pseudo labels generated from the target domain.
The student model is updated using SGD with learning rate 2.5× 10−4 decreased with factor 0.9,
weight decay 5 × 10−3, momentum 0.9, and batch size 10 for 100K iterations for all the network
architectures and backbones. The class-balancing strategy in CBST (Zou et al. (2018b)) is adopted
during the training phase. For the proposed PLF method, the kernel size and the threshold (τ ) in PLF
are set to 5× 5 and 0.9 respectively.

5 EXPERIMENTAL RESULTS

5.1 A COMPARISON OF DIFFERENT FUSION PROCEDURES

A comparison of the evaluation results of the three PLF procedures are summarized in Table 1 and
Fig. 4 (a). These numerical and visualized results are obtained from the models trained in the GTA5
→ Cityscapes task. The results indicate that priority fusion is able to out-perform the other two PLF
methods in terms of mIoU. Albeit its superior performance, priority fusion requires additional prior
knowledge in the form the per-class IoU of the teacher model in the validation set. At the same time,
majority fusion offers comparable performance without these prior knowledge and is considered less
artificial. Thus, in the rest sections, our results are presented based on the majority fusion procedure.
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Figure 4: (a) Visualization of the fused PL with different PLF procedures. (b) Visualization of the model
predictions, where PLF-3M and PLF-3D represent Deeplabv3+ trained with PLF using MobileNetv2 & DRN-50
as the backbones, respectively. (c) A comparison of mIoU v.s. model size.
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v2

ResNet-101 43.9M 33.1 ms
Certainty 93.15 56.98 84.01 38.76 32.13 26.76 36.96 44.19 82.27 39.71 79.81 56.51 32.77 82.42 45.89 42.39 3.18 25.86 48.73 50.13

Priority 93.44 56.96 84.74 40.76 37.70 27.47 38.18 46.33 83.73 45.15 82.76 56.91 33.66 84.19 54.60 51.74 0.00 36.64 51.21 52.96

Majority 93.43 57.25 84.88 42.58 37.26 26.42 37.51 46.15 83.19 44.97 82.70 57.13 33.06 83.87 56.31 47.15 0.00 37.78 50.74 52.76

DRN-D-54 35.6M 18.8 ms
Certainty 93.46 55.16 86.78 31.10 36.84 34.35 40.27 48.98 86.92 46.62 87.16 64.33 36.58 87.12 49.21 49.66 0.64 33.75 53.92 53.83

Priority 93.81 59.33 86.79 28.60 37.21 34.36 41.83 50.00 87.09 46.42 87.60 63.81 36.06 87.13 51.76 53.12 1.06 33.67 53.07 54.35

Majority 94.28 60.87 86.99 33.90 36.73 34.55 45.37 50.76 87.18 48.54 88.06 64.38 37.12 87.39 52.04 48.98 0.00 39.55 53.06 55.25

MobileNetv2 2.0M 16.5 ms
Certainty 93.09 56.18 83.21 29.96 30.32 25.62 32.63 42.92 81.44 39.32 79.95 54.41 31.59 81.11 34.21 43.33 1.19 27.33 48.57 48.23

Priority 93.27 55.75 83.86 35.04 37.56 26.21 35.30 45.31 82.78 42.48 81.89 55.56 32.16 83.05 45.87 50.40 1.01 37.44 50.76 51.35

Majority 93.06 55.17 83.87 35.21 37.02 25.44 34.43 44.74 82.43 42.94 81.97 55.37 32.57 82.85 46.58 46.75 0.00 36.88 51.33 50.98

D
ee

pl
ab

v3
+

ResNet-101 59.3M 35.1 ms
Certainty 93.89 59.98 86.07 30.60 32.02 37.92 43.18 49.77 85.66 39.00 84.89 62.51 33.52 85.17 41.61 41.66 3.92 24.89 51.23 51.97

Priority 94.44 61.02 87.01 37.68 38.97 40.43 45.15 52.74 87.46 43.43 87.24 62.69 35.63 87.56 51.49 50.08 0.00 31.06 53.30 55.12

Majority 94.38 61.77 86.78 39.86 38.04 38.37 43.96 52.93 86.92 43.50 86.80 62.25 35.01 86.37 53.14 44.99 0.00 32.51 52.60 54.75

DRN-D-54 40.7M 22.1 ms
Certainty 93.97 59.43 87.50 31.98 34.33 41.33 47.86 52.06 86.47 40.79 86.12 66.19 37.89 87.54 45.60 49.50 0.17 38.33 55.12 54.85

Priority 94.80 63.79 88.22 39.50 40.44 42.30 47.84 55.76 88.29 47.69 88.79 67.02 39.18 89.75 57.24 53.90 0.00 40.28 56.07 57.94

Majority 94.62 62.46 87.90 40.81 39.34 40.62 48.36 54.58 88.12 49.29 87.96 67.12 39.14 89.34 56.95 50.24 0.03 42.37 56.09 57.65

MobileNetv2 5.8M 20.9 ms
Certainty 93.85 58.68 85.84 32.79 33.33 35.62 40.72 48.38 85.52 40.31 84.36 60.96 33.15 85.67 35.88 44.68 3.74 26.96 50.64 51.64

Priority 94.13 60.00 86.97 32.70 39.28 39.75 43.33 52.41 87.42 44.61 87.47 63.64 35.55 87.46 45.55 49.74 0.00 36.01 54.13 54.74

Majority 94.29 61.15 87.19 35.94 40.63 38.59 43.35 51.41 87.32 44.81 87.71 64.12 35.57 87.77 46.60 47.32 0.00 36.67 53.56 54.95

*: The inference speed is evaluated based on an NVIDIA GTX TITAN V GPU
Table 1: A comparison of IoU and mIoU for the three PLF procedures with different configurations.

5.2 COMPARISONS OF THE QUANTITATIVE AND QUALITATIVE RESULTS

Tables A5 compares the evaluation results of our method against the baselines based on the two
metrics, respectively. The results of the baselines are presented in the upper rows of the tables, while
ours and its variants are reported in the last few rows. It is observed that multiple reported per-class
IoUs of our method, i.e., PFL-3D, are superior to those of baselines. It is also noted that our method
PLF-3D outperforms previous works by a significant margin in terms of mIoU. Fig. 4 (c) plots the
mIoU of some of the most representative baselines against the number of trainable parameters. It is
observed that our framework is able to achieve superior performance even with lighter backbones
containing less trainable parameters, e.g., MobileNetV2 and DRN-D-54. On the other hand, our
method PFL-2R shows comparable results against the baselines if initialized from the pre-trained
weights of Deeplabv2 (ResNet101) trained with supervision in the source domain. However, the
performance is notably improved if initialized with the pre-trained weights of one of the UDA teacher
models R-MRNet, i.e., PFL-2R (Ours†). Since our PLF method removes the uncertain predictions
from the PLs, it excludes the knowledge in these low-certainty PLs during the distillation stage. As a
result, the student model guesses the predictions of these pixels relying on the pre-trained weights. In
contrast, since deeplabv2 (ResNet101) is only trained in source domain, it is unable to perform as
well as R-MRNet in the target domain because of the existence of the domain gap, as mentioned in
Section 1.
Fig. 4 (b) shows the visualized prediction results between Deeplabv3+ and our method. When
compared with the prediction results of Deeplabv3+ trained solely in source domain, it is observed
that the our PLF method is able to successfully perform UDA, as it is capable of correctly predicting
the semantic labels of different objects with minimal noises. It is also observed that even with a
compact model containing less parameters, the degradation of prediction accuracy is still tolerable.
Table 2 presents the test set prediction results of our framework. It is observed that our framework is
still able to outperform those previously proposed UDA methods. Note that the results of DACS in
Table 2 is a reproduced version since the statics on the test set is unavailable in the official release.

5.3 ANALYSIS OF THE BACKBONE

Table. 1 reports the number of trainable parameters, the inference speed, and the semantic segmenta-
tion performance of the PLF framework with different student network backbones. It is observed
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Method Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIOU

R-MRNet 92.2 34.5 85.5 35.0 25.0 37.4 47.7 42.2 86.9 52.6 89.5 68.2 43.6 88.4 30.1 49.5 6.6 39.8 44.2 52.6

DACS 92.3 51.6 87.4 36.0 36.8 30.6 48.0 53.1 88.8 58.3 91.2 73.4 48.5 90.4 27.1 36.6 0.0 32.2 35.3 53.6

PLF-3D 94.8 59.1 88.2 35.9 37.4 38.0 47.5 52.1 88.9 57.9 90.6 72.3 47.0 91.2 49.9 50.7 3.08 44.1 51.0 57.9

Table 2: A comparison of R-MRNet, DACS, and our PLF-3D evaluated on the test set of Cityscapes.
GTA5→ Cityscapes

Method Model (Backbone) Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIoU

Source (Tsai et al. (2018)) Deeplabv2 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

AdaptSegNet (Tsai et al. (2018)) (ResNet-101) 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.2

SIBAN (Luo et al. (2019a)) 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

CLAN (Luo et al. (2019b)) 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

APODA (Yang et al. (2020)) 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

PatchAlign (Tsai et al. (2019)) 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

AdvEnt (Vu et al. (2019a)) 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

FDA-MBT (Yang & Soatto (2020)) 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

PIT (Lv et al. (2020)) 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6

Source (Zou et al. (2019)) Deeplabv2 71.3 19.2 69.1 18.4 10.0 35.7 27.3 6.8 79.6 24.8 72.1 57.6 19.5 55.5 15.5 15.1 11.7 21.1 12.0 33.8

CBST (Zou et al. (2018b)) (ResNet-101) 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

MRKLD (Zou et al. (2019)) 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

Source (Zheng & Yang (2020b)) Deeplabv2 51.1 18.3 75.8 18.8 16.8 34.7 36.3 27.2 80.0 23.3 64.9 59.2 19.3 74.6 26.7 13.8 0.1 32.4 34.0 37.2

MRNet (Zheng & Yang (2020a)) (ResNet-101) 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5

R-MRNet (Zheng & Yang (2020b)) 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3

Source (Tranheden et al. (2020)) Deeplabv2 63.31 15.65 59.39 8.56 15.17 18.31 26.94 15.00 80.46 15.25 72.97 51.04 17.67 59.68 28.19 33.07 3.53 23.21 16.73 32.85

DACS (Tranheden et al. (2020)) (ResNet-101) 89.90 39.66 87.87 30.71 39.52 38.52 46.43 52.79 87.98 43.96 88.76 67.20 35.78 84.45 45.73 50.19 0.00 27.25 33.96 52.14

Source Deeplabv2‡ 75.76 18.06 70.94 17.75 13.53 14.04 15.84 6.35 78.57 21.30 76.08 44.76 5.64 69.40 19.15 24.10 0.00 4.09 0.77 30.32

PFL-2R (Ours) (ResNet-101) 93.43 57.25 84.88 42.58 37.26 26.42 37.51 46.15 83.19 44.97 82.70 57.13 33.06 83.87 56.31 47.15 0.00 37.78 50.74 52.76

PLF-2R (Ours†) 94.16 59.88 87.47 41.50 39.85 36.44 46.87 54.27 86.92 46.99 86.54 65.28 38.84 88.52 60.08 52.27 0.00 44.44 55.58 57.15

Source Deeplabv3+‡ 21.13 7.47 51.42 8.15 10.11 20.31 20.83 14.97 70.94 4.93 64.77 37.58 7.07 51.51 12.07 9.69 9.85 3.56 15.16 23.24

PLF-3M (Ours) (MobileNetV2) 94.29 61.15 87.19 35.94 40.63 38.59 43.35 51.41 87.32 44.81 87.71 64.12 35.57 87.77 46.60 47.32 0.00 36.67 53.56 54.95

Source Deeplabv3+‡ 57.40 21.43 56.80 8.93 22.14 32.38 34.62 24.90 78.98 15.92 63.71 55.55 13.83 58.11 21.99 29.78 2.36 28.41 33.98 34.80

PLF-3D (Ours) (DRN-D-54) 94.62 62.46 87.90 40.81 39.34 40.62 48.36 54.58 88.12 49.29 87.96 67.12 39.14 89.34 56.95 50.24 0.03 42.37 56.09 57.65
SYNTHIA→ Cityscapes

Method Model (Backbone) Road SideW Build Wall* Fence* Pole* Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIoU mIoU*

Source (Tsai et al. (2018)) Deeplabv2 55.6 23.8 74.6 - - - 6.1 12.1 74.8 - 79.0 55.3 19.1 39.6 - 23.3 - 13.7 25.0 - 38.6

AdaptSegNet (Tsai et al. (2018)) (ResNet-101) 84.3 42.7 77.5 - - - 4.7 7.0 77.9 - 82.5 54.3 21.0 72.3 - 32.2 - 18.9 32.3 - 46.7

SIBAN (Luo et al. (2019a)) 82.5 24.0 79.4 - - - 16.5 12.7 79.2 - 82.8 58.3 18.0 79.3 - 25.3 - 17.6 25.9 - 46.3

CLAN (Luo et al. (2019b)) 81.3 37.0 80.1 - - - 16.1 13.7 78.2 - 81.5 53.4 21.2 73.0 - 32.9 - 22.6 30.7 - 47.8

APODA (Yang et al. (2020)) 86.4 41.3 79.3 - - - 22.6 17.3 80.3 - 81.6 56.9 21.0 84.1 - 49.1 - 24.6 45.7 - 53.1

PatchAlign (Tsai et al. (2019)) 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 - 84.6 53.5 21.6 71.4 - 32.6 - 19.3 31.7 40.0 46.5

AdvEnt (Vu et al. (2019a)) 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 - 84.1 57.9 23.8 73.3 - 36.4 - 14.2 33.0 41.2 48.0

FDA-MBT (Yang & Soatto (2020)) 79.3 35.0 73.2 - - - 19.9 24.0 61.7 - 82.6 61.4 31.1 83.9 - 40.8 - 38.4 51.1 - 52.5

PIT (Lv et al. (2020)) 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 - 78.8 64.2 27.6 79.6 - 31.2 - 31.0 31.3 44.0 51.8

Source (Zou et al. (2019)) Deeplabv2 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 - 67.6 42.2 19.9 73.1 - 15.3 - 10.5 28.9 34.9 40.3

CBST (Zou et al. (2018b)) (ResNet-101) 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 - 78.3 60.6 28.3 81.6 - 23.5 - 18.8 39.8 42.6 48.9

MRKLD (Zou et al. (2019)) 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 - 80.5 60.8 29.1 82.8 - 25.0 - 19.4 45.3 43.8 50.1

Source (Zheng & Yang (2020b)) Deeplabv2 44.0 19.3 70.9 8.7 0.8 28.2 16.1 16.7 79.8 - 81.4 57.8 19.2 46.9 - 17.2 - 12.0 43.8 35.2 40.4

MRNet (Zheng & Yang (2020a)) (ResNet-101) 82.0 36.5 80.4 4.2 0.4 33.7 18.0 13.4 81.1 - 80.8 61.3 21.7 84.4 - 32.4 - 14.8 45.7 43.2 50.2

R-MRNet (Zheng & Yang (2020b)) 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 - 80.6 63.0 21.8 86.2 - 40.7 - 23.6 53.1 47.9 54.9

Source (Tranheden et al. (2020)) Deeplabv2 36.30 14.64 68.78 9.17 0.20 24.39 5.59 9.05 68.96 - 79.38 52.45 11.34 49.77 - 9.53 - 11.03 20.66 29.45 33.65

DACS (Tranheden et al. (2020)) (ResNet-101) 80.56 25.12 81.90 21.46 2.85 37.20 22.67 23.99 83.69 - 90.77 67.61 38.33 82.92 - 38.90 - 28.49 47.58 48.34 54.81

Source Deeplabv2‡ 65.39 21.88 65.80 6.52 0.28 18.48 5.70 16.33 73.22 - 69.80 41.39 12.95 70.08 - 24.90 - 2.72 25.61 32.57 38.14

PLF-2R (Ours) (ResNet-101) 87.80 43.43 81.16 18.96 3.75 26.30 28.56 34.00 80.77 - 82.71 55.53 19.55 83.48 - 46.69 - 24.76 49.37 47.93 55.22

PLF-2R (Ours†) 87.79 41.92 82.70 14.19 1.47 36.43 32.62 18.80 82.01 - 81.32 64.08 24.42 86.43 - 40.78 - 26.01 54.25 48.45 55.63

Source Deeplabv3+‡ 37.46 15.36 65.74 3.51 0.00 22.62 0.00 0.00 75.81 - 82.65 36.40 2.70 46.44 - 21.69 - 0.14 0.09 25.66 29.58

PLF-3M (Ours) (MobileNetV2) 88.28 47.35 82.73 18.71 5.13 33.76 30.56 36.98 83.35 - 88.30 59.56 20.78 86.88 - 49.03 - 20.31 52.77 50.28 57.45

Source Deeplabv3+‡ 25.40 15.55 59.70 18.07 0.66 26.35 19.36 30.22 72.50 - 74.28 48.11 13.67 74.62 - 36.94 - 13.92 36.45 35.36 40.06

PLF-3D (Ours) (DRN-D-54) 88.38 45.74 83.45 18.09 3.35 36.67 34.99 38.12 84.65 - 88.16 61.01 22.29 87.64 - 53.28 - 28.41 53.68 51.76 59.22
‡: Please note that the backbone of the teacher models for ‘PLF-2R’, ‘PLF-3M’ and ‘PLF-3D’ are all Deeplabv2 (ResNet-101).

Table 3: The experimental results evaluated on the GTA5→Cityscapes and SYNTHIA→Cityscapes benchmarks.
The numbers presented in the middle and the last two columns correspond to per-class IoUs, mIoU, and mIoU*,
respectively. mIoU* represents the average IoU over all the semantic classes excluding those with superscript
*, and is adopted by a few baseline methods. ‘Source’ denotes that the student models only trained in the
source domain. ‘Ours’ refers to the setting that the student models are pretrained in the source domain. ‘Ours†’
represents the evaluation setting in which the student model in our framework is initialized with the pretrained
weights from R-MRNet Zheng & Yang (2020b).

that the student models with ResNet-101 as the backbone are clearly under-performing, despite of its
large model capacity, while those with DRN-D-54 achieve superior performance. The results also
reveal that little performance is sacrificed if MobileNetv2, whose model size is significantly smaller
than the other two, is used. Due to the small model size, it is able to perform inference at the speed of
around 20 milliseconds, which translates to 50 fps, making it deployable for real-time applications.

5.4 ANALYSIS OF THE THRESHOLD

Fig. 5 demonstrates the how the filter threshold τ affects the performance of the student model. In
the proposed framework, pixels of the fused PL with certainty below the filter threshold τ is removed
in order to improve the quality of the PLs as well as the performances of the student models. As
illustrated in Fig. 5, the performances of PLF-3D and PLF-3M increase as the filter threshold τ
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(a) (b)

Figure 5: Comparisons of (a) τ v.s. mIoU for PLF-3D, and (b) τ v.s. mIoU for PLF-3M.
CBST MRKLD R-MRNet DACS mIoU

PLF-3M
√ √

48.05√ √ √
50.25√ √ √ √
54.95

PLF-3D
√ √

50.09√ √ √
53.15√ √ √ √
57.65

Table 4: The performance (mIoU) comparison of our framework with different sets of teacher models on
GTA5→Cityscapes.

increases. Nevertheless, this increasing trend stops at a certain point, i.e., 0.9 in our case, and the
performance of the student networks fall drastically if the threshold is further increased. This may be
due to the fact that if the filter threshold is too large, a large number of the labels in the fused PLs
will be removed, implying that the amount of knowledge available for the student model to learn is
reduced as well. Due to the lack of information in the PLs, the student models might be underfitted.

5.5 ABLATION STUDY

The key motivation behind our learning framework is that different training methods may lead to
different decision boundaries among the teacher models, which can be potentially utilized by the
ensemble learning framework to improve the performance. To validate this concept, we perform
experiments on different sets of teacher models and report the performance of our framework with
different fusion functions. As shown in Table 4, when more teacher models trained with different
methods are included in the ensemble, the higher the performance of our framework achieves. The
experimental results also reveal that our design possesses the potential to evolve with time, since
a newly proposed UDA training method can be added into the ensemble and further increases the
performance of our framework.

6 CONCLUSION

In this paper, we proposed PLF, a learning framework developed to deal with the domain gap between
a source domain and a target domain for performing semantic segmentation based UDA in the
unseen target domain. In order to validate the proposed framework, we examined PLF as well as its
variants, and compared them with the other recent UDA approaches on both the GTA5→Cityscapes
and SYNTHIA→Cityscapes benchmarks. In our experiments, the proposed framework was able to
outperform the baselines. Furthermore, we performed several parameter analyses, and investigated
how different design choices may influence the performance of the proposed framework. As the
technique that fuses pseudo labels from a teacher ensemble has been validated to be effective by our
work. PLF thus pioneered a new direction for future semantic segmentation based UDA researches.
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Appendices
A1 BACKGROUND MATERIAL

In this section, we review the background knowledge of the previous adversarial domain adaptation
(ADA) methods and pseudo labeling (PL).

A1.1 ADVERSARIAL DOMAIN ADAPTATION

For UDA problems, we have access to the image-label pairs (Xsrc, Ysrc) in the source domain and
the images Xtgt in the target domain, where Xsrc, Xtgt ∈ RH×W×3, Ytgt ∈ RH×W×C . The goal is
to train a network to minimize the discrepancy between the semantic segmentation prediction and
the target domain ground truth. Take AdaptSegNet as a example, a generator G and a discriminator
D are trained against each other. The training objective of D is to distinguish whether the semantic
segmentation outputs of G belongs to the source domain or not. On the other hand, the training
objectives of the G is to confuse the discriminator D with its prediction. The loss function is defined
as follows:

LG adv = −
∑
h,w

log(D(P
(h,w,1)
tgt )), (A1)

LD adv = −
∑
h,w

(1− z)log(D(P (h,w,0))) + z(log(D(P (h,w,1)))), (A2)

where the segmentation softmax output of G is defined as Psrc = G(X
(h,w,c)
src ) in the source domain

and Ptgt = G(X
(h,w,c)
tgt ) in the target domain, whereP ∈ RH×W×C . z is zero if the sample is drawn

from the target domain, and is one if the sample is from the source domain. The cross-entropy loss
between Psrc and the ground truth in the source domain is also imposed to ensure that G preserves
the general representation of the source domain. The source domain loss function can be defined as
follows:

LG seg = −
∑
h,w

∑
c∈[1,C]

Y (h,w,c)
src log(P (h,w,c)

src ). (A3)
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Algorithm 1: PLF Algorithm 

While (S is not converged) do 

    // generate PL from the teacher models. 

    for i = 1 to N do 

        𝑃𝑖 = 𝑇𝑖(𝑋𝑡𝑎𝑟𝑔𝑒𝑡) 

    end for 

    {H𝑐
𝑖 }, {R𝑐

𝑖 }  ← Select PL and their corresponding confidence maps from {𝑃𝑖}. 

    (Hfused, Rfused) = η({Hc
i }, {Rc

i }) 

    Y𝑡𝑎𝑟𝑔𝑒𝑡
𝑓𝑢𝑠𝑒𝑑

= (𝐻𝑓𝑢𝑠𝑒𝑑 > 𝜏)? Rfused ∶ 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 

    // distill the knowledge to the student model. 

    𝑃𝑆 = 𝑆(𝑋𝑡𝑎𝑟𝑔𝑒𝑡) 

    LS = 𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑆, 𝑌𝑡𝑎𝑟𝑔𝑒𝑡
𝑓𝑢𝑠𝑒𝑑

) 

    Compute ∇LS by back-propagation and update the parameters in S. 

end while 

 

Figure A1: The pseudo code of the proposed PLF framework

A1.2 PSEUDO LABEL

First proposed by (Lee, 2013), it was first intoduced to improve the performance of image classification
by training with both the labeled data and unlabeled data. It is used in the fine-tunning phase of
training during which the network is trained on both the supervised and unsupervised data. The
unsupervised loss is calculated using the cross entropy between the network prediction and the
pseudo labels, which is generated using the prediction on the unlabeled data with pixel-wise function
described by the following equation:

Y
′

i =

{
1, i = argmaxi′fi′(x)

0, otherwise,
(A4)

where i, i′ denotes one of the classes in a set of classes. fi′(x) denotes a pixel in the output confidence
map. By reducing the cross entropy loss between the unlabeled data and the generated pseudo label,
the class overlapping of the output is greatly reduced and the decision boundary is adjusted to lie in
low density regions.

A2 ADDITIONAL DETAILS OF THE PROPOSED PLF FRAMEWORK

In this section, we provide the pseudo code of our PLF framework in Section A2.1, detailed definition
of the loss function in section A2.2, and the detailed training settings required to reproduce our results
in Section A2.3.

A2.1 PSEUDO CODE

The PLF training framework is presented as pseudo code, and is presented in Algorithm 1. A batch
of images Xtarget in the target domain is fed into a set of the teacher models Ti, and generates the
prediction Pi. Then Y fusedtarget is produced by the PLF process. Next, the student model generates the
semantic prediction PS , and the cross-entropy loss between Y fusedtarget and PS is imposed to distill the
knowledge in the PLs.

A2.2 LOSS FUNCTION

In the PLF framework, the fused PL Y fusedtarget and the prediction PS from the student model can
be viewed as 3 dimensional tensors with size H ×W × C, i.e., Y fusedtarget , PS ∈ R(H×W×C). The
cross-entropy loss LS between the two can be written as:

LS = −
∑
h,w

∑
c∈[1,C]

Y
fused (h,w,c)
target log(P

(h,w,c)
S ). (A5)
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Table A1: The evaluation results on the validation set of Cityscapes.
Method Backbone Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIOU

Source Deeplabv2 75.76 18.06 70.94 17.75 13.53 14.04 15.84 6.35 78.57 21.30 76.08 44.76 5.64 69.40 19.15 24.10 0.00 4.09 0.77 30.32

PLF-2R (ResNet-101) 93.43 57.25 84.88 42.58 37.26 26.42 37.51 46.15 83.19 44.97 82.70 57.13 33.06 83.87 56.31 47.15 0.00 37.78 50.74 52.76

PLF-2R-T 94.16 59.88 87.47 41.50 39.85 36.44 46.87 54.27 86.92 46.99 86.54 65.28 38.84 88.52 60.08 52.27 0.00 44.44 55.58 57.15

Oracle 96.16 73.35 86.57 43.34 47.62 29.58 42.07 51.20 86.28 53.42 87.73 62.34 41.23 87.15 71.80 71.49 49.20 46.34 61.55 62.54

Source Deeplabv3+ 21.13 7.47 51.42 8.15 10.11 20.31 20.83 14.97 70.94 4.93 64.77 37.58 7.07 51.51 12.07 9.69 9.85 3.56 15.16 23.24

PLF-3M (MobileNet) 94.29 61.15 87.19 35.94 40.63 38.59 43.35 51.41 87.32 44.81 87.71 64.12 35.57 87.77 46.60 47.32 0.00 36.67 53.56 54.95

Oracle 96.84 75.88 87.52 44.55 45.98 45.11 47.79 61.38 88.72 53.98 89.95 67.35 42.71 91.29 61.13 72.51 58.89 43.34 64.81 65.25

Source Deeplabv3+ 57.40 21.43 56.80 8.93 22.14 32.38 34.62 24.90 78.98 15.92 63.71 55.55 13.83 58.11 21.99 29.78 2.36 28.41 33.98 34.80

PLF-3D (DRN-50) 94.62 62.46 87.90 40.81 39.34 40.62 48.36 54.58 88.12 49.29 87.96 67.12 39.14 89.34 56.95 50.24 0.03 42.37 56.09 57.65

Oracle 97.68 81.31 90.77 49.18 51.30 56.41 61.15 71.49 91.13 59.10 93.70 76.68 52.55 93.59 76.66 79.92 63.58 55.41 72.47 72.32

Table A2: An analysis of the thresholds and the evaluation results on the validation set of Cityscapes.
Backbone Threshold mIOU (certainty) mIOU (priority) mIOU (majority)
ResNet101 0.00 47.71 52.06 49.76

0.70 49.14 52.67 50.57
0.90 51.97 54.94 55.12
0.95 42.46 49.03 48.71
0.99 28.34 47.21 46.32

DRN-50 0.00 53.20 57.91 54.76
0.70 53.16 57.01 56.15
0.90 54.85 57.94 57.65
0.95 43.97 49.70 49.50
0.99 26.98 47.65 47.53

MobileNetV2 0.00 47.16 50.38 49.44
0.70 48.42 51.95 51.65
0.90 51.64 54.74 54.95
0.95 39.27 47.35 47.86
0.99 27.07 44.89 44.71

A2.3 THE DETAILED TRAINING SETTINGS

To detailed training setting used to produce the results of our experiment is shown as follows:

• Learning Rate: 2.5 ∗ 10−4 with decay=0.9 (SGD)
• Weight Decay: 0.0005
• Momentum: 0.9
• 512*1024→ crop 256*512
• Batch Size: 10
• Iterations: 100K

A3 ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide additional experimental results including, the performance of the student
model trained with supervision in Cityscapes in section A3.1, the detailed experimental result with
altered fusion threshold in Section A3.2, results that shows the reproducibility of our framework in
Section A3.2.1, and additional visualization of the prediction in Section A3.3.

A3.1 TRAINING RESULTS IN THE TARGET DOMAIN

Table A1 shows the performance of the student model when the annotations in the target domain is
available. Specifically, the student model is trained under the same training procedure proposed in
Section 4.2 but Y fusedtarget is replaced by the ground truth Ytarget of the target domain.

A3.2 ADDITIONAL RESULTS OF THE THRESHOLD ANALYSIS

Table A2 shows the performance results of our method with ResNet-101, DRN, and MobileNetv2 as
the backbones along with different fusion filtering thresholds.

A3.2.1 REPRODUCIBILITY

Table A3 and A4 demonstrate the reproducibility and the stability of the proposed method. Each
row in the table represents a experiment which is run 5 times under the same experimental setting.
The reported data only shows slight fluctuation in performance, indicating that the result of the
proposed methodology have small variance and is therefore considered stable and reproducible,
given the aforementioned experimental setups and hyperparameters. Furthermore, it is ensured
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Table A3: The evaluation results of PLF on the validation set of Cityscapes.
Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIOU

PLF-2R 93.36± 0.10 56.08± 1.15 84.89± 0.10 41.56± 0.75 37.00± 0.45 26.63± 0.11 37.76± 0.15 46.61± 0.10 83.29± 0.07 45.15± 0.34 82.43± 0.30 56.74± 0.21 33.41± 0.38 83.74± 0.10 55.29± 1.25 47.06± 0.46 0.00± 0.00 36.46± 0.46 50.72± 0.54 52.54± 0.24

PLF-3D 94.50± 0.22 61.58± 1.55 87.91± 0.15 35.87± 0.85 39.68± 0.89 40.74± 0.35 48.90± 0.67 55.13± 0.44 88.20± 0.05 48.93± 0.47 88.57± 0.39 67.06± 0.53 38.78± 1.12 89.26± 0.20 55.00± 2.74 50.48± 1.25 0.02± 0.06 40.03± 0.95 54.91± 1.20 57.13± 0.28

PLF-3M 94.22± 0.06 60.07± 1.05 87.10± 0.17 34.48± 1.19 38.75± 1.21 38.55± 0.32 43.57± 0.43 52.16± 0.79 87.24± 0.12 44.44± 1.11 87.24± 0.45 63.71± 0.26 35.43± 0.42 87.62± 0.86 46.97± 2.02 46.71± 1.18 0.00± 0.00 34.79± 3.60 53.74± 3.43 54.57± 0.45

Table A4: The evaluation results of PLF on the validation set of Cityscapes.
Road SideW Build Wall Fence Pole Light Sign Veg Sky Person Rider Car Bus Motor Bike mIOU

PLF-2R 87.83± 0.04 43.42± 0.31 81.17± 0.11 18.85± 0.37 3.69± 0.29 26.07± 0.10 27.65± 0.86 34.05± 0.27 80.78± 0.10 82.60± 0.19 54.82± 0.33 18.78± 0.16 83.63± 0.16 46.09± 1.38 20.08± 0.64 49.05± 0.21 47.41± 0.15

PLF-3D 88.64± 0.19 47.04± 0.36 83.59± 0.08 19.43± 0.39 3.03± 0.31 36.11± 0.14 32.15± 2.57 37.87± 0.29 84.39± 0.35 87.56± 0.44 63.35± 0.41 21.12± 0.58 87.94± 0.20 52.58± 1.10 21.93± 1.97 53.76± 0.80 51.28± 0.13

PLF-3M 88.72± 0.18 46.91± 0.35 82.90± 0.16 18.68± 0.53 3.89± 0.16 34.40± 0.24 29.61± 1.18 36.93± 0.15 84.13± 0.17 88.25± 0.13 60.18± 0.24 19.35± 0.23 87.01± 0.24 49.01± 1.67 16.05± 2.66 52.30± 0.15 49.89± 0.26

that the source codes of the proposed framework are well verified and fully reproducible. For
more details about the provided source codes, please refer to the anonymous GitHub repository
https://anonymous.4open.science/r/8645c8cd-7baf-4adc-ab61-1ee908063a00/.

A3.3 VISUALIZATION

Fig. A2 shows additional visualization data that demonstrate the effectiveness of the proposed
framework. The first two columns show the RGB in put image of Cityscapes and the ground truth.
Column 3 and 4 shows the fused PLs and the prediction of the student model that corresponds to the
input image displayed in column 1, respectively

A3.4 COMPLETE QUANTITATIVE RESULTS

Tables A5 and A6 show the complete comparison of the performance between the proposed method
and the baselines in GTA5→Cityscapes and SYNTHIA→Cityscapes, respectively.
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Figure A2: The visualization results of PLF-3D on Cityscapes.

Table A5: The evaluation results of the validation set on Cityscapes (GTA5→Cityscapes).
Method Backbone Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIOU

Source DRN-26 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7

CyCADA 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

Source
DRN-105

36.4 14.2 67.4 16.4 12.0 20.1 8.7 0.7 69.8 13.3 56.9 37.0 0.4 53.6 10.6 3.2 0.2 0.9 0.0 22.2

MCD 90.3 31.0 78.5 19.7 17.3 28.6 30.9 16.1 83.7 30.0 69.1 58.5 19.6 81.5 23.8 30.0 5.7 25.7 14.3 39.7

Source

Deeplabv2

(ResNet-101)

75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

AdaptSegNet 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.2

SIBAN 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

CLAN 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

APODA 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

PatchAlign 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

AdvEnt Deeplabv2 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

Source Deeplabv2

(ResNet-101)

- - - - - - - - - - - - - - - - - - - 29.2

FCAN - - - - - - - - - - - - - - - - - - - 46.6

Source
Deeplabv2

(ResNet-101)

71.3 19.2 69.1 18.4 10.0 35.7 27.3 6.8 79.6 24.8 72.1 57.6 19.5 55.5 15.5 15.1 11.7 21.1 12.0 33.8

CBST 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

MRKLD 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

MRKLD-SP-MST ResNet38 91.7 45.1 80.9 29.0 23.4 43.8 47.1 40.9 84.0 20.0 60.6 64.0 31.9 85.8 39.5 48.7 25.0 38.0 47.0 49.8

Source
Deeplabv2

(ResNet-101)

51.1 18.3 75.8 18.8 16.8 34.7 36.3 27.2 80.0 23.3 64.9 59.2 19.3 74.6 26.7 13.8 0.1 32.4 34.0 37.2

MRNet 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5

R-MRNet 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3

Source Deeplabv2

(ResNet-101)

63.31 15.65 59.39 8.56 15.17 18.31 26.94 15.00 80.46 15.25 72.97 51.04 17.67 59.68 28.19 33.07 3.53 23.21 16.73 32.85

DACS 89.90 / - 39.66 / - 87.87/ - 30.71 / - 39.52 / - 38.52 / - 46.43 / - 52.79 / - 87.98 / - 43.96 / - 88.76/ - 67.20 / - 35.78 / - 84.45 / - 45.73 / - 50.19 / - 0.00 / - 27.25 / - 33.96 / - 52.14 / 53.84

Source
Deeplabv2

(ResNet-101)

75.76 18.06 70.94 17.75 13.53 14.04 15.84 6.35 78.57 21.30 76.08 44.76 5.64 69.40 19.15 24.10 0.00 4.09 0.77 30.32

MMD-S-2R 93.43 57.25 84.88 42.58 37.26 26.42 37.51 46.15 83.19 44.97 82.70 57.13 33.06 83.87 56.31 47.15 0.00 37.78 50.74 52.76

MMD-T-2R 94.16 59.88 87.47 41.50 39.85 36.44 46.87 54.27 86.92 46.99 86.54 65.28 38.84 88.52 60.08 52.27 0.00 44.44 55.58 57.15

Source Deeplabv3+

(MobileNet)

21.13 7.47 51.42 8.15 10.11 20.31 20.83 14.97 70.94 4.93 64.77 37.58 7.07 51.51 12.07 9.69 9.85 3.56 15.16 23.24

MMD-S-3M 94.29 61.15 87.19 35.94 40.63 38.59 43.35 51.41 87.32 44.81 87.71 64.12 35.57 87.77 46.60 47.32 0.00 36.67 53.56 54.95

Source Deeplabv3+

(DRN-50)

57.40 21.43 56.80 8.93 22.14 32.38 34.62 24.90 78.98 15.92 63.71 55.55 13.83 58.11 21.99 29.78 2.36 28.41 33.98 34.80

MMD-S-3D 94.62 62.46 87.90 40.81 39.34 40.62 48.36 54.58 88.12 49.29 87.96 67.12 39.14 89.34 56.95 50.24 0.03 42.37 56.09 57.65
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Table A6: The evaluation results of the validation set on Cityscapes (SYNTHIA→Cityscapes).
Method Backbone Road SideW Build Wall* Fence* Pole* Light Sign Veg Sky Person Rider Car Bus Motor Bike mIOU* mIOU

Source
DRN-105

14.9 11.4 58.7 1.9 0.0 24.1 1.2 6.0 68.8 76.0 54.3 7.1 34.2 15.0 0.8 0.0 26.8 23.4

MCD 84.8 43.6 79.0 3.9 0.2 29.1 7.2 5.5 83.8 83.1 51.0 11.7 79.9 27.2 6.2 0.0 43.5 37.3

Source

Deeplabv2

(ResNet-101)

55.6 23.8 74.6 - - - 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6 -

AdaptSegNet 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 -

SIBAN 82.5 24.0 79.4 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3 -

CLAN 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 -

APODA 86.4 41.3 79.3 - - - 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 53.1 -

PatchAlign 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5 40.0

AdvEnt 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0 41.2

Source
Deeplabv2

(ResNet-101)

64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 28.9 40.3 34.9

CBST 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 48.9 42.6

MRKLD 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 50.1 43.8

Source
Deeplabv2

(ResNet-101)

44.0 19.3 70.9 8.7 0.8 28.2 16.1 16.7 79.8 81.4 57.8 19.2 46.9 17.2 12.0 43.8 40.4 35.2

MRNet 82.0 36.5 80.4 4.2 0.4 33.7 18.0 13.4 81.1 80.8 61.3 21.7 84.4 32.4 14.8 45.7 50.2 43.2

R-MRNet 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 54.9 47.9

Source Deeplabv2

(ResNet-101)

36.30 14.64 68.78 9.17 0.20 24.39 5.59 9.05 68.96 79.38 52.45 11.34 49.77 9.53 11.03 20.66 33.65 29.45

DACS 80.56 / - 25.12 / - 81.90 / - 21.46/ - 2.85 / - 37.20 / - 22.67 / - 23.99 / - 83.69 / - 90.77/ - 67.61/ - 38.33/ - 82.92 / - 38.90 / - 28.49 / - 47.58 / - 54.81 / 55.98 48.34 / 49.10

Source
Deeplabv2

(ResNet-101)

65.39 21.88 65.80 6.52 0.28 18.48 5.70 16.33 73.22 69.80 41.39 12.95 70.08 24.90 2.72 25.61 38.14 32.57

MMD-S-2R 87.80 43.43 81.16 18.96 3.75 26.30 28.56 34.00 80.77 82.71 55.53 19.55 83.48 46.69 24.76 49.37 55.22 47.93

MMD-T-2R 87.79 41.92 82.70 14.19 1.47 36.43 32.62 18.80 82.01 81.32 64.08 24.42 86.43 40.78 26.01 54.25 55.63 48.45

Source Deeplabv3+

(MobileNet)

37.46 15.36 65.74 3.51 0.00 22.62 0.00 0.00 75.81 82.65 36.40 2.70 46.44 21.69 0.14 0.09 29.58 25.66

MMD-S-3M 88.28 47.35 82.73 18.71 5.13 33.76 30.56 36.98 83.35 88.30 59.56 20.78 86.88 49.03 20.31 52.77 57.45 50.28

Source Deeplabv3+

(DRN-50)

25.40 15.55 59.70 18.07 0.66 26.35 19.36 30.22 72.50 74.28 48.11 13.67 74.62 36.94 13.92 36.45 40.06 35.36

MMD-S-3D 88.38 45.74 83.45 18.09 3.35 36.67 34.99 38.12 84.65 88.16 61.01 22.29 87.64 53.28 28.41 53.68 59.22 51.76
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