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Abstract
It is essential for e-commerce platforms to provide accurate, com-
plete, and timely product attribute values, in order to improve the
search and recommendation experience for both customers and
sellers. In the real-world scenario, it is difficult for these platforms
to identify attribute values for the newly introduced products given
no similar product history records for training or retrieval. Be-
sides, how to jointly learn the product representation given various
product information in multiple modalities, such as textual modal-
ity (e.g., product titles and descriptions) and visual modality (e.g.,
product images), is also a challenging task. To address these limita-
tions, we propose a novel method for extracting multi-label product
attribute-value pairs from multiple modalities in the zero-shot sce-
nario, where labeled data is absent during training. Specifically,
our method constructs heterogeneous hypergraphs, where product
information from different modalities is represented by different
types of nodes, and the text and image nodes are embedded and
learned through CLIP encoders to effectively capture and integrate
multi-modal product information. Then, the complex interrelations
among these nodes are modeled through the hyperedges. By learn-
ing informative node representations, our method can accurately
predict links between unseen product nodes and attribute-value
nodes, enabling zero-shot attribute value extraction. We conduct
extensive experiments and ablation studies on several categories
of the public MAVE dataset and the results demonstrate that our
proposed method significantly outperforms several state-of-the-
art generative model baselines in multi-label, multi-modal product
attribute value extraction in the zero-shot setting.

Keywords
Attribute value extraction, Multi-modal learning, Zero-shot learn-
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1 Introduction
Product attribute values are crucial in e-commerce as they pro-
vide valuable product information that enables customers to search,
compare, and purchase their desired products more effectively and
efficiently. Moreover, these values assist sellers in accurately rep-
resenting and categorizing their products [59]. However, manual
labeling by sellers often leads to incomplete or mislabeled attribute
values, which could impede the searching and purchasing process
for customers. To address these challenges, product attribute value
extraction (AVE), which aims to automatically extract attribute val-
ues from product information, such as product titles, descriptions,
and images, is an important task in the e-commerce field [59].

Most existing approaches for AVE rely on traditional supervised
learning models, which require large quantities of labeled train-
ing data. However, manually labeling new products is often time-
consuming and labor-intensive [16]. Consequently, it is essential
to extract unseen attribute values for new products where labeled

training data is unavailable (i.e., in the zero-shot setting). In addi-
tion, many existing works focus on extracting attribute values from
solely textual information, such as product titles and descriptions
[39, 45, 46]. In real life, substantial attribute value information is
implicitly contained within visual modality (i.e., product images),
which is often overlooked compared to more explicit textual in-
formation [40, 52]. For instance, Figure 1 gives an example of the
product data in our dataset, which includes both textual information,
such as the product title and description, as well as visual infor-
mation in the form of a product image. Moreover, though existing

Figure 1: An example of a product profile, including both
textual and visual information.

SOTA generative multi-modal large language models (MLLMs) (i.e.
LLaVA [28], Qwen [1], etc.) can handle multi-modal data input for a
zero-shot attribute value prediction, these approaches are typically
limited to generating a single attribute value at a time, lacking the
capability to simultaneously extract multiple attribute-value pairs.
This limitation is impractical for real-world applications, where
products often possess several attribute-value pairs. Efficient extrac-
tion of these attribute values simultaneously is crucial for saving
computational resources and reducing computational time.

To tackle the above challenges, we propose a hypergraph-based
model for multi-modal, multi-label attribute value extraction in
the zero-shot setting. Our model employs heterogeneous hyper-
graphs to capture intricate, higher-order interrelations among vari-
ous types of nodes. These interrelations are derived from different
aspects of product information or are influenced by user behaviors.
Subsequently, the learned hypergraphs are capable of inferring
connections between unseen product nodes and attribute value
nodes. Specifically, we introduce four types of nodes, each rep-
resenting products (i.e., product titles and descriptions), product
categories, product attribute values, and product images. We first
construct graphs to capture initial correlations and interactions
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among these nodes; based on these graphs, we then construct a uni-
fied hypergraph to further capture more complex and higher-order
interrelations influenced by user behaviors (i.e., ‘also view’, ‘also
buy’) and product inventory information (e.g., ‘product with all im-
ages’) between nodes. The final node representations learned from
the hypergraph encapsulate accurate and expressive information
regarding products and product attribute values, demonstrating
excellent capabilities in predicting links between new products and
unseen attribute values. We conduct extensive experiments across
8 different product categories within the MAVE dataset, and the
results indicate that our multi-modal hypergraph-based AVE model
outperforms several existing methods in the zero-shot setting from
the perspective of prediction performance and computational effi-
ciency (time, GPU usage, and model weight). Furthermore, ablation
studies show that integrating the visual modality can significantly
improve the effectiveness of our model while introducing the hyper-
graph module also substantially improves the model performance
compared to directly inferring from graphs.

Our main contributions are summarized as follows:

• We propose a zero-shot multi-modal, multi-label model to
extract unseen attribute values for new products, which in-
tegrates an CLIP encoder to better learn the representations
for both textual and visual product input data.

• We construct heterogeneous hypergraphs to capture com-
plex and higher-order correlations and interactions from
basic product information and user behavior information.

• Extensive experiments on the public dataset MAVE indicates
that our proposed model significantly outperforms (higher
F1-score and better computational efficiency) several SOTA
generative MLLMs in zero-shot learning.

2 Related Work
2.1 Attribute Value Extraction
Product attribute value extraction aims at identifying attribute
values based on the product information. Taking advantage of pre-
trained large language models (LLMs), most existing studies focus
on extracting attribute values from product titles or descriptions
by using classification models [11, 12, 15], transformers [6], and
generative LLMs [2, 14, 24, 34, 35, 37]. Some recent works explore
the product visual features to enhance the product attribute value
extraction by utilizing multi-modal transformer [40], combining
OCR [27], using multi-modal attention mechanism [10, 52], prompt-
tuning of pre-trained transformer [47], and directly leveraging
multi-modal large language models (MLLMs) [56, 57] to generate
product attribute values from the combination of product texts
and images. However, these methods utilizing large (multi-modal)
language models require large quantities of labeled training data
for fine-tuning the pre-trained MLLMs. Even the works directly use
the SOTA pre-trained MLLMs (i.e. Qwen [1], LLaVA [28]) for zero-
shot attribute value generation still require computing resources
for model inference [56] and demonstrate limited multi-label at-
tribute value generation shown in Sec. 5.1. Besides, these works
also miss the complex interrelations among different products. For
multi-label zero-shot attribute value extraction, the most related
work explores using heterogeneous hypergraph to do inductive link

prediction [17]. Nevertheless, it only considers text modality and
misses the rich information and correlations from product images.

2.2 Multi-modal Zero-shot Learning
Multi-modal zero-shot learning (MZSL) has been widely applied in
computer vision and natural language processing [5]. MZSL can be
roughly divided into three main categories: (1) embedding-based
methods, where the model directly constructs the mapping rela-
tionship between visual space and semantic space. One popular
approach is the contrastive learning for MZSL [21] (i.e. CLIP [33],
SigLIP [51], DreamLIP [54], etc.); (2) generative models, where ZSL
is treated as a data-missing problem and representations of data
in one modality is generated from another modality. For example,
conditional variational autoencoders [31] or generative adversarial
networks [18] are used to be trained on seen classes and then infer
the characteristics of unseen classes in MZSL; (3) graph-based meth-
ods, where relationships between different classes and modalities
are captured by graph links [4, 30, 43]. We propose to combine
the embedding-based and graph-based approaches to leverage the
strengths of both for MZSL on attribute value extraction.

2.3 Multi-modal Graph Learning
Although many current multi-modal learning techniques concen-
trate on mapping or aligning various modalities, real-world data
is often more intricate, featuring complex many-to-many relation-
ships that can be effectively modeled using graphs. Multi-modal
graph learning (MGL) aims to tackle this complexity by leverag-
ing graph structures with relational representations to fully ex-
plore both the inter-modal and intra-modal correlations from multi-
modal data among multiple multi-modal neighbors [13, 32, 55].
Recent works in MGL have focused on integrating multi-modal
features with graph or hypergraph structures (i.e. MGCN [22, 42],
MGAN [23, 53], MGCL [25, 29], MHN [19, 49, 50]) across a wide
range of downstream tasks (i.e. knowledge graph completion [36,
38, 41], recommendation [3, 19, 29], disease prediction [23, 44], etc.).
Motivated by multi-modal fusion for hypergraphs with contrastive
learning [19, 49] and the zero-shot ability from inductive link pre-
diction in graphs [17], we propose a multi-modal hypergraph-based
model with text and image nodes embedded through the CLIP en-
coder for zero-shot attribute value extraction in e-Commerce.

3 Methodology
3.1 Problem Formulation
In this section, we formally formulate the problem of heterogeneous
hypergraph-based multi-modal zero-shot AVE, and provide some
annotations for it. The problem formulation is based on [16]. The
product profile consists of product title and description, category,
attribute values, and images. We denote a product profile as 𝐷 =

(𝑃𝑡 , 𝑃𝑣), where 𝑃𝑡 is the textual modality of the product profile and
𝑃𝑣 is the visual modality. For the textual modality, 𝑃𝑡 = (𝑝𝑑𝑡 , 𝑝𝑐𝑡 , 𝑝𝑎𝑡 ),
where 𝑝𝑑𝑡 , 𝑝

𝑐
𝑡 , 𝑝

𝑎
𝑡 represent product title and description, product

category, and product attribute value, respectively. For the visual
modality, 𝑃𝑣 = (𝑝𝑖𝑣), where 𝑝𝑖𝑣 represents product image.
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Note that each product may have multiple images captured from
different angles or perspectives to provide a comprehensive repre-
sentation of its attributes and corresponding values. As illustrated
in Figure 2, the product ‘cat bowl’ is depicted with three product
images, each suggesting distinct attribute value information from
different perspectives. For example, the top-left image demonstrates
the design details of the cat bowl, the top-right image highlights
its capacity, and the bottom image indicates that the bowl is specif-
ically intended for cats. Also, each product may belong to multiple
categories and have multiple attribute values. Still taking the cat
bowl as an example, it is classified under categories such as Pet Sup-
plies, Cats, and Bowls & Dishes, and has multiple attribute values,
including Type: Pet Dish and Pet: Cat.

Figure 2: A product, Cat Bowl, with multiple images.

Given a product profile 𝐷 , the goal of zero-shot AVE is to deter-
mine whether there is a link between a new product 𝑝 and unseen
attribute values 𝑝𝑎𝑡 . The likelihood of such a link is calculated by
the cosine similarity between 𝑝 and 𝑝𝑎𝑡 .

3.2 Model Overview
Figure 3 presents the overall framework of our proposed method.
Essentially, our framework is composed of three main components:
heterogenous hypergraph construction, hypergraph relation learn-
ing, and zero-shot link prediction. The details of each component
are as follows:

3.2.1 Heterogeneous Hypergraph Construction. Product inventory
refers to structured data that provides information about the at-
tributes and characteristics of a product. In our context, product
inventory data includes product titles and descriptions, product
attribute values, product categories, and product images. User be-
havior information in e-commerce refers to the actions and activities
that reflect how customers interact with e-commerce platforms,
offering valuable insights into how certain products relate to others.
In our case, we focus on two types of user behavior information:
‘also view’ and ‘also buy’. The ‘also view’ behavior means people

who view product A also view product B, and the ‘also buy’ behavior
means people who buy product A also buy product B.

To enable hypergraphs to effectively capture correlations and
interactions between product inventory data and user behavior
information, we begin by constructing graphs that will serve as
the basis for hypergraph construction. For graph construction, we
define four types of nodes: Products (𝑃), Categories (𝐶), Attribute
Values (𝐴), and Images (𝐼 ). To generate initial node representations,
we employ the text encoder from the CLIP model [33] to encode
textual information for 𝑃 , 𝐶 , and 𝐴, while utilizing the CLIP im-
age encoder to encode visual information for 𝐼 . The initial node
representations for 𝑃 , 𝐶 , 𝐴, and 𝐼 are formulated as follows:

ℎ𝑝 = 𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 (𝑝𝑑𝑡 ) (1)
ℎ𝑐 = 𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 (𝑝𝑐𝑡 ) (2)
ℎ𝑎 = 𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 (𝑝𝑎𝑡 ) (3)

ℎ𝑖 = 𝐶𝐿𝐼𝑃𝑖𝑚𝑎𝑔𝑒 (𝑝𝑖𝑣) (4)

To establish connections between nodes, we introduce three
types of edges: product in category, product has attribute values, and
product has images. We formally define the edge set as:

𝐸 = {𝑒𝑝𝑐 , 𝑒𝑝𝑎, 𝑒𝑝𝑖 } (5)

where 𝑒𝑝𝑐 denotes product in category edge, 𝑒𝑝𝑎 denotes product has
attribute values edge, 𝑒𝑝𝑖 denotes product has images edge. Figure 3
Stage 1 demonstrates the graph construction process. By integrating
these three subgraphs, we obtain a unified graph that encapsulates
all relevant information from the product inventory.

The bottom part in Figure 3 Stage 1 demonstrates the process of
hypergraph construction based on the information contained within
the unified graph. We introduce two primary types of hyperedges,
also view and also buy, which represent the previously described
user behavior information. also view and also buy hyperedges cap-
ture the relationships between products and product images that
align with the same user behavior. Additionally, we introduce an-
other type of hyperedge, product with all images, which records the
relationships between products and their corresponding images.
Formally, we define the hyperedge set as:

E = {𝜖𝑣𝑝 , 𝜖𝑣𝑖 , 𝜖𝑏𝑝 , 𝜖𝑏𝑖 , 𝜖𝑝𝑖 } (6)

where 𝜖𝑣𝑝 denotes product also view hyperedge, 𝜖𝑣𝑖 denotes image
also view hyperedge, 𝜖𝑏𝑝 denotes product also buy hyperedge, 𝜖𝑏𝑖
denotes image also buy hyperedge, and 𝜖𝑝𝑖 denotes product with all
images hyperedge. As shown in Figure 3 Stage 1, we use a single
also view hyperedge to join multiple products that are viewed by
the same user, and a single also buy hyperedge to join multiple
products that are purchased by the same user. Additionally, images
associated with the joined products are also connected using hy-
peredges of the same type. By doing this, we aim to exploit implicit
correlated interrelations between products and images that may
initially appear unrelated. Furthermore, a single product with all
images hyperedge is utilized to connect each product with its cor-
responding images, facilitating the capture of interactions between
the textual and visual modalities.

3.2.2 Hypergraph Relation Learning. By leveraging the structural
information of the heterogeneous hypergraph (as shown in Figure 3
Stage 1), we perform hypergraph relation learning to fully identify
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Figure 3: Overview of our proposed model architecture. The model is composed of three main components: (1) Hypergraph
construction: constructs hypergraphs based on product inventory data and user behavior information. (2) Hypergraph relation
learning: captures higher-order relationships between product nodes and image nodes. (3) Zero-shot link prediction: infers
links between new products and unseen attribute values.

and understand the relationships between different entities within
the heterogeneous hypergraph. Based on the initial node embed-
dings obtained from the CLIP text and image encoders, we conduct
message passing within hypergraphs to enable more complex and
informative node representations by aggregating information from
neighboring nodes. For example, when calculating higher-order
node representations for product nodes (as shown in the upper
section in Figure 3 Stage 2), our model performs message passing:

𝑚
(𝑙 )
𝑁 (𝑝𝑣 ) = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 (𝑙 ) (ℎ (𝑙 )𝑝𝑢

,∀𝑢 ∈ 𝑁 (𝑝𝑣)) (7)

ℎ
(𝑙+1)
𝑝𝑣

= 𝑈𝑃𝐷𝐴𝑇𝐸 (𝑙 ) (ℎ (𝑙 )𝑝𝑣
,𝑚

(𝑙 )
𝑁 (𝑝𝑣 ) ) (8)

where ℎ (𝑙 )𝑝𝑢
represents the embeddings of the neighboring nodes

of node 𝑝𝑣 (𝑙 ) , ℎ
(𝑙 )
𝑝𝑣

represents the embedding of the current node

𝑝
(𝑙 )
𝑣 , AGGREGATE is an aggregation function that aggregates the

messages from the neighboring nodes, and UPDATE function is
used to update the node embedding for node 𝑝𝑣

(𝑙 ) based on its
current features and the aggregated messages. Similarly, message
passing for image nodes is calculated as follows:

𝑚
(𝑙 )
𝑁 (𝑖𝑣 ) = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 (𝑙 ) (ℎ (𝑙 )

𝑖𝑢
,∀𝑢 ∈ 𝑁 (𝑖𝑣)) (9)

ℎ
(𝑙+1)
𝑖𝑣

= 𝑈𝑃𝐷𝐴𝑇𝐸 (𝑙 ) (ℎ (𝑙 )
𝑖𝑣

,𝑚
(𝑙 )
𝑁 (𝑖𝑣 ) ) (10)

where ℎ (𝑙 )
𝑖𝑢

represents the embeddings of the neighborhood nodes

of image node 𝑖𝑣 (𝑙 ) , ℎ
(𝑙 )
𝑖𝑣

represents the embedding of the current
image node 𝑖𝑣

(𝑙 ) . We use the same AGGREGATE function and
UPADTE function as previously defined.

When nodes belong to different modalities (i.e., both ℎ
(𝑙 )
𝑝𝑣

and

ℎ
(𝑙 )
𝑖𝑣

) within the hypergraph (as shown in the lower section of
Figure 3 Stage 2), message passing is performed in the same manner.
Message passing between nodes of different modalities enables the
initial fusion of textual and visual features.

Multi-modal Fusion. After obtaining individual node embeddings
for the five different types of hyperedges, we fuse the product
node embeddings to generate a final unified node representation
of products, and similarly, fuse the image node embeddings to
create a final unified node representation for images. Moreover,
different types of hyperedges may contribute unequally to the final
node representations [16]. Therefore, we employ a fusion approach
to further fuse node embeddings. This fusion approach considers
varying levels of contribution from each hyperedge type, thereby
optimizing both the final node representations and overall model
performance. For product also view and product also buy hyperedges,
we conduct fusion as follows:

ℎ𝑝𝑣 = 𝛼 · ℎ𝑣𝑝𝑝𝑣 + (1 − 𝛼) · ℎ𝑏𝑝𝑝𝑣 (11)
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where ℎ𝑣𝑝𝑝𝑣 is product also view node embedding, ℎ𝑏𝑝𝑝𝑣 is product also
buy node embedding, 𝛼 is the weight of product also view node
embedding, 1−𝛼 is the weight of product also buy node embedding,
and ℎ𝑝𝑣 is the final unified product embedding.

Similarly, for image also view, image also buy, and product with
all images hyperedges, the fusion is calculated as:

ℎ𝑖𝑣 = 𝛾 · ℎ𝑣𝑖𝑖𝑣 + 𝛿 · ℎ𝑏𝑖𝑖𝑣 + (1 − 𝛾 − 𝛿) · ℎ𝑝𝑖
𝑖𝑣

(12)

where ℎ𝑣𝑖
𝑖𝑣

is image also view node embedding, ℎ𝑏𝑖
𝑖𝑣

is image also buy

node embedding, ℎ𝑝𝑖
𝑖𝑣

is product with all images node embedding, 𝛾 ,
𝛿 , 1−𝛾−𝛿 areweights of image also view, image also buy, product with
all images, respectively, andℎ𝑖𝑣 is the final unified image embedding.
Through the above fusion process, we obtain final product and
image embeddings that capture more sophisticated correlations
within user behaviors and product inventory information across
different types of nodes and hyperedges.

3.2.3 Zero-shot Link Prediction. The relation learning stage allows
us to obtain higher-level node embeddings that capture more intri-
cate correlations among user behaviors and product inventory for
both products and images. Additionally, we incorporate category
and attribute value nodes, which are encoded by the CLIP text en-
coder, into the final graph structure to support the task of zero-shot
link prediction. To generate the final node embeddings, all nodes
in the final graph are processed through 𝐿 layers of GraphSAGE
[20], followed by the ReLU activation function.

To predict whether there is a link between a new product p and
an attribute-value pair a, we calculate the cosine similarity between
their embeddings to evaluate the probability that product p will
have the attribute value a. Specifically, for a given product 𝑝𝑖 and
attribute value 𝑎𝑖 , the cosine similarity is calculated as follows:

𝑆𝑐 ( ˜ℎ𝑝𝑖 , ˜ℎ𝑎𝑖 ) =
˜ℎ𝑝𝑖 · ˜ℎ𝑎𝑖

∥ ˜ℎ𝑝𝑖 ∥ · ∥ ˜ℎ𝑎𝑖 ∥
(13)

where ˜ℎ𝑝𝑖 is the node embedding for the new product 𝑝𝑖 and ˜ℎ𝑎𝑖
is the node embedding for the unseen attribute-value pair 𝑎𝑖 . As
shown in Figure 3 Stage 3, we predict whether a link exists between
the new product (in a dotted line) and the unseen attribute-value
pair (also in a dotted line) based on the previously learned graph.
We can also predict links between the new product and existing
attribute-value pairs. We employ a binary cross-entropy loss to
optimize the performance of our model:

𝐿 =
∑︁

𝑝𝑖 ∈𝑃,𝑎 𝑗 ∈𝐴
𝑦𝑝𝑖𝑎 𝑗 · 𝑙𝑜𝑔(𝑆𝑝𝑖𝑎 𝑗

𝑐 ) + (1 − 𝑦𝑝𝑖𝑎 𝑗 ) · (1 − 𝑙𝑜𝑔(𝑆𝑝𝑖𝑎 𝑗 𝑗
𝑐 ))

(14)

where 𝑦𝑝𝑖𝑎 𝑗 is the ground truth for product-attribute sample 𝑝𝑖𝑎 𝑗 ,
𝑆
𝑝𝑖𝑎 𝑗

𝑐 is the predicted probability of the same sample. In addition, we
employ the strategy of negative sampling to help train the model.

4 Experiments
4.1 Dataset
We conduct extensive experiments on eight main categories (Indus-
trial, Arts, Cellphones, Automotive, Office products, Pet, Grocery,
and Tools) from the MAVE dataset [48], which which is a large
e-Commerce dataset derived from Amazon Review Dataset. For

each category, we concatenate the ‘title’ and ‘description’ into a
single column, which is subsequently used as product node fea-
tures. We leverage the ’category_a’ field, which records multiple
subcategories for each product. We clean raw attribute-value pairs
data by eliminating duplicate values and erroneous values. We use
one or more product images associated with each product as visual
information and exclude products with no corresponding images.

To simulate the zero-shot scenario, we split the dataset into
training, validation, and test sets, ensuring that no overlap exists
between them, following the multi-label zero-shot sampling in [16].
This step is critical since it prevents data leakage between the
training, validation, and test stages, thereby guaranteeing a rigorous
zero-shot link prediction setting. Note that each time the model is
trained, we randomly re-split the data into training, validation, and
test sets. Accordingly, we report the overall data statistic in Table 1.

4.2 Baselines Setup
Ourmodel is comparedwith four state-of-the-art (SOTA) generative
MLLMs (Qwen-VL [1], LLaVA [28], BLIP2 [26], InternVL [7]) for
implicit attribute value extraction [58] in the zero-shot setting.
Detailed descriptions of baseline models are in Appendix A.

For each baseline model, we use a standardized prompt template
structured as follows: "What is the <attribute names> of this product:
<‘product titles and description’>? Answer with the option from the
given choices directly: <attribute values>. Answer:" For example, for
a product in the Pet category, the prompt would be: "What is the
Material of this product: [Title] All Glass Aquarium AAG1055 Tank,
55-Gallon? Answer with the option from the given choices directly:
acrylic, glass, pine, plastic, resin, steel, wood. Answer:". For prod-
ucts with multiple attribute values, the generative baselines are
implemented multiple times (one attribute each time). Providing a
standardized prompt format ensures a fair comparison across all
baseline models. In addition, we keep only those attributes that
have six or more corresponding attribute values for baselines. We
randomly sample 2k data points to evaluate the performance of
each baseline model as the inference time for baselines is very long
shown in Table 4. More details are discussed in Section 6.

4.3 Implementation
Implementation Details. We implement our model using PyTorch
and train it on a single NVIDIA A100 GPU. During training, we
optimize the model using the AdamW optimizer. We perform a grid
search to identify the optimal hyperparameters, setting the batch
size to 256, learning rate to 5𝑒−5, weight decay to 1𝑒−6, dropout
rate to 0.5, and training epochs to 500, which lead to the best model
performance. The hidden size for both the hypergraph convolu-
tional operator and the GraphSAGE operator is set to 512. When
sampling neighbors in hypergraphs, we sample 20 neighbors for
each node and set the rate of negative sampling to 2. We also limit
the maximum length of text sequences to 77, truncating any text
sequences that exceed this maximum length. For our model and all
ablation studies, we run 10 times using different random seeds. In
addition, after evaluating the effects of different weight configura-
tions on model performance, we set the value of 𝛼 to 0.5, and both
𝛾 and 𝛿 to 0.3 to optimize the model’s performance.
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Table 1: Data statistics of eight categories in the MAVE dataset.

Category Number of Nodes Number of Edges Number of Hyperedges
P C A I 𝑒𝑝𝑐 𝑒𝑝𝑎 𝑒𝑝𝑖 𝜖𝑣𝑝 𝜖𝑏𝑝 𝜖𝑣𝑖 𝜖𝑏𝑖 𝜖𝑝𝑖

Industrial 1594 332 593 5207 6611 2895 5207 182 691 740 2831 4612
Arts 5195 569 1023 19359 21858 9165 19359 851 1562 3000 5764 17532

Cellphones 7238 114 877 32636 23438 14905 32636 875 390 4258 2069 31880
Automotive 7768 534 863 24807 34508 13436 24807 895 47 3142 180 22558

Office products 7486 391 1726 26232 36456 15263 26232 2324 4139 11032 21111 24034
Pet 9577 401 1196 35407 43414 20860 35407 3524 1616 14953 7104 33096

Grocery 10652 666 2021 35046 43953 20890 35046 4152 8590 15881 33762 32572
Tools 20046 782 3519 74522 82277 42465 74522 4656 2421 21170 10906 69312

Evaluation Metrics. To better evaluate the performance of our
proposed model and compare it with other baseline methods, we
use the micro-F1 score and mAP (mean Average Precision) as our
evaluation metrics for both the main results and ablation studies. F1
score is the harmonic mean of precision and recall, and it effectively
evaluates both the accuracy and completeness of predicted product
attribute values, making it a suitable metric for evaluating product
attribute extraction. Similarly, mAP combines both precision and
recall. It also enables the performance evaluation across multiple
classes of attributes and offers a comprehensive view of the model’s
performance. For the main results, we report the results in the form
of F1/mAP (%) averaging from 10 runs. For ablation studies, we
report the results in the form of F1/mAP (%) ± standard deviation.

5 Results
5.1 Main Results
We evaluate the performance of our model on eight categories of
the MAVE dataset and compare it with four baseline methods. The
main results are presented in Table 2. We can observe that:

(1) In terms of both F1 and mAP, our model significantly out-
performs all baselines in 5 out of 8 categories. For the three cat-
egories, Industrial, Cellphones, and Grocery, BLIP2 and InternVL
perform comparably to our model or demonstrate slight improve-
ments in terms of F1 or mAP. This indicates the success and bright
potential of hypergraph-based models over generative MLLMs in
multi-modal multi-label zero-shot attribute value extraction.

(2) From both Table 1 and Table 2, it can be observed that larger
categories, which have a greater number of nodes, edges, and hyper-
edges, tend to exhibit poorer performance compared to categories
with fewer nodes and edges. For example, the Tools category, repre-
sented by larger size of graphs and hypergraph, demonstrates the
lowest performance among all categories. We argue that this is due
to the increased complexity and diversity of interrelations between
nodes and edges/hyperedges in larger graphs or hypergraphs, mak-
ing these interrelations more difficult to capture and resulting in
lower model performance. We tend to explore better approaches to
capture more complex interconnections among products to better
support larger hypergraphs in future work.

(3) As discussed in Section 4.2, the prompt example already re-
veals the number of attributes and attribute name information to
the baseline models. Therefore, these baseline models only need

to predict the values for the known attribute names. For example,
when provided with the attribute name Material, the baseline mod-
els only need to select the correct attribute values from a predefined
attribute value list: acrylic, glass, pine, plastic, resin, steel, wood. In
contrast, our model does not have prior knowledge of the attribute
names. It directly extracts attribute name and value pairs. For exam-
ple, our model is expected to extract correct attribute-value pairs
such as "Material: acrylic", "Material: glass", and "Material: pine".
However, we never provide the potential number of attributes and
attribute names for our proposed model to do the prediction. In
short, all the generative MLLM baselines have both the attribute
names and the number of labels as their prior knowledge. Even un-
der these circumstances, our model consistently outperforms other
baselines in most cases or demonstrates comparable performance.
This highlights the model’s superior ability in zero-shot attribute-
value pair extraction compared to other generative baseline models.

Note that for the baseline models, we also experiment with
prompts that do not explicitly point out the attribute names. We
directly ask: "What are the attribute values of this product? Choose at
least one from the given choices directly: Material: acrylic, Material:
glass, Material: pine, Material: plastic, Material: resin, Material: steel,
Material: wood". After extensive experiments, we find that these
baseline models exhibit little or even no ability to directly extract
attribute-value pairs in the zero-shot setting, performing poorly
in terms of both F1 and mAP. Therefore, we choose to provide the
attribute names for all generative baselines to evaluate their abil-
ity to predict attribute values in the zero-shot scenario. (Attribute
names are never provided to our hypergraph-based model.)

5.2 Ablation Study
To evaluate the effectiveness of different components of our model,
we conduct ablation studies in the following two aspects: (1) remov-
ing the visual information (i.e., product images) while retaining only
the textual modality, (2) excluding hypergraphs from the frame-
work and utilizing only graphs. The results of ablation studies are
shown in Table 3. w/o images refers to the model without visual
information, and w/o hypergraphs refers to the model without the
hypergraph component.
Ablating the visual information. To evaluate the effectiveness
of product images on the model’s performance, we conduct a visual
ablation experiment by removing the images from the input and uti-
lizing only textual information (i.e. product titles and descriptions,
attribute values, and categories). As shown in Table 3, with the
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Table 2: Results F1 / mAP (%) across eight categories in the MAVE dataset. The best performances are highlighted in bold.

Methods Industrial Arts Cellphones Automotive
Qwen-VL 29.75 / 49.51 28.44 / 50.14 19.80 / 50.22 12.71 / 50.17
LLaVA 38.88 / 50.17 10.11 / 50.14 41.11 / 50.22 22.67 / 50.17
BLIP2 37.70 / 49.52 22.55 / 50.46 33.00 / 49.40 28.65 / 49.95

InternVL 41.20 / 50.37 25.60 / 50.25 33.50 / 49.31 39.10 / 50.80
Our model 40.44 / 62.91 50.00 / 78.33 41.67 / 59.58 49.62 / 57.52
Methods Office products Pet Grocery Tools
Qwen-VL 10.91 / 50.11 22.90 / 50.14 22.37 / 50.09 25.11 / 50.10
LLaVA 4.77 / 50.11 14.92 / 50.14 29.98 / 50.09 24.47 / 50.10
BLIP2 25.43 / 49.87 40.80 / 49.80 34.85 / 51.43 32.15 / 50.78

InternVL 24.42 / 50.48 27.60 / 50.22 37.80 / 51.89 26.50 / 51.07
Our model 59.05 / 79.17 60.00 / 54.33 40.00 / 51.70 26.03 /51.28

Table 3: Experimental results F1 / mAP (%) of the effectiveness of different components in our model across eight categories in
the zero-shot setting. The best performances are highlighted in bold.

Model components Industrial Arts Cellphones Automotive
Full model 40.44 ± 0.01 / 62.91 ± 0.04 50.00 ± 0.00 / 78.33 ± 0.04 41.67 ± 0.06 / 59.58 ± 0.10 49.62 ± 0.01 / 57.52 ± 0.07
w/o images 21.75 ± 0.01 / 37.37 ± 0.06 14.30 ± 0.00 / 47.49 ± 0.01 36.65 ± 0.02 / 67.80 ± 0.03 30.83 ± 0.03 / 57.57 ± 0.04

w/o hypergraphs 22.22 ± 0.00 / 14.44 ± 0.00 15.65 ± 0.01 / 59.40 ± 0.00 24.55 ± 0.01 / 53.08 ± 0.03 32.82 ± 0.03 / 46.61 ± 0.05
Model components Office products Pet Grocery Tools

Full model 59.05 ± 0.04 / 79.17 ± 0.04 60.00 ± 0.00 / 54.33 ± 0.07 40.00 ± 0.34 / 51.70 ± 0.00 26.03 ± 0.03 / 51.28 ± 0.08
w/o images 26.34 ± 0.00 / 54.19 ± 0.01 28.65 ± 0.01 / 46.40 ± 0.02 11.83 ± 0.04 / 41.66 ± 0.06 16.67 ± 0.00 / 40.71 ± 0.05

w/o hypergraphs 50.24 ± 0.02 / 53.45 ± 0.02 37.61 ± 0.08 / 33.94 ± 0.05 32.86 ± 0.01 / 46.47 ± 0.01 22.65 ± 0.07 / 16.57 ± 0.02

exception of a minor increase in mAP in the Automotive category,
we observe significant decreases in both F1 and mAP across all
eight categories when image input is excluded. These experimental
results indicate that relying solely on textual information may lead
to suboptimal model performance. The result also validates our as-
sumptions that product images have essential semantic information
and attribute values are implicitly contained within visual modality.

Ablating the hypergraphs. To evaluate the effectiveness of
the hypergraph module within our framework, we directly employ
constructed graphs without hypergraph construction. As shown in
Table 3, removing the hypergraph module leads to a significant de-
crease in both F1 and mAP across all categories, demonstrating the
effectiveness of hypergraphs in improving the model performance.
We argue that this is due to the superior capacity of hypergraphs to
capture more complex, higher-order interconnected relationships
among different types of nodes, compared to the binary graphs. For
example, the product also view hyperedge, captures potential inter-
relations among a variety of products that are likely to share similar
attributes. While the binary graph, where edges connect only two
nodes, cannot represent these intricate relationships among mul-
tiple products. Similarly, the product with all images hyperedge,
which connects multiple images associated with the same product,
also captures potential interrelations among images (i.e. multiple
views or angles of the product) representing the same product more
effectively.

5.3 Efficiency Study
To evaluate the efficiency of our model, we conduct efficiency stud-
ies in (1) time efficiency and (2) computational efficiency.

Time efficiency. Table 4 presents the inference times for our model
and baseline models. From Table 4, we observe that overall, the
inference time for our model on the testing set is much shorter
than the time required by each baseline model. We conjecture that
this is because: (1) For our hypergraph model, the inference pro-
cess is not sequential. It calculates the cosine similarity between
pairs of nodes in parallel for inductive link prediction. However,
for generative MLLMs, it requires the model to generate the out-
puts (attribute values) sequentially. (2) These generative MLLM
baselines have more parameters, which require more computations
during inference, leading to longer processing times. (3) We can also
observe that certain categories, such as Arts, Automotive, and Gro-
cery, require longer inference times than others among baselines.
We think that this is because these categories contain attributes
with a large number of corresponding values, which increases the
time needed to generate predictions. Remember that for generative
MLLM baselines, we use a prompt to ask the model to select the
correct value from all possible options. This process takes much
longer time when the option set is larger. For example, the ’Type’ at-
tribute in the Arts category has over 500 values, which significantly
increased the time required to predict the correct values, resulting
in a longer average inference time. This indicates that it is hard for
generative MLLM baselines to scale up for larger categories with
large quantities of possible attribute values.

Computational efficiency. Table 5 presents the computational
efficiency of our model and baseline models. We can observe that
compared to generative-based models, which exhibit high GPU
memory consumption for the inference stage, our model does not
require GPU utilization during inference. We argue that this is
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Table 4: Inference time (in seconds) across eight categories for our proposed model and all generative MLLM baselines.

Methods Industrial Arts Cellphones Automotive
Qwen-VL 6.5942 71.5344 5.6962 111.9875
LLaVA 5.6520 49.3384 5.3908 74.4775
BLIP2 4.0582 37.0216 3.9530 89.9124

InternVL 0.4360 3.0832 0.3932 9.4643
Our model 0.1527 0.3357 0.3344 0.3592
Methods Office products Pet Grocery Tools
Qwen-VL 5.6804 20.7792 47.4036 12.7758
LLaVA 4.4766 17.4042 27.9954 10.3977
BLIP2 3.5157 12.3729 21.0672 14.3280

InternVL 0.3352 1.2327 2.0250 2.4048
Our model 0.4938 0.5746 1.1097 1.0694

due to our model’s ability to perform zero-shot link prediction
by generalizing to new product nodes and unseen attribute value
nodes without full model retraining. Furthermore, in contrast to
baseline models with billions of parameters, our model is more
lightweight with only 117 million parameters, which contributes
to its lower computational cost and the feasibility of inference
running on CPUs instead of GPUs, which saves computational
costs for potential deployment in e-Commerce platforms.

Table 5: Computational efficiency during inference

Model GPU Usage Model Parameters
Qwen-VL 20432MiB / 81920MiB 9.6 Billion
BLIP2 9747MiB / 81920MiB 3.94 Billion
LLaVA 32590MiB / 81920MiB 13 Billion
InternVL 10208MiB / 81920MiB 2.2 Billion
Our model no GPU 117 Million

6 Analysis and Discussion
(1) Our model demonstrates an excellent capability formulti-label
product attribute value extraction, allowing it to extract values for
multiple types of attributes simultaneously. For example, it can ex-
tract several attribute-value pairs, such as ’Variety: peanut’, ’Flavor:
lightly salted’, ’Preparation: roasted’, in a single step for a given prod-
uct. In contrast, baseline models are limited to single-label attribute
value extraction, requiring separate prompts for each attribute type.
For example, they need one prompt to extract ’peanut’ for ’Variety’
and another to extract ’lightly salted’ for ’Flavor’. In the real-world
scenario, products often possess a diverse range of attribute names
and values, and extracting these individually would cost extra com-
putational resources and increase processing and inference time. As
a result, our model is capable of achieving a more efficient, compre-
hensive, and accurate extraction of product attributes, increasing
its potential for scale-up deployment in practical applications.

(2) As illustrated in 4.2, we keep only those attributes that have
six or more corresponding attribute values. The main reason for
doing this is to ensure a fair comparison between our model and the
baseline methods. To enable this fair comparison, we disclose the
attribute name information in the prompts to the baseline models,

which then predict values for those known attribute names. For
attributes with only a few corresponding values, such as one or
two, the baseline models can simply select from a very limited set
of attribute values without performing any actual prediction or
extraction. This results in artificially inflated F1 or mAP scores.
Therefore, it is necessary to exclude those attributes with very few
values. After experimenting with different numbers, we choose 6
as the threshold to guarantee robust performance of the baseline
models while maintaining fairness in the comparison between the
baseline methods and our model.

(3) As discussed in Section 5.1, we observe that larger categories
tend to demonstrate lower performance compared to those cate-
gories of smaller sizes. This is likely due to the increased complexity
of interrelations within larger graphs and hypergraphs. We conduct
experiments with different hyperparameter configurations and find
that the performance for larger categories can be improved by in-
creasing the batch size or training the model with more epochs.
We recommend using these strategies to enhance the model perfor-
mance when dealing with larger categories.

7 Conclusion and Future Work
In this paper, we propose a hypergraph-based model for multi-
modal, multi-label product attribute value extraction in the zero-
shot setting. We aim to extract previously unseen attribute values
for new products, where no labeled data is available for training.
Specifically, we construct multi-modal hypergraphs in which both
product textual and visual information are represented as different
types of nodes, enabling the model to capture semantic, complex,
and higher-order correlations among product image, product text,
and user behavior information. Using constructed hypergraphs,
we perform zero-shot (inductive) link prediction to infer the exis-
tence of links between unseen product nodes and attribute value
nodes. We conduct extensive experiments across eight primary
categories on the MAVE dataset, where our model demonstrates
superior performance (higher F1-score, shorter inference time, and
lighter weight) over several state-of-the-art generative multi-modal
large language models. For future work, we will (1) build dynamic
hypergraphs using timestamps to consider the real-time market;
(2) explore other approaches for constructing hyperedges.
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A Baselines
Below are detailed descriptions of baseline models:
Qwen-VL [1] carefully designs a visual receptor, a position-aware
vision-language adapter, and a three-stage training pipeline to opti-
mize the entire model, enabling its superior visual understanding

ability. We evaluate the performance of the Qwen-VL model and
present the results in the following section.
BLIP2 [26] proposes an efficient framework that pre-trains a light-
weight Querying Transformer in two stages. The first stage learns
a vision-and-language representation leveraging a frozen image
encoder, while the second stage performs vision-to-language gen-
erative learning leveraging a frozen LLM. We conduct experiments
with BLIP-2 using FLAN-T5-XL [9] as the backbone LLM model.
LLaVA [28] connects the pre-trained visual encoder from CLIP
with an LLM decoder Vicuna [8], fine-tuning on ChatGPT/GPT-
4 generated vision-language instruction-following data to enable
comprehensive visual and language understanding. We evaluate
the performance of LLaVA with Vicuna-13B as the backbone LLM
model.
InternVL [7] scales up the vision foundation model to 6 billion
parameters and aligns it with the LLM through three progres-
sive stages, including vision-language contrastive learning, vision-
language generative training, and supervised fine-tuning, achiev-
ing powerful visual capabilities. We conduct experiments with the
InternVL2-2B variant.
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