
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURO-COGNITIVE RADIOS FOR DYNAMIC
SPECTRUM ACCESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neuromorphic computing is an emerging brain-inspired information processing
paradigm that is well-suited for energy-efficient, real-time, and adaptive applica-
tions such as Dynamic Spectrum Access (DSA). In this paper, we develop and
present the Neuro-Cognitive Radio (NCR) framework—a neuromorphic-based
learning architecture to address challenging decentralized DSA scenarios where
multiple source-destination pairs share a limited number of spectrum bands. NCR
combines spiking neural networks (SNNs) and reinforcement learning (RL) archi-
tectures, allowing sources to adapt their transmission strategy over time to max-
imize their own throughput while promoting fairness across the entire wireless
network. We evaluate NCR in several network settings, including settings with
time-varying number of available spectrum bands, and compare with an equiva-
lent Deep Q-Network (DQN) architecture that uses traditional multi-layer percep-
tron (MLP). Our simulation results show that NCR consistently achieves higher
fairness than DQN, while keeping similar throughput levels. This work constitutes
a promising initial step toward neuromorphic-based solutions for DSA.

1 INTRODUCTION

The importance of Dynamic Spectrum Access (DSA) for beyond-5G wireless networks has been
highlighted in the U.S. National Spectrum Strategy (National Telecommunications and Informa-
tion Administration, 2023), in the OSTP National Spectrum Research and Development Plan (Na-
tional Science and Technology Council, 2024), in the ITU Report (International Telecommunication
Union, 2021), and in additional recent reports. DSA (Zhao & Sadler, 2007; Akyildiz et al., 2006)
is the process by which sources (i.e., wireless devices) autonomously and adaptively select spec-
trum bands for communication, based on real-time observations of spectrum availability and usage,
without relying on fixed spectrum assignments. A key challenge of DSA is interference, also called
collision, which may happen when two or more sources transmit information at the same time using
the same band. Destinations often cannot decode the information when a collision occurs, result-
ing in a waste of network resources. In traditional centralized wireless networks, e.g., 5G cellular,
the cell tower coordinates transmissions among different sources to avoid collisions (Qamar et al.,
2019).

In this paper, we focus on decentralized DSA wireless networks (Naparstek & Cohen, 2019; Yu et al.,
2019; Zhang et al., 2025) in which sources cannot coordinate transmissions by sharing information
with each other (explicitly or implicitly). Each source independently learns to adjust its transmission
strategy—specifically, which spectrum band to use—over time. The only feedback available to each
source is the result of its own transmission attempts (i.e., success or collision). Sources have no
prior knowledge of the total number of source-destination pairs in the network or their transmission
strategies. The objective of each source is to optimize its own throughput while promoting fairness
across the network. The ideal network should have no collisions and all sources with identical
throughput levels. Transmission strategies for each source in decentralized DSA wireless networks
should be efficient, adaptive, fair, and deployable on resource-constrained radios.

In recent years, Reinforcement Learning (RL) has gained attention as an effective method for facili-
tating DSA in decentralized wireless networks. Through interactions with the network, RL enables
individual sources (also called agents) to learn and adapt their transmission strategies over time.
However, most RL-based solutions proposed in the literature, as a recent survey in (Guimarães et al.,
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2024), use complex architectures—e.g., Dueling Deep Q Networks with Likelihood Hysteretic Im-
plicit Quantile Network (Zhang et al., 2025)—complex training procedures (e.g., centralized training
and decentralized execution Lu et al. (2022); Chang et al. (2023); Naparstek & Cohen (2019); Yu
et al. (2019)), and/or rely on the capability of sources to coordinate transmissions by sharing infor-
mation with other sources implicitly or explicitly (Sohaib et al., 2022; Xu et al., 2020; Bokobza et al.,
2023; Janiar & Pourahmadi, 2021), thereby limiting the applicability of these RL-based solutions to
real-world DSA scenarios with resource-constrained radios.

Neuromorphic computing (NMC) is an emerging information processing paradigm inspired by the
structure and function of the human brain, mimicking its sparse and event-driven communication,
where neurons fire only when necessary, as described in section 3.1. NMC has been successfully
applied to numerous problems (Schuman et al., 2022; Eshraghian, 2023; Parpart et al., 2023) that
require energy-efficient, real-time adaptation to dynamic scenarios including: (i) drone navigation
and perception under tight energy budgets (Chowdhury et al., 2025); (ii) visual SLAM using “event
cameras” that capture scenes asynchronously, consuming less power (Tenzin et al., 2024); and (iii)
power-efficient sensing using micro-Doppler radars (Intel Corporation, 2025).

We believe that these inherent features of NMC, namely real-time adaptation and energy-efficiency,
make it a promising approach to address challenging DSA scenarios. To the best of our knowledge,
this is the first paper to bring neuromorphic methods to DSA. We propose Neuro-Cognitive
Radio (NCR): a spiking neural network (SNN)-based RL architecture that learns to adapt its trans-
mission strategy over time, aiming to maximize its own throughput while striving for network-wide
fairness. NCR’s training and execution are fully decentralized and do not rely on information sharing
among sources for coordinating transmissions.

We use simulations to evaluate NCR in 50+ network settings (static and time-varying) and compare
NCR with an equivalent Deep Q-Network (DQN) architecture that uses traditional multi-layer per-
ceptron (MLP). Our simulation results show that NCR can increase fairness—as measured by Jain’s
fairness index (Jain et al., 1984)—by a factor of 2.5 when compared with DQN, while keeping com-
parable throughput levels. While the results in this work showcase a NMC solution that is capable of
achieving competitive and reliable results across several DSA network settings, exploring potential
gains of NMC implementations in terms of energy-efficiency is left for future work. We believe that
the results in this paper are a promising initial step toward neuromorphic-based solutions for DSA.

Over the next sections, we formally describe the DSA problem (section 2), explain our NCR solution
in greater detail (section 3), discuss our simulation experiments (section 4), and provide some final
remarks on how to leverage and further expand our model’s capabilities (section 5).

2 DYNAMIC SPECTRUM ACCESS IN DECENTRALIZED WIRELESS NETWORKS

We consider a decentralized wireless communication network with M source-destination pairs trans-
mitting packets via N ≥ 2 orthogonal frequency bands. We assume that sources always have packets
to transmit and that destinations are constantly listening to all bands. In each time slot t ∈ {1, ..., T },
each source m ∈ {1, ...,M} takes an action am(t) ∈ {0, 1, ..., N}, where am(t) = 0 means that
source m is idle, and am(t) = n ≥ 1 represents a transmission in band n during time slot t.

We then define om(t) as the outcome of source m′s action in time slot t. There are three possibilities
for om(t): if source m idles during t, then om(t) = 0; if only source m transmits in the selected
band, then the transmission is successful and om(t) = 1; finally, om(t) = −1 when two or more
sources transmit in the same band, leading to a packet collision.

Thus, in this DSA problem, sources share no information to coordinate transmissions. At any given
time slot t, source m knows only about its current and previous actions and outcomes—{am(k)}k≤t

and {om(k)}k≤t, respectively. Furthermore, sources have no prior knowledge about the network
topology or size N . This problem is analyzed across different network settings, i.e., with different
numbers of agents and bands.

In addition to this baseline problem, this work also considers time-varying conditions by adding a
jammer—a wireless device that intentionally emits radio signals to disrupt or interfere with legiti-
mate transmissions, reducing the available spectrum. We then repeat the same network settings as
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the baseline problem under a jamming episode, where the jammer enters a band at a specific instant,
holds the band continuously, and leaves it.

3 PROPOSED SOLUTION: NEURO-COGNITIVE RADIO (NCR)

We present some fundamental concepts in neuromorphic computing followed by a detailed expla-
nation on how to apply such ideas to our specific DSA problem.

3.1 FUNDAMENTALS OF NEUROMORPHIC COMPUTING

Drawing inspiration from the human brain, neuromorphic computing is fundamentally different
from its digital (von Neumann) counterpart on many levels. Apart from spike versus binary data
representation, other major differences include operation (parallel or sequential) and organization
(co-located or separated memory and processing units) (Schuman et al., 2022; Eshraghian, 2023).
Moreover, while digital processors are time-driven (synchronous), neuromorphic processors are
event-driven (asynchronous)—a major feature that has been leveraged to build energy-efficient com-
puting platforms (Eshraghian, 2023).

The building block of neuromorphic computing is the neuron. There are multiple models that accu-
rately describe the neuron. Some optimize for higher biological fidelity (Hodgkin-Huxley, Morris-
Lecar) whereas others focus on computational efficiency (Izhikevich, AdEx IF). Our work uses the
leaky-integrate-and-fire (LIF) neuron due to its simplicity (Hunsberger & Eliasmith, 2015).

The LIF model approximates the neuron’s membrane potential U(t) to a low-pass filter circuit made
of a resistor R and a capacitor C—which is valid from a biological standpoint—evolving over time
as

τ
dU(t)

dt
= −U(t) +RI(t), (1)

where τ = RC is the circuit’s time constant, and I(t) is the current flowing through the circuit at
any given time t. If the current I(t) is constant over time, we obtain

U(t) = RI + (U0 −RI)e−t/τ , (2)

where U0 is the membrane potential at t = 0. Defining the decay rate as β = e−1/τ , we can rewrite
U(t) in a discrete time domain via the forward Euler method as follows

U [t] = βU [t− 1] + (1− β)I[t] (3)

From a ML perspective, it is useful to write I[t] as WX[t], where W is the weight matrix and X[t]
is a vectorized input decoupled from effects of β. By doing so, we can write

U [t] = βU [t− 1] +WX[t] + S[t− 1]θ, (4)

which has three terms: decay (βU [t− 1]), input (WX[t]), and reset (S[t− 1]θ), in which S[t] = 1
if U [t] > θ, and S[t] = 0 otherwise.

A practical way to understand U [t] is that the membrane potential decays over time according to its
β factor and increases whenever a spike arrives at the neuron. At any time slot t, if the membrane
potential U [t] reaches its threshold value θ, the neuron fires a spike to its neighboring neurons and
its potential resets to zero. In our model, both β and θ are tunable hyperparemeters—to be discussed
in greater detail in section 3.2.

3.2 NCR: STATES, SNN ARCHITECTURE, TRAINING PIPELINE, AND REWARDS

In this section, we describe our proposed solution to the DSA problem, dubbed Neuro-Cognitive
Radio (NCR). Each source is a NCR running a neuromorphic agent. In time slot t, the agent’s state
(sm(t)) includes its own actions, outcomes, and binary time references from the previous T time
slots. The binary time references (Zhang et al., 2025) are represented in modulo 16, i.e., mod(t,16),
using 4 bits, allowing agents to find transmission patterns of different lengths by adaptively ignoring
bits. Mathematically, for each k ∈ {t− T, . . . , t− 1}, the state sm(t) will include

[time-ref(k), one-hot(am(k)), om(k)] ∈ ZF , (5)
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where the feature size F is given by F = 4+A+1, and A is the action space size, i.e., A = N +1
with all frequency bands and idle. Aggregating equation 5 for k ∈ {t − T, . . . , t − 1}, we have
sm(t) ∈ RT×F which is then converted into a torch tensor with dimension 1 × T × F to facilitate
our model training pipeline.

Now, we describe the architecture of the SNN, which is composed of an input layer, one hidden layer,
and an output layer. For each time index k ∈ {t− T +1, ..., t}, the input projection is done through
a hidden linear layer (size H) that gives us zk = Winsm(k) + bin ∈ RH , where Win and bin are
the input weight matrix and bias vector, respectively. Then zk acts as input to a series of “spiking
blocks”. Each block is made of a linear layer (size H) followed by a LIF layer—analogously to
the traditional structure of a multi-layer perceptron. The dimensions of the SNN architecture are
(inputdim, hiddendim, outputdim) = (F, F,N + 1).

Now, we explain how the learning process works through the spiking backbone. Let L be the total
amount of spiking blocks and let’s initialize the first block (l = 1) input embedding as h0,k = zk.
For each block l ∈ {1, ..., L}, we have the following forward pass mechanism:

1. Linear: al,k = Wlhl−1,k + bl;

2. Leaky integrate: Ũl,k = βlUl,k−1 + (1− βl)al,k;

3. Threshold: Sl,k = H(Ũl,k − θl);

4. Reset: Ul,k = Ũl,k − θlSl,k; and

5. Spike output: hl,k = Sl,k ∈ {0, 1}H ,

where the subscript l, k stands for the spiking block l at a given time index k, H is the Heaviside
function, and U, β, θ, S have the same definitions as those from section 3.1. The forward pass output
is the last step in the last layer, i.e., z = SL,T ∈ {0, 1}H , which remains in a spiking format. Then,
to map it back to the problem’s original output space (i.e., the number of bands), we use the Q-value
concept—a way to represent our action quality at a given time slot k. We do so via another linear
layer: Q(s, a) = Woutz + bout ∈ RA, where A = N + 1.

To select an action, the agent turns a decision score into a choice through the ε-greedy policy, by
taking argmaxaQ(s, a) with probability 1 − ε—aiming to balance the exploitation of promising
bands and the exploration of new ones. Then, for each action, we save sequences (s, a, r, s′, d) of
length T , where r is the immediate reward (to be defined later in this section) received after taking
action a, s′ is the updated state, and d is the “done” flag. After saving the (s, a, r, s′, d) sequences,
and sampling a batch with size (B, T, F ), we define the target (y) and the loss (L) functions as{

y = r + γ(1− d)maxa′Q(s′, a′)

L = (y −Qonline(s,a))
2 . (6)

Backpropagation is the next step. As previously described, the forward pass uses the Heaviside
function, which is not differentiable. A common way to address this issue is to differentiate a
function with similar format—also known as the surrogate gradient approach. Mathematically,

dSt/dŨt ≈ gζ(Ũt − θ), (7)

in which gγ is the surrogate gradient. In practical terms, this means that we keep the step function
H in the forward pass, but we use an approximation to it in the backpropagation step. Common gζ
alternatives include sigmoid, fast sigmoid, and arctan (Eshraghian, 2023), given respectively by:

gζ(u) = (1/ζ)σ(u/ζ)[1− σ(u/ζ)]

gζ(u) = (1 + |u|/ζ)−2

gζ(u) = (1/ζ)(1 + (u/ζ)2)−1

, (8)

where σ(u) = 1/(1 + e−u), and ζ determines the “shape” of the surrogate function—sharper or
smoother. Finally, we use Adam optimizer, update the hyperparameters, and periodically copy
Qonline to the actual target. Having completed a cycle, we update our states s ← s′, and continue
to the next time slot.
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The reward of agent m at the end of time slot t is given by

rm(t) =


0.15× (1.5− wm(t)) , if om(t) = 1, [successful transmission]
−1× wm(t) , if om(t) = −1, [collision between two or more agents]
−0.6 , if om(t) = 0 and

∑t
k=t−L am(k) = 0, [idle for more than L slots]

0.03 , otherwise

(9)

with wm(t) representing the weight associated with agent m during time slot t, where

wm(t) = 0.4W1 + 0.6W2/(N − 1) , and (10)

W1 =
∑t−1

k=t−L I{am(k)=am(t)}(2
k−t|om(k)|) , (11)

W2 =
∑N

n=0 I{n̸=am(t)}
∑t−1

k=t−L I{am(k)=n}(2
k−t|om(k)|) . (12)

The value of W1 increases with the number of transmissions in the recent past k ∈ {t−L, . . . , t−1}
using band am(t). The value of W2 increases with the number of transmissions in the recent past
k ∈ {t − L, . . . , t − 1} using bands other than am(t). The multiplicative factor 2k−t gives more
importance to recent events. A high weight wm(t) reduces the reward of a successful transmission
and increases the collision penalty.

As for the actual NCR implementation, all experiments have been conducted in Python. The SNN
has been implemented via the snnTorch package (Eshraghian, 2023), which requires the latest ver-
sions of some additional packages (e.g., numpy, pandas), as well as nir (above 1.0.6) and nirtorch
(above 2.0.5).

4 SIMULATION RESULTS: COMPARING SNN AND DQN

We evaluate the performance of the proposed Neuro-Cognitive Radio solution, which utilizes a spik-
ing neural network (SNN) backbone, against a baseline deep Q-network (DQN) approach (similar
to Naparstek & Cohen (2019); Yu et al. (2019)) across several distinct network settings with different
numbers of agents M and bands N . The baseline DQN architecture is identical to the SNN archi-
tecture described in section 3.2, with the same dimensions (inputdim, hiddendim, outputdim) =
(F, F,N + 1), but using multi-layer perceptrons instead of spiking neurons. All experiments are
conducted over a time interval sufficient to achieve full convergence within the specified time slots.
All experiments use the same hyperparameters, described in Table 1. Performance is assessed using
two key metrics: (i) Jain’s fairness index (Jain et al., 1984), which measures how equitably the spec-
trum is shared among agents (with 1 indicating perfect fairness); and (ii) total throughput, defined
as the moving average number of successful transmissions per time slot (windowed by the last 500
time slots) normalized by the number of bands N—reflecting overall spectrum utilization efficiency.

Table 2 compares the performance of NCR and DQN in six network settings. In all settings, the
SNN-based NCR achieves substantially higher fairness indices compared to DQN, while maintain-
ing nearly equivalent total throughput. For instance, for M = 9 agents and N = 2 bands, fairness
improves by a factor of 2.5, increasing from 0.3446 (DQN) to 0.8672 (NCR), with throughput re-
maining at 0.95. This indicates that our SNN architecture enables more equitable access without sac-
rificing efficiency, driving the network’s agents to avoid collisions. Similar trends hold for M = 7
and N = 5 (fairness: 0.8041 to 0.9732) and M = 10 and N = 8 (fairness: 0.8670 to 0.9706), where
throughput reduces marginally from 0.9860 to 0.9688 and 0.9843 to 0.9685, respectively. The re-
sults in Table 2 highlight the SNN’s ability to promote fair spectrum sharing in decentralized
networks through its event-driven processing of time-dependent transmission patterns.

To further illustrate the results in Table 2, Figure 1 depicts the evolution of individual agent success
rates (throughput per agent), along with aggregate collisions per agent and idle rates per band, over
time. Rates are computed as moving averages over 500 time steps for smoothness. In the plots on the
left side of Figure 1, across all network settings, SNN agent success rates exhibit initial fluctuations
during exploration but rapidly converge to similar values, demonstrating the SNN’s ability to find
suitable transmission patterns for every agent, leading to superior fairness results. For M = 9
agents and N = 2 bands (Figure 1a), all nine agents stabilize around a success rate of approximately
0.2, with collisions dropping sharply from 0.5 to near 0 and idle rates remaining low. For M = 7
and N = 5 (Figure 1c), all agents converge to rates around 0.15, reflecting fair distribution of the 5
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Table 1: Hyperparameters used in all experiments.

Parameter Value

LIF neuron decay factor (β0) 0.25
LIF neuron threshold (θ0) 0.03
Discount factor (γ) 0.9
Exploration rate (ϵ) 5× 10−2

Exploration rate decay (ϵdecay) 6.5× 10−6

Minimum exploration rate (ϵmin) 8× 10−3

Learning rate (µ̃) 5× 10−4

Buffer size 500
Target network’s replace rate 50
Batch size (B) 64
Reward history length (L) 16
Temporal length (T ) 15
Number of hidden layers 1
Surrogate gradient function arctangent

Table 2: Fairness and throughput achieved by DQN and NCR across multiple network settings
(experiments).

#Agents #Bands DQN NCR
M N Fairness Throughput Fairness Throughput

10 8 0.8670 0.9843 0.9706 0.9685
9 3 0.6393 0.9527 0.8929 0.9520
9 2 0.3446 0.8960 0.8672 0.9160
7 5 0.8041 0.9860 0.9732 0.9688
4 2 0.6651 0.9060 0.7721 0.9830
3 2 0.8723 0.9860 0.8864 0.9760

bands. For M = 10 and N = 8 (Figure 1e), all agents settle at 0.097 each, with minimal variance.
Collision and idle rates decrease steadily, contributing to high throughput.

In contrast, in the plots on the right side of Figure 1, DQN agents show greater disparity in their
throughput, explaining the lower fairness indices in Table 2. For M = 9 and N = 2 (Figure 1b),
success rates diverge, with a single agent dominating at 0.8 while others languishing below 0.4,
and agents 2, 3, and 7 remaining (almost) silent. For M = 7 and N = 5 (Figure 1d), although
convergence is better than NCR, noticeable throughput gaps remain with rates ranging from 0.1
to 1. Similarly, for M = 10 and N = 8 (Figure 1f), the throughput spread is noticeably larger
than in SNN with rates ranging from .2 to 1. These plots underscore Neuro-Cognitive Radio’s
superiority in achieving balanced, adaptive spectrum access through neuromorphic principles.

We highlight that the only difference between NCR and DQN is that the first utilizes spiking neurons
while the second utilizes multi-layer perceptrons. Taken together, the results in Table 2 and Figure 1
suggest that a neuromorphic (spiking) backbone is effective for fair, decentralized DSA: it achieves
a favorable fairness–throughput tradeoff while producing stable per-agent behavior.

To further showcase NCR capabilities, we run several additional experiments, with M ≥ 2 agents
and N ≥ 2 bands, as illustrated in Figure 2. Across all the 45 network settings, all using the same
hyperparameters from Table 1, we can observe a high Jain’s fairness index: greater than 0.95 in
more than 50% of the experiments and achieving its lowest value (0.8670) at 9 agents and 2 bands,
which is the setting illustrated in Figure 1a. Moreover, we also observe high throughput, with 42
(out of 45) experiments having throughput greater than or equal to 0.95.

To assess how well NCR responds to time-varying conditions, we examine network settings in which
a jammer disrupts transmissions by occupying a single spectrum band for a period of time. The

6
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(a) NCR, M = 9, N = 2 (b) DQN, M = 9, N = 2

(c) NCR, M = 7, N = 5 (d) DQN, M = 7, N = 5

(e) NCR, M = 10, N = 8 (f) DQN, M = 10, N = 8

Figure 1: Idle rate, collision rate, and per-agent throughput over time t. Left column:
Neuro-Cognitive Radio (NCR). Right column: DQN. Panels (a)–(f) correspond to the three (M,N)
settings.

spectrum band chosen by the jammer and the jamming period are unknown by the agents. In Figure
3, the jammer occupies the last band N between time slots 20,000 and 30,000, and between time
slots 40,000 and 50,000. In both network settings showcased in Figure 3, namely (i) M = 6 agents,
N = 3 bands, and jammer in band 3; and (ii) M = 7 agents, N = 5 bands, and jammer in band 5,
agents maintain high throughput and fairness index before, during, and after the jamming episode.
We believe that NCR’s inherent event-driven behavior—derived from its spiking foundation—
leads to a fast reorganization of the agents when the jammer enters or leaves the network.
Since jamming can be framed as a discrete event, i.e., last band being available (or not) at a given
time slot, it seems to naturally fit the event-driving, spiking characteristic of NCR, as evidenced by
the high performance obtained in our experiments.

Lastly, we perform an ablation study on the surrogate gradient function and the number of hidden
layers of the SNN. This analysis is motivated by the observation that such features are crucial for
model performance (both fairness and total throughput). In this study, we consider three possible
surrogate gradient functions—arctan, sigmoid, and fast sigmoid—as well as three potential numbers
of hidden layers (HL) as 1, 5, and 10. We select (M,N) ∈ {(7, 3), (9, 2), (10, 10)} as experiments
to run the ablation study. Table 3 contains the values of the fairness index corresponding to each
experiment.

As illustrated in Table 3, when the number of agents and bands is similar (M ≈ N ), fairness index
becomes saturated, i.e., both surrogate gradient function and network depth have negligible effects
on fairness—it remains greater than 0.999 across the ablation study experiments. On the other hand,
scarce-spectrum regimes (M >> N ) are such that the arctan surrogate gradient function benefits
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1.000 0.890 1.000 0.947 0.885 0.947 0.951 0.867 0.914

1.000 0.948 0.903 0.900 0.949 0.901 0.893 0.908

1.000 0.922 0.947 0.980 0.903 0.941 0.934

1.000 0.969 0.973 0.921 0.965 0.947
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Figure 2: Jain’s fairness index and total throughput across all 45 experiments conducted using NCR.

Jammer on Band 3 Jammer on Band 3

(a) M = 6 agents, N = 3 bands, and jammer in band 3.

Jammer on Band 5 Jammer on Band 5

(b) M = 7 agents, N = 5 bands, and jammer in band 5.

Figure 3: NCR’s idle rate, collision rate, and per-agent throughput over time t in a jamming envi-
ronment. (a) (M,N) = (6, 3) experiment. (b) (M,N) = (7, 5) experiment.
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Table 3: Ablation study based on surrogate gradient functions and network depth (HL) for three
network settings. The reported values correspond to the Jain’s fairness index obtained at each ex-
periment.

Arctan Sigmoid Fast Sigmoid
M = 7, N = 3

1 HL 0.9494 0.9566 0.9566
5 HL 0.9328 0.8164 0.9465
10 HL 0.9844 0.9454 0.9092

M = 9, N = 2
1 HL 0.8672 0.9396 0.9052
5 HL 0.8730 0.8089 0.8812
10 HL 0.9484 0.8550 0.8178

M = 10, N = 10
1 HL 0.9998 0.9995 0.9995
5 HL 0.9999 0.9999 0.9999
10 HL 0.9999 0.9999 0.9998

from increased network depth. As for alternative surrogate gradient functions (fast sigmoid and
sigmoid), more hidden layers do not reliably improve fairness index levels. Such results suggest
that, overall, when bands are scarce relative to agents, arctan with deeper SNNs leads to higher
fairness index results. Otherwise, shallow SNNs can achieve competitive fairness regardless of the
chosen surrogate gradient function. Moreover, all experiments in the ablation study have achieved
throughput greater than 85%—with the vast majority of them even greater than 93%.

5 CONCLUSION

In this paper, we introduce the Neuro-Cognitive Radio, a novel neuromorphic-based approach that
addresses challenging DSA scenarios by leveraging spiking neural networks to enable efficient, fair,
and decentralized spectrum sharing without requiring centralized training or explicit information ex-
change among agents. Our SNN backbone—built on leaky-integrate-and-fire neurons—incorporates
temporal dependencies through a sliding window of past actions and outcomes, achieving superior
performance in fairness while maintaining high throughput across diverse network configurations.

The simulation results show that NCR consistently outperforms the baseline DQN method in terms
of fairness. For example, Jain’s fairness index improves from 0.8041 to 0.9732 in the scenario with 7
agents and 5 bands, while maintaining competitive throughput levels. This performance is evident in
the convergence patterns of agent success rates, where NCR promotes equitable access in congested
environments and even under jamming conditions. Moreover, as suggested by the ablation analysis,
the optimal choice of SNN depth and surrogate gradient function strongly depends on the network
settings: while scarce-spectrum experiments (M >> N ) seem to benefit from more hidden layers
and arctangent, other cases (M ≈ N ) achieve high fairness regardless of the choices we make.

These results underscore the potential of neuromorphic computing for DSA, capitalizing on its
event-driven, parallel processing to achieve high fairness and total throughput. As the main fo-
cus of this work, NCR has been applied to several experiments, ensuring robust and reliable results
in a simulated environment. Looking ahead, we will use these insights as a foundational step toward
deploying spiking models on real neuromorphic hardware platforms (Intel Corporation, 2025)—
leading to tangible energy efficiency compared to traditional von Neumann architectures. Future
work could explore scaling to larger networks (e.g., hundreds of agents), integrating real-world
channel impairments like fading or interference, and hybrid approaches combining SNNs with other
RL variants for enhanced robustness. Additionally, empirical validation on physical testbeds would
bridge the gap between simulation and practical implementation, paving the way for neuromorphic
solutions in next-generation, energy-efficient wireless systems.
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