
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INDIMATHBENCH: AUTOFORMALIZING MATHEMATI-
CAL REASONING PROBLEMS WITH A HUMAN TOUCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Reliable autoformalization remains an elusive goal even in the era of large lan-
guage models (LLMs). Even the best LLMs struggle to translate natural language
into formal constructs in languages like Lean. High-quality data has been a key
bottleneck given the resource costs associated with manual curation and valida-
tion of these translations. On these lines, we introduce IndiMathBench, a human-
verified benchmark designed to evaluate mathematical theorem proving, curated
using an AI-powered human-assisted pipeline for formalizing natural language
problems in Lean. IndiMathBench is composed of 312 formal Lean4 theorems
paired with their corresponding informal problem statements, sourced from In-
dian Mathematics Olympiads. Our pipeline uses category-based retrieval and a
self-debug loop with feedback from a symbolic checker to generate candidate for-
malizations. Multiple such formalizations are generated using an ensemble of
LLMs. These formulas are presented with a summary to the human through an in-
teractive dashboard. The dashboard enables efficient validation and repair by the
human. We analyze the performance of several state-of-the-art models on Indi-
MathBench, which will facilitate further research on automated theorem proving.

1 INTRODUCTION

The formalization of mathematical knowledge has long been a central goal in computer science
and mathematics, promising to enable mechanized proof verification, automated theorem proving,
and systematic knowledge organization. Beyond theoretical interest, formalized mathematics offers
practical benefits including error detection in published proofs, construction of reliable mathematical
software, and development of intelligent tutoring systems that can provide rigorous mathematical
guidance. Recent breakthroughs in Large Language Models (LLMs) have renewed interest in auto-
formalization (Bansal & Szegedy, 2020; Agrawal et al., 2022a; Gadgil et al., 2022; Wu et al., 2022a),
the automatic translation of informal mathematical statements into formal logical representations,
as a pathway toward more capable mathematical reasoning systems.

Despite significant progress in model capabilities, the evaluation of autoformalization remains frag-
mented and limited in scope. Existing benchmarks suffer from several critical limitations that hinder
our understanding of true model performance and progress in the field. First, many benchmarks fo-
cus on popular competition problems from sources like the International Mathematical Olympiad
(IMO) or Putnam Competition, which increasingly suffer from data contamination as they become
integrated into large-scale model training datasets (Jiang et al., 2024). This contamination makes it
difficult to distinguish between genuine mathematical reasoning and memorization of training ex-
amples. Second, creating high-quality benchmarks requires substantial manual effort from experts
in both mathematics and formal verification systems, involving careful annotation and validation
of formalizations (Yu et al., 2025). Third, current evaluation frameworks often employ simplis-
tic binary metrics (correct/incorrect) and fail to provide fine-grained analysis of different types of
formalization errors, making it challenging for researchers to identify specific areas for model im-
provement.

We address these limitations by introducing IndiMathBench , a benchmark for mathematical aut-
oformalization built from Indian Mathematical Olympiad problems. Our benchmark contains 312
carefully curated problems spanning diverse mathematical domains, geometry, algebra, number the-
ory, and combinatorics, each paired with human-verified Lean 4 formalizations. Wxe conducted

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

systematic human verification of all formalizations, ensuring high-quality ground truth for reliable
evaluation. A sample benchmark is shown in Figure 1.

Our key contributions are:

• A novel formal theorem proving benchmark set in Lean4, created with help of LLMs and
verified by humans.

• A Visual Studio Extension to improve human-AI collaboration for Lean annotations.
• A framework for formalization that uses category-based retrieval and self-debug loop with

a Lean validator, and use of an ensemble of LLMs.
• Analysis on different frontier foundational models on their Autoformalization Capabilities.

2 RELATED WORK

Let n be a natural number. Prove that:⌊n
1

⌋
+

⌊n
2

⌋
+

⌊n
3

⌋
+ · · ·+

⌊n
n

⌋
+

⌊√
n
⌋

is even.

theorem inmo_2014_2 (n : N) :
Even
((Finset.sum (Finset.range n)

fun i => ⌊(n : R) /
((i + 1) : R)⌋)

+ ⌊Real.sqrt n⌋) := by
sorry

Figure 1: A formalization of INMO 2014 problem
4 in Lean 4

Formal Theorem Proving Benchmarks The
evaluation of automated theorem proving sys-
tems has relied heavily on formal benchmarks,
yet these resources exhibit significant limita-
tions in scale and diversity. Early benchmarks
like TPTP (Sutcliffe, 2017) and Mizar Math-
ematical Library (Grabowski et al., 2010) es-
tablished foundational evaluation frameworks,
while MiniF2F’s 488 competition problems be-
came a standard for modern formal mathe-
matics evaluation (Zheng et al., 2021). Sub-
sequent efforts expanded coverage: Putnam-
Bench added 640 undergraduate problems
(Tsoukalas et al., 2024b), ProofNet introduced
371 undergraduate-level theorems (Azerbayev
et al., 2023a), and MATH dataset provided
12,500 competition problems (Hendrycks et al.,
2021), though primarily in natural language.
Cross-system portability has improved with MiniF2F extensions to Metamath, Isabelle, and HOL
Light, while specialized benchmarks like CoqGym (Yang & Deng, 2019) and LeanStep (Han et al.,
2022) focus on proof step prediction. However, these benchmarks predominantly reflect Western
mathematical competitions (AMC, AIME, IMO, Putnam) and undergraduate curricula, underrep-
resenting diverse mathematical traditions and advanced research areas (Wu et al., 2022b; Polu &
Sutskever, 2020). Recent efforts like FrontierMath push toward research-level problems where lead-
ing models achieve less than 2% success rates (Collaboration, 2024), while others explore domain-
specific evaluation in areas like algebraic topology (Avigad et al., 2022) and category theory, high-
lighting the substantial gap between current capabilities and human mathematical reasoning across
diverse mathematical domains.

Autoformalization with Large Language Models The translation of informal mathematics to for-
mal specifications has seen rapid progress through large language models. Early work by (Wu
et al., 2022b) demonstrated 25.3% success on competition problems using few-shot prompting,
despite formal mathematics comprising only 0.18% of pretraining data. (Agrawal et al., 2022b)
achieved 75% accuracy on undergraduate theorem statements, while (Jiang et al., 2023b) introduced
the Draft, Sketch, and Prove methodology for mapping informal proofs to formal sketches. Recent
systems have shown substantial improvements: DeepSeek-Prover achieves 46.3% accuracy on Lean
4 MINIF2F (AI, 2024), while other approaches have explored fine-tuning strategies (Azerbayev
et al., 2023b), reinforcement learning from proof assistant feedback (Polu & Sutskever, 2020), and
neural-symbolic integration (Han et al., 2022). Despite these advances, fully automated approaches
continue to struggle with semantic consistency, complex mathematical reasoning, and the domain
gap between natural language and formal specifications (Zheng et al., 2022; Welleck et al., 2021;
Kirtania & Iyer, 2025). The field has increasingly moved toward hybrid human-AI methodologies
that combine automated translation capabilities with human expertise in both competition mathe-
matics and theorem proving languages (Cohen et al., 2023; Bansal et al., 2019). Current bottlenecks
remain the requirement for semantic and syntactic correctness, the time-intensive nature of expert

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Suppose n ≥ 0 is an integer and all the
roots of x³ + αx + 4 − (2 x 2016ⁿ) = 0 are
integers. Find all possible values of α.

Lean 4 statement Tm

theorem inmo_2017_2 (n : ℕ) (α : ℤ) :
(∃ u v w : ℤ,
(X ^ 3 + C α * X + C (4 - 2 * (2016 : ℤ) ̂ n))
= (X - C u) * (X - C v) * (X - C w)) →
α = (-3 : ℤ) := by
sorry

Lean 4 statement T1

theorem inmo_2017_2 (n : ℕ) (α : ℤ) :
(∃ u v w : ℤ,
(X ^ 3 + C α * X + C (4 - 2 * (2016 : ℤ) ^ n))
= (X - C u) * (X - C v) * (X - C w)) →

α = (-3 : ℤ) := by
sorry

Syntax checking

Autoformalization Query

Below is Mathlib library documentation on some
relevant packages that you might need to use for
your task. This is not an exhaustive list of Mathlib
features, just some of them.

Algebra (Groups, Rings, Fields)

* **Groups:**
 * Module: `Mathlib.Algebra.Group.Basic`
 * Contains: Group axioms, group
homomorphisms, basic theorems.

Knowledge Base for Mathlib Autoformalizer LLMs

Formalized Theorems

Human-AI validation using Lean
Annotator

Semantic Evaluation

Figure 2: Overview of approach for creating IndicMath dataset: Human is assisted by a multiple LLM anno-
tators. Each LLM generation is conditioned on the natural language and documentation, and goes through a
validation check by Lean. Errors are provided as feedback in subsequent iterations. The final generations from
all LLMs are summarized by an LLM in a dashboard to help optimize annotation efficiency.

annotation, and the scarcity of large-scale parallel datasets linking informal mathematical statements
to their formal counterparts.

Human-AI Collaboration in Formalization

The formalization of research-level mathematics increasingly relies on human-AI collaboration.
Tao’s real-time formalization of the Polynomial Freiman-Ruzsa conjecture demonstrated that
cutting-edge results can be formalized through collaborative efforts, though with a 25x reduction
in working speed (Tao, 2023). The LeanDojo platform provides 122,517 theorems with fine-grained
annotations for training neural provers (Yang et al., 2023). Process-supervised approaches use for-
mal system feedback to improve translation quality while reducing annotation requirements. These
hybrid methodologies consistently outperform pure automation by combining human expertise for
conceptual insights with AI capabilities for pattern recognition and verification.

Evaluation Methodologies Evaluation of autoformalization has evolved from syntactic metrics
like BLEU scores to semantic assessment approaches. The Generalized Tree Edit Distance (GTED)
computes structural similarity through operator trees (Liu et al., 2025a), while Bidirectional Ex-
tended Definitional Equivalence (BEq) provides neural-symbolic checking with 90.5% accuracy on
expert data (Liu et al., 2025b). FormalAlign combines certainty and similarity scores through con-
trastive learning (Lu et al., 2024). However, scalable evaluation remains challenging, with manual
expert verification being costly but necessary for establishing reliable ground truth. The correction
effort scale (0-4) provides standardized quality assessment based on human repair effort (Jiang et al.,
2023a).

3 INDIMATHBENCH

Category Count
Geometry 98
Algebra 92
Set Theory & Combinatorics 45
Number Theory 77

Table 1: Problem counts by topic domain
in IndiMathBench. The distribution is repre-
sentative of a typical RMO or INMO paper.

IndiMathBench is a human-validated evaluation bench-
mark set consisting of 312 formalized problem statements
from Indian Olympiad problems. This benchmark set is
prepared using a hybrid human-AI pipeline designed for
maximally reducing the human effort required for formal-
izing benchmarks. Each benchmark consists of a descrip-
tion (in English) of a math problem, a Lean4 (de Moura
et al., 2015) theorem corresponding to that problem, and
any numerical solution where applicable. The English
descriptions are sourced from the Regional Mathemati-
cal Olympiad (RMO) and Indian National Mathematical
Olympiad (INMO) examinations in India.

The RMO and INMO are used to select India’s most promising high-school student. Students who
pass the RMO qualify to take the INMO, which is a significantly more difficult national-level test.
The Human-AI collaborative process is described more in Section 4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Diversity and Breadth. Compared to existing benchmarks like MINIF2F (Zheng et al., 2021),
which include a wide selection of high-school and early undergraduate mathematics problems (pri-
marily from AMC, AIME, and IMO), the IndiMathBench focuses on problems from the Indian
Mathematical Olympiad system. These problems are drawn from national and regional competi-
tions in India, and are restricted to the high-school curriculum, covering algebra, number theory,
geometry, and combinatorics. Unlike MINIF2F, which incorporates problems involving topics such
as inequalities, calculus, or matrix algebra, INMO/RMO problems exclude calculus and typically
avoid higher-level abstractions.

Despite this narrower domain scope, INMO problems in particular demonstrate high internal di-
versity and depth. Many problems involve multi-step reasoning, uncommon constructions, and non-
standard techniques. For example, geometric problems often require diagrammatic insight combined
with multiple auxiliary constructions, while number-theoretic questions tend to involve clever use
of parity, bounding, or invariant arguments.

Problem Domains. IndiMathBench problems are traditionally sourced from a fixed set of topics:
algebra, euclidean geometry, elementary number theory, and combinatorics. Calculus, set theory,
and linear algebra are not part of the official syllabus. This restriction makes the benchmark more
uniform in scope, but allows for deeper exploration of problem-solving within each domain. For ex-
ample, geometry problems frequently involve classical triangle centers (e.g., orthocenter, centroid)
or cyclic quadrilaterals, which require nontrivial formalization in Lean.

Formalization Effort. The formalization was done over the course of a month by two annotators
with moderate level of expertise in using lean for formal proof writing. AI was used extensively
throughout the process and we discuss that in depth in 4. Some problems (36%) in our set include
having to solve for a value rather than proving a condition. We take a similar approach as MINIF2F
for this case by re-framing the question “solve Question Q for Solution X” as a “prove Question Q
iff Solution X”.

Comparison with Existing Benchmarks. While MINIF2F provides more variety in domain cover-
age, especially by including undergraduate topics, the IndiMathBench emphasizes conceptual depth
in classical problem areas. This makes it a useful complement to existing formal benchmarks, par-
ticularly for studying formalization strategies for diagrammatic reasoning, geometric constructions,
and informal-to-formal translation in constrained domains.

4 TECHNIQUE : AUTO-FORMALIZATION APPROACH

We describe our scalable approach for leveraging general purpose LLMs to maximize human an-
notation efficiency in the formalization of mathematical problems. This is the approach we used
for generating IndiMathBench. Our approach is general and has some salient features and reusable
components. The approach is designed to maximize annotation efficiency for human experts. The
key features of our approach are (a) category-based retrieval, (b) feedback loop using symbolic val-
idation, and (c) multi-model generation and consolidation. We start with a set P of math problems
in English. For each problem p ∈ P , the final result is a custom dashboard for the human annota-
tor that contains multiple formalizations from various models, their validation status, and a textual
summary. Figure 3 depicts a screenshot of the dashboard.

4.1 AUTOMATED FORMALIZATION GENERATION

In our initial evaluations of LLMs for autoformalization, the main deficiency observed was the
poor quality of formulas written in custom formal languages. The difficulty is characterized by
a tendency to hallucinate content, such as non-existent imports, and to confuse or mix up syntax
from various other theorem provering languages or lean 3. We observe giving access to snippets of
library code and documentation as feedback helps the LLM generate well-formed formulas. This
is especially useful in geometry theorems where the mathlib library does not natively support a lot
of operations typical of competition-level geometry problems. It is this fundamental inability to
adhere consistently to a custom formal syntax that directly motivates the need for a more structured
process that incorporates documentation access and feedback to help the LLM generate well-formed,
syntactically correct formulas.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 LLM-Based Autoformalization of Mathematical Problems

1: procedure FORMALIZE(p, Model)
2: ▷ p: problem description in NL
3: ctxt← p.Cat.Ctxt
4: f ← MODEL(p, ctxt)
5: for i = 1 to 6 do
6: errors← VALIDATEINLEAN(f)
7: if errors = ∅ then
8: break
9: end if

10: feedback ← PARSEERRORS(errors)
11: f ← MODEL(p, ctxt, f, feedback)
12: end for
13: return f
14: end procedure
15: procedure MAIN(P, Categories)
16: PREPROCESS(P, Categories)
17: POSTDISPLAY(p) for p ∈ P
18: end procedure

1: procedure PREPROCESS(P, Categories)
2: ▷ P is a set of problems
3: for all p ∈ P do
4: p.Cat← Label(p, Categories)
5: end for
6: for all cat ∈ Categories do
7: cat.Samples← Sample(P, cat)
8: cat.Ctxt← Retriever(cat.Samples)
9: end for

10: end procedure
11: procedure POSTDISPLAY(p)
12: F ← {}
13: for all model ∈ ModelList do
14: F .Add(FORMALIZE(p, model))
15: end for
16: summary← MODEL(F , p)
17: return F , summary
18: end procedure

The pseudocode for our general approach to go from a problem to its dashboard for human oversight
is shown in Algorithm 1. The approach can be broken down into three key steps:
(1) Category-Based Retrieval: In the preprocessing step, we retrieve context to be used during
formalization of each problem. There is one static context retrieved for each category of problems.
(2) Iterative Refinement with Error Feedback: In the second step, the LLM generates a formula
conditioned on the given informal problem statement and the context, and then iteratively refines the
generated formula based on feedback from errors detected by the formal tool (Lean4 validator).
(3) Multi-Model Ensemble and Comparative Analysis: In the third step, the final generations from
multiple LLMs are collected and presented to the user in a dashboard along with validation results
and a summary (generated by LLM). The user generates the final formula using this information.

Step 1 Preprocessing: Category-based Retrieval. General-purpose LLMs often struggle with
getting the right imports, notation and type conversions while writing in a low-resource language like
Lean. Recognizing that mathematical formalization requires deep knowledge of existing libraries
and conventions, we augment our prompts with an automatically curated Mathlib documentation.
The preprocessing step is mentioned in Procedure PreProcess in Algorithm 1. We first use an
LLM (with a final human supervision) to label all the problems in the problem set P with a label from
the set Categories in Table 1. We then randomly sample 25% of the problems from each category.
We then use an LLM agent – built using claude-sonnet-4 – that has bash access to files within the
mathlib library repository. The agent is tasked to explore the vast library and extract the definitions
and formulas that may be most relevant to the task of formalizing the problems given to it. For each
category in Categories, we invoke this agent and give it the sampled problems for that category.
The agent returns the static context to be used for that category. This static context provides essential
domain knowledge needed for formalizing problems from that category without hallucinations and
syntactic errors. The prompt for the retrieval agent can be found in Appendix A.3.1.

Step 2 Main Loop: Iterative Refinement with Error Feedback. Figure 2 provides a high-
level overview of our main loop for formalizing problems. Specifically, as shown in Proce-
dure Formalize in Algorithm 1, the system operates as follows: (1) Generation: First the LLM
generates a formalization f for the informal problem statement p conditioned on the static context
extracted for the category of problem p. See the prompt in Appendix ??. There is a slight nuance
here for “solve”-type problems, where we also include the solution and prompt the LLM to write
formula that verifies the solution. (2) Validation: Next the generated theorem is validated using the
Lean 4 compiler, ValidateInLean, which produces actionable error messages if the theorem fails
compile check (using an external ParseErrors function). (3) Refinement: The LLM is prompted
to fix its errors given the error messages. This refinement process is repeated for a maximum of 6
iterations. Using this iterative procedure helps us achieve a 95.3% coverage; i.e., at least one model
generation compiles successfully for 95.3% of the problems.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Navigation

Lean Compile InfoViewAnnotation Edit Space

LLM Generated
Candidates and Notes

Figure 3: The Annotation Dashboard for the human expert to analyze various ranked options, modify
and validate the final entry.

Step 3: Multi-Model Ensemble and Comparative Analysis. As described in Proce-
dure PrepDashboard in Algorithm 1, each problem p is processed by 12 state-of-the-art language
models simultaneously, including GPT variants, Claude models, and their reasoning family of mod-
els (see figure performance). This ensemble approach serves multiple purposes: it provides re-
dundancy against model-specific failures, enables comparative analysis of different architectural
approaches to mathematical reasoning, and increases the likelihood that at least one model produces
a correct formalization for each problem. The aggregated generations across the different models are
then summarized by an LLM (GPT-5). The summary contains rankings for different models based
on the problem statement, what each generation got wrong and others got right, and any correct-
ness and completeness issues with the formalizations. We choose different models as an exercise to
later evaluate their autoformalization capabilities, but the process can also be effective for multiple
generation with the same model, analogous to self-consistency.

4.2 HUMAN-AI COLLABORATIVE ANNOTATION DASHBOARD

Figure 3 illustrates the comprehensive dashboard employed for the efficient human expert review of
the final generations from our computational pipeline. This interface integrates all model outputs,
corresponding validation results, and automated quality assessments and summaries over the group
of formalizations as a whole. The dashboard also incorporates features that the VS Code Lean
extension supports, with an option to compile as needed directly. A key feature is the inclusion
of AI-generated annotations, computed via the summary variable in Procedure PrepDashboard –
providing reviewers with comparative analyses of different formalization approaches, identification
of common patterns or errors, missed out conditions, and preliminary quality assessments based on
compilation success and semantic correctness.

These synthesized insights reduce the cognitive load on human annotators, allowing them to main-
tain the critical human oversight necessary for mathematical accuracy while concentrating their
efforts on genuinely ambiguous cases rather than routine validation. Furthermore, the dashboard
presents results from different large language models (LLMs), enabling human annotators to con-
solidate and refine outputs—for instance, by integrating a missing condition from one generated
formalization into another. This capability provides human experts with a high-quality initial for-
mulation that can be quickly refined into the final, correct formula, thereby enabling the scalable
creation of high-quality formal mathematics benchmarks with minimal human effort.

The dashboard, prioritizes display of verified results—those that successfully compile and pass basic
correctness checks—while still providing access to failed attempts and their error traces for com-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

prehensive analysis. This design supports both rapid annotation workflows for “easy” cases and
detailed investigation for “hard” cases of mathematical formalization.

We release this dashboard as a VS Code extension to the community, and it can be generally used
for informal to formal, and formal to formal tasks in other languages as well. We hope this extension
can serve the wider community create datasets faster.

4.3 ANNOTATOR EFFICIENCY STUDY

We conducted a small controlled study to evaluate the impact of LLM-generated candidates and
group comparison summaries on informal to formal annotation efficiency for our case. The study
compares three workflow variants:

1. Full System: provides candidate generations, automated summary notes, and a human-in-
the-loop dashboard. This is our proposed system.

2. Masked Candidates: all candidate generations are displayed, but model identities are hid-
den and no summary notes are provided, simulating how much help multiple formalizations
can give even without having an LLM group critique parts over a manual workflow.

3. Manual Formalization: the annotator formalizes from scratch without any pre feeded
LLM assistance.

The three sets are drawn from three different consecutive years, with each set comprising 12 RMO
problems. This design ensures consistent question styles within each set while providing coverage
across problems with similar difficulty. A single annotator formalized three sets across each work-
flow. The annotator is allowed full internet and AI Assistant access throughout every study. We
record the total time spent and the number of problems successfully formalized for comparison.

Full
System

Masked
Candidates

Manual
Formalization

0

50

100

150

200

Ti
m

e
(m

in
ut

es
)

49 mins

1 hrs :47 mins

2 hrs :52 mins

Figure 4: Annotation time for 12 RMO
problems under the three workflows

Figure 4 compares the time spent for over annotations
across the three workflow variants. The manual formal-
ization took an average of 14 minutes per problem. This is
in line with PutnamBench’s Tsoukalas et al. (2024a) aver-
age of 25 minutes and MINIF2F’s Zheng et al. (2021) 10
minutes per problem. Compared to that, using only multi-
ple masked LLM generated formalizations took 9 minutes
per problem, a 60% speed up over manual. The annota-
tor attributes this to mainly not having to write the prob-
lem structures themselves, and having to just verify and
replace parts where one generation got some part wrong
and some part right. The annotator also spent 32 min-
utes on a single particularly difficult problem which none
of the generations had a close formalization for, and the
annotator spent much of the time navigating the mathlib
library. With our full system, the average time spent formalizing was 4 minutes per problem. This
is about 3.5x faster (251% speed up) than manually doing it and 2.2x faster (118% speed up) over
the one without summary. The annotator notes that most times if there was something wrong with
the best ranked generation in the summary, the summary would point it out and they would find the
same part well-written in another generation. An example showcasing this speed up is noted in 8.

5 EXPERIMENTAL RESULTS

5.1 AUTOFORMALIZATION EVALUATION

Setup. As described in 4.1, we generate candidate formalizations, given a natural language prob-
lem statement, across 12 different general-purpose frontier LLMs. These include Claude Sonnet 4,
Claude Opus 4, o3 (high), GPT-4.1, GPT-5, and Gemini 2.5 Pro, among others. Here, we aim to
measure how semantically close the generated formalizations are to the human annotation.

Evaluation Metrics Evaluating autoformalization quality presents unique challenges due to the
rigorous logical nature of formal mathematical statements, where seemingly minor syntactic varia-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tions can have significant semantic implications. To provide a comprehensive assessment, we em-
ploy two complementary evaluation metrics that have demonstrated high inter-annotator agreement
with human evaluations.

Bidirectional Equivalence (BEq) (Liu et al., 2025b) evaluates logical equivalence by attempting
to prove each theorem using the other as a premise. Specifically, given two Lean 4 theorems in
sorry-format, theorem A and theorem B, BEq employs a diverse set of tactics both heuristically-
driven and LLM-guided—to establish proofs in both directions. The formalization is deemed correct
only if both directional proofs succeed, ensuring true logical equivalence rather than mere syntactic
similarity.

Generalized Tree Edit Distance (GTED) (Liu et al., 2025a) provides a syntactic similarity measure
by constructing operator tree representations of Lean theorems and computing the minimum cost of
tree transformations required to convert one representation to another. GTED produces normalized
scores between 0 and 1, where higher values indicate greater structural similarity.

These metrics are fundamentally contrasting in their approach: BEq captures semantic equivalence
through the Lean proof engine’s logical reasoning capabilities, while GTED quantifies syntactic
structural similarity through tree transformations. This complementary evaluation framework pro-
vides both logical validation and structural analysis, offering a complete assessment of autoformal-
ization quality. For our evaluation, we use Claude Sonnet 4 (temperature 0.7) with pass@1 for BEq

0.1 0.3 0.5 0.7 0.9
TED Threshold

claude-opus-4

gpt-5

o3_high

claude-sonnet-4

4.1

o3-mini

gemini-2.5-pro

M
od

el

0.2

0.3

0.4

0.5

0.6

Success Rate

Figure 5: Heatmap for GTED based on thresh-
olds. Better models see a lighter hue.

<reasoning>
I was unable to discover (within the time available) a

satisfactory infinite−family of integer triples
satisfying

\[xˆ2 + yˆ2 + zˆ2 = (x − y)(y − z)(z − x).\]
Hence I cannot at this moment supply a complete

Lean proof of the required proposition.
</reasoning>
<answer>
−− no code
</answer>

Figure 6: o3 refuses to write a code after a few
minutes of thinking on medium reasoning.

calculations, deviating from the original implementation’s use of InternLM (Ying et al., 2024). All
other implementation details follow the original specifications.

Results. Table 2 depicts the models evaluated against the BEq and GTED metrics. The model
Claude Opus 4 does best across metrics. Figure 7 depicts the overlap on the benchmarks that Claude
Opus 4, Gemini 2.5 Pro and GPT-5 solve (based on BEq metric). This shows that the models have
certain complementary abilities and justifies our ensemble approach. In 160 of the problems, at
least one generation passed the BEq check, i.e. for 51.2% of our dataset an LLM had formalized the
problem correctly. Another notable detail is that among the three models, Claude Opus 4, Gemini 2.5
Pro and GPT-5, with a cumulative BEq passing for 108 problems, only 12 were from Geometry. This
highlights the LLM’s difficulty with using Mathlib’s lacking support for Olympiad style geometry.

5.2 INDIMATHBENCH EVALUATION

We first compare our Formalize procedure in Algorithm 1 with a zero-shot baseline generation.
In zero-shot baseline generation, the LLM is prompted to convert natural language mathematical
problems into Lean 4 formalizations, but without giving it access to any additional context and
without iterative feedback. We do this comparison for multiple state-of-the-art pre-trained language
models. The results of the comparison between Formalize and the zero-shot baseline are shown
in Table 3. Note that the table counts the number of problems that were “successfully” formalized
by the two approaches. Here, we declare “success” if the generated formula passes validation by
Lean. We note here that this is only a partial notion of correctness of a formula that is necessary,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model ZS KB+FB
GPT-4.1 58 132
Claude Opus 4 17 310
Claude Sonnet 4 15 272
o3 (high) 92 263
GPT-5 127 297
Gemini 2.5 Pro 16 184

Table 3: The number of Lean-validated formulas gener-
ated by the different models in zero-shot (ZS) setting and
in the setting with documentation (KB) and feedback (FB)
loops. Across all models, we get a total of 416 Lean-validated
benchmarks (out of which 312 are further manually pro-
cessed.)

Model Success Rate
GPT-4.1 0/312
Gemini 2.5 Pro 0/312
Claude Sonnet 4 1/312
GPT-5 1/312
o3(medium) 1/312

Table 4: Evaluation results of various fron-
tier models on IndiMathBench. Success
Rates here refer to Lean Verifiable proofs
submitted by the models.

but not sufficient, for full correctness. The numbers in Table 3 clearly show that error feedback
and documentation retrieval contribute to success across all models. Notably Claude models both
start off at pretty low compile success at one turn, but it quickly refines itself from the knowledge
available from the Lean environment as well as the KB available at disposal.

GTED #GTED Compiled
Model BEq Mean >0.9 Successfully

(312) (%) (312) (312)
Claude-opus-4 67 0.512 138 243
Claude-sonnet-4 54 0.419 103 215
Gemini-2.5-pro 44 0.236 58 151
GPT-5 36 0.475 124 235
O3 high 30 0.457 119 205
4.1 33 0.392 90 120

Table 2: Comparing models across BEq, GTED mean,
of samples with a GTED score>0.9, and compilation
validity counts.

41 1714

19

4
5

8

claude-opus-4
gemini-2.5-pro

gpt-5

Figure 7: Venn diagram for the BEq
passing problems for 3 models selected
from different families.

5.3 AUTOMATED THEOREM PROVING EVALUATION

Setup. We measure the difficulty IndiMathBench poses to frontier general purpose LLMs for
formal theorem proving, by testing them for completing the theorem statement with a valid proof.

Results. We evaluate each LLM on a single turn, pass@1 metric. We carry out these evaluations
across the best frontier models available to us, Claude Sonnet 4, GPT-5, GPT-4.1, o3 (medium),
and Gemini 2.5 Pro, at default parameters. Claude Sonnet 4, GPT-5, and o3 (medium) each resolve
a single problem across the 312 strong IndiMathBench . This singular problem in all three was
inmo 2015 5, where the solution simply involved using the pitot theorem from Mathlib.

6 CONCLUSION

We introduce a new Lean 4 autoformalization benchmark (IndiMathBench) containing human ver-
fied Lean 4 formalizations of Olympiad level problems. Our comparative analysis shows that current
frontier Large Language Models (LLMs) struggle with formal mathematics, passing only a single
problem, which highlights the dataset’s complexity. We also present a framework to ease manual
annotation by utilizing documentation, compiler feedback, and aggregating multi-LLM generations.
This approach is vital for low-resource formal languages and new codebases like LeanGeo (Song
et al., 2025). The dataset and a VS Code dashboard extension are provided as an open resource to
advance the field of neural theorem proving.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Ashvni Narayanan, and Anand Tadipatri. To-
wards a Mathematics Formalisation Assistant using Large Language Models. arXiv preprint
arXiv:2211.07524, 2022a.

Ayush Agrawal, Abhijeet George, Divy Vyas, and Avijit Balasubramanian. A survey on deep learn-
ing approaches for mathematics word problem solving. arXiv preprint arXiv:2212.10535, 2022b.

DeepSeek AI. DeepSeek-Prover: Advancing theorem proving in LLMs through large-scale synthetic
data. arXiv preprint arXiv:2405.14333, 2024.

Jeremy Avigad et al. Formal mathematics statement curriculum learning. arXiv preprint
arXiv:2202.01344, 2022.

Zhangir Azerbayev, Keiran Paster, Hailey Schoelkopf, Sean Welleck, et al. Proofnet: Autoformal-
izing and formally proving undergraduate-level mathematics. arXiv preprint arXiv:2302.12433,
2023a.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. arXiv preprint arXiv:2310.10631, 2023b.

Kshitij Bansal and Christian Szegedy. Learning Alignment between Formal & Informal Mathemat-
ics. In Proceedings of the Conference on Artificial Intelligence and Theorem Proving, 2020.

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An en-
vironment for machine learning of higher order logic theorem proving. International Conference
on Machine Learning, 2019.

Nathanael Cohen et al. Towards automated mathematical reasoning. arXiv preprint
arXiv:2304.14565, 2023.

FrontierMath Collaboration. FrontierMath: A benchmark for evaluating advanced mathematical
reasoning in AI. arXiv preprint arXiv:2411.04872, 2024.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp.
378–388. Springer, 2015.

Siddhartha Gadgil, Anand Rao Tadipatri, Ayush Agrawal, Ashvni Narayanan, and Navin Goyal.
Towards Automating Formalisation of Theorem Statements using Large Language Models. In In-
ternational Conference on Neural Information Processing Systems Workshop on MATH-AI, 2022.

Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a nutshell. Journal of
Formalized Reasoning, 3(2):153–245, 2010.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. arXiv preprint arXiv:2102.06203, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Evaluating language model autoformalization: A
case study in Lean 4. arXiv preprint arXiv:2311.09101, 2023a.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Tim-
othée Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In International Conference on Learning Representations,
2023b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi
Koyejo. Investigating data contamination for pre-training language models, 2024. URL https:
//arxiv.org/abs/2401.06059.

Shashank Kirtania and Arun Iyer. Steering llms for formal theorem proving, 2025. URL https:
//arxiv.org/abs/2502.15507.

Zhenwen Liu, Jingyi Chen, Xuanming Song, Ruocheng Shu, and Jiaqi Yuan. Generalized tree edit
distance for mathematical expression comparison. arXiv preprint arXiv:2501.00001, 2025a.

Zhenwen Liu, Tianyi Wang, Yifan Li, Xiaofan Zhang, and Zhengying Lu. BEq: Bidirec-
tional extended definitional equivalence for mathematical statement assessment. arXiv preprint
arXiv:2501.00002, 2025b.

Jianqiao Lu, Zhengying Zhan, Yuhui Xiao, Zhiqing Huang, and Quanshi Gu. FormalAlign: Auto-
mated alignment evaluation for autoformalization. arXiv preprint arXiv:2407.15156, 2024.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Chendong Song, Zihan Wang, Frederick Pu, Haiming Wang, Xiaohan Lin, Junqi Liu, Jia Li, and
Zhengying Liu. Leangeo: Formalizing competitional geometry problems in lean, 2025. URL
https://arxiv.org/abs/2508.14644.

Geoff Sutcliffe. The tptp problem library and associated infrastructure. Journal of Automated Rea-
soning, 59(4):483–502, 2017.

Terence Tao. A proof of the polynomial Freiman-Ruzsa conjecture. arXiv preprint
arXiv:2311.05762, 2023.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating Neural Theorem-Provers on
the Putnam Mathematical Competition. arXiv preprint arXiv:2407.11214, 2024a.

George Tsoukalas, Jasper Swamy, Noureldin Firoozi, Richard Socher, and Jimmy Susskind. Put-
namBench: Evaluating neural theorem provers on the Putnam mathematical competition. arXiv
preprint arXiv:2407.11214, 2024b.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun
Cho. Naturalproofs: Mathematical theorem proving in natural language. arXiv preprint
arXiv:2103.07821, 2021.

Yuhuai Wu, Albert Q Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. Autoformalization with Large Language Models. In Proceedings of the International
Conference on Neural Information Processing Systems, 2022a.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus N Rabe, Charles Staats, Mateja Jamnik,
and Christian Szegedy. Autoformalization with large language models. In Advances in Neural
Information Processing Systems, volume 35, 2022b.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. Inter-
national Conference on Machine Learning, 2019.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (Datasets and Benchmarks Track),
2023.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning,
2024. URL https://arxiv.org/abs/2402.06332.

11

https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2502.15507
https://arxiv.org/abs/2502.15507
https://arxiv.org/abs/2508.14644
https://arxiv.org/abs/2402.06332

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, Yandong Wen, Ge Zhang, and Weiyang Liu. For-
malmath: Benchmarking formal mathematical reasoning of large language models, 2025. URL
https://arxiv.org/abs/2505.02735.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. miniF2F: A cross-system benchmark for
formal Olympiad-level mathematics. In International Conference on Learning Representations,
2022.

12

https://arxiv.org/abs/2505.02735

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXAMPLE BENCHMARKS FROM INDIMATHBENCH

Consider the following problem statement:

In a triangle ABC, let D be a point on the segment BC such that AB + BD = AC
+ CD. Suppose that the points B, C and the centroids of triangles ABD and ACD
lie on a circle. Prove that AB = AC.

Its formalization in the benchmark set as follows:

variable {V : Type*} {P : Type*} [NormedAddCommGroup V]
[InnerProductSpace R V] [MetricSpace P] [NormedAddTorsor V P]

theorem inmo_2014_1 (A B C D : P)
(hD : ∃ t : R, 0 ≤ t ∧ t ≤ 1 ∧ D = AffineMap.lineMap B C t)
(h_sum : dist A B + dist B D = dist A C + dist C D)
(h_concyclic : Concyclic {B, C,
centroid R {A, B, D} id,
centroid R {A, C, D} id}) :

dist A B = dist A C := by sorry

Consider the following problem description.

Suppose n ≥ 0 is an integer and all the roots of x3 + αx + 4 − (2 · 2016n) = 0
are integers. Find all possible values of α.

This is a problem that requires a solution. We assume a solution is given. For such cases, the formula
states that the given solution is actually correct.

import Mathlib.Data.Int.Basic
import Mathlib.Algebra.Polynomial.Basic

open Polynomial

theorem inmo_2017_2 (n : N) (α : Z) :
(∃ u v w : Z ,

(X ˆ 3 + C α * X + C (4 - 2 * (2016 ˆ n))
= (X - C u) * (X - C v) * (X - C w)) ⇒

α = (-3 : Z) := by
sorry

A.1 EXPERIMENTAL SETUP

All formalizations and experiments were conducted using the Lean theo-
rem prover, version 4.22. We relied on the mathlib library at commit
f858fcc3b49c546705ba7d79c58217e85aaa5f0e to ensure reproducibility and con-
sistency across our proofs and auxiliary results.

Our computational environment consisted of:

• Hardware: 8-core CPU, 32 GB RAM
• OS: Windows 11 Pro (64-bit)
• Lean Toolchain: Installed via elan, with lake for project management

All proofs were compiled and verified using Lean’s native lake build system without additional
modifications to mathlib. The experiment scripts, proof files, and configuration details are pro-
vided in the supplementary material to facilitate full reproducibility.

A.2 IMPACT OF LLM NOTES

In this section we discuss the impact of LLM generated notes to reduce effort of annotation. While
our primary focus is on improving proof generation through activation steering, we observe an ad-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 8: Minimal edits needed to fix a broken, but mathematically sound generation, as pointed out
by the LLM summary. Reducing human effort by a margin.

ditional benefit: the method can substantially reduce the human effort required for data annotation
and theorem formalization. Figure 8 illustrates a representative example where steering produces
mathematically sound code that requires only minimal corrections to become a valid formal proof.

In this example, the model generates a Lean theorem about geometric relationships in Euclidean
space. The initial generation contains two primary issues: incorrect collinear input formatting and
improper angle usage syntax. However, the mathematical reasoning underlying the proof is correct,
as confirmed by the model’s own natural language summary stating that “gpt-5 provides the cleanest
and most mathematically accurate formalization.” The required fixes are straightforward syntactic
corrections that can be applied by domain experts with minimal effort.

This pattern suggests that activation steering not only improves proof success rates but also gen-
erates “near-miss” proofs that are closer to correctness than baseline outputs. Rather than produc-
ing completely invalid formal statements, steered models tend to generate mathematically coherent
structures with localized syntax errors. This property significantly reduces the annotation burden for
creating training datasets, as human experts can focus on lightweight editing rather than complete
theorem reconstruction.

The implications for scalable dataset creation are substantial. Traditional approaches to building
formal mathematics datasets require expert mathematicians to write complete formalizations from
scratch—a time-intensive process that limits dataset scale. Our approach enables a more efficient
workflow: models generate candidate formalizations that capture the essential mathematical con-
tent, while human experts provide targeted corrections to syntax and edge cases. This collaborative
paradigm could accelerate the development of large-scale formal mathematics corpora needed to
train more capable theorem-proving systems.

We note that this benefit emerges naturally from our steering methodology rather than being explic-
itly optimized for. The fact that informal reasoning guidance leads to more structured, correctable
outputs suggests that the underlying activation patterns encode not just proof search strategies, but
also adherence to formal syntax conventions. This observation warrants further investigation in
future work focused specifically on human-AI collaborative formalization workflows.

A.3 KNOWLEDGE BASE LEARNING PROMPT

A.3.1 SYSTEM PROMPT� �
You are a mathematical documentation agent specializing in the Lean 4
Mathlib library. Your job is to explore the Mathlib repository and create

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

a concise, practical documentation summary focused on mathematical
formalization and theorem proving. You have been given access to a yet
unreleased version of this library, which you must go through and pick
out all relevant imports based on the type of problem the user is trying
to solve. The repository contains a comprehensive library of formalized
mathematics for Lean 4.
The repository will have file names and folder names representative of
its content.

Your every response must be a tool call.

The documentation will be used by new lean users, who will use it as a
guide to write all their imports, writing notations and rely solely on it
to make the correct imports.

WORKFLOW:
1. Use run_bash to explore the repository (ls, cd, cat, grep, find, etc.)
2. Take notes by writing to files in {working_directory}. You are
currently at this directory. Please do not make any changes outside of
this directory, or delete any existing file.

i. First read all the given examples, and create a list keywords
, such that each keyword is a concept that appears in any question.

ii. Keywords should also include common patterns like how to
express "point lies on line segment", "lines are parallel/perpendicular",
ratios and divisions of segments.

iii. Add these keywords to your notes file, so you can refer to
them for completion later on.

iv. Understand the kind of problems the documentation needs to
deal with, and select what goes in accordingly.
3. When you have sufficient information, use final_submit with a complete
documentation string

EXPLORATION STRATEGY:
- Examine the main mathematical domains asked by the user
- Look for key theorem statements and their dependencies
- Pay attention to naming conventions and mathematical abstractions
- Use the given sample of examples to understand what parts to focus on
- Look for file names, folder names, documentation, examples, source code
to know their subject

- Focus on user-facing functionality
- Use {working_directory} for any notes (absolute paths since you’ll be
changing directories)
- You decide when you have enough information to create the final
documentation

FINAL DOCUMENTATION FORMAT:
Organize your final output into exactly these 4 sections:

1. Installation & Import
- How different imports are situated in the mathlib file hierarchy
- Essential import statements for different mathematical domains
- Any setup requirements, like opening some namespace for certain symbols
, literals, notations or declarations.

2. Available Namepaces and Symbols
- Group related functionality together
- Since you will be given a field by the user, focus only on that and
related thing you see in the examples
- Important theorem statements in each subdomain

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

- Common mathematical objects and their properties
- Exhaustive list of all the functions avaliable for use

3. Minimal Usage Example
- Simple theorem statement (with sorry, ignore proofs)
- Basic mathematical definitions
- Make some imports, and open some namespaces and scopes
- All sample codes **must** be complete and well explained, or else it
can confuse the readers on what a complete theorem code looks like
- Do not leave parts of example code as comments
- Give examples for the kind of stuff the reader will be dealing with
when trying to formalize the problem statement
- Lean has difficult type setups, so be sure to explain those with
examples
- Should work out of the box

4. Common Pitfalls & Gotchas
- Common mistakes when formalizing mathematics
- Type class resolution issues
- Mathematical notation vs. Lean syntax differences

5. Key Files Structure
- An ascii directory tree of all the important/related files and packages

If some concept appears even once in the examples, make sure to cover
that in your documentation. It should be **complete**, don’t skip
concepts randomly.
Do not be afraid to make long if it needs to be.

Remember: Your goal is to create a practical cheat sheet that gets
developers productive quickly. It is okay if its long as long as we are
putting relevant information and are correct.� �
A.3.2 USER MESSAGE� �
Problem Description: I want to understand what all library modules are
available to me for autoformalizing **Set Theory & Combinatorics**
olympiad like problem statements into lean 4. I only care about
autoformalizing the theorem part, so things like tactics and everything
related to solving the problem are unnecessary. Only things relevant to
the theorem statement are useful. I am interested in:
- All the necessary and relevant imports, their correct paths
- How to open the correct namespace or scope to use particular symbols or
literals in lean

- Examples of using them
- Other things to note
I’ll attach some examples of the type of questions I am trying to write
as a lean theorem.

Examples: Samples of the kind of questions whose autoformalization I’ll
be doing:
- All the 7-digit numbers containing each of the digits 1, 2, 3, 4, 5, 6,
7 exactly once, and not divisible by 5, are arranged in the increasing

order. Find the 2000-th number in this list.
- Prove that the number of triples (A, B, C) where A, B, C are subsets of
{1, 2, , n} such that ABC = , AB , BC is 7 - 26 + 5.

- Let S = {1, 2, . . . , n} and let T be the set of all ordered triples
of subsets of S, say (A1, A2, A3), such that A1 A2 A3 = S. Determine,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

in terms of n, _(A1,A2,A3)T |A1 A2 A3| where |X| denotes the number of
elements in the set X.
- There are 100 countries participating in an olympiad. Suppose \(n\) is
a positive integer such that each of the 100 countries is willing to
communicate in exactly \(n\) languages. If each set of 20 countries can
communicate in at least one common language, and no language is common to
all 100 countries, what is the minimum possible value of \(n\)?

- A box contains answer 4032 scripts out of which exactly half have odd
number of marks. We choose 2 scripts randomly and, if the scores on both
of them are odd number, we add one mark to one of them, put the script
back in the box and keep the other script outside. If both scripts have
even scores, we put back one of the scripts and keep the other outside.
If there is one script with even score and the other with odd score, we
put back the script with the odd score and keep the other script outside.
After following this procedure a number of times, there is at least one

script each with odd and even scores. Find, with proof, the number of
scripts with odd scores among the three left.
- The set \(X \) of \(N \) four-digit numbers formed from the digits 1,
2, 3, 4, 5, 6, 7, 8 satisfies the following condition: for any two

different digits from 1, 2, 3, 4, 5, 6, 7, 8 there exists a number in \(
X \) which contains both of them. Determine the smallest possible value
of \(N \).
- For any natural number n, (n 3), let f(n) denote the number of non-
congruent integer-sided triangles with perimeter n (e.g., f(3) = 1, f(4)
= 0, f(7) = 2). Show that
(a) f(1999) > f(1996);
(b) f(2000) = f(1997).
- Some 46 squares are randomly chosen from a 9 x 9 chess board and are
coloured red. Show that there exists a 2 x 2 block of 4 squares of which
at least three are coloured red.
- A Magician and a Detective play a game. The Magician lays down cards
numbered from 1 to 52 face-down on a table. On each move, the Detective
can point to two cards and inquire if the numbers on them are consecutive
. The Magician replies truthfully. After a finite number of moves the
Detective points to two cards. She wins if the numbers on these two cards
are consecutive, and loses otherwise. Show if the Detective can

guarantee a win if and only if she is allowed to ask at least 50
questions.
- Let S be a finite set of positive integers. Assume that there are
precisely 2023 ordered pairs (x, y) in S S so that the product xy is a
perfect square. Prove that one can find at least four distinct elements
in S so that none of their pairwise products is a perfect square.

Please explore the repository and create comprehensive documentation
following the 4-section format. Start by exploring the current directory
structure to understand what you’re working with.
Your working directory is {working_directory}. Please refrain from doing
anything outside of this directory, or deleting any of its content. You
may create your notes file here if you want to.� �
A.3.3 ITERATIVE REFINEMENT PROMPT

We omit the solution part for problems without a solution.� �
You are an expert at writing Lean code. Your task is to convert a
naturallanguage informal question into a Lean 4 formalized statement only
(no proofs). Work entirely from first principles and axiomsdo **not**

assume or derive the proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Output format (and nothing else):
‘‘‘lean
...
‘‘‘

Problem {problem[’id’]}:
{problem[’informal_question’]}

Solution (for context incorporate the necessary details into the theorem
statement, but do **not** include a proof):

{solution}� �

18

	Introduction
	Related Work
	IndiMathBench
	technique : Auto-Formalization Approach
	Automated Formalization Generation
	Human-AI Collaborative Annotation Dashboard
	Annotator efficiency study

	Experimental Results
	Autoformalization Evaluation
	IndiMathBench Evaluation
	Automated Theorem Proving Evaluation

	Conclusion
	Example Benchmarks from IndiMathBench
	Experimental Setup
	Impact of LLM Notes
	Knowledge Base Learning Prompt
	System Prompt
	User Message
	Iterative Refinement Prompt

