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ABSTRACT

Quantifying the complexity of quantum states is a longstanding key problem in
various subfields of science, ranging from quantum computing to the black-hole
theory. The lower bound on quantum pure state complexity has been shown to
grow linearly with system size (Haferkamp et al., 2022). However, extending this
result to noisy circuit environments, which better reflect real quantum devices, re-
mains an open challenge. In this paper, we explore the complexity of weakly noisy
quantum states via the quantum learning method. We present an efficient learning
algorithm, that leverages the classical shadow representation of target quantum
states, to predict the circuit complexity of weakly noisy quantum states. Our al-
gorithm is proved to be optimal in terms of sample complexity accompanied with
polynomial classical processing time. Our result builds a bridge between the learn-
ing algorithm and quantum state complexity, meanwhile highlighting the power of
learning algorithm in characterizing intrinsic properties of quantum states.

1 INTRODUCTION

The concept of quantum complexity has deep connections to high-energy physics, quantum many-
body systems, and black-hole physics (Bouland et al., 2019b; Brown et al., 2016a;b; Stanford &
Susskind, 2014; Susskind, 2016). A problem is deemed “easy” if it is soluble with a (quantum) cir-
cuit whose size grows polynomially with the size of the inputs, while the problem is deemed “hard”
if the size of the (quantum) circuit scales exponentially. In the context of quantum computation,
the complexity of an n-qubit quantum state corresponds to the minimum number of gates required
to prepare it from the initial state |0n⟩ (Haferkamp et al., 2022). Brown and Susskind’s conjec-
ture suggests that the complexity of quantum states generated by random quantum circuits grows
linearly before it saturates after reaching an exponential size (Brown & Susskind, 2018; Susskind,
2018), which is supported by the complexity geometry theory proposed by Nielsen et al. (2006). Re-
cent works theoretically proved this conjecture by connecting quantum state complexity to unitary
t-designs (Brandão et al., 2021; Jian et al., 2022) and the dimension of semi-algebraic sets (Hafer-
kamp et al., 2022), demonstrating a rigorous computational ability separation between shallow and
deep quantum circuits.

However, in the practical world, the quantum system may interact with the surrounding environment,
which inevitably introduces a noise signal, making the pure state noisy. For example, in the current
noisy-intermediate-scale-quantum device (Boixo et al., 2018; Arute et al., 2019; Zhong et al., 2020;
Wu et al., 2021), a certain level (constant) of noise exists in each quantum gate, resulting in noisy
states prepared by Ω(log n)-depth noisy circuits is classically simulable in both mean value com-
putation and random circuit sampling problems (Stilck França & Garcia-Patron, 2021; Aharonov
et al., 2022). These facts exhibit a trend that is completely different from the case of pure quantum
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states: increasing the depth of the noisy circuit reduces the quantum state complexity. However, it
is still unclear how to extend previous arts (Brandão et al., 2021; Jian et al., 2022; Haferkamp et al.,
2022) to the noisy environment, and how to characterize the noisy quantum state complexity is still
an open problem.

On the other hand, learning algorithms have recently been considered a powerful means to study
and understand many-particle quantum systems and the associated quantum processes (Carleo &
Troyer, 2017; Carrasquilla & Melko, 2017; Glasser et al., 2018; Torlai et al., 2018; Moreno et al.,
2020; Torlai & Melko, 2016; Schindler et al., 2017; Greplova et al., 2020; Wetzel, 2017; Huang
et al., 2022; Wu et al., 2023b; Du et al., 2022). Specifically, Huang et al. (2022) explored the power
of the learning algorithm in classifying quantum phases of matter by learning through the classical
shadow (Huang et al., 2020), an efficient classical representation of the quantum state. The strong
connection between quantum state complexity and quantum phase transition phenomena Huang
et al. (2015) motivates us to explore the complexity of noisy quantum states using a learning algo-
rithm.

Here, we focus primarily on the complexity of weakly noisy quantum states to avoid the anti-
concentration property (Deshpande et al., 2022), an undesirable distribution in quantum simulation
and quantum approximate optimization algorithms. The n-qubit weakly noisy quantum states are
generated by circuits with a depth of R̃ ≤ O(poly log n) and a noise strength of O(1/n). 1 We
focus on an essential and natural problem: Given poly(n) copies of n-qubit unknown weakly noisy
quantum state, how to predict its complexity?

To answer this question, we develop a learning approach to solve this problem, which is illustrated
in Fig. 1. Following the strong quantum state complexity proposed by Brandão et al. (2021), the
learning algorithm pertains to determine whether an unknown weakly noisy state ρ 2 can be ϵ-
distinguished from the maximally mixed state by a measurement operator induced by a specific
quantum circuit architecture (QCA) (shown in Fig. 1 (b)). The size of the measurement operator
provides a state complexity upper bound (Brandão et al., 2021). More specifically, the problem asks
whether there exists a measurement operator M induced by a specific QCA, such that

max
M=U |0n⟩⟨0n|U†

U∈UA(R)

|Tr (M(ρ− In/2n))| ≥ Ω(1− ϵ), (1)

where A denotes a QCA architecture and UA(R) contains all R-depth QCA circuits induced by
A. The quantum state complexity can be bounded by O(nR), provided that Eq. 1 is satisfied. In
general, the circuit set UA contains an exponential number of candidate circuits U , making direct
enumeration impractical. We address this challenge by revealing a specific property of QCA circuits,
as outlined in Theorem 1. This property allows the behavior of an observable M , generated by any
circuit in UA, to be approximated by a linear combination of poly(n) random QCA circuits from
UA. Leveraging this, we reformulate the complexity prediction problem into the optimization of a
linear function over a compact set, which is both sample-efficient and computationally efficient, as
demonstrated in Theorem 2 and illustrated in Fig. 1 (c). We finally show the sample complexity
of our learning algorithm is optimal with respect to the noisy circuit depth R̃, as demonstrated in
Theorem 3.

We note that learning the quantum state complexity has broad applications Firstly, the predicted
complexity enables the classification of the target unknown state ρ into one of the following scenar-
ios: (i) ρ can be approximated by an estimator generated by constant-depth noiseless circuits, which
is amenable to classical simulation (Napp et al., 2022; Bravyi et al., 2021), (ii) ρ can be approximated
using noiseless circuits with sub-logarithmic depth, a task that may present classical computational
challenges, as discussed in Ref. (Deshpande et al., 2022), and (iii) ρ cannot be approximated by any
linear combination of circuits constrained to a specific architecture with a depth of at most log n.
Besides benchmarking the NISQ computational power (whether its output can be classically sim-
ulated), the proposed quantum algorithm and predicted weakly noisy state complexity may have

1The noise strength O(1/n) follows the settings used in quantum error mitigation algorithms (Temme et al.,
2017; Endo et al., 2018).

2Here, the analyzed weakly noisy quantum states may represent ground states of many-body systems, the
output state of a noisy NISQ algorithm, or the boundary state of a black hole, which all can be characterized
through shadow tomography (Huang et al., 2020), as depicted in Fig. 1 (a).
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practical applications in various fields, including understanding the black hole theory and the quan-
tum phase transition. For example, in the context of the Anti-de-Sitter-space/Conformal Field The-
ory (AdS/CFT) correspondence, the “complexity equals volume” conjecture (Stanford & Susskind,
2014) suggests that the boundary state of the correspondence has a complexity proportional to the
volume behind the event horizon of a black hole in the bulk geometry. However, when measuring
the boundary state, the interaction with the surrounding environment inevitably introduces a noise
signal, making the pure state noisy. Furthermore, in quantum many-body systems, quantum phase
transitions occur when the external parameters varies (Sachdev, 1999), and the ability to correctly
predict the quantum phase transition boundary can help us understand many strong-correlated sys-
tems (Zheng et al., 2017). It is known that quantum topological phases can be distinguished by
their ground state complexity (Huang et al., 2015), and the shadow tomography (Huang et al., 2020;
2022) method utilized quantum channels to provide a noisy state approximation to the ground state.
Predicting complexity of such noisy ground state approximations may recognize the topological
phases of matter.
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Figure 1: (a) An efficient quantum-to-classical representation conversion method that leverages the
classical shadow of a noisy state (Huang et al., 2020). By measuring poly(n) copies of the state, it
can construct a classical representation ρ̂ that enables the prediction of the state’s properties with a
rigorous performance guarantee. Here, ρun represents a noisy state generated by a R̃-depth noisy
quantum circuit model which is defined as Def. 2, and ρ̂ represents the classical shadow of ρun.
(b) A QCA model with R blocks, where each block corresponds to a causal slice, and the overall
architecture follows the design of A. (c) Visualization of the complexity prediction process via a
quantum learning algorithm (Alg. 1), where LR(β⃗, ρ̂QCA, ρ̂) represents a metric in measuring the
distance between ρ̂ and ρ̂QCA states, which is defined in Eq. 11. The blue Bloch sphere illustrates
the relationship between a R̃-block weakly noisy quantum state ρ̂ and its nearest pure state. All
pure states reside on the surface of the n-qubit Bloch sphere, with the maximum mixed state In/2n

located at the center of the sphere. In the regime where R̃ < O(log n) and for a small noise strength
p < 1/n, the weakly noisy state ρ̂ = ρ1 is located near the surface of the sphere, while ρ̂ = ρ2
locates near the maximum mixed state.

2 THEORETICAL BACKGROUND

To clearly demonstrate the motivation and contribution of this work, we review the related theoretical
backgrounds in terms of quantum state complexity, noisy quantum states, and the architecture of
quantum circuits.

Here, we consider the quantum state complexity of an n-qubit quantum pure state |ψ⟩. The complex-
ity of a quantum state is the minimal circuit size required to implement a measurement operator that
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suffices to distinguish |ψ⟩⟨ψ| from the maximally mixed state In/2n. Since any pure state |ψ⟩⟨ψ|
satisfies 1

2 ∥|ψ⟩⟨ψ| − In/2
n∥1 = 1 − 2−n, which is achieved by the optimal measurement strategy

M = |ψ⟩⟨ψ|, such trace distance can be used to quantify the quantum state complexity. Let H2n

denote the space of 2n×2n Hermitian matrices, and for fixed c ∈ N, we consider a class of measure-
ment operators Mc(2

n) ⊂ H2n that can be constructed by at most c 2-local gates. The maximal bias
achievable for quantum states with such a restricted set of measurements of the solution is defined
as:

ξQS(c, |ψ⟩) = max
M∈Mc(2n)

|Tr (M(|ψ⟩⟨ψ| − In/2n))| , (2)

where |ψ⟩ = V |0n⟩ for some V ∈ SU(2n). Noting that the above metric ξQS(c, |ψ⟩) degenerates
to 1 − 2−n when c → ∞. For example, if the quantum state |ψ⟩ can be easily prepared by a
quantum computer (such as computational basis states), ξQS(c, |ψ⟩) converges to 1 − 2−n rapidly
as c increases. In contrast, for a general quantum state |ψ⟩, ξQS requires an exponentially large c to
approach 1− 2−n. Using this property, the quantum state complexity can be defined as follows:

Definition 1 (Approximate State Complexity (Brandão et al., 2021)) Given an integer c and ϵ ∈
(0, 1), we say a pure quantum state |ψ⟩ has ϵ-strong state complexity at most c if and only if

ξQS(c, |ψ⟩) ≥ 1− 1

2n
− ϵ, (3)

which is denoted as Cϵ(|ψ⟩) ≤ c.

Due to imperfections in quantum hardware devices, two causal slices 3 are separated by a quan-
tum channel E . In this paper, we consider E to represent a general noise channel which is both
gate-independent and time-invariant, such as the local-depolarizing channel, the global-depolarizing
channel, the bit-flip channel and other common noise models.

Definition 2 (Weakly Noisy Quantum State) We assume that the noise in the quantum device is
modeled by a gate-independent Pauli noise channel E with error rate p. Let U be a causal slice, and
let E ◦U be the representation of a noisy gate. We define the R̃-depth noisy quantum state with noise
strength p as

ρp,R̃ = E ◦ UR̃ ◦ E ◦ UR̃−1 ◦ · · · ◦ E ◦ U1(|0
n⟩⟨0n|). (4)

We use the term “weakly noisy quantum states” to refer to noisy states ρp,R̃ with R̃ ≤ O(poly log n)
and small error rate p such that p < O(n−1).

3 PROBLEM STATEMENT

3.1 WEAKLY NOISY STATE COMPLEXITY

In this paper, we assume multiple copies of a weakly noisy quantum state ρ are provided, and
we utilize a learning approach to predict its quantum state complexity, accessing only one copy at a
time. In the learning phase, we don’t have any information on ρ, as a result, it is generally difficult to
exclude shortcuts that could improve the efficiency of a computation. As a result, deriving quantum
complexity measures for weakly noisy states may be challenging without additional assumptions.
Here, we supplement limitations to the operator architecture, which leads to the limited-structured
quantum state complexity.

Definition 3 (Limited-Structured (LS) Complexity of Weakly Noisy State) Given an integer c
and ϵ ∈ (0, 1), we say a weakly noisy state ρ has ϵ-LS complexity at most c if and only if

max
Mc=U |0n⟩⟨0n|U†

U∈UA([c/L])

|Tr (Mc(ρ− In/2n))| ≥ 1− 1

2n
− ϵ (5)

which is denoted as C lim,A
ϵ (ρ) ≤ c. The notation L represents the number of gates in each layer of

U ∈ UA4, and ϵ is termed as the LS error.
3Details refer to Appendix A.
4We leave rigorous definitions to Def. 6.
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The measurement operator Mc (in Def 3) is limited by the architecture UA. It is interesting to note
that the LS complexity provides an upper bound for Cϵ(ρun), that is,

Cϵ(ρ) ≤ C lim,A
ϵ (ρ) ≤ c.

Now, we provide an insight on why Def. 1 can be modified to Def. 3 which characterized the weakly
noisy quantum state complexity.

Fact 1 Suppose we are given a general noise channel E(·) =
∑K

l=1Kl(·)K†
l and a R̃-depth noisy

state ρR̃ =⃝R̃
r=1E ◦ Ur(|0n⟩⟨0n|), where the Kl represent n-qubit Kraus operators and the Ur are

drawn independently from a unitary 2-design set U. If the following relationship holds:

R̃ ≤
log
(

F−1
d(d+1) (η − 1/d)−1

)
log(d2 − 1)− log(F − 1)

, (6)

where d = 2n and F =
∑K

l=1 |Tr(Kl)|2, then for each noisy state ρR̃, their corresponding R̃-depth
pure state |ΨU1,...,UR̃

⟩ =⃝R̃
r=1Ur(|0n⟩⟨0n|) satisfies

EU1,...,UR̃∼U

[
⟨ΨU1,...,UR̃

|
(
⃝R̃

r=1E ◦ Ur(|0n⟩⟨0n|)
)
|ΨU1,...,UR̃

⟩
]
≥ η. (7)

Specifically, R̃ saturates to the bound given in Eq. 6 implies

η(R̃) =

(
F − 1

d2 − 1

)R̃−1
F − 1

d(d+ 1)
+

1

d
. (8)

We leave proof details to Appendix F. A particularly noteworthy aspect of the presented fact is its
applicability to general noise models. This allows us to establish a precise relationship between
the depth of a quantum circuit R̃, the noise model E , and the quality of approximation (purity)
η(R̃) = 1−ϵ that can be achieved. This result further implies using measurement operators prepared
by pure states suffice to distinguish a weakly noisy quantum state to the maximally mixed state, as
defined by Def. 3. In light of this, we consider a noisy quantum state with depth R̃ = O(poly log n),
where the noise is modeled as a local depolarizing channel Ei(·) = (1− p)(·)+ pTri(·)I2/2 and we
have η(R̃) ≈ (1−pR̃) by Eq. 8. Furthermore, we note that Eq. 7 implies that there exists a quantum
weakly noisy state ⃝R̃

r=1E ◦ Ur(|0n⟩⟨0n|) and a quantum pure state |ΨU1,...,UR̃
⟩ = UR̃ · · · U1|0n⟩

such that

Tr
[
MUR̃···U1

(
⃝R̃

r=1E ◦ Ur(|0n⟩⟨0n|)− In/2n
)]
≈ 1− pR̃− 2−n (9)

in the worst-case scenario over the choice of U1, ...,UR̃ ∼ U (otherwise Eq. 7 may be violated),
where the measurement operator MUR̃···U1 = |ΨU1,...,UR̃

⟩⟨ΨU1,...,UR̃
|. As a consequence, Defini-

tion 1 can be naturally transferred into Definition 3 which characterizes the complexity of quantum
weakly noisy states.

4 QUANTUM LEARNING TASK AND ALGORITHM

We start by introducing the intrinsic structure of UA to devise a parameterized observable M
for distinguishing ρ from the maximal entangled state. In general, optimizing an observable
M = U |0n⟩⟨0n|U† with UA(R) is challenging, however, the intrinsic structure of a specific QCA
allows for efficient optimization of the observable M . Specifically, we randomly generate a set of
N = poly(R,n) quantum neural network states ρ̂QCA(R,A, N) = {ρ̂i}Ni=1 with ρ̂i represents the
classical shadow representation of Ui|0n⟩ for Ui ∈ UA(R) (Huang et al., 2020) (Details refer to
Appendix K). We then design a parameterized operator that takes the form of M(β⃗) =

∑N
i=1 βiρ̂i.

Theorem 1 (Intrinsic Structure of specific QCA) Randomly select N unitaries from the QCA
model UA(R) to generate ρ̂QCA(R,A, N) = {ρ̂i}Ni=1, where each layer in Ui contains L
gates. Then for any n-qubit quantum state ρ and projector Mx⃗ = U(x⃗)|0n⟩⟨0n|U†(x⃗) with

5



Published as a conference paper at ICLR 2025

U(x⃗) ∈ UA(R)5, there exists a vector β⃗(x⃗) belongs to an N -dimensional compact set Dβ
6 and∑N

j=1 β⃗j(x⃗) = 1, such that

Ex⃗

∣∣∣∣∣∣Tr
 N∑
j=1

β⃗j(x⃗)ρ̂iρ

− Tr [Mx⃗ρ]

∣∣∣∣∣∣ ≤
√
LRn2 log n

N
. (10)

IfN = LRn2 log n/ϵ2, the above approximation error is upper bounded by ϵ (We leave proof details
to the Appendix G).

4.1 METRIC CONSTRUCTION

Here, we assume QCA states ρ̂i are sampled from UA(R) following the probability distribution q⃗,
as a result, the metric

LR(β⃗) =
∣∣∣Eρ̂i∼q⃗Tr

[
M(β⃗)(ρ̂i − ρ)

]∣∣∣ (11)

is defined over the compact set β⃗ ∈ Dβ⃗. Given a specific parameter β⃗, we can efficiently calculate

the corresponding value of LR(β⃗) using classical shadow techniques (Huang et al., 2020; Wu et al.,
2023a; Nguyen et al., 2022; Akhtar et al., 2022; Bertoni et al., 2022).

To clarify our algorithm, we define the upper decision interval UDI(ϵ) and the lower decision inter-
val LDI(ϵ) as follows.

Definition 4 (Decision interval) UDI(ϵ) is defined as the integer interval [u,∞) such that for any

R ∈ UDI(ϵ), it holds that maxβ⃗ LR

(
β⃗
)
≤ ϵ. Similarly, LDI(ϵ) is defined as the integer interval

[0, l] such that for any R ∈ LDI(ϵ), we have minβ⃗ LR

(
β⃗
)
≥ 2ϵ.

Before proposing the quantum learning algorithm, we need the following lemmas to support our
method. We elaborate proof details in Appendices H.1 and H.2.

Lemma 1 Consider the metric function LR(β⃗). If the relationship max
β⃗
LR(β⃗) ≤ ϵ holds for any

distribution q⃗, then ρun has the state complexity C lim,A
ϵ (ρun) ≤ LR, where C lim,A

ϵ (·) is defined in
Def. 3.

Lemma 2 If there exists a distribution q⃗ such that min
β⃗
LR(β⃗) > 2ϵ, then with nearly unit proba-

bility, ρun follows the quantum state complexity lower bound C lim,A
ϵ (ρun) > LR.

4.2 LEARNING TASK STATEMENT

Given the preliminary background above, we now formally define the learning task.

Task 1 (Structured Complexity Prediction (SCP(A, ϵ))) Given an architecture A, an n-qubit
weakly noisy quantum state ρun (as defined in Eq. 4), and an approximation error ϵ, design a learn-
ing algorithm QLn that runs on an ideal quantum device with polynomially many qubits in n, and
learns from the unknown quantum state ρun, such that the following conditions hold:

1. (Completeness) If there exists an integer x < log n such that x ∈ UDI(ϵ), then QLn
returns True.

2. (Soundness) If log n ∈ LDI(ϵ), then QLn returns False.

3. (Indeterminate case) If all integers x ∈ [0, log n] lie in UDIc(ϵ)∪LDIc(ϵ), then QLn may
return either True or False arbitrarily.

5Here, the vector x⃗ ∈ [0, 2π]LR uniquely determines a quantum circuit U(x⃗) ∈ UA(R).
6To keep the semi-definite property of M(β⃗), we generally assume the compact set Dβ = [0, 1]N .
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To provide a clearer analysis of this task, we introduce the following definition.

Definition 5 (Distinguishable Property, DP(A, ϵ)) We say an n-qubit weakly noisy quantum state
ρun satisfies DP(A, ϵ) if ρun can be distinguished from In/2

n with the bias at least 1− 2−n − ϵ by
using a R-depth (R < log n) QCA measurement MQCA = U |0n⟩⟨0n|U†, where U ∈ UA.

We note that the learning algorithm QLn returns True (respectively, False) to indicate that ρun
does (does not) satisfy the DP(A, ϵ) property.

4.3 QUANTUM LEARNING ALGORITHM FOR LIMITED-STRUCTURED COMPLEXITY
ANALYSIS

Based on Theorem 1, optimizing the metric function LR(β⃗) can be limited into a compact set.
Taking the maximization task as an example, we show how to utilize the Bayesian optimization on
a compact set as Alg. 2 in Appendix I, which is termed as the BMaxS. Specifically, the subroutine
BMaxS, which is essentially a Bayesian optimization, takes unknown state ρun, QCA state set,
and LS-error ϵ as inputs, after T steps, it outputs True if R ∈ UDI(ϵ) holds, outputs False
otherwise. This subroutine can be used as a building block to construct a quantum learning algorithm
that verifies whether the completeness condition of Task 1 holds. Likewise, BMaxS can also be
applied to verify the soundness condition. For the remaining (inconclusive) case, we return a random
outcome (True or False), thereby providing an efficient solution to Task 1.

Given the fact that a structured unitary set that UA(R−1) is strictly contained in UA(R) (Haferkamp
et al., 2022), the boolean function

P(R, ϵ) = BMaxS(ρun, ρ̂QCA(R,A, N), T, ϵ) (12)
is a monotone predicate in the intervalR ∈ [1, log n]. Therefore a quantum learning algorithm can be
designed by a binary search program where P(R, ϵ) is packaged as an oracle. A monotone predicate
P is a boolean function defined on a totally ordered set with the property: if P(R, ϵ) = True, then
P(R′, ϵ) = True for all R′ ≥ R in the domain. In our case, P returns True for the input R
when R ∈ UDI(ϵ) holds. As a result, if the noisy state ρun satisfies the DP(A, ϵ) property, the
QLn outputs the minimum Rmin ∈ [1, log n] enabling C lim,A

ϵ (ρun) ≤ LRmin (True). Otherwise,
we test whether log n ∈ LDI(ϵ). If this holds, the QLn outputs C lim,A

ϵ (ρun) > L log n (False).
Otherwise, the studied ρun and threshold ϵ would be an invalid case. Details are provided in Alg. 1.

Algorithm 1: Quantum Learning Algorithm for Limited-Structured Complexity Prediction
Input : Noisy quantum state ρun, ϵ;
Output: The minimum depth R (R < log n) such that C lim,A

ϵ (ρun) ≤ LR (True);
False if such R does not exist; Or return True/False arbitrarily for invalid cases;

1 Initialize R← 1, s← log(n);
2 while s−R > 1 do
3 Set N = LRn2 log n/ϵ2 and T = N2nk such that k log(n) < nk/2−1ϵ for large n;
4 if P((R+ s)/2, ϵ) =True do
5 s← ⌈(R+ s)/2⌉
6 else do
7 R← ⌈(R+ s)/2⌉
8 if P(R, ϵ) =True do
9 return C lim,A

ϵ (ρun) ≤ LR (True)
10 else do
11 if P(R, 2ϵ) =False, return C lim,A

ϵ (ρun) > L log n (False)
12 else do
13 return True or False arbitrarily

5 THEORETICAL PERFORMANCE GUARANTEE

We will demonstrate that the required number of samplings and processing time for Alg. 1 are
both efficient, and the sample complexity is optimal with respect to the noisy circuit depth. Using
Theorem 1, we can state the following result.
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Theorem 2 Given poly(n) copies of an n-qubit unknown weakly noisy state ρun that is generated
by a noisy quantum device with depth R̃ = O(log n) (Def. 2) and a particular architecture A, there
exists a poly(n, R̃, 1/ϵ) quantum and classical cost learning algorithm which can efficiently solve
the SCP(A, ϵ) problem.

The proof of Theorem 2 depends on evaluating the sample complexity of QCA states and unknown
noisy state, as well as the related iteration complexity during training the quantum learning algo-
rithm. We analyze the sample and classical computational complexity in the next two subsections
as part of the proof outline for this theorem.

5.1 SAMPLE COMPLEXITY

The sample complexity of QCA states is promised by Theorem 1, where the number of copies of
QCA states N = LRn2 log n/ϵ2. To evaluate LR(β⃗) for 1 ≤ R ≤ R̃ ≤ O(log n) within ϵ-additive
error, the classical shadow representation of ρun is shared by all QCA states, by leveraging the
classical shadow method (Huang et al., 2020). As a result, the sample complexity of an unknown
weakly noisy state is at most m ≤ O

(
n2LR̃ logn log(1/δ)

ϵ4

)
, where the failure probability δ ∈ (0, 1).

Meanwhile, we also give a sample complexity lower bound to demonstrate our learning algorithm
is optimal in terms of the circuit depth R̃.

Theorem 3 Given an unknown weakly noisy quantum state ρ prepared by a R-depth quantum cir-
cuit affected by p-strength local Pauli noise channels, then any algorithm designed to learn ρ re-

quires at least m samplings in the worst-case scenario, where m = (1−p)−2cR̃(1−δ)2

2n , c = 1/(2 ln 2)
and constant δ ∈ O(1).

From the above result and the definition of the quantum weakly noisy state, we know that p =
O(n−1) which results in the sample complexity lower bound Ω((1 + 2cpR̃)(1 − δ)2/(2n)). This
implies the sample complexity lower bound may linearly growth with the increasing of the circuit
layer R̃, and our learning algorithm is nearly-optimal in terms of the circuit depth R̃. We leave proof
details to Appendix J.

5.2 RUNNING TIME ANALYSIS

Here, we provide an analysis of the computational complexity for Alg. 1, including the number
of iterations in Alg. 1 and the subroutine BMaxS (Alg. 2) which is a Bayesian optimization algo-
rithm. Denote the global optimum β⃗∗ = maxβ⃗∈D

β⃗
LR(β⃗), and a natural performance metric for

optimizing P(R) is the simple regret sT = LR(β⃗
∗) − LR(β⃗

(T )), which is the difference between
the global maximum LR(β⃗

∗) and LR(β⃗
(T )). Here, β⃗(T ) represents the updated parameter in the

T -th step. Obviously, simple regret is non-negative and asymptotically decreases with the increasing
iteration complexity T . To build up an explicit connection between sT and T , the average regret
avrT is introduced. Specifically, avrT = 1/T

∑T
t=1

[
LR(β⃗

∗)− LR(β⃗
(T ))

]
. Noting that the rela-

tionship sT ≤ avrT holds for any T ≥ 1. In the following, we show that avrT is upper bounded
by O(N log T/

√
T ), and the simple regret sT ≤ avrT → 0 with the increase of T . The following

theorem derives the average regret bounds for P(R) = BMaxS(ρun, ρ̂QCA(R,A, N), T, ϵ).

Theorem 4 Take the target weakly noisy state ρun and QCA state set ρ̂QCA(R,A, N) into the sub-
routine P(R) (Eq. 12). Pick the failure probability δ ∈ (0, 1), then there exists a Bayesian approach
(details refer to Alg. 2) such that the average regret avrT can be upper bounded by

avrT ≤ O

√4N2 log2 T + 2N log T log(π2/(6δ))

T

 (13)

after T optimization steps with 1−δ success probability, whereN represents the number of samples
in the QCA state set.
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Figure 2: (a) Visualization of the 2D transverse field Ising model. (b)-(d) illustrate the trend of the
function minβ⃗ LR as it varies with the circuit depth R of QCA set. To extract the complexity lower
bound of the target quantum state from the plot, we begin by drawing a horizontal line representing
the approximation error of the quantum state. For example, in (b), we set ϵ′ = 0.25. Next, we
identify the last point where the curve remains above this horizontal line before crossing it, and
record the corresponding horizontal coordinate R. This R represents the complexity lower bound of
the target quantum state. For instance, in Fig. (b), the blue curve remains above ϵ′ = 0.25 until R =

4, indicating a complexity lower bound of C lim,A
0.125 (ρTI(2, p)) > 4L. Similarly, the green curve last

remains above ϵ′ = 0.25 at R = 2, yielding a complexity lower bound of C lim,A
0.125 (ρTI(10, p)) > 2L,

where L represents the number of two-qubit gates in each layer of the architecture A.

Specifically, select an integer k such that k log(n) < nk/2ϵ for all n > n0, where n0 represents
a fixed integer. Then T = N2nk enables the simple regret sT can be upper bounded by ϵ, where
N = LRn2 log nϵ−2 (Theorem 1). The proof details refer to Appendix I.

Finally, noting that Alg. 1 is essentially a binary search program on the interval [1, R̃] by using the
oracle P(R, ϵ) = BMaxS(ρun, ρ̂QCA(R,A, N), T, ϵ). Therefore, Alg. 1 requires

O
(

1

ϵ4
, n4+k, L2, R̃2 log(R̃), log(1/δ)

)
classical time complexity to answer the SCP problem. This thus completes the proof of Theorem 2.

6 NUMERICAL SIMULATIONS

Here, we demonstrate how to use the proposed learning method to benchmark the capabilities of
noisy state computation, providing numerical evidence to support our theoretical findings. Specif-
ically, we address the fundamental question: Does the complexity of weakly noisy quantum states
grow linearly with circuit depth?

We consider to simulate the time dynamics of the Hamiltonian H = −J
∑

⟨i,j⟩ ZiZj + h
∑

iXi on
a two-dimensional grid with (a× b) size, where J > 0 represents the coupling of nearest-neighbour
spins and h represents the global transverse field strength (see Fig. 2 (a)). To simulate the time
evolution circuit e−iHτ , the first-order Trotter decomposition is utilized (Kim et al., 2023), that
is e−iHτ =

[
e−iHZZδte−iHXδt

]τ/δt
+ O((δt)2), where HZZ represents the spin term, HX repre-

sents the transverse-field term and the evolution time τ is discretized into (τ/δt) time slices. Then
its quantum circuit implementation can be decomposed by e−iHZZδt =

∏
⟨i,j⟩RZiZj (−2Jδt) and

9
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e−iHXδt =
∏

iRXi
(2hδt). We focus on a small-scale scenario studied in Ref. (Kim et al., 2023),

where the system size is 3 × 4, angle rotations −2Jδt = −π/2, hδt ∈ {π/8, π/4, π/2, 3π/4, π}
and each quantum gate is affected by a local depolarizing channel Ei with strength p = 10−3. Let
R̃ = ⌈τ/δt⌉, then we denote the output quantum weakly noisy state as

ρTI(R̃, p) =⃝R̃
r=1 [Ep ◦ UZZ ◦ Ep ◦ UX ] (|0n⟩⟨0n|), (14)

where UZZ(·) = e−iHZZδt(·)eiHZZδt, UX(·) = e−iHXδt(·)eiHXδt and the quantum noise channel
Ep = ⊗n

i=1Ei. In the numerical simulation, we demonstrated our algorithm on a server with 64
vCPUs and 128 GiB of memory, where the density matrix ρTI(R̃, p) and classical shadow set are
prepared by the Pennylane package (Bergholm et al., 2018).

In our analysis, we mainly focus on the circuit complexity lower bound of noisy quantum states
ρTI(R̃, p) with R̃ ∈ {2, 10} by using Alg. 1, considering a standard 2D lattice quantum circuit archi-
tecture A to prepare ρ̂QCA, where each layer has L = O(n) random two-qubit gates. Visualization
of the architecture A in 1D scenario is given by Fig. 1 (b). To estimate the lower bound, we thus set
a small error (ϵ = 10−2)7 and randomly generate N = n2R quantum circuits with varying circuit
depths R ∈ {2, 3, 4, 5} based on the architecture A. Precisely, we tune the linear coefficient β⃗ to
minimize the metric functions outlined in Lemma 2, as depicted in Figure 2, where each point repre-
sents the mean value of minβ⃗ LR by repeating 10 independent experiments, and the error bar repre-
sents the standard variance. This strategic adjustment allows us to derive an estimate for the quantum
circuit lower bound. More specifically, in Figure 2 (b), we showcase a clear circuit complexity sepa-
ration between weakly noisy quantum states ρTI(2, p) and ρTI(10, p). To see this relationship, Fig-
ure 2 (b) demonstrated that minβ⃗ L2(ρTI(10, p)) > 0.25, meanwhile minβ⃗ L4(ρTI(2, p)) > 0.25

which demonstrate that the circuit complexity C lim,A
0.125 (ρTI(R̃ = 10, p)) > 2L and C lim,A

0.125 (ρTI(R̃ =
2, p)) > 4L (according to Lemma 2), where L = 3n represents the number of random two qubit
gates in each layer. This result highlights weakly noisy quantum state complexity lower bound may
not grow with the circuit depth, which is dramatically different to that of pure states. Similar phe-
nomenons are witnessed in subfigures. 2 (c)-(f), where a shallower circuit depth weakly noisy states
possess higher state complexity lower bound.

7 CONCLUSION

The quantum state complexity serves as a measure of inherent properties within quantum states,
thereby facilitating a deeper understanding of quantum entanglement information, quantum topo-
logical phases, and computational capabilities. In practical applications, collected quantum states
are often subject to noise originating from state preparation and quantum measurement (SPAM), as
well as limitations imposed by the quantum hardware. Consequently, original pure states are trans-
formed to noisy states through quantum channels. Thus, investigating the quantum state complexity
of noisy states holds significant importance in studying information scrambling, the spread of lo-
cal noise and entanglement throughout the entire system, which is expected to illuminate studies
in the field of black-hole theory and condensed-matter physics. In this paper, we investigate the
complexity of weakly noisy quantum states through a quantum learning algorithm, which connects
two significant concepts in the quantum computational theory. The proposed quantum learning al-
gorithm exploits the intrinsic structure of QCA to build a learning model LR(β), whose extreme
points reveal the limited-structured complexity. Meanwhile, when considering the sample complex-
ity of target noisy quantum state, our algorithm achieves optimal in terms of the circuit depth R̃.
Moreover, we emphasize that the Bayesian optimizer (given by Alg. 2) is not the unique option,
and other optimization algorithms may also work with a similar iteration steps. This highlights the
universality of the intrinsic structure of QCA in combination with optimization subroutines.

7Here, the numerical simulation mainly aims to find the circuit lower bound. Therefore, we set a small error
threshold ϵ such that the measurement operators constructed in Alg 1 cannot lead to P(R) = true. In this case,
the algorithm will proceed to the final step to determine the lower bound of the quantum state’s complexity.
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A COMPARISON WITH RELATED WORKS

In the context of condensed matter physics, a topological phase transition occurs when the ground
states of a family of Hamiltonians exhibit different circuit complexities. This suggests that topolog-
ical phase classification may help distinguish between low-complexity and high-complexity ground
states. The use of learning algorithms to classify quantum phases of matter has been widely studied.
Proposals include quantum neural networks (Cong et al., 2019), classical neural networks (Beach
et al., 2018; Carrasquilla & Melko, 2017; Greplova et al., 2020; Schindler et al., 2017; Van Nieuwen-
burg et al., 2017), and other classical machine learning models (Huang et al., 2022; Rodriguez-Nieva
& Scheurer, 2019; Wetzel, 2017). However, most previous works lack rigorous theoretical guaran-
tees. Among these studies, Huang et al. (Huang et al., 2022) utilized shadow tomography of the
concerned ground states to design an unsupervised machine learning approach guaranteed to clas-
sify accurately under certain conditions. The proposed “shadow kernel” can generate quantum en-
tropies by tuning hyperparameters, enabling the approximation of various topological phase order
parameters. Compared with Ref. Huang et al. (2022), our learning algorithm can be applied to noisy
states and predict complexity, whereas Ref. Huang et al. (2022) mainly focuses on pure ground state
classification without providing an explicit metric for characterizing complexity.

On the other hand, learning quantum states and circuits is a long-standing task in the field of quan-
tum machine learning. Previous works generally utilized parameterized circuits to learn approxima-
tions of target states and circuits (Mitarai et al., 2018; Yang et al., 2020; Huang et al., 2021; Jerbi
et al., 2021; Cerezo et al., 2022). However, variational-based methods generally lack theoretical
guarantees and may suffer from the barren plateau phenomenon even in low-depth parameterized
circuits (McClean et al., 2018; Cerezo et al., 2021; Anschuetz & Kiani, 2022). Very recently, clas-
sical shadow-based learning algorithms have been proposed for reconstructing shallow quantum
circuits U (Huang et al., 2024; Landau & Liu, 2024). Nevertheless, these methods require querying
U†, which introduces intrinsic limitations in noisy environments since most noisy channels (CPTP
maps) may not be invertible. Compared with related works, our method bypasses these limitations
by introducing the ”Intrinsic Structure property” (as given by Theorem 1), which enables an efficient
quantum learning algorithm to predict state complexity in noisy environments.

we would like to point out that Ref. Schuster et al. (2024) does not rule out the possibility that the
pure state complexity can be predicted when the target states exhibit certain physical structures,
such as the ground state of XXZ models and the toric code, as studied in Ref. Huang et al. (2022).
Furthermore, recent works (Huang et al., 2024; Landau & Liu, 2024) have also demonstrated that
fixed shallow quantum circuits and quantum pure states (including 1D-O(log n)-depth and all-to-
all O(log log n)-depth) can be efficiently learned. These results demonstrate significant differences
between scenarios with and without ’randomness’. Compared with Ref. (Schuster et al., 2024), our
work is more similar to Refs. (Huang et al., 2022; 2024; Landau & Liu, 2024), which focus on a
specific quantum state rather than an ensemble.

Furthermore, we would like to highlight the differences between weakly noisy quantum states and
pseudorandom quantum states. Specifically, we consider the second-moment statistic property of
a set of pseudorandom quantum circuits U whose circuit depth R̃ ≤ poly log n. In Ref. (Schuster
et al., 2024), they claimed that even O(log(n))-depth Clifford circuits may approximate the unitary
2-design property given by Haar measure. Then, we may suppose U = U1 · · ·UR̃ representing a
random Clifford circuit, then for the initial state |0n⟩⟨0n| and arbitrary observable O, we have

M2(U) =

∫
U∼Cl(2n)

Tr
[
U |0n⟩⟨0n|U†O

]
Tr
[
U |0n⟩⟨0n|U†O

]
=

1

d(d2 − 1)

[
Tr2[O] + Tr[O2]

]
.

(15)

On the other hand, in the context of weakly noisy environment, the Clifford circuit U may transform
to the channel representation U = ⃝R̃

r=1E ◦ Ur where E represents a n-qubit Pauli channel and
Ur = Ur(·)U†

r represents a layer of Clifford gate. According to the “Channel Pushing” lemma given
by Ref Quek et al. (2024) (Lemma 10), we may rewrite the noisy channel by U = E ′ ◦ ⃝R̃

r=1Ur,
where E ′ also represents an n-qubit Pauli channel. Let the channel E ′ =

∑
lKl(·)K†

l , where Kl
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represents the Kraus operator satisfying
∑

lK
†
lKl = I , we have

M2(U) =
∫
U∼Cl(2n)

Tr [U(|0n⟩⟨0n|)O] Tr [U(|0n⟩⟨0n|)O]

=
∑
l1,l2

∫
U∼Cl(2n)

Tr
[
Kl1U(|0n⟩⟨0n|)U†K†

l1
O
]
Tr
[
Kl2U(|0n⟩⟨0n|)U†K†

l2
O
]

=
∑
l1,l2

(
1

d(d2 − 1)

(
Tr(Kl1OK

†
l1
)Tr(Kl2OK

†
l2
) + Tr(Kl1OK

†
l1
Kl2OK

†
l2
)
))

.

(16)

We note that the interaction term
∑

l1,l2
Tr(Kl1OK

†
l1
Kl2OK

†
l2
) may not equal to Tr(O2), and this

leads to M2(U) ̸= M2(U). This comparison indicates that even if an algorithm can learn the
difference between noisy ensembles and Haar-random states, this does not imply that the algorithm
can be used to distinguish between pseudorandom ensembles and Haar-random ensembles.

The above discussions demonstrate the fundamental difference between our work and Ref. (Schuster
et al., 2024). Such difference implies that the efficiency of our learning algorithm may not contradict
the findings presented in Ref. (Schuster et al., 2024).

B NOISE MODELS ASSUMPTION IN THIS WORK

In the proposed learning approach (Alg 1), the algorithm requires (i) the target weakly noisy quan-
tum state ρun, and (ii) the QCA state set ρ̂QCA. The target weakly noisy state naturally contains noise
signals, while the QCA state set ρ̂QCA is provided by the classical shadow representation (Huang
et al., 2020). When preparing the classical shadow, recent result successfully embedded the quan-
tum error mitigation method into the classical shadow protocol, which provides rigorous theoretical
guarantees even in the noisy environment (Jnane et al., 2024).

In quantum computing research, the gate-independent noise model assumes that the noise affecting
quantum operations is uniform across all gates, regardless of their type or implementation. This
simplification is widely adopted for several reasons:

Theoretical Simplification: Assuming gate-independent noise allows researchers to de-
velop and analyze error correction protocols and fault-tolerant methods without delving
into the complexities introduced by gate-specific noise characteristics. This uniformity fa-
cilitates the derivation of general results and theoretical bounds (Nielsen & Chuang, 2001).
Practical Approximations: In certain quantum systems, particularly those with well-
calibrated gates operating on the same number of qubits and utilizing uniform control
mechanisms, noise variations across different gates can be negligible (Shor, 1996; Arute
et al., 2019). In such cases, the gate-independent noise model serves as a reasonable ap-
proximation, streamlining analysis without significantly compromising accuracy.
Alignment with Twirled Noise Models: Techniques like Pauli twirling are employed to
transform complex noise channels into diagonal forms on the Pauli basis (Chen et al.,
2023). While twirling simplifies the noise structure, it does not inherently eliminate gate
dependence. However, in many scenarios, the resulting noise can be approximated as gate-
independent, aligning with the assumptions of the model.

The gate-independent noise model provides a foundational framework for understanding error prop-
agation and developing correction strategies, which is a useful abstraction for theoretical exploration
and the initial development of error correction methods. We leave an open question of how to depict
the gate-dependent noise, which usually happens in larger, more complex quantum architectures.

C QUANTUM HARDWARE REQUIREMENT

We note that our learning algorithm has very few limitations to the practical quantum hardware. In
the Alg. 1, we only require (i) the target weakly noisy quantum state ρun, and (ii) the QCA state set
ρ̂QCA, which is essentially the classical shadow representation Huang et al. (2020). When preparing
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the classical shadow, recent work has successfully integrated quantum error mitigation methods into
the classical shadow protocol, providing rigorous theoretical guarantees in preparing shadows even
in noisy environments Jnane et al. (2024). As a result, our Alg 1 only require a quantum computer
which supports the quantum error mitigation function, which should have 50 − 100 noisy qubits
with ≥ 0.99 quantum gate fidelity. Some popular quantum computation platforms may satisfy
these requirements and can be used to prepare the required classical shadow, such as Eagle used
in Ref. Kim et al. (2023) and Sycamore Arute et al. (2019). This work is essentially a theoretical
research, and the algorithm has not yet been explicitly tested on these practical platforms.

D COMPARISON BETWEEN LOCAL AND GLOBAL NOISE MODELS

We note that the global depolarizing channel is essentially a special case of contracting n local
noise models. Specifically, given the global depolarizing channel E with noisy strength pg and local
depolarizing channel ⊗jEj with strength pl, according to the relative entropy inequality, for any
input state ρ, we can observe the relationships

D(E(ρ)∥In/2n) ≤ (1− pg)D(ρ∥In/2n), (17)

and

D(⊗n
j=1Ej(ρ)∥In/2n) ≤ (1− pl)nD(ρ∥In/2n) (18)

hold. These inequalities indicate that the global depolarizing channel is much weaker than local
noise, given the same noise strength. Consequently, for the global depolarizing channel, our algo-
rithm is capable of handling scenarios where pg ≤ O(1), while maintaining comparable prediction
accuracy. This suggests that the algorithm can effectively handle both types of noise, with only a
minor difference in performance under different noise strengths.

E RELATED DEFINITIONS

Definition 6 (Architecture Haferkamp et al. (2022); Bouland et al. (2019a)) An architecture A
is a directed acyclic graph that contains |V| ∈ Z>0 vertices (gates), and two edges (qubits) en-
ter each vertex, and two edges exit. A quantum circuit induced by the architecture A is denoted as
UA. The circuit set which contains all quantum circuits induced by the architecture A is denoted
by UA. The circuit set UA(R) contains all R-depth quantum circuits induced by the architecture A,
and we have the relationship

UA = ∪R≥1UA(R). (19)

Definition 7 (Causal Slice) The circuit UA is a causal slice if there exists a qubit-reachable path
between any two qubit-pairs, where the path only passes through vertices (gates) in the architecture
A.

F PROOF OF FACT 1

Here, we are interested in measuring the quantity EU1,...,UR̃

[
Tr(ρ1,R̃ρ2,R̃)

]
, where ρ1,R̃ =⃝R̃

r=1E◦

Ur(ρ1), ρ2,R̃ =⃝R̃
r=1Ur(ρ2) and ρ1, ρ2 represent initial pure states. Suppose E can be decomposed

by Kraus operators, that is E(·) =
∑r

l=1Kl(·)K†
l . Then we first consider the scenario R̃ = 1:

Tr (ρ1,1ρ2,1) =Tr [(E ◦ U1(ρ1)U1(ρ2))]
=Tr [Swap (E ◦ U1(ρ1)⊗ U1(ρ2))]

=

r∑
l=1

Tr
[
Swap

(
KlU1(ρ1)K†

l ⊗ U1(ρ2)
)]
.

(20)
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Then taking the average value on a unitary 2 design set, we obtain

EU1
Tr (ρ1,1ρ2,1) =

r∑
l=1

EU1
Tr
[
Swap

(
(Kl ⊗ In)(U1 ⊗ U1)(ρ1 ⊗ ρ2)(U†

1 ⊗ U
†
1 )(K

†
l ⊗ In)

)]
.

(21)
Considering the relationship

EU∼U
[
(U ⊗ U)A(U† ⊗ U†)

]
=

(
Tr(A)

d2 − 1
− Tr(SwapA)

d(d2 − 1)

)
In ⊗ In +

(
Tr(SwapA)

d2 − 1
− Tr(A)

d(d2 − 1)

)
Swap

=αIn ⊗ In + βSwap

(22)

where U is unitary 2-design, then Eq. 21 can be further calculated by

EU1Tr (ρ1,1ρ2,1) =

r∑
l=1

EU1Tr
[
Swap

(
(Kl ⊗ In)(αIn ⊗ In + βSwap)(K†

l ⊗ In)
)]

=α

r∑
l=1

Tr
[
Swap(KlK

†
l ⊗ In)

]
+ β

r∑
l=1

Tr
[
Swap(Kl ⊗ In)Swap(K†

l ⊗ In)
]

=α

r∑
l=1

Tr
[
KlK

†
l

]
+ β

r∑
l=1

|Tr [Kl]|2 .

(23)

The last equality comes from

Tr
[
Swap(Kl ⊗ In)Swap(K†

l ⊗ In)
]
= Tr

[
Swap(Kl ⊗ In)(In ⊗K†

l )
]

= Tr
[
Swap(Kl ⊗K†

l )
]

= |Tr [Kl]|2 .

(24)

Consider
∑r

l=1 Tr
[
KlK

†
l

]
= Tr[E(In)] = d and denote F =

r∑
l=1

|Tr [Kl]|2, Eq. 21 can be finally

expressed as

EU1Tr (ρ1,1ρ2,1) =

(
1

d2 − 1
− Tr(ρ1ρ2)

d(d2 − 1)

)
Tr[E(In)] +

(
Tr(ρ1ρ2)

d2 − 1
− 1

d(d2 − 1)

)
F

=
F − 1

d2 − 1
Tr(ρ1ρ2) +

1

d2 − 1
(d− F/d) ,

(25)

where d = 2n. Therefore, we obtain a recursive formula for the overlap of the output states, as
defined in 25. We have

EU1,U1,...,UR̃
Tr
(
ρ1,R̃ρ2,R̃

)
=
F − 1

d2 − 1
EU1,U1,...,UR̃−1

Tr(ρ1,R̃−1ρ2,R̃−1) +
1

d2 − 1
(d− F/d) . (26)

Then, we can use this iteration relationship to construct a geometric sequence, that is

EU1,U1,...,UR̃
Tr
(
ρ1,R̃ρ2,R̃

)
− 1

d
=

(
F − 1

d2 − 1

)(
EU1,U1,...,UR̃−1

Tr(ρ1,R̃−1ρ2,R̃−1)−
1

d

)
=

(
F − 1

d2 − 1

)R̃−1(
EU1

Tr (ρ1,1ρ2,1)−
1

d

)
=

(
F − 1

d2 − 1

)R̃−1(
F − 1

d2 − 1
+

d2 − F
d(d2 − 1)

− 1

d

)
=

(
F − 1

d2 − 1

)R̃−1
F − 1

d(d+ 1)
,

(27)

where the last equality comes from initial states ρ1 = ρ2 = |0n⟩⟨0n|. Generally, F ≤ d2, then if

R̃ ≤
log
(

F−1
d(d+1) (η − 1/d)−1

)
log(d2 − 1)− log(F − 1)

, (28)

we have EU1,U1,...,UR̃
Tr
(
ρ1,R̃ρ2,R̃

)
≥ η.
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G PROOF OF THEOREM 1

Consider U(α) =
∏LR

r=1 U(αr) is composed of LR two-qubit gates

U(αr) = exp

−i 4∑
j1,j2=0

αr(j1, j2) (Pj1 ⊗ Pj2)

 = exp (−i⟨αr,Pr⟩) , (29)

where Pj ∈ {I,X, Y, Z} and each αr(j1, j2) ∈ [−1, 1] 8. Using Taylor series, one obtains

U(α) =

LR∏
r=1

∞∑
k=0

(−i⟨αr,Pr⟩)k

k!
. (30)

Denote

U(αr)tr =

K∑
k=0

(−i⟨αr,Pr⟩)k

k!
, (31)

therefore U(αr) − U(αr)tr =
∑∞

k=K+1
(−i⟨αr,Pr⟩)k

k! . For arbitrary bit-string x, y, we can apply
standard bound on Taylor series to bound

∥⟨x|(U(αr)− U(αr)tr)|y⟩∥1 ≤ κ/K! (32)

for some constant κ. Therefore we have

⟨0n|U†(α)ρU(α)|0n⟩ =
2n−1∑
i,j=0

ρij⟨0n|U†(α)|i⟩⟨j|U(α)|0n⟩

=

2n−1∑
i,j=0

ρij

 ∑
y1,y2,...yLR−1∈{0,1}n

yLR=i

LR∏
r=1

⟨0n|U(αr)|yr⟩


 ∑

y1,y2,...yLR−1∈{0,1}n

yLR=j

LR∏
r=1

⟨yr|U(αr)|0n⟩



=

2n−1∑
i,j=0

ρij

 ∑
y1,y2,...yLR−1∈{0,1}n

yLR=i

LR∏
r=1

⟨0n|
∞∑
k=0

(−i⟨αr,Pr⟩)k

k!
|yr⟩

 ·
 ∑

y1,y2,...yLR−1∈{0,1}n

yLR=j

LR∏
r=1

⟨yr|
∞∑
k=0

(−i⟨αr,Pr⟩)k

k!
|0n⟩

 ,

(33)

where the y1, y2, ... represent the Feymann integration path. According to inequality 32,
⟨yr|U(αr)|0n⟩ can be approximated by a polynomial of degree K based on Taylor truncated
method, the above expression can be rewritten by

2n−1∑
r,s=0

ρrs

(
fr(α1, ...αLR) +O

(
2LRn

(K!)LR

))(
fs(α1, ...αLR) +O

(
2LRn

(K!)LR

))
, (34)

where fr(α1, ...αLR) represents a multi-variable polynomial of degree LRK.

Furthermore, we will show that Eq. 34 can be approximated by a low-degree function with at most(
LR
q

)
(K)q terms, where q = O(1). To show this fact, we rewrite Eq. 34 by

2n−1∑
r,s=0

ρrsfr(α1, ...αLR)fs(α1, ...αLR). (35)

8Without loss of generality, we assume αr(j1, j2) ∈ [−1, 1]. For rotation parameters |αr(j1, j2)| ∈ [1, 2π],
we can repeat the related two-qubit gate constant times to keep all rotation angles fixing in the interval [−1, 1].
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For the convenience of the proof, we denote fr(α1, ...αLR) = fr. Let

frfs = 4LRn
∑
i⃗

∑
j1,j2

a⃗iα
i1
1 (j1, j2) · · ·αiLR

LR (j1, j2),

where the factor 4LRn aims to ‘normalize’ each term in the summation, i⃗ = (i1, ..., iLR), α⃗ =
(α1(j1, j2), . . . , αLR(j1, j2)), j1, j2 ∈ [15] and each 0 ≤ il ≤ 2K, l ∈ [LR]. For the convenience
of the proof, we omit the index (j1, j2) in frfs in the following procedure.

Given a constant value q ≤ O(1), for every term like a⃗iα
i1
1 · · ·αiv

v with i1 = · · · = iv ≥ K

and v > q, its corresponding parameter
∣∣a⃗i

∣∣ ≤ 1/(K!)q (based on Taylor series). Truncate above
high-degree terms, and denote

f̃r,s =
∑

j1,...,jq≤K−1
s1≤s2...≤sq≤LR

aj⃗,s⃗α
j1
s1 · · ·α

jq
sq , (36)

therefore, the relationship

∣∣∣frfs − f̃r,s∣∣∣ = 4LRn

∣∣∣∣∣∣∣∣
∑
i⃗

a⃗iα
i1
1 · · ·α

iLR

LR −
∑

j1,...,jq≤K−1
s1≤s2...≤sq≤LR

aj⃗,s⃗α
j1
s1 · · ·α

jq
sq

∣∣∣∣∣∣∣∣ ≤ 4LRn

(
KLR

(K!)q

)
(37)

holds. Above inequality comes from the fact that there are O(KLR) terms in fr where the norm of
each truncated term is upper bounded by ≤ O (1/(K!)q).

Then let q = O(1), LR = O(n log(n)), f̃r,s can provide an estimation to frfs within 2−poly(n)

additive error according to the Stirling’s formula. Specifically, let q = 1 and use Stirling’s formula,
the error

4LRn

(
KLR

(K!)q

)
=

4n
2 lognKn logn

K!
≈ 4n

2 lognKn logn

√
2πK(K/e)K

. (38)

Let K = n2 log n, one obtains

4n
2 logn(n2 log n)n logn√

2πn2 log n(n2 log n/e)n2 logn
≤ (4logn)n

2 logn(n2 log n)n logn

(n2 log n/e)n2 logn
√
2πn2 log n

=
(n2 log n)n logn√

2πn2 log n

(
e

log n

)n2 logn

=
1√

2πn2 log n

(
(enn2 log n)

(log n)n

)n logn

≤ 1√
2πn2

2−n2

,

(39)

where the last inequality holds for large n. Then Eq. 34 can be represented by a muti-variable
polynomial function f(α⃗, ρ) with LR variables and at most poly(n) terms, and the relationship∣∣⟨0n|U†(α⃗)ρU(α⃗)|0n⟩ − f(α⃗, ρ)

∣∣ ≤ 2−n2

(40)

holds. Suppose the target observable M = U(α∗)|0n⟩⟨0n|U†(α∗). Then we may write

Tr(Mρ) ≈ f(α⃗∗, ρ) =
∑

j1,...,jq≤(K−1)
s1≤s2...≤sq≤LR

bj⃗,s⃗(ρ)α
j1,∗
s1 · · ·α

jq,∗
sq , (41)

where bj⃗,s⃗(ρ) =
∑2n−1

s,r=0 ρr,saj⃗,s⃗. On other hand, consider a machine learning procedure with data

points {(xi = α⃗i, yi = f(α⃗i, ρ))}. Let the feature map Ψ(α⃗) = (αj1
s1 · · ·α

jq
sq )s⃗,⃗j , and the target is
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to synthesis the function f(α⃗, ρ) = ⟨⃗b(ρ),Ψ(α⃗)⟩, where b⃗(ρ) ∈ RLRn2

. Consider the loss function

min
b⃗(ρ)

λ⟨⃗b(ρ), b⃗(ρ)⟩+
N∑
i=1

(
⟨⃗b(ρ),Ψ(α⃗i)⟩ − yi

)2
, (42)

where λ > 0 is a hyper-parameter. Define the feature matrix Ψ = (Ψ(α⃗1), . . . ,Ψ(α⃗N )) and the
kernel matrix

K = Ψ†Ψ = [K(α⃗i, α⃗j)]
N
i,j=1 , (43)

where the kernel function

K(α,α′) =

K∑
l=0

∑
1≤i1<···<iq≤LR

(αi1α
′
i1 + · · ·+ αiqα

′
iq )

l. (44)

Without loss of generality, we can normalize K(α,α′) enabling Tr(K) = N. Therefore, the optimal
solution

b⃗(ρ)opt =

N∑
i=1

N∑
j=1

Ψ(α⃗i) (K + λI)
−1
ij f(α⃗j). (45)

As a result, the trained machine learning model

g(x⃗) = ⟨⃗b(ρ)opt,Ψ(x⃗)⟩ =
N∑
i=1

N∑
j=1

(K + λI)
−1
ij K(α⃗i, x⃗)f(α⃗j)

=

N∑
j=1

(
N∑
i=1

(K + λI)
−1
ij K(α⃗i, x⃗)

)
f(α⃗j)

=

N∑
j=1

β⃗j(x)f(α⃗j)

=

N∑
j=1

β⃗j(x)⟨0n|U†(α⃗j)ρU(α⃗j)|0n⟩+O
(

2LRn

(K!)LR

)
.

(46)

Now we analyze the prediction error of g(x⃗) on the domain [0, 2π]LR. Denote

ϵ̃(x⃗) = ϵ(x⃗) + |Tr(M(x⃗)ρ)− f(x⃗, ρ)| = |g(x⃗)− f(x⃗, ρ)|+ |Tr(M(x⃗)ρ))− f(x⃗, ρ)|
≤ |g(x⃗)− f(x⃗, ρ)|+ 2−poly(n),

(47)

and the expected prediction error

Ex⃗ [ϵ(x⃗)] =
1

N

N∑
i=1

ϵ(x⃗i) +

(
Ex⃗ [ϵ(x⃗)]− 1

N

N∑
i=1

ϵ(x⃗i)

)
. (48)

Using the Cauchy-Schwartz inequality, the above first term can be upper bounded by

1

N

N∑
i=1

ϵ(x⃗i) ≤

√
λ2
∑N

i=1

∑N
j=1 (K + λI)

−1
ij yiyj

N
. (49)

Therefore, if the matrix K is invertable and hyper-parameter λ = 0, the training error is zero.
Without loss of generality, we set λ = 1/poly(n).

The generalized error can be characterized by the Rademacher complexity Mohri et al. (2018), that
is

Ex⃗ϵ(x⃗)−
1

N

N∑
i=1

ϵ(x⃗i) ≤
√

sup(K(x, x))∥a⃗opt∥Ψ
N

=

√
∥b⃗(ρ)opt∥Ψ

N
, (50)
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where ∥b⃗(ρ)∥Ψ = ⟨⃗b(ρ)opt, b⃗(ρ)opt⟩. Ideally, b⃗(ρ)opt = (bj⃗,s⃗(ρ)) for j1, ..., jq ≤ K − 1, s1 ≤
s2... ≤ sq ≤ LR, and b⃗(ρ) is induced by the polynomial kernel function, therefore the 2-norm of
the vector (bj⃗,s⃗(ρ))j⃗,s⃗ can be used to estimate ∥b⃗(ρ)∥Ψ. Noting that the multi-variable polynomial

function
∑

j⃗,s⃗ bj⃗,s⃗(ρ)α
j1
s1 · · ·α

jq
sq belongs to [0, 1] for all α⃗ ∈ [0, 2π]LR. Let α⃗ takes value from the

bitstring {0, 1}LR, we know that all
∣∣∣bj⃗,s⃗(ρ)∣∣∣ ∈ [0, 1]. Therefore, we can upper bound ∥b⃗(ρ)∥Ψ by

(LR)K = (LR)n2 log n.

Combine all together, for any M(x⃗) = U(x⃗)|0n⟩⟨0n|U†(x⃗) for U ∈ UA(R) and arbitrary density
matrix ρ, we have the relationship

Ex⃗

∣∣∣∣∣∣
N∑
j=1

β⃗j(x)⟨0n|U†(α⃗j)ρU(α⃗j)|0n⟩ − Tr (M(x⃗)ρ)

∣∣∣∣∣∣ ≤
√
λ2
∑N

i=1

∑N
j=1 (K + λI)

−1
ij yiyj

N
+

√
LRn2 log n

N

(51)

In the above first term, hyper-parameter λ can take arbitrary value, and λ =
√
λmin(K)/(nN)

enables that the first term is upper bounded by 1/n, where λmin(K) represents the minimum eigen-
value of the kernel matrix K. In the second term, let N = Õ

(
(LR)n2ϵ−2

)
, and the above error can

be upper bounded by ϵ.

H PROOF OF QUANTUM LEARNING PRINCIPLES

H.1 PROOF OF LEMMA 2

The proof of Lemma 2 depends on the intrinsic structure of the QCA model. Let Mopt represent an
observable

Mopt = arg max
M=V |0n⟩⟨0n|V †,V ∈UA(R)

∣∣∣Tr(M(ρp,R̃ − In/2
n)
)∣∣∣ . (52)

Given the QCA circuit set ρ̂QCA(R,A, N) = {U(α⃗j)}Nj=1 with N = LRn2ϵ−2, the intrinsic
structure of QCA promises that there exists a vector β⃗opt such that∣∣∣∣∣∣

N∑
j=1

β⃗opt
j (x⃗)Tr

(
U(α⃗j)P0U

†(α⃗j)ρ
)
− Tr (Moptρ)

∣∣∣∣∣∣ ≤ ϵ (53)

for any n-qubit density matrix ρ and projector P0 = |0n⟩⟨0n|. Denote

MR(β⃗) =

N∑
i=1

βiU(α⃗i)P0U
†(α⃗i),

according to the assumption in Lemma 2, we have

ϵ+ ϵ̃ < min
β⃗

∣∣∣E|Ψi⟩∼(ρ̂QCA,q⃗)

[
Tr(M(β⃗)(|Ψi⟩⟨Ψi| − ρp,R̃))

]∣∣∣
≤
∣∣∣E|Ψi⟩∼(ρ̂QCA,q⃗)

[
Tr(M(β⃗opt)(|Ψi⟩⟨Ψi| − ρp,R̃))

]∣∣∣
≤
∣∣∣E|Ψi⟩∼(ρ̂QCA,q⃗)

[
Tr(Mopt(|Ψi⟩⟨Ψi| − ρp,R̃))

]
+ ϵ
∣∣∣

=
∣∣∣E|Ψi⟩∼(ρ̂QCA,q⃗) [Tr(Mopt(|Ψi⟩⟨Ψi| − In/2n))]− Tr(Mopt(ρp,R̃ − In/2

n)) + ϵ
∣∣∣

≤ 1− 1

2n
− Tr(Mopt(ρp,R̃ − In/2

n)) + ϵ,

(54)

where the third line comes from the intrinsic structure of specific quantum circuit architecture, the
last inequality comes from

∑
i qi = 1 and ⟨Ψi|Mopt|Ψi⟩ ≤ 1. As a result, we have

Tr(Mopt(ρp,R̃ − In/2
n)) < 1− 1

2n
− ϵ̃. (55)
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H.2 PROOF OF LEMMA 1

According to the assumption, the relationship

ϵ ≥ max
q⃗,M(β⃗)

∣∣∣E|Ψi⟩∼(ρ̂QCA,q⃗)Tr
(
M(β⃗)(|Ψi⟩⟨Ψi| − ρp,R̃)

)∣∣∣
= max

q⃗,M(β⃗)

∣∣∣E|Ψi⟩∼(ρ̂QCA,q⃗)

[
Tr
(
M(β⃗)(|Ψi⟩⟨Ψi| − σ)

)
− Tr

(
M(β⃗)(ρp,R̃ − σ)

)]∣∣∣ (56)

holds, where maximal entangled state σ = I/d, d = 2n and M(β⃗) is defined as Eq. 11. Randomly
choose an index t ∈ [N ], and let

Mt = arg max
M=V |0⟩⟨0|V †

Tr (M(|Ψt⟩⟨Ψt| − σ)) , (57)

where V ∈ UA(R). Based on the intrinsic structure in QCA, there exists a unit vector β⃗(t) such that∣∣∣Tr (Mt(|Ψt⟩⟨Ψt| − σ))− Tr
(
M(β⃗(t))(|Ψt⟩⟨Ψt| − σ)

)∣∣∣ ≤ ϵ. (58)

Then assign the probability distribution qt = 1 − (N − 1)/d and qj = 1/d for j ̸= t. As a result,
Eq. 56 can be further lower bounded by∣∣∣∣∣∣
(
1− N − 1

d

)
Tr
(
M(β⃗(t))(|Ψt⟩⟨Ψt| − σ)

)
+

1

d

∑
j ̸=t

Tr
(
M(β⃗(t))(|Ψj⟩⟨Ψj | − σ)

)
− Tr

(
M(β⃗(t))(ρp,R̃ − σ)

)∣∣∣∣∣∣ .
(59)

Since |Ψt⟩ is generated by a R-depth quantum circuit Ut ∈ UA(R), then Cϵ(|Ψt⟩) ≤ LR which
implies

Tr

[
Mt

(
|Ψt⟩⟨Ψt| −

I

d

)]
≥ 1− 1

d
− ϵ, (60)

then the relationship

Tr

[
M(β⃗(t))

(
|Ψt⟩⟨Ψt| −

I

d

)]
≥ Tr

[
Mt

(
|Ψt⟩⟨Ψt| −

I

d

)]
− ϵ ≥ 1− 1

d
− 2ϵ (61)

holds. Therefore,
(
1− N−1

d

)
Tr
(
M(β⃗(t))(|Ψt⟩⟨Ψt| − σ)

)
≥ (1− N−1

d )(1− 1
d −2ϵ). Combining

the result 1
d

∑
j ̸=t

Tr
(
M(β⃗(t))(|Ψj⟩⟨Ψj | − σ)

)
≥ −(N−1)

d2 , where Tr
(
M(β⃗(t))(|Ψj⟩⟨Ψj | − σ)

)
>

−1/d, we thus have

Tr
(
M(β⃗(t))(ρp,R̃ − σ)

)
≥
(
1− N − 1

d

)(
1− 1

d
− 2ϵ

)
+

(N − 1)

d2
− ϵ

= 1− 1

d
− 3ϵ− N − 1

d

(
1− 2

d
− 2ϵ

)
.

(62)

Note that N = LRn2 log(n)ϵ−2, d = 2n, therefore

N − 1

d

(
1− 2

d
− 2ϵ

)
=

poly(n)

2n

(
1− 1

2n
− 2ϵ

)
< O(ϵ) (63)

for large n ∈ Z>0 and ϵ = 1/poly(n). Finally,

max
M=V |0n⟩⟨0n|V †

∣∣∣Tr(M(ρp,R̃ − In/2
n)
)∣∣∣ ≥ Tr

(
Mt(ρp,R̃ − In/2

n)
)

≥ Tr
(
M(β⃗(t))(ρp,R̃ − In/2

n)
)
− ϵ

≥ 1− 1

d
−O(ϵ),

(64)

where the first inequality is valid since Mt (defined by Eq. 57) is one of the instances in the set
{V |0n⟩⟨0n|V †}, the second line comes from the intrinsic structure of QCA, and the third line comes
from inequality 62. This implies C lim,A

ϵ (ρp,R̃) ≤ LR.
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I BAYESIAN OPTIMIZATION

I.1 OPTIMIZATION SUBROUTINE

In the following, we show how to maximize the loss function LR(β⃗) via Bayesian optimization on
a compact set. Bayesian optimization is composed by two significant components: (i) a statistical
model, in general Gaussian process, provides a posterior distribution conditioned on a prior distri-
bution and a set of observations over LR(β⃗). (ii) an acquisition function determines the position of
the next sample point, based on the current posterior distribution over LR(β⃗).

Gaussian process is a set of random variables, where any subset forms a multivariate Gaussian
distribution. For the optimization task considered in the main file, the random variables represent
the value of the objective function LR(β⃗) at the point β⃗. As a distribution over LR(β⃗), a Gaussian
process is completely specified by mean function and covariance function

µ(β⃗) = Eβ⃗[LR(β⃗)]

k(β⃗, β⃗′) = Eβ⃗[(LR(β⃗)− µ(β⃗))(LR(β⃗
′)− µ(β⃗′))],

(65)

and the Gaussian process is denoted as LR(β⃗) ∼ GP(µ(β⃗), k(β⃗, β⃗′)). Without loss of gener-
ality, we assume that the prior mean function µ(β⃗) = 0. In the t-th iteration step, assuming
observations Acc(t) = {(β⃗(1), y(β⃗(1))), . . . , (β⃗(t), y(β⃗(t)))} are accumulated, where y(β⃗(i)) =

LR(β⃗
(i)) + ϵi, with the quantum measurement error ϵi ∼ N (0, 1/4M̂) for i ∈ [t], where M̂

represents the measurement complexity in our algorithm. Conditioned on the accumulated ob-
servations Acc(t), the posterior distribution of LR(β⃗) is a Gaussian process with mean function
µt(β⃗) = Eβ⃗[LR(β⃗)|Acc(t)] and covariance function kt(β⃗, β⃗′) = Eβ⃗[(LR(β⃗)− µ(β⃗))(LR(β⃗

′)−
µ(β⃗′))|Acc(t)], specified by

µt(β⃗) = kT
t [Kt + It/4M̂ ]−1y1:t

kt(β⃗, β⃗
′) = k(β⃗, β⃗′)− kT

t [Kt + It/4M̂ ]−1kt,
(66)

where kt = [k(β⃗, β⃗(1)) . . . k(β⃗, β⃗(t))]T, the positive definite covariance matrix Kt =

[k(β⃗, β⃗′)]β⃗,β⃗′∈β⃗1:t
with β⃗1:t = {β⃗(1), . . . , β⃗(t)} and y1:t = [y(β⃗(1)), . . . , y(β⃗(t))]T. The poste-

rior variance of LR(β⃗) is denoted as σ2
t (β⃗) = kt(β⃗, β⃗). The mean function µt(β⃗) is related to

the expected value of LR(β⃗), while the covariance kt estimates the deviations of µt(β⃗) from the
value of LR(β⃗). Then the prediction is obtained by conditioning the prior Gaussian process on the
observations and returns a posterior distribution described by a Gaussian process multivariate distri-
bution. Using the Sherman-Morrison-Woodbury formula (Seeger, 2004), the predictive distribution
can be explicitly expressed as Eq. 66.

In the t-th iteration of Bayesian optimization, the acquisition function A(β⃗) learns from the accu-
mulated observations Acc(t − 1) and leads the search to the next point β⃗(t) which is expected to
gradually convergence to the optimal parameters of LR(β⃗). This procedure is achieved via maxi-
mizing A(β⃗). In detail, the design of acquisition function should consider exploration (exploring
domains where LR(β⃗) has high uncertainty) and exploitation (exploring domains where LR(β⃗)
is expected to have large image value). The upper confidence bound is a widely used acquisition
function, which is defined as

AUCB(β⃗) = µt−1(β⃗) +
√
κtσt−1(β⃗), (67)

and the next point β⃗(t) is decided by β⃗(t) = argmaxβ⃗∈Ddomain
AUCB(β⃗). Here, κt is a significant

hyper-parameter, and a suitable κt may lead β⃗(t) rapidly convergence to β⃗opt. In Theorem 4, a
specific κt = 2N log(t2N) + 2 log(t2/δ) is used. Details for maximizing LR(β⃗) are shown in
Alg 2.
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Algorithm 2: Bayesian Maximize Subroutine, BMaxS(ρun, ρ̂QCA(R,A, N), T, ϵ)

Input : Noisy quantum state ρun, a quantum state set ρ̂QCA(R,A, N), failure probability
δ ∈ (0, 1), iteration steps T , approximation error ϵ

Output: True/False;
1 Initialize µ0(β⃗) = 0, σ0, the covariance function k(·, ·);
2 for t = 1, 2, ..., T do
3 Select κt = 2N log(t2N) + 2 log(t2/δ);
4 Choose β⃗(t) = arg max

β⃗∈Dβ

µt−1(β⃗) +
√
κtσt−1(β⃗);

5 Estimate LR(β⃗
(t)) with shadow tomography of ρun and ρ̂QCA (obtained from M̂ -snapshot

measurements), that is
∣∣∣y(β⃗(t))− LR(β⃗

(t))
∣∣∣ ≤ ϵt where ϵt ∼ N (0, 1/4M̂);

6 Update µt, σ2
t as Eq. 66;

7 if y(β⃗(T )) ≤ ϵ do
8 return True
9 else do

10 return False

I.2 PROOF OF THEOREM 4

Theorem 5 (Formal version of Theorem 4) Take the weakly noisy state ρun and ρ̂QCA(R,A, N)
into Alg. 2. Pick the failure probability δ ∈ (0, 1) and let

κt = 2N log(t2N) + 2 log(t2/δ) (68)

in the t-th iteration step, then the average regret avrT can be upper bounded by

avrT ≤ O

√4N2 log2 T + 2N log T log(π2/(6δ))

T

 (69)

with 1− δ success probability.

We need following two lemmas to support our proof.

Lemma 3 (Lemma 5.1 in Srinivas et al. (2012)) Pick faliure probability δ ∈ (0, 1) and set κt =
2 log(|Ddomain|πt/δ), where

∑
t≥1 π

−1
t = 1 and πt > 0. Then∣∣∣L(β⃗)− µt−1(β⃗)

∣∣∣ ≤ κ1/2t σt−1(β⃗) (70)

holds for any t ≥ 1 and β⃗ ∈ Ddomain.

Lemma 4 (Lemma 5.4 in Srinivas et al. (2012)) Pick failure probability δ ∈ (0, 1) and let κt be
defined as in Lemma 3. Then the following holds with probability ≥ 1− δ:

T∑
t=1

4κtσ
2
t−1(β⃗t) ≤ κT γT , (71)

where γT = maxA∈Ddomain

1
2 log

∣∣I + σ−2KA

∣∣, and KA represents the used covariance matrix in
Bayesian optimization.

We first consider the continuity of the loss function L(β⃗). Considering
∑N

i=1 βi = 1, the gradient
function can be upper bounded by∣∣∣∣∣∂L(β⃗)∂βj

∣∣∣∣∣ = |Eρ̂i∼q⃗Tr [ρ̂j(ρ̂i − ρun)]| ≤ 1, (72)
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where the inequality comes from |Tr [ρ̂j(ρ̂i − ρun)]| ≤ 1. Therefore, the relationship∣∣∣L(β⃗)− L(β⃗′)
∣∣∣ ≤ ∣∣∣β⃗ − β⃗′

∣∣∣
1

(73)

holds for any β⃗, β⃗′ ∈ Ddomain. Now let us choose a discretization Dt
domain of size (τt)

N such that
for all β⃗ ∈ Ddomain,

∥β⃗ − [β⃗]t∥1 ≤ N/τt, (74)

where [β⃗]t represents the closest point in discretization on Dt
domain to β⃗. Combine Eqs. 73-74, one

obtains ∣∣∣L(β⃗)− L([β⃗]t)∣∣∣ ≤ Nτ−1
t = t−2, (75)

where the last inequality comes from τt = t2N , furthermore, |Dt
domain| = (t2N)N .

Using Lemma 3, we know that

κt = 2 log(|Ddomain| at/δ) (76)

enables the relationship ∣∣∣L(β⃗)− µt−1(β⃗)
∣∣∣ ≤ √κtσt−1(β⃗) (77)

holds with probability at least 1 − δ, where at > 0 and
∑

t≥1 a
−1
t = 1. A common selection is

at = πt2/6. Taking |Dt
domain| = (t2N)N into κt (Eq. 76), one obtains

κt = 2 log
(
(t2N)Nat/δ

)
. (78)

Combine Eq. 75 and 77, we have∣∣∣L(β⃗∗)− µt−1([β⃗
∗]t)
∣∣∣ ≤ ∣∣∣L(β⃗∗)− L([β⃗∗]t)

∣∣∣+ ∣∣∣L([β⃗∗]t)− µt−1([β⃗
∗]t)
∣∣∣ ≤ t−2 +

√
κtσt−1([β⃗

∗]t)

(79)

for any t ≥ 1, where β⃗∗ = argmaxβ⃗∈Dβ
L(β⃗). Now we connect the relationship between above

inequality to the regret bound.

By the definition of β⃗(t) (maximizing theAUCB(β⃗) in the t-th step): µt−1(β⃗
(t))+

√
κtσt−1(β⃗

(t)) ≥
µt−1([β⃗

∗]t)+
√
κtσt−1([β⃗

∗]t). Also, by Eq. 79, we haveL(β⃗∗) ≤ µt−1([β⃗
∗]t)+

√
κtσt−1([β⃗

∗]t)+
1/t2. Therefore, instantaneous regret

rt = L(β⃗∗)− L(β⃗(t))

≤
√
κtσt−1(β⃗

(t)) + 1/t2 + µt−1(β⃗
(t))− L(β⃗(t))

≤ 2
√
κtσt−1(β⃗

(t)) + 1/t2,

where the last inequality comes from Eq. 77. Using Lemma 4,
∑T

t=1 4κtσt−1(β⃗t) ≤ κT γT , where

γT = max
A∈Ddomain

1

2
log
∣∣∣I + 2M̂KA

∣∣∣ ,
KA represents the used covariance matrix in BMaxS(ρp,R̃, ρ̂QCA(R,A, N), T ) and M̂ represents
the number of measurement in generating the shadow tomography. In the linear function case, KA

can be selected as the polynomial kernel function, and γT = O(N log(T )) Vakili et al. (2021).
Furthermore, using the Cauchy-Schwartz inequality to

∑T
t=1 4κtσ

2
t−1(β⃗t) ≤ κT γT , one obtains∑T

t=1 2κ
1/2
t σt−1(β⃗t) ≤

√
TκT γT
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Finally, we have the result

avrT =
1

T

T∑
t=1

rt

≤ 1

T

T∑
t=1

2κ
1/2
t σt−1(β⃗t) +

π2

6T

≤
√
κT γT
T

+
π2

6T

= O

(√
2N2 log(T 2N) log(T ) + 2N log(T 2π2/(6δ)) log(T )

T

)

≤ O

√4N2 log2 T + 2N log T log(π2/(6δ))

T

 ,

(80)

where the first inequality results from
∑

t≥1 t
−2 = π2/6 and the last inequality comes fromN ≤ T .

J PROOF OF SAMPLE COMPLEXITY LOWER BOUND

we require the following lemmas to support our proof.

Lemma 5 (Lemma 6 in Wang et al. (2021)) Consider a single instanoise channelN = N1⊗· · ·⊗
Nn where each local noise channel {Nj}nj=1 is a Pauli noise channel that satisfies Nj(σ) = qσσ
for σ ∈ {X,Y, Z} and qσ be the Pauli strength. Then we have

D2

(
N (ρ)∥I

⊗n

2n

)
≤ q2cD2

(
ρ∥I

⊗n

2n

)
, (81)

where D2(·∥·) represents the 2-Renyi relative entropy, q = maxσ qσ and c = 1/(2 ln 2).

Lemma 6 Given an arbitrary n-qubit density matrix and maximally mixed state I⊗n/2n, we have

D
(
ρ∥I⊗n/2n

)
≤ D2

(
ρ∥I⊗n/2n

)
, (82)

where D(·∥·) denotes the relative entropy and D2(·∥·) denotes the 2-Renyi relative entropy.

Proof: Given quantum states ρ and σ, the quantum 2-Renyi entropy

D2(ρ∥σ) = log Tr

[(
σ−1/4ρσ−1/4

)2]
. (83)

When σ = I⊗n/2n, we haveD2(ρ∥I⊗n/2n) = log Tr
[(
(I⊗n/2n)−1ρ2

)]
= n+logTr[ρ2]. Noting

that the function y = x2 − x log x ≥ 0 when x ∈ [0, 1], and this implies Tr(ρ2) ≥ Tr(ρ log ρ).
Finally, we have

D
(
ρ∥I⊗n/2n

)
= n+Tr [ρ log ρ] + n ≤ Tr

[
ρ2
]
+ n = D2

(
ρ∥I⊗n/2n

)
. (84)

Task 2 Consider a pure quantum state ρ0 and two quantum circuit C1 and C2 with R1 and R2 depth
(R1 < R2), respectively. Each quantum circuit is affected by by p-strength Pauli channel in each
layer. Suppose that a distinguisher is given access to copies of the quantum states ΦC1(ρ0) and
ΦC2(ρ0), then what is the fewest number of copies sufficing to identify quantum states ΦC1(ρ0) and
ΦC2(ρ0) with high probability?

Obviously, if a quantum state complexity prediction problem can predict the complexity R1 and R2,
then we can classify quantum states ΦC1

(ρ0) and ΦC2
(ρ0) easily. The sample complexity of Task 2
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thus can be used to benchmark the sample complexity lower bound of the quantum state complexity
prediction problem.

Now we prove the sample complexity lower bound to Task 2. We consider the sample complexity
m in distinguishing quantum states ΦC1(ρ0) and ΦC2(ρ0). When their trace distance is quite large,
let δ ∈ (0, 1) and we have

1− δ ≤ 1

2

∥∥ΦC1(ρ0)
⊗m − ΦC2(ρ0)

⊗m
∥∥
1

≤ 1

2

(∥∥ΦC1
(ρ0)

⊗m − (In/2
n)⊗m

∥∥
1
+
∥∥ΦC2

(ρ0)
⊗m − (In/2

n)⊗m
∥∥
1

)
≤ 1√

2

(
D1/2

(
Φ⊗m

C1
(ρ0)∥(In/2n)⊗m

)
+D1/2

(
Φ⊗m

C2
(ρ0)∥(In/2n)⊗m

))
,

(85)

where the second line comes from the triangle inequality and the third line comes from the Pinsker’s
inequality. Using Lemmas 5 and 6, we have

1− δ ≤ 1√
2

(
D

1/2
2

(
Φ⊗m

C1
(ρ0)∥(In/2n)⊗m

)
+D

1/2
2

(
Φ⊗m

C2
(ρ0)∥(In/2n)⊗m

))
≤
√
nm√
2

((1− p)cR1 + (1− p)cR2)

≤
√
2nm(1− p)cR1 ,

(86)

As a result we have

m ≥ (1− p)−2cR1(1− δ)2

2n
. (87)

K REVIEW OF SHADOW TOMOGRAPHY

In quantum computation, the basic operators are the Pauli operators {I, σx, σy, σz} which provide
a basis for the density operators of a single qubit as well as for the unitaries that can be applied to
them. For an n-qubit case, one can construct the Pauli group according to

Pn = {eiαπ/2σj1 ⊗ ...⊗ σjn |jk ∈ {I, x, y, z}, 1 ≤ k ≤ n},

where eiαπ/2 ∈ {0,±1,±i} is a global phase. Then the Clifford group Cl(2n) is defined as the
group of unitaries that normalize the Pauli group:

Cl(2n) =
{
U |UP(1)U† = P(2),

(
P(1),P(2) ∈ Pn

)}
.

The n-qubit Clifford gates are then defined as elements in the Clifford group Cl(2n), and these
Clifford gates compose the Clifford circuit.

Randomly sampling Clifford circuit U can reproduce the first 3 moments of the full Clifford group
endowed with the Haar measure dµ(U) which is the unique left- and right- invariant measure such
that ∫

Cl(2n)

dµ(U)f(U) =

∫
dµ(U)f(V U) =

∫
dµ(U)f(UV )

for any f(U) and V ∈ Cl(2n). Using this property, one can sample Clifford circuits U ∈ Cl(2n)

with the probability Pr(U), and the corresponding expectation EU∈Cl(2n)[
(
UρU†)⊗t

] can be ex-
pressed as ∑

U∈Cl(2n)

Pr(U)
(
UρU†)⊗t

=

∫
Cl(2n)

dµ(U)
(
UρU†)⊗t

,

for any n-qubit density matrix ρ and t = 1, 2, 3, where Pr(U) indicates the probability on sampling
U . The right hand side of the above equation can be evaluated explicitly by representation theory,
this thus yields a closed-form expression for sampling from a Clifford group.

To extract meaningful information from an n-qubit unknown quantum state ρ, the shadow tomog-
raphy technique was proposed by Huang et al. (2020). The Clifford sampling is implemented by
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repeatedly performing a simple measurement procedure: apply a random unitary U ∈ Cl(2n) to
rotate the state ρ and perform a σz-basis measurement. The number of repeating times of this proce-
dure is defined as the Clifford sampling complexity. On receiving the n-bit measurement outcome
|b⟩ ∈ {0, 1}n, according to the Gottesman-Knill theorem (Gottesman, 1997), we can efficiently
store an classical description of U†|b⟩⟨b|U in the classical memory. This classical description en-
codes meaningful information of the state ρ from a particular angle, and it is thus instructive to view
the average mapping from ρ to its classical snapshot U†|b⟩⟨b|U as a quantum channel:

M(ρ) = EU∈Cl(2n)

(
Eb∈{0,1}n [U†|b⟩⟨b|U ]

)
, (88)

where the quantum channelM depends on the ensemble of unitary transformation, and the quantum
channelM can be further expressed as

M(ρ) = EU∈Cl(2n)

∑
b̂∈{0,1}n

⟨̂b|UρU† |̂b⟩U† |̂b⟩⟨̂b|U =
ρ+Tr(ρ)I

(2n + 1)2n
, (89)

where I indicates the 2n×2n identity matrix. Therefore the inverse of quantum channelM−1(ρ) =
(2n + 1)ρ− I , and an estimation of ρ is defined as

ρ̂ =M−1
(
U†|b⟩⟨b|U

)
.

Repeat this procedure M times results in an array of Clifford samples of ρ:

S(ρ;M) =
{
ρ̂1 =M−1

(
U†
1 |b1⟩⟨b1|U1

)
, ..., ρ̂M =M−1

(
U†
M |bM ⟩⟨bM |UM

)}
, (90)

and 1
M

∑M
m=1 ρ̂m is defined as the classical shadow of the quantum state ρ.

L NUMERICAL SIMULATIONS FOR STRESS-TESTING

Here, we conducted stress testing of the quantum learning algorithm in this study. Specifically,
we applied the algorithm to estimate the complexity lower bound of quantum states under noisy
environments for one-dimensional dynamical evolution. We tested the transverse-field Ising model
with system sizes of 1×6, 1×8, and 1×10, and the numerical results are presented in Figure 3. Our
findings indicate that the complexity lower bound of noisy quantum circuits does not grow linearly
with circuit depth, which is consistent to the results given by Figure 2 in the main file.

Furthermore, we observed that as the system size and complexity increase, the curves corresponding
to two different quantum states, R̃ = 2 and R̃ = 10, exhibit similar overall trends for the system size
n ∈ {6, 8, 10}. Moreover, the variance of the algorithm does not increase with the growing system
size but remains consistently stable. At the same time, the gap between the curves of quantum
states with different complexities does not show a closing trend as the system size grows. These
characteristics demonstrate the robustness of our learning algorithm against increases in system size
and complexity. Therefore, our algorithm remains reliable for predicting the complexity of large-
scale weakly noisy quantum states.

29



Published as a conference paper at ICLR 2025

m
in
ℒ 𝑅𝑅

m
in
ℒ 𝑅𝑅

m
in
ℒ 𝑅𝑅

𝑅𝑅 𝑅𝑅 𝑅𝑅

…

𝑛𝑛 = 6

…

𝑛𝑛 = 8

…

𝑛𝑛 = 10

Figure 3: These three subfigures illustrate the trend of the function minβ⃗ LR as it varies with the
circuit depthR of QCA set.In the stress-testing experiments, we focus on the Hamiltonian dynamics
of 1D transverse field Ising models, with system sizes ranging from 6 to 10. In all cases, we observe
that the weakly noisy state with R̃ = 2 exhibits a larger quantum state complexity lower bound
compared to the weakly noisy state with R̃ = 10.
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