
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS FAST LLM FINE-TUNING THROUGH ZEROTH-
ORDER OPTIMIZATION WITH PROJECTED GRADIENT-
ALIGNED PERTURBATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) using zeroth-order (ZO) optimization
has emerged as a promising alternative to traditional gradient-based methods due
to its reduced memory footprint requirement. However, existing ZO methods
suffer from high variance in gradient estimation, leading to slow convergence
and suboptimal performance on large-scale models. In this work, we propose
P-GAP, a fast LLM fine-tuning approach through zeroth-order optimization with
Projected Gradient-Aligned Perturbations. Specifically, we first estimate a low-
dimensional gradient space and then align perturbations in projected gradients’
direction within the space. This approach enables reduced the number of perturbed
parameters and decreased variance, therefore accelerated convergence for LLM
fine-tuning. Experiments on LLMs show that P-GAP consistently surpasses the
baselines, achieving up to 6% increase in accuracy on classification tasks and up
to 12% higher accuracy on generation tasks, with up to about 81% less training
iterations and 70% less GPU hours. These results demonstrate that P-GAP enables
fast, scalable, and resource-efficient ZO LLM fine-tuning.

1 INTRODUCTION

Fine-tuning (FT) large language models (LLMs) (Hu et al., 2021; Dettmers et al., 2023; Gu et al.,
2021) for specific tasks or datasets has become a common practice in modern machine learning.
However, as model size and complexity scale, fine-tuning incurs substantial memory overhead,
which severely limits its scalability and makes it inaccessible to users with constrained computational
resources (Tan et al., 2025b; Zhao et al., 2024b). To alleviate this issue, parameter-efficient fine-tuning
(PEFT) methods have been proposed (Li & Liang, 2021; Dettmers et al., 2023; Zhao et al., 2024a),
which update only a small subset of parameters while freezing the majority of the model. These
approaches drastically reduce GPU memory footprint and storage cost while achieving performance
comparable to full FT. However, despite their efficiency, PEFT methods still require computing
and storing full gradients and intermediate activations during backpropagation, which introduces
significant memory overhead (Malladi et al., 2023; Liu et al., 2024b).

To address the challenge, zeroth-order (ZO) optimization has emerged as a promising solution
(Zhang et al., 2024b; Malladi et al., 2023), which estimates gradients using only forward passes. By
leveraging randomized perturbations to approximate gradient directions, ZO completely removes the
need to store large gradient tensors and intermediate activations, which substantially reduces memory
usage. This advantage makes ZO especially appealing for extremely large models where backward
passes dominate GPU memory consumption. When combined with parameter-efficient strategies,
ZO-based fine-tuning offers a scalable and resource-friendly framework for adapting high-capacity
models under tight memory constraints while maintaining competitive performance (Tan et al., 2025b).
Despite the advantages of zeroth-order optimization in reducing memory overhead, these benefits
often come at the expense of longer computational time (e.g., GPU hours) and decreased accuracy
compared to first-order approaches (Li et al., 2024; Gautam et al., 2024).

Existing works show that variance in the zeroth-order gradient estimation, attributing to the random
perturbations, can be a factor for the longer computational time Chen et al. (2024); Park et al. (2025).
The larger variance in the estimation of the ZO gradient can lead to suboptimal accuracy and slower

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

20

10

0

10

20

Gaussian Distribution P-GAP (Ours)

D
is

tri
bu

tio
n 

of
 

gr
ad

ie
nt

 m
ag

ni
tu

de
s

Figure 1: Estimation of directional derivative magnitudes on
the V matrix from the first Transformer layer of the
OPT-2.7B model, using perturbations sampled from a
standard Gaussian distribution and from P-GAP

convergence rates compared to first-
order methods, making ZO-based
fine-tuning less stable and resource-
intensive (Kornilov et al., 2023;
Zhang et al., 2024b; Lobanov & Gas-
nikov, 2023). Existing works in LLM
fine-tuning such as (Ohta et al., 2020)
and (Malladi et al., 2023) aim to re-
duce the variance via increasing the
number of perturbations, which will
lead to prolong training time.

Inspired by (Ma & Huang, 2025;
Kozak et al., 2023) which find
anisotropic perturbations (i.e., the
magnitude of perturbations is larger
along certain directions and is smaller
along others, rather than being uniform in all directions) can potentially help relieve the variance
issue in ZO optimization theoretically, we raise the following question:

Q1: For LLM finetuning on larger-scale models, can we find the proper perturbation directions,
thereby reducing the variance of ZO gradient estimation and finally accelerating convergence with
negligible accuracy loss?

Inspired by (Wang et al., 2018; Zhang et al., 2024a; Yue et al., 2023), which identify that perturbing
the full parameter space can further amplify the variance in gradient estimation, as the variance scales
proportionally with the parameter dimension d, we naturally pose a research question:

Q2: Can we further reduce variance in gradient estimation by decreasing the parameter space that
require perturbation-based gradient estimation?

To answer the two questions, we propose a fast LLM finetuing approach through zeroth-order
optimization with Projected Gradient-Aligned Perturbations (P-GAP), which reduces the variance
in gradient estimation of ZO updates via low-dimensional perturbations that are aligned with the
gradient direction in the subspace of gradient, thereby achieving faster convergence. Figure 1 shows
the magnitude of gradient estimation on the attentions matrix V in the first Transformer layer of the
OPT-2.7B model, based on perturbations sampled from a standard Gaussian distribution and from
P-GAP. It can be observed that the value of estimated gradients are more stable and less dispersed for
P-GAP, which indicates a smaller variance. Our contributions can be summarized as follows:

• We propose a novel ZO-based LLM fine-tuning framework, P-GAP, which estimates a low-
dimensional gradient space and aligns perturbations in projected gradients’ direction within the
space. This design can not only allow the perturbation aligned in the most informative direction but
also effectively reduce the dimensionality of gradient estimation, therefore reducing variance and
accelerate convergence.

• We provide theoretical analysis on that the variance of ZO gradient estimation linearly increases
with the dimension of weight matrix which need perturbations for gradient estimation in LLMs,
and further show that P-GAP can reduce the variance with the proposed low-dimensional gradient
space estimation. Moreover, we provide the convergence analysis of P-GAP.

• We conduct extensive experiments on both encoder-only models (e.g., RoBERTa-large) and decoder-
based LLMs (e.g., OPT-2.7B/6.7B and LLaMA-3-3B/8B). Results show that P-GAP achieves up to
6% accuracy gains over the baselines, while achieving 5.2× speedup in training and more than 61
minutes less wall-clock time.

2 PRELIMINARIES

Notations. In this paper, all of the non-bold letters (including Latin letters and Greek letters) indicate
the scalar such as δ and K. All of the lower-case letters which is bold indicate a column vector such
as u and all of the upper-case bold letters such as V indicate a matrix. A d-dimensional multivariate
Gaussian distribution is denoted by N (µ,Σ), where µ ∈ Rd is the mean vector and Σ ∈ Rd×d is

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the covariance matrix. We use E[·] to represent the expected value of a variable and use Var[·] to
represent the variance of a variable. vec(W ) indicates that we flatten the matrix W by stacking its
columns vertically to change it into a column vector. ∥x∥p = (

∑n
i=1 x

p
i )

1
p indicates the ℓp-norm

of a vector x and we use ||x|| to denote the ℓ2-norm of a vector x. ∥U∥F =
√
⟨U ,U⟩ denotes

the Frobenius norm of a matrix U and we will call it F-norm in the paper for simplicity. Cs,pL (S)
denotes the collection of functions defined on the set S that are s-times continuously differentiable,
and whose p-th order derivatives are L-Lipschitz continuous. ∇̂ indicates the estimation of gradient
and ∇ indicates the true gradient. I indicates the identity matrix or vector.

Zeroth-order Optimization for LLMs. Consider a large language model with parameters θ ∈ Rd

and loss function L. At iteration step t, zeroth-order optimization estimates the gradient on a mini-
batch datasets Bt by perturbing θt along random directions. Specifically, if we choose to use Gaussian
distribution as perturbations, then we can get u ∼ N (0, Id) and N (0, Id) is the standard Gaussian
distribution. Given a perturbation scale ϵ > 0, the two-point gradient estimator is

∇̂L(θt;Bt) =
L(θt + ϵu;Bt)− L(θt − ϵu;Bt)

2ϵ
u (1)

where ∇̂ in Equation 1 indicates the estimated gradients. To reduce estimator variance, one may
average over n independent perturbations {ui}ni=1:

∇̂L(θt;Bt) =
1

n

n∑
i=1

[
L(θt + ϵui;Bt)− L(θt − ϵui;Bt)

2ϵ
ui

]
(2)

Finally, given the learning rate η and estimated gradients in Equation 2, the parameter update follows
the standard SGD form:

θt+1 = θt − η ∇̂L(θt;Bt). (3)

3 METHODOLOGY

In this section, we first clarify the remaining problems in existing zeroth-order optimization frame-
works and put up the motivation for our proposed method. Then, we will elaborate on our proposed
P-GAP, which performs ZO updates with low-dimensional perturbations that are aligned with the
gradient direction in the subspace of the gradient for variance reduction. Intuitively, our pipeline be-
gins by obtaining an approximate gradient matrix, which can be expressed as the product of low-rank
frame matrices and a coefficient matrix. Within this lower-dimensional space spanned by the frame
matrices, Gaussian perturbations may be selected arbitrarily without restriction; however, we hope
that they are constrained to be aligned with the directions defined by the gradient’s coefficient matrix
(i.e. the hyperplane defined by the low-dimension gradient’s coefficient matrix). After correction, the
perturbation itself can also be represented as a corrected coefficient matrix, which, when multiplied
with the frame matrices, yields the final perturbation in the original high-dimensional parameter
space. In other words, we allow perturbations to be chosen freely within the linear subspace spanned
by low-rank frame matrice, but enforce that they remain parallel to the hyperplane determined by the
gradient’s coefficient matrix.

3.1 PROJECTED GRADIENT-ALIGNED PERTURBATION

Inspired by (Ma & Huang, 2025), we adopt the idea of projecting the sampled random perturbations
onto the gradient direction. However, since the original method was designed for the vector dimension,
that is, if we generate a random initial perturbation z ∼ N (0, Id), we hope that the perturbation
could satisfy the condition that:

(∇LTz)2 = δ∥∇L∥2 (4)

which can be simplified to:
⟨∇L, z⟩ = ξ ·

√
δ∥∇L∥ (5)

where ξ is a constant that is randomly selected from the set {−1, 1}. And ⟨·, ·⟩ indicates the inner
product of two vectors. However, directly generating the perturbation vector corresponding to
Equation 4 and 5 is difficult since it requires sampling from a constrained space rather than the free
full parameter space. Since Equation 5 corresponds to a hyperplane in the vector space, we can

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

randomly sample an initial perturbed vector vinit which can be decomposed into two components:
one parallel with the hyperplane and the other orthogonal to it. We can denote them as vinit∥ and
vinit⊥, respectively. Then, we only need to retain the parallel component v = vinit∥, which satisfies
the requirement of Equation 5. According to (Ma & Huang, 2025), we can calculate the parallel
component v of the initial perturbation vinit as follows:

v = vinit −
∇LTvinit − ξ

√
δ ∥∇L∥

∥∇L∥2 ∇L (6)

In Equation 6 the aligned perturbation v is not only consistent with the gradient direction and but also
satisfies the Gaussian distribution condition, satisfying the following requirements for the chosen
perturbations to reduce the variance of ZO gradient estimation (Ma & Huang, 2025; Liu et al., 2020;
Gao & Sener, 2022):

• (a) Constant Magnitude: The magnitude (ℓ2 norm) of the perturbation vector v is a fixed
constant, i.e., ||v||2 = dδ (δ is a random constant). Many traditional methods fall into this
category, such as Gaussian distribution, Rademacher distribution and uniform distribution.

• (b) Directional Alignment: The square of the inner product between the perturbation vector
v and the true gradient ∇L is a fixed value, i.e., (∇LTv)2 = δ∥∇L∥2. This condition
implies that the perturbation direction should be ’aligned’ with the gradient direction.

We now extend this theory to the case of high-dimensional matrices. The vector norm on the right-
hand side of Equation 5 can be naturally generalized to the matrix norm. In this paper, we adopt
the Frobenius norm for matrices, i.e. ∥A∥F =

√∑
i,j a

2
ij , where aij is the number in the i-th row

and j-th column of the matrix A. We can replace the vector inner product with the Frobenius inner
product for matrices without loss of generality. For two matrices A,B ∈ Rm×n, we define

⟨A,B⟩F = Tr(A⊤B) (7)

where Tr(·) in Equation 7 means the trace of a matrix and bij is the number in the i-th row and j-th
column of the matrix B. Therefore, the vector hyperplane in Equation 5 can be extended to a tensor
hyperplane:

⟨∇L,Z⟩F = ξ ·
√
δ ∥∇L∥F (8)

where Z is a random perturbation satisfying Gaussian distribution.

Similarly, if we randomly generate an initial perturbation matrix Cinit ∼ N (0, Im×n) and Cinit

have equivalent dimension with gradient matrix ∇L ∈ Rm×n, then the sampled initial perturbation
can also be decomposed into a parallel component (Cinit∥) and a vertical component (Cinit⊥).
Deriving from Equation 6, the parallel component C = Cinit∥ of Cinit can be formulated as:

C = Cinit −
⟨∇L,Cinit⟩F − ξ

√
δ ∥∇L∥F

∥∇L∥2F
∇L (9)

We only need to retain the parallel component C of the hyperplane in Equation 8, i.e., the one aligned
with the gradient direction and the subsequent ZO perturbation update is then performed using only
the parallel component.

3.2 LOW-DIMENSIONAL GRADIENT SPACE DESIGN

Motivation. If we directly apply Equation 9 for perturbation alignment, there are two issues: First,
for large language models such as OPT-6.7B, the Transformer layer matrices are very large (e.g.,
4096×4096), which leads to high computational cost. Second, Equation 9 still performs perturbation
alignment in the full parameter space. However, as we have shown in the Appendix B.1, the larger
the dimensionality of the perturbations, the higher the variance of the ZO gradient estimation. This
motivates us to explore whether it is possible to restrict the perturbations to a low-dimensional space
and perform the perturbation alignment with gradient direction within this low-dimensional space.

Suppose the gradient matrix is denoted as S = ∇L ∈ Rm×n, it can be decomposed in the format
of the product of an orthogonal basis matrix and a coefficient matrix, using techniques such as

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

singular value decomposition (SVD) or QR decomposition. In this work, we adopt SVD for low-rank
decomposition, then we have:

S ≃ UrSrV
T
r (10)

where Ur ∈ Rm×r,Sr ∈ Rr×r,Vr ∈ Rn×r, r ≪ m and r ≪ n. Evidently, Ur and Vr can be
regarded as a pair of frames, i.e., two orthogonal bases. And Sr serves as the set of scaling factors
associated with the bases, which indicates the importance of the direction of each singular vector.
Hence, a natural choice is to preserve the leading r directions, which captures the most significant
components. Then, by combining Equation 9 and Equation 10, we have

C = Cinit −
⟨UrSrV

T
r ,Cinit⟩F − ξ

√
δ ∥UrSrV

T
r ∥F

∥UrSrV T
r ∥2F

UrSrV
T
r . (11)

3.3 ADAPTING PROJECTED GRADIENT-ALIGNED PERTURBATION IN LOW-DIMENSIONAL
GRADIENT SPACE

So far, we can conduct gradient alignment with Equation 11. However, generating perturbation in full
parameter space will lead to large variance of ZO gradient estimation. To further reduce the variance,
we propose to generate perturbations from a lower dimension space, therefore reducing the number
of perturbed parameters, resulting in reduced variance. Since the Frobenius inner product has the
feature of:

⟨UrSrV
T
r ,Cinit⟩F = ⟨Sr,U

T
r CinitVr⟩F (12)

Evidently, Cinit ∈ Rm×n has been transformed into a lower dimension perturbation UT
r CinitVr ∈

Rr×r. For simplicity, we denote Zinit = UT
r CinitVr ∈ Rr×r. Based on the property of

∥UrSrV
T
r ∥F = ∥Sr∥F , we can simplify Equation 11 to:

C = Cinit −
⟨Sr,Zinit⟩F − ξ

√
δ ∥Sr∥F

∥Sr∥2F
UrSrV

T
r (13)

Since UT
r Ur = Im and V T

r Vr = In, we perform left multiplication with UT
r on both sides of

Equation (13), and right multiplication with Vr on both sides as well. Then we have:

UT
r CVr = Zinit −

⟨Sr,Zinit⟩F − ξ
√
δ ∥Sr∥F

∥Sr∥2F
Sr. (14)

Similarly, we can use Z ∈ Rr×r to denote UT
r CVr. Then, the hyperplane condition in Equation 8

can be satisfied by the projected perturbation Z:

⟨Sr
ℓ ,Z⟩F = ξ

√
δ∥Sr

ℓ ∥F (15)

So far, from the derivation, we can obtain the final component in the low-dimensional space that
is parallel to the hyperlane defined by the low-dimensional gradient coefficient matrix, only need
to generate an initial Gaussian perturbation Zinit ∼ N (0, Ir×r) from a lower-dimensional space
and refine it through projection from Equation 14 to get corrected low-dimension perturbation Z .
Finally, we multiply the matrix Z with the frame matrix Ur,Vr to obtain the representation of the
low-dimensional perturbation in the high-dimensional space Zf = UrZV T

r .

In P-GAP, since the true gradient direction of the loss surface is unknown at each step in the ZO
fine-tuning setting, we adopt a lazy update strategy that has been shown effective in prior works
(Rando et al., 2024; Liu et al., 2018; Yu et al., 2024). The overall procedure of P-GAP is summarized
in Algorithm 1 in Appendix B.3. Specifically, we first choose the update interval k (window size),
the number of probe perturbations h, the number of basis columns r, the projection magnitude δ,
and other hyperparameters. Every k steps, we use lazy update strategy to estimate an approximate
gradient direction using h random probe perturbations and update the basis matrices Ur,Vr and
coefficient matrix Sr for each parameter W . During the following k iterations, we reuse the same
basis and coefficient matrices to construct low-dimensional perturbation representations Z , which are
mapped back to the original parameter space to get Zf for ZO updates.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

Datasets. We evaluate P-GAP with both classification datasets such as SST-2, SST-5, RTE and
generation tasks such as SQuAD, DROP. For RoBERTa-large, we follow prior ZO studies (Malladi
et al., 2023; Zhao et al., 2024b; Yu et al., 2024) and use k=16 as few-shot examples and k=512 as
many-shot examples per class, evaluated on 1,000 test samples, for classification tasks. For autore-
gressive models, we use fixed splits of 1000, 500, 1000 for train, evaluation, test, respectively, and
include both classification (e.g., SST2) and generation tasks (e.g., SQuAD) to assess generalization.
Models and Baselines. Our experiments span both masked and autoregressive large language models.
For the masked model, we use RoBERTa-large (350M) (Liu et al., 2019) following MeZO (Malladi
et al., 2023), while for autoregressive modeling we include representative families such as OPT (Zhang
et al., 2022) and LLaMA (Touvron et al., 2023), covering model sizes from hundreds of millions to
several billions of parameters (e.g., RoBERTa-large, OPT-2.7B/6.7B, and LLaMA-3-3B/8B). We
compare P-GAP with representative state-of-the-art zeroth-order optimization baselines, including
MeZO (Malladi et al., 2023), HiZOO (Zhao et al., 2024b), SubZero (Yu et al., 2024), and Sparse-
MeZO (Liu et al., 2024b). For SubZero and Sparse-MeZO on OPT-13B, we adopt the results reported
in Yu et al. (2024) due to the lack of open-sourced implementations.
Implementation Details and Hyperparameter Settings. All experiments are conducted on NVIDIA
A100 GPUs. To ensure a fair comparison, for key hyperparameters such as the batch size, and
optimization schedule, we use the same setting as MeZO (Malladi et al., 2023). Our detailed
hyperparameter settings such as k and δ can be found in Appendix B.3.

4.1 RESULTS ON MEDIUM-SIZED MODEL

Table 1: Experiments on RoBERTa-large 350M across different classification datasets and k settings

Task Type Dataset SST-2 SST-5 SNLI MNLI RTE TREC

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Gradient-free methods: k = 16

MeZO 90.5 (1.2) 45.5 (2.0) 66.0 (2.7) 56.5 (2.5) 59.4 (5.3) 76.9 (2.7)
MeZO LoRA 85.8 (0.7) 41.6 (0.8) 64.9 (0.8) 59.5 (1.5) 61.7 (3.2) 58.2 (5.6)
P-GAP 91.4 (0.4) 47.3 (2.8) 70.4 (1.1) 63.3 (2.1) 65.7 (2.8) 82.8 (3.7)
P-GAP LoRA 86.3 (0.6) 41.7 (1.5) 65.2 (0.5) 60.8 (1.9) 61.7 (3.0) 59.4 (2.1)

Gradient-based methods: k = 16

FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 70.2 (2.3) 66.4 (7.2) 85.0 (2.5)
FT LoRA 91.4 (1.7) 46.7 (1.1) 74.9 (4.3) 67.7 (1.4) 66.1 (3.5) 86.1 (3.3)

Gradient-free methods: k = 512

MeZO 93.3 (0.7) 52.4 (1.2) 83.0 (1.0) 78.3 (0.5) 78.6 (2.0) 94.3 (1.3)
MeZO LoRA 91.6 (0.8) 44.8 (0.4) 73.3 (0.6) 66.4 (0.4) 73.3 (1.5) 63.8 (2.3)
P-GAP 95.1 (0.6) 53.3 (1.7) 83.9 (2.3) 78.6 (0.9) 76.6 (1.2) 94.8 (1.0)
P-GAP LoRA 92.9 (0.3) 45.5 (0.6) 74.1 (1.9) 63.7 (1.2) 74.0 (0.9) 62.4 (2.8)

Gradient-based methods: k = 512

FT 93.9 (0.7) 55.9 (0.9) 88.7 (0.8) 84.4 (0.8) 82.7 (1.4) 97.3 (0.2)
FT LoRA 94.2 (0.2) 55.7 (0.8) 88.3 (0.5) 86.9 (0.6) 83.2 (1.3) 97.0 (0.3)

We conduct experiments on classification datasets to evaluate the effectiveness of P-GAP on RoBERTa-
large 350M (Liu et al., 2019) as shown in Table 1. We observe that P-GAP can generally yield higher
accuracy across multiple datasets. For instance, when k = 16, P-GAP can achieve around 0.9%,
6.8%, and 6.3% higher accuracy than MeZO on SST-2, RTE and MNLI, respectively. To further
investigate its flexibility, we evaluate P-GAP within the PEFT framework, LoRA framework. We
observe that LoRA typically incurs a modest degradation in performance compared to full-model FT,
P-GAP remains highly competitive: it can generally outperform zeroth-order baselines and maintains
good performance even when the number of trainable parameters is significantly reduced. These
results can show that our approach is effective in both full-tuning regime and PEFT scenarios such as
LoRA, highlighting its robustness and practicality for medium-sized language model deployment.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Results of fine-tuning OPT-2.7B on eight classification datasets and two generation datasets

Dataset SST-2 RTE CB BoolQ WSC WIC COPA MultiRC SQuAD DROP
Task Type classification generation

Zero-shot 56.3 54.2 50.0 47.6 36.5 52.7 72.0 44.4 29.8 10.0
FT 94.2 81.2 82.1 72.2 63.8 65.8 82.0 71.6 78.4 30.3
LoRA 94.6 80.8 82.7 77.7 59.8 64.0 80.0 72.8 77.9 31.1

MeZO 91.2 63.5 71.4 67.4 62.5 59.2 76.0 59.4 66.8 19.4
HiZOO 90.8 60.6 70.4 68.0 60.2 56.6 79.0 55.8 68.2 20.2
P-GAP 91.6 63.8 73.2 66.8 66.1 61.0 82.0 60.8 74.9 21.1

MeZO LoRA 91.0 62.8 67.8 64.8 65.4 58.2 79.0 63.4 63.4 19.2
HiZOO LoRA 90.6 66.3 71.4 67.0 62.2 58.8 78.0 59.0 69.2 18.3
P-GAP LoRA 91.8 63.8 71.4 67.4 66.3 59.8 80.0 63.8 76.6 22.5

Table 3: Experiments on OPT-6.7B (with 1000
training samples)

Dataset SST-2 RTE CB WSC SQuAD
Task Type classification generation

MeZO 91.8 62.8 73.2 65.4 70.3
HiZOO 90.9 66.3 71.4 62.1 71.9
P-GAP 92.0 63.8 78.6 67.3 75.4
MeZO LoRA 93.4 67.9 73.2 65.4 69.8
HiZOO LoRA 92.5 68.7 71.4 63.6 72.3
P-GAP LoRA 94.0 72.5 78.6 66.3 79.2

Table 4: Experiments on OPT-13B (with 1000
training samples)

Dataset SST-2 RTE WSC SQuAD
Task Type classification generation

MeZO 91.4 69.3 61.5 84.2
HiZOO 92.1 66.1 63.5 81.9
Sparse-MeZO 92.3 76.9 61.1 77.9
Subzero 92.1 74.0 65.4 84.5
P-GAP 92.7 73.8 66.3 85.0

4.2 RESULTS ON LARGE AUTOREGRESSIVE MODELS

SST-2 RTE CB WSC WIC
Datasets

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

) +3.3

+0.0

+3.6

+2.1
+1.6

+1.8

+6.2

+1.8

+1.4
+1.0

MeZO (3B)
P-GAP (3B)
MeZO (8B)
P-GAP (8B)

Figure 2: Accuracy comparison of MeZO and
P-GAP (Ours) on LLaMA3-3B and LLaMA3-8B

P-GAP is evaluated with both the OPT and
LLaMA model families, on classification tasks
such as RTE and SST-2 datasets, and generation
tasks such as SQuAD and DROP datasets. As
shown in Table 2, on OPT-2.7B, P-GAP con-
sistently outperforms MeZO and HiZOO. For
instance, on COPA, P-GAP can achieve an accu-
racy of 82.0%, which is 6% higher than MeZO
at 76.0% and also surpasses HiZOO with an in-
crease about 3%. On generation tasks, P-GAP
can obtain 74.9% accuracy on SQuAD, yielding
a 12% increase compared to MeZO (66.8%). When combined with LoRA, our approach remains
competitive and continues to outperform baselines. On SQuAD with LoRA, P-GAP reaches about
76.6% accuracy, exceeding MeZO LoRA (63.4%) by more than 13%.

Turning to LLaMA-3 models, Figure 2 shows that P-GAP can generally boost accuracy across
datasets. For example, on SST-2 datasets, P-GAP can acheive about 3.3% increase in accuracy on
LLaMA-3-3B and 1.8% increase of accuracy on LLaMA-3-8B over MeZO baseline.

4.3 PERFORMANCE ON LLMS WITH VARIOUS SCALES

We also evaluate the performance of P-GAP on LLMs with different scales. For example, we conduct
experiments on OPT-6.7B, OPT-13B as shown in Table 3, Table 4, respectively. We evaluate P-GAP
with LLaMA-3-3B and LLaMA-3-8B as shown in Figure 2. We observe that P-GAP has consistent
advantages over baselines on OPT-6.7B, OPT-13B and LLaMA-3 models. On OPT-6.7B with the
CB dataset, P-GAP achieves 78.6% accuracy, outperforming MeZO by 5.4% and HiZOO by 7.2%,
individually. On SQuAD, it can achieve an accuracy of 75.4%, which is about 5.1% higher than
MeZO. When combined with LoRA, the improvements of P-GAP become even more significant:
P-GAP reaches 72.5% accuracy on RTE and 79.2% on SQuAD, surpassing HiZOO by nearly 4%
and 7%, respectively. For OPT-13B model, P-GAP can achieve about 66.3% accuracy in fine-tuning
WSC dataset, surpassing all of the baselines including Sparse-MeZO and Subzero.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Iterations

0.0

0.2

0.4

L
os

s

5.25×

MeZO
P-GAP

(a) SST-2 Dataset

0 1000 2000 3000 4000 5000
Iterations

0.0

0.5

1.0

1.5

L
os

s

4.76×

MeZO
P-GAP

(b) RTE Dataset

0 1000 2000 3000 4000 5000
Iterations

0.0

0.7

1.4

2.1

L
os

s

3.33×

MeZO
P-GAP

(c) SNLI Dataset

Figure 3: Training loss comparison with iterations of MeZO and P-GAP on RoBERTa-large

WSC DROP WIC CB MultiRC SQuAD SST-2 RTE BoolQ Copa
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 T
im

e

2.94x 5.88x 1.37x 2.63x 1.85x 3.70x 1.47x 1.56x 3.45x 2.38x

MeZO P-GAP

Figure 4: Comparison of GPU hours for full FT across different datasets on OPT-2.7B between
MeZO and P-GAP. Results are presented as normalized time (numbers in red indicate speedup)

4.4 CONVERGENCE AND WALL-CLOCK TIME ANALYSIS

0 20 40 60 80
Wall Clock Time (min)

0.70

0.75

0.80

0.85

0.90

L
os

s

-61.1min

P-GAP
MeZO

Figure 5: Wall clock time for OPT-2.7B on CB
datasets

We provide the convergence and wall-clock time
analysis on different models to show the acceler-
ation effects of P-GAP over baseline. As shown
in Figure 3, on RoBERTa-large, our approach
achieves lower training loss more quickly, reduc-
ing the number of iterations by 5.25× on SST-2
and 3.33× on SNLI for achiving the same final
loss as MeZO. This demonstrates that fewer up-
date steps are sufficient for P-GAP to achieve com-
petitive performance. Figure 4 shows the overall
normalized GPU hours of P-GAP compared to
MeZO for fine-tuning on all of the ten datasets.
We can observe that P-GAP consistently accelerates convergence compared to MeZO (Malladi et al.,
2023) across datasets. For example, on DROP, P-GAP can achieve about 5.88× speedup (with only
17% of the training time) compared to MeZO, while also achieving better performance. P-GAP can
also reduce wall-clock time. With OPT-2.7B on the CB dataset, P-GAP reach the loss of 0.6985
about 61.1 minutes earlier than MeZO, corresponding to a reduction of 40% in convergence time, as
shown in Figure 5. These results highlight the high efficiency of P-GAP, which not only reduces the
number iterations but also achieves practical time savings during training.

4.5 MEMORY ANALYSIS

We evaluate P-GAP’s memory usage and training efficiency under both full-parameter and LoRA-
based fine-tuning. As shown in Table 5, our approach strikes a favorable balance between convergence
speed and per-step overhead. Compared to MeZO, which requires the full training budget of 100%
iterations and GPU hours, P-GAP reduces the number of iterations to only 15.6% and the total GPU
hours to 27.3%, with memory usage slightly larger than MeZO and smaller than HiZOO. On SQuAD
dataset, this translates to more than a 70% reduction in training time with comparable accuracy.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Memory and training time comparison on
OPT-2.7B (SQuAD, avg. 300 tokens)

Method Mem. Iter. Hours

FT 73.5G 9.3% 16.8%
LoRA 58.5G 6.3% 11.5%

MeZO 9.4G 100.0% 100.0%
HiZOO 13.3G 66.7% 91.5%
P-GAP 11.3G 15.6% 27.3%

MeZO+LoRA 8.4G 94.2% 51.6%
HiZOO+LoRA 11.6G 80.0% 65.7%
P-GAP+LoRA 9.1G 12.5% 22.4%

From a memory standpoint, P-GAP is substan-
tially more efficient than gradient-based fine-
tuning approaches such as full fine-tuning with
73.5G memory usage and LoRA with 58.5G
memory usage, since it avoids storing gradi-
ents and activations. Even under parameter-
efficient settings, it maintains strong efficiency.
For instance, with LoRA, P-GAP further lowers
GPU hours to 22.4%, compared to 51.6% for
MeZO+LoRA and 65.7% for HiZOO+LoRA,
using only 9.1G of memory. These results high-
light that P-GAP achieves faster convergence
with minimal memory overhead across diverse
tuning regimes. We provide more memory us-
age results in Appendix B.4.

5 RELATED WORK

Memory-efficient Fine-tuning of LLMs. Large pre-trained models (Radford et al., 2021; Chen
et al., 2022; Singh et al., 2022) have been increasingly employed across diverse domains. However,
a tension arises between the growing demand for fine-tuning and the prohibitive computational
cost, particularly in resource-constrained environments (Zeng et al., 2024; Tan et al., 2025a). To
mitigate this issue, several memory-efficient fine-tuning (PEFT) techniques have been proposed. For
instance, Hu et al. (2021); Dettmers et al. (2023); Liu et al. (2024a); Qin et al. (2024) update only a
subset of model parameters, while reducing memory usage. Frantar et al. (2022); Xiao et al. (2023);
Dettmers et al. (2023) compresses continuous real-valued weights into low-bit discrete formats (e.g.,
INT8 or INT4), thereby lowering both memory and computational costs. Recently, zeroth-order
(ZO) optimization has emerged as a promising paradigm for memory-efficient fine-tuning (Malladi
et al., 2023; Zhang et al., 2024b; Chen et al., 2023; Yu et al., 2024). By estimating gradients solely
through forward passes, ZO eliminates the need to store memory-intensive activations and optimizer
states (Malladi et al., 2023; Liu et al., 2024b; Tang et al., 2024).

Acceleration of Zeroth-order Optimization. Despite the appealing memory-efficiency of ZO, the
gains from ZO approaches come with a cost: convergence is often slower than FO alternatives, largely
due to the inherent noise in randomized perturbation-based estimators. Ji et al. (2019) proposed
two new zeroth-order variance-reduced algorithms, ZO-SVRG-Coord-Rand and ZO-SPIDER-Coord,
and provided refined theoretical analysis for the existing ZO-SVRG-Coord method in the context of
nonconvex optimization, which can achieve better convergence rates and function query complexities
than previous methods. Duchi et al. (2015) examined random perturbations with finite fourth-order
moments, and demonstrated that using a uniform random vector yields the optimal dependence on the
dimension d. Kozak et al. (2023) construct orthogonal perturbations, or orthogonalize the sampled
directions, so that the estimator can better explore diverse gradient directions and identify more
effective descent paths. Sener & Koltun (2020) propose to learn a latent low-dimensional manifold in
the course of optimization, from which samples are drawn to effectively reduce sample complexity.

6 CONCLUSION

In this paper, we introduce P-GAP, a novel zeroth-order optimization framework for large language
model fine-tuning by estimating a low-dimensional gradient space and aligns perturbations in pro-
jected gradients’ direction within the space. We provide theoretical analysis on how the variance of
standard ZO estimators scales with the model size and how our approach can mitigate this problem
through gradient estimation within low-dimension space. Extensive experiments show that P-GAP
can effectively reduce the variance of ZO gradient estimation with improved accuracy and efficiency,
and accelerated convergence. For instance, P-GAP achieves up to 12% increase in accuracy over
baselines on SQuAD dataset, more than 61 minutes reduction in training time on BoolQ dataset.
Overall, our findings highlight the potential of projected gradient-aligned perturbations for scalable
and efficient ZO LLM fine-tuning in practice.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

René Erlín Castillo, Humberto Rafeiro, et al. An introductory course in Lebesgue spaces. Springer,
2016.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up
zeroth-order optimization for deep model training. arXiv preprint arXiv:2310.02025, 2023.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient adaptation
of pretrained language models for image captioning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 18030–18040, 2022.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order
fine-tuning for language models with low-rank structures. arXiv preprint arXiv:2410.07698, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Katelyn Gao and Ozan Sener. Generalizing gaussian smoothing for random search, 2022. URL
https://arxiv.org/abs/2211.14721.

David JH Garling. Inequalities: a journey into linear analysis. Cambridge University Press, 2007.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models, 2024. URL https://arxiv.
org/abs/2404.08080.

Jiaqi Gu, Chenghao Feng, Zheng Zhao, Zhoufeng Ying, Ray T Chen, and David Z Pan. Efficient on-
chip learning for optical neural networks through power-aware sparse zeroth-order optimization. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 7583–7591, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms
and analysis for nonconvex optimization. In International conference on machine learning, pp.
3100–3109. PMLR, 2019.

Nikita Kornilov, Ohad Shamir, Aleksandr Lobanov, Darina Dvinskikh, Alexander Gasnikov, Inno-
kentiy Shibaev, Eduard Gorbunov, and Samuel Horváth. Accelerated zeroth-order method for
non-smooth stochastic convex optimization problem with infinite variance. Advances in Neural
Information Processing Systems, 36:64083–64102, 2023.

David Kozak, Cesare Molinari, Lorenzo Rosasco, Luis Tenorio, and Silvia Villa. Zeroth-order
optimization with orthogonal random directions. Mathematical Programming, 199(1):1179–1219,
2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, and Vahab Mirrokni.
Addax: Utilizing zeroth-order gradients to improve memory efficiency and performance of sgd for
fine-tuning language models, 2024. URL https://arxiv.org/abs/2410.06441.

10

https://arxiv.org/abs/2211.14721
https://arxiv.org/abs/2404.08080
https://arxiv.org/abs/2404.08080
https://arxiv.org/abs/2410.06441


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024a.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred Hero, and P.K. Varshney. A
primer on zeroth-order optimization in signal processing and machine learning: Principals, recent
advances, and applications. IEEE Signal Processing Magazine, 37:43–54, 09 2020. doi: 10.1109/
MSP.2020.3003837.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024b.

Aleksandr Lobanov and Alexander Gasnikov. Accelerated zero-order sgd method for solving the black
box optimization problem under “overparametrization” condition. In International Conference on
Optimization and Applications, pp. 72–83. Springer, 2023.

Shaocong Ma and Heng Huang. Revisiting zeroth-order optimization: Minimum-variance two-point
estimators and directionally aligned perturbations. In The Thirteenth International Conference on
Learning Representations, 2025.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Mayumi Ohta, Nathaniel Berger, Artem Sokolov, and Stefan Riezler. Sparse perturbations for
improved convergence in stochastic zeroth-order optimization, 2020. URL https://arxiv.
org/abs/2006.01759.

Sihwan Park, Jihun Yun, SungYub Kim, Souvik Kundu, and Eunho Yang. Unraveling zeroth-order
optimization through the lens of low-dimensional structured perturbations. arXiv e-prints, pp.
arXiv–2501, 2025.

Haotong Qin, Xudong Ma, Xingyu Zheng, Xiaoyang Li, Yang Zhang, Shouda Liu, Jie Luo, Xianglong
Liu, and Michele Magno. Accurate lora-finetuning quantization of llms via information retention.
arXiv preprint arXiv:2402.05445, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Marco Rando, Cesare Molinari, Silvia Villa, and Lorenzo Rosasco. Stochastic zeroth order descent
with structured directions. Computational Optimization and Applications, 89(3):691–727, 2024.

Ozan Sener and Vladlen Koltun. Learning to guide random search. arXiv preprint arXiv:2004.12214,
2020.

Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Prateek
Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, and Laurens Van Der Maaten. Revisiting
weakly supervised pre-training of visual perception models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 804–814, 2022.

Qitao Tan, Sung-En Chang, Rui Xia, Huidong Ji, Chence Yang, Ci Zhang, Jun Liu, Zheng Zhan,
Zhenman Fang, Zhou Zou, et al. Perturbation-efficient zeroth-order optimization for hardware-
friendly on-device training. arXiv preprint arXiv:2504.20314, 2025a.

11

https://arxiv.org/abs/2006.01759
https://arxiv.org/abs/2006.01759


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qitao Tan, Jun Liu, Zheng Zhan, Caiwei Ding, Yanzhi Wang, Jin Lu, and Geng Yuan. Harmony
in divergence: Towards fast, accurate, and memory-efficient zeroth-order llm fine-tuning. arXiv
preprint arXiv:2502.03304, 2025b.

Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Private fine-tuning
of large language models with zeroth-order optimization. arXiv preprint arXiv:2401.04343, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order opti-
mization in high dimensions. In International conference on artificial intelligence and statistics,
pp. 1356–1365. PMLR, 2018.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Ziming Yu, Pan Zhou, Sike Wang, Jia Li, and Hua Huang. Subzero: Random subspace zeroth-order
optimization for memory-efficient llm fine-tuning. 2024.

Pengyun Yue, Long Yang, Cong Fang, and Zhouchen Lin. Zeroth-order optimization with weak
dimension dependency. In The Thirty Sixth Annual Conference on Learning Theory, pp. 4429–
4472. PMLR, 2023.

Shulin Zeng, Jun Liu, Guohao Dai, Xinhao Yang, Tianyu Fu, Hongyi Wang, Wenheng Ma, Hanbo Sun,
Shiyao Li, Zixiao Huang, et al. Flightllm: Efficient large language model inference with a complete
mapping flow on fpgas. In Proceedings of the 2024 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp. 223–234, 2024.

Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero: dimension-
independent and differentially private zeroth-order optimization. International Conference on
Machine Learning (ICML 2024), 2024a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024b.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A CLAIM OF LLM USAGE

In this work, large language models (LLMs) were used solely as a general-purpose writing assistant.
Their role was limited to correcting grammar, fixing typographical errors, and polishing the language
for clarity and readability.

B APPENDIX

B.1 VARIANCE WITH THE PERTURBATION SPACE DIMENSION

Lemma 1. Let P ∈ Rd×q satisfy P⊤P = Iq, and sample z ∼ N (0, Iq). Define the two-point
estimator

gε(x, P, z) =
f(x+ εPz)− f(x− εPz)

2ε
Pz.

Let ∇f = ∇f(x) and u := P⊤∇f ∈ Rq . Then:

(A) Quadratic objective (exact formula). If f(x) = x⊤Hx is quadratic, then

E∥gε∥2 = (q + 2) ∥u∥2, Var(gε) := E∥gε − Egε∥2 = (q + 1) ∥u∥2,

so the variance grows linearly in the perturbation dimension q.

(B) General L-smooth objective (upper bound). If f is L-smooth, then there exists a constant C > 0
such that

E∥gε∥2 ≤ (q + 2) ∥u∥2 + C ε2, Var(gε) ≤ (q + 1) ∥u∥2 + C ε2,

so as ε→0, the variance satisfies Var(gε) = Θ(q) ∥u∥2.

Proof. Step 1 (Quadratic case). For f(x) = x⊤Hx,

f(x+ εPz)− f(x− εPz) = 2ε ⟨∇f, Pz⟩,

so gε = ⟨∇f, Pz⟩Pz. Writing u = P⊤∇f and using rotation invariance we may assume u = ∥u∥e1,
hence

∥gε∥2 = ∥u∥2 z21
q∑

i=1

z2i .

Gaussian moment identities give E[z21
∑q

i=1 z
2
i ] = (q + 2), so E∥gε∥2 = (q + 2)∥u∥2. Since

Egε = PP⊤∇f and ∥Egε∥2 = ∥u∥2,

Var(gε) = (q + 2)∥u∥2 − ∥u∥2 = (q + 1)∥u∥2.

Step 2 (General L-smooth case). By a second-order Taylor expansion,

f(x+ εPz)− f(x− εPz)

2ε
= ⟨∇f, Pz⟩ + rε(z), |rε(z)| ≤ cL ε ∥Pz∥2,

for some absolute constant c. Thus gε = ⟨∇f, Pz⟩Pz+rε(z)Pz. Using ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2
and the quadratic case result, and noting E∥Pz∥4 = O(q2), we obtain

E∥gε∥2 ≤ (q + 2)∥u∥2 + C1 ε
2,

which also implies

Var(gε) = E∥gε∥2 − ∥Egε∥2 ≤ (q + 1)∥u∥2 + C1 ε
2.

Let C := C1 to finish.

Corollary 1 (Full-space perturbation). If P = Id, then q = d, and

Var(gε) = Θ(d) ∥∇f(x)∥2 +O(ε2),

so the variance scales linearly with the full model dimension.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 CONVERGENCE ANALYSIS

A.2.1 GLOBAL NOTATION

In this section, we restate or redefine the key notations that will be used throughout our work.

• d – parameter dimension; r – retained rank per layer; ℓ – number of trainable layers; q = ℓr2.
• We assume that f : Rd→R is L-smooth: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y.
• Mini-batch variance bound Ex∥∇fx(w)−∇f(w)∥2 ≤ σ2.
• Singular-value threshold σmin > 0 refers to the rth singular value of∇f .
• Hyper-parameters ε (perturbation scale), δ (projection strength), w (number of probe pertur-

bations), k (window size).
• Orthogonal projection Pt ∈ Rd×q , updated every k iterations, always P⊤

t Pt = Iq .
• Two-point estimator

gt =
f(xt + εPtzt)− f(xt − εPtzt)

2ε
Ptzt, zt ∼ N (0, Iq).

• Update xt+1 = xt − η gt, η =
1

L (q + 2)
(learning rate).

A.2.2 LAYER AND MODEL PROJECTION MATRICES

Lemma 2 (Kronecker projection). For orthogonal U ∈Rm×r, V ∈Rn×r let Z̃ = UZV⊤ and set
P = V ⊗ U ∈ Rmn×r2 . Then vec(Z̃) = P vec(Z) and P⊤P = Ir2 .

Proof. (i) Kronecker–vec identity vec(UZV⊤) = (V ⊗ U) vec(Z).

(ii) Orthogonality P⊤P = (V⊤V )⊗(U⊤U) = Ir⊗ Ir.

Lemma 3 (Block diagonal model projection). Stack the layer matrices: P = bdiag(P1, . . . , Pℓ) ∈
Rd×q . Then P⊤P = Iq .

Proof. Since P is block diagonal with blocks P1, . . . , Pℓ, its Gram matrix is

P⊤P = bdiag(P⊤
1 P1, . . . , P

⊤
ℓ Pℓ).

Each block satisfies P⊤
i Pi = Iqi , hence

P⊤P = bdiag(Iq1 , . . . , Iqℓ) = Iq.

A.2.3 GAUSSIAN PRELIMINARIES

Lemma 4 (Rotation invariance). Let Q ∈ Rn×n be orthogonal. For any integrable ϕ : Rn → R,

Ez∼N (0,In)[ϕ(Qz)] = Ez∼N (0,In)[ϕ(z)].

Proof. Write the standard Gaussian density p(z) = (2π)−n/2 exp(−∥z∥2/2). Since Q is orthogonal,
∥Qz∥ = ∥z∥ and |detQ| = 1. By change of variables u = Qz,∫

Rn

ϕ(Qz) p(z) dz =

∫
Rn

ϕ(u) p(u) du = E[ϕ(z)].

Thus E[ϕ(Qz)] = E[ϕ(z)].

Lemma 5 (Moments of N (0, In)). Let z ∼ N (0, In) and y ∈ Rn. Then, for any t > 0,

E∥z∥t ≤

{
nt/2, 0 < t ≤ 2,

(n+ t)t/2, t ≥ 2,
E
[
(⟨y, z⟩)2

]
= ∥y∥2, E

[
(⟨y, z⟩)2∥z∥2

]
= (n+2)∥y∥2.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. (i) Bounds on E∥z∥t. Let R = ∥z∥2 ∼ χ2
n. Then

E∥z∥t = ERt/2 = 2t/2
Γ
(
n+t
2

)
Γ
(
n
2

) .

For 0 < t ≤ 2, the map x 7→ xt/2 is concave, hence by Jensen ERt/2 ≤ (ER)t/2 = nt/2. For t ≥ 2,
use the crude but convenient bound Γ(x+ a)/Γ(x) ≤ (x+ a)a (valid for x, a > 0), to get

E∥z∥t = 2t/2
Γ(n+t

2 )

Γ(n2 )
≤ 2t/2

(
n+t
2

)t/2

= (n+ t)t/2.

(ii) Second moment of the linear form. By rotation invariance (Lemma 4), rotate so that y = ∥y∥e1.
Then ⟨y, z⟩ = ∥y∥z1 with z1 ∼ N (0, 1), hence E[(⟨y, z⟩)2] = ∥y∥2 Ez21 = ∥y∥2.
(iii) Mixed moment E[(⟨y, z⟩)2∥z∥2]. With the same rotation, write

E
[
(⟨y, z⟩)2∥z∥2

]
= ∥y∥2 E

[
z21

n∑
i=1

z2i

]
= ∥y∥2

(
Ez41 +

∑
i̸=1

Ez21z2i
)
.

For independent standard normals, Ez41 = 3 and Ez21z2i = (Ez21)(Ez2i ) = 1 for i ̸= 1. Therefore
E[z21

∑n
i=1 z

2
i ] = 3 + (n− 1) · 1 = n+ 2, which yields the claim.

A.2.4 TWO-POINT ESTIMATOR

Definition 1 (Two-point gradient estimator). Let P ∈ Rd×q satisfy P⊤P = Iq and let z ∼ N (0, Iq)
be sampled independently of all other randomness. For smoothing radius ε > 0 define

gε(x, P, z) :=
f(x+ εPz) − f(x− εPz)

2ε
Pz.

Lemma 6 (Unbiasedness and bias). Let z ∼ N (0, Iq) and P⊤P = Iq . Define

gε(x, P, z) =
f(x+ εPz)− f(x− εPz)

2ε
Pz.

Assume f is C3 and its Hessian is L-Lipschitz, i.e., ∥∇2f(x+ u)−∇2f(x)∥ ≤ L∥u∥ for all x, u.
Then there exists a bias vector bε such that

E[gε] = PP⊤∇f(x) + bε, ∥bε∥ ≤
L

6
ε2 E∥Pz∥4 ≤ L

6
ε2(q + 4)2

In particular,

∥E[gε]− PP⊤∇f(x)∥ ≤ L

6
ε2(q + 4)2

Proof. Step 1. Third-order Taylor expansion with remainder. Hessian ρ-Lipschitz implies the
third-order expansion bound: for any u ∈ Rd,

f(x+ u) = f(x) + ⟨∇f(x), u⟩+ 1
2u

⊤∇2f(x)u+R3(x, u), |R3(x, u)| ≤ L
6 ∥u∥

3.

Step 2. Plug u = ±εPz. Writing R±(z) := R3(x,±εPz),

f(x+ εPz) = f(x) + ε⟨∇f(x), P z⟩+ 1
2ε

2z⊤P⊤∇2f(x)Pz +R+(z),

f(x− εPz) = f(x)− ε⟨∇f(x), P z⟩+ 1
2ε

2z⊤P⊤∇2f(x)Pz +R−(z),

with |R±(z)| ≤ L
6 ε

3∥Pz∥3.

Step 3. Symmetric difference and decomposition. Even-order terms cancel, hence

gε =
〈
∇f(x), P z

〉
Pz +

R+(z)−R−(z)

2ε
Pz.

Step 4. Main term expectation. Because E[zz⊤] = Iq ,

E
[
⟨∇f(x), P z⟩Pz

]
= P E[zz⊤]P⊤∇f(x) = PP⊤∇f(x).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 5. Bias bound from the remainder. By the remainder bound and Jensen’s inequality (Garling,
2007), ∥∥∥E[R+(z)−R−(z)

2ε
Pz

]∥∥∥ ≤ E
[ |R+(z)|+ |R−(z)|

2ε
∥Pz∥

]
≤ L

6
ε2 E∥Pz∥4.

P⊤P = Iq , and from Lemma 5, E∥Pz∥4 ≤ (q + 4)2. Substituting completes the proof.

Lemma 7 (Second moment and angle). Assume the objective is quadratic, f(x) = x⊤Hx with
H ≻ 0. Then

E∥gε∥2 = (q + 2) ∥P⊤∇f(x)∥2, E
[
cos∠(gε,∇f(x))

]
= 1

q

for the same estimator gε.

Proof. Step 1. Exact finite-difference for a quadratic function. For f(x) = x⊤Hx,

f(x+ εPz)− f(x− εPz) = 2ε
〈
∇f(x), P z

〉
,

so gε = ⟨∇f(x), P z⟩Pz.

Step 2. Second moment.
∥gε∥2 =

〈
∇f(x), P z

〉2 ∥Pz∥2.
Rotate z to a basis where P⊤∇f(x) = αe1 (e1 is the first canonical vector); rotation invariance
(Lemma 4) keeps z ∼ N (0, Iq). Then ⟨∇f, Pz⟩ = αz1, ∥Pz∥2 =

∑q
i=1 z

2
i , and

E∥gε∥2 = α2 E
[
z21

q∑
i=1

z2i
]
= α2 (q + 2) = (q + 2)∥P⊤∇f(x)∥2.

Step 3. Expected cosine angle.

cos∠(gε,∇f(x)) =
⟨gε,∇f⟩
∥gε∥ ∥∇f∥

.

Using the rotated coordinate, ⟨gε,∇f⟩ = α2z21 . Since both the numerator and denominator depend
only on z21 and

∑q
i=1 z

2
i , a direct χ2 calculation yields E[cos∠] = 1/q.

A.2.5 STATISTICS OF THE w-PROBE PHASE

Lemma 8 (Probe decomposition and mean square). Let the mini-batch ξ gradient noise be

a = ∇fξ(x) − ∇f(x), Eξ∥a∥2 ≤ σ2, (D1)

and draw z = (z1, . . . , zd)
⊤ ∼ N (0, Id) independently of ξ. Define the exact two-point coefficient

and probe

ρ =
fξ(x+ εz)− fξ(x− εz)

2ε
, g = ρ z. (D2)

Then:

(i) Decomposition. There exists a remainder rε(z) with |rε(z)| ≤ L
2 ε ∥z∥2 such that

g −∇f(x) = ⟨a, z⟩z︸ ︷︷ ︸
mini-batch noise

+
(
⟨∇f(x), z⟩z −∇f(x)

)︸ ︷︷ ︸
directional randomness

+ rε(z) z. (D3)

(ii) Mean–square error. Taking expectation over both ξ and z,

Eξ,z

[
∥g −∇f(x)∥2

]
= Ez

[
z⊤Σz ∥z∥2

]︸ ︷︷ ︸
mini-batch part

+Ez

∥∥ (zz⊤−I)∇f(x)∥∥2︸ ︷︷ ︸
directional part

+O(ε2d)

≤ (d+ 2)σ2 + (d+ 1) ∥∇f(x)∥2 + O(ε2d),

(D4)

where Σ := Eξ[aa
⊤] and tr Σ ≤ σ2.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Step 1 (second-order Taylor). For u = ±εz,

fξ(x+ u) = fξ(x)± ε⟨∇fξ(x), z⟩+R±(z), |R±(z)| ≤ L
2 ε2∥z∥2.

Therefore
ρ = ⟨∇fξ(x), z⟩+ rε(z), |rε(z)| ≤ L

2 ε ∥z∥2.
Multiplying by z gives

g =
(
⟨∇f(x), z⟩+ ⟨a, z⟩+ rε(z)

)
z,

hence the claimed decomposition (D3).

Step 2 (conditional MSE given z). Since a is independent of z and Eξ[a] = 0, the cross terms
involving ⟨a, z⟩ vanish after Eξ[· | z]:

Eξ

[
∥g −∇f∥2

∣∣ z] = Eξ

[
⟨a, z⟩2

]︸ ︷︷ ︸
= z⊤Σz

∥z∥2 +
∥∥⟨∇f, z⟩z −∇f∥∥2 + ∥rε(z) z∥2. (D5)

Step 3 (integrate over z using isotropy identities). By isotropy of the standard Gaussian,

Ez

[
zz⊤∥z∥2

]
= (d+ 2) Id, Ez

[
zz⊤zz⊤

]
= Ez

[
∥z∥2zz⊤

]
= (d+ 2) Id. (D6)

Taking traces in the first identity also recovers E∥z∥4 = d(d+ 2).

Now take expectation of (D5) in z:

(a) Mini-batch part.

Ez

[
z⊤Σz ∥z∥2

]
= tr

(
ΣEz[zz

⊤∥z∥2]
)
= (d+ 2) trΣ ≤ (d+ 2)σ2.

(b) Directional part. Write h(z) = (zz⊤− I)∇f . Then

Ez∥h(z)∥2 = ∇f⊤ Ez

[
(zz⊤ − I)2

]
∇f = ∇f⊤

(
Ez[zz

⊤zz⊤]− 2I + I
)
∇f = (d+ 1)∥∇f∥2,

where we used (D6).

(c) Taylor remainder. Since |rε(z)| ≤ L
2 ε∥z∥2,

Ez∥rε(z) z∥2 ≤ L2

4 ε2 E∥z∥6 = O(ε2d),

(using standard χ2
d moments; any O(d3) bound suffices, and with our later choice of ε it reduces to

O(ε2d)).

Summing (a)–(c) yields (D4).

Remark (Centered probe removes the directional term). If one centers the probe by subtracting
Ez[g | ξ], namely

g̃ := g − Ez[g | ξ] = (⟨a, z⟩+ rε(z)) z,

then the “directional” term disappears and

Eξ,z∥g̃ −∇f(x)∥2 ≤ 2(d+ 2)σ2 + O(ε2d).

We get the relaxed form by multiplying 2.
Lemma 9 (Probe mean–square error). Let the per–probe directional derivative be

ρj =
f(x+ εzj)− f(x− εzj)

2ε
, zj ∼ N (0, Id),

and define their average Ḡ =
1

w

w∑
j=1

ρjzj . Assume the mini–batch variance condition Ex∥∇fx(w)−

∇f(w)∥2 ≤ σ2. Then

E
∥∥Ḡ−∇f(x)∥∥2 ≤ 4(d+ 2)σ2

w
+ O(ε2d)

where the O(ε2d) term comes from the second–order Taylor truncation of each ρj .

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. 1. Two–point estimator for a single probe. Define gj = ρjzj . For every fixed direction zj

E[gj ] = ∇f(x) + ∆bias, ∥∆bias∥ ≤
Lε2

6
(d+ 4)2

(the same Taylor expansion used in Lemma 6).

2. Second moment of one probe. Condition on the mini–batch noise: E
[
∥gj −∇f∥2

]
= E

[
∥gj −

Egj∥2
]
+ ∥∆bias∥2. The first term equals 2(d+ 2)σ2 while ∥∆bias∥2 = O(ε4d2).

3. Variance reduction by averaging. Because the probes are i.i.d., E
∥∥Ḡ−Egj∥∥2 = 1

wE∥gj−Egj∥2.
Add the bias term once more to compare with the true gradient:

E
∥∥Ḡ−∇f∥∥2 ≤ 2(d+ 2)σ2

w
+ ∥∆bias∥2 ≤

4(d+ 2)σ2

w
+O(ε2d).

(The last inequality uses ε2 < σ2

2L(d+2) which always holds once ε is set ≤ (q3T )−1/2 as required
later.)

Lemma 10 (Davis–Kahan bound for P ). Let σmin be the r-th singular value of the full-gradient
matrix whose row–stack is∇f(x). If the number of probes satisfies

w ≥ 48
(d+ 2)σ2

σ2
min

,

then, with probability at least 0.9,∥∥(I − P⊤P )∇f(x)
∥∥ ≤ 1

2 ∥∇f(x)∥.

Proof. 1. Notation. Write ∆ = Ḡ−∇f(x). From Lemma 9

E∥∆∥2F ≤
4(d+ 2)σ2

w
.

2. Spectral–norm control. Since ∥∆∥2 ≤ ∥∆∥F , Markov’s inequality gives

Pr
{
∥∆∥2 ≥ σmin

2

}
≤ 4(d+ 2)σ2/w

σ2
min/4

=
16(d+ 2)σ2

wσ2
min

.

Choosing w ≥ 48(d+ 2)σ2/σ2
min makes the right–hand side ≤ 0.33. A standard matrix Bernstein

(or a two–sided Chebyshev) upgrade shrinks the factor 0.33 to 0.1; we simply cite the constant used
in the original paper (Section B.3) so that Pr

{
∥∆∥2 ≤ σmin/2

}
≥ 0.9.

3. Davis–Kahan “sin Θ”. Let U be the rank-r right singular sub-space of∇f(x) and Û the space
recovered from Ḡ. Davis–Kahan gives sinΘ

(
Û ,U

)
≤ ∥∆∥2/σmin ≤ 1

2 . Hence the orthogonal
projector P built from Û satisfies

∥(I − P⊤P )∇f∥ = ∥
(
I − PÛ

)
∇f∥ ≤ 1

2 ∥∇f∥.

A.2.6 DAVIS–KAHAN “SIN Θ” THEOREM

Let A = ∇f(x) and Â = Ḡ. Suppose A has an SVD with right singular space U of dimension r,
and let Û be the rank-r right singular space of Â. The Davis–Kahan theorem gives:

sinΘ(Û ,U) ≤ ∥Ḡ−∇f(x)∥2
σmin

.

So if ∥Ḡ−∇f(x)∥2 ≤ σmin

2 , then

sinΘ(Û ,U) ≤ 1

2
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.2.7 PROJECTION ERROR BOUND

Let P be an orthonormal matrix whose rows span Û , so that P⊤P is the orthogonal projector onto Û .
Then, ∥∥(I − P⊤P )∇f(x)

∥∥ =
∥∥(I − PÛ

)
∇f(x)

∥∥ ≤ sinΘ(Û ,U) · ∥∇f(x)∥ ≤ 1

2
∥∇f(x)∥.

A.2.8 FIXED-P DESCENT FOR k STEPS

Lemma 11 (One-step descent with a fixed P ). Let P ∈ Rd×q satisfy P⊤P = Iq and let

gt =
f(xt + εPzt)− f(xt − εPzt)

2ε
Pzt, zt ∼ N (0, Iq).

Choose η = 1
L(q+2) . Then

E[f(xt+1)] ≤ E[f(xt)]−
3η

8
E∥∇f(xt)∥2 + η E∥(I − P⊤P )∇f(xt)∥2 +O(ε2). (16)

Proof. We abbreviate∇t := ∇f(xt) and g := gε(xt, P, zt).

(i) L-smooth descent inequality. For any update x+ = x− ηg,

f(x+) ≤ f(x) − η ⟨∇f(x), g⟩ +
Lη2

2
∥g∥2. (17)

Taking full expectation will give the desired bound once we control E⟨∇t, g⟩ and E∥g∥2.

(ii) Decompose the estimator. Write

g = PP⊤∇t︸ ︷︷ ︸
main

+ b︸︷︷︸
bias

+ az︸︷︷︸
zero-mean

, b := E[g]− PP⊤∇t, az := g − E[g], E[az] = 0.

Lemma 6 gives ∥b∥ ≤ Lε2

6 (q + 4)2. For convenience denote c1 := 1
6 .

(iii) Inner product term. Using the above decomposition,

E⟨∇t, g⟩ = ⟨∇t, PP⊤∇t⟩+ ⟨∇t, b⟩ = ∥∇t∥2 − ∥(I − P⊤P )∇t∥2 + ⟨∇t, b⟩.
Bound the bias by Cauchy–Schwarz:

E⟨∇t, g⟩ ≥ ∥∇t∥2 − ∥(I − P⊤P )∇t∥2 − c1 Lε
2(q + 4)2 ∥∇t∥. (18)

(iv) Second moment term. Lemma (second moment) implies, for L-smooth f ,

E∥g∥2 ≤ (q + 2) ∥P⊤∇t∥2 + c2 ε
2 ≤ (q + 2) ∥∇t∥2 + c2 ε

2, (19)
for an absolute constant c2 (absorbing Taylor remainders).

(v) Choose the stepsize and combine. Set η = 1
L(q+2) , so Lη2

2 (q + 2) = η
2 . Plug equation 18 and

equation 19 into equation 17 and take expectations:

Ef(xt+1) ≤ Ef(xt)− η
(
E∥∇t∥2 − E∥(I − P⊤P )∇t∥2

)
+

η

2
E∥∇t∥2

+ η c1Lε
2(q + 4)2 E∥∇t∥+

η

2
c2 ε

2.
(20)

The first two main terms combine to −η
2E∥∇t∥2 + η E∥(I − P⊤P )∇t∥2. For the bias cross term,

apply Young’s inequality (Castillo et al., 2016) with weight 1/8:

η c1Lε
2(q + 4)2 E∥∇t∥ ≤

η

8
E∥∇t∥2 + c4 ε

2,

for some absolute constant c4 (absorbing (c1L)
2(q + 4)4 and c2). Collecting terms in equation 20

yields

Ef(xt+1) ≤ Ef(xt)−
3η

8
E∥∇t∥2 + η E∥(I − P⊤P )∇t∥2 +O(ε2),

which is Equation 16.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Remark (On the constants c1, c2, c3, c4). For clarity, we summarize the role of the constants appearing
in the one-step descent proof: c1 (bias constant): comes from Lemma 6, where

∥E[g]− PP⊤∇f(x)∥ ≤ 1
6Lε

2(q + 4)2.

Thus c1 = 1
6 is an absolute constant. second-moment remainder c2: appears in Lemma 7,

E∥g∥2 ≤ (q + 2)∥P⊤∇f(x)∥2 + c2ε
2,

absorbing higher-order Taylor remainders. It depends on L but not on d or q. cross-term constant c3:
in bounding ηc1Lε

2(q+ 4)2∥∇f(x)∥ via Young’s inequality, we set c3 := c1L(q+ 4)2. c4: collects
all ε2-order remainders, including those from c2 and the quadratic term in c3. It is an O(1) constant
independent of d, q.

A.2.9 GLOBAL NON-CONVEX CONVERGENCE

Theorem 1 (Full algorithm). Run Algorithm 1 for T iterations, refresh P every k steps, and choose
the same fixed step η = 1/[L(q + 2)]. Let ε ≤ (q3T )−1/2 and assume the number of probes per
refresh satisfies w ≥ 48(d+ 2)σ2/σ2

min. Then

1

T

T−1∑
t=0

E
∥∥∇f(xt)

∥∥2 ≤ 16(q + 4)L [ f(x0)− f⋆ ]

qT
+ O

(
q/T

)
.

Proof. Expanded derivation

Recall the one-step inequality of Lemma 11 for gt = gε(xt, P, zt) and ∇t := ∇f(xt):

Ef(xt+1) ≤ Ef(xt)−
3η

8
E∥∇t∥2 + η E

∥∥(I − P⊤P )∇t

∥∥2 +O(ε2). (17)

Step 1. Move the gradient term to the left.
3η

8
E∥∇t∥2 ≤ Ef(xt)− Ef(xt+1) + η E

∥∥(I − P⊤P )∇t

∥∥2 +O(ε2). (D.1)

Step 2. Davis–Kahan control. Lemma 10 states ∥(I − P⊤P )∇t∥ ≤ 1
2∥∇t∥, hence

η E
∥∥(I − P⊤P )∇t

∥∥2 ≤ η

4
E∥∇t∥2. (D.2)

Step 3. Combine (D.1) and (D.2). Subtract η
4E∥∇t∥2 from both sides:

η

8
E∥∇t∥2 ≤ Ef(xt)− Ef(xt+1) +O(ε2). (D.3)

Step 4. Sum inside one window. For a window j of length k with fixed P , let xj,s for s = 0, . . . , k−1
and

fj,start := Ef(xj,0), fj,end := Ef(xj,k).

Summing (D.3) over s = 0, . . . , k − 1 gives
k−1∑
s=0

E∥∇f(xj,s)∥2 ≤
8

η

(
fj,start − fj,end

)
+O(ε2kq2), (A.4)

where the O(ε2) term is summed k times and q2 comes from ∥g∥2 ≤ (q + 2)∥∇f∥2 ≤ q2∥∇f∥2.

Step 5. Sum over all windows and divide by T . Summing (A.4) over all ⌈T/k⌉ windows, the
telescoping sum

∑
j(fj,start − fj,end) = f(x0)− f⋆. Dividing by T yields

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤
8

η T

(
f(x0)− f⋆

)
+O(ε2q2). (D.4)

Step 6. Substitute η and ε. With η−1 = L(q + 2) ≤ L(q + 4) we have 8/η ≤ 16L(q + 4). If
ε2T ≤ 1/q3 then ε2q2T ≤ q/T . Insert these constants into (D.4) to recover the bound stated in
Theorem 1.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.3 ALGORITHM AND HYPERPARAMETER SETTINGS

Table 6: The hyperparameters setting in our experiments.

Experiment Hyperparameters Values

FT
Batch size 8
Learning rate {1e-5, 5e-5}
Lr schedule Constant for RoBERTa; Linear for OPT and LLaMA

MeZO

Batch size {64, 16}
Learning rate η (Lr) {1e-6, 5e-7}
ϵ 1e-3
Lr schedule Constant for RoBERTa; Linear for OPT and LLaMA

MeZO LoRA

Batch size {64, 16}
Learning rate η (Lr) {1e-4, 5e-5}
ϵ 1e-2
Lr schedule Constant for RoBERTa; Linear for OPT and LLaMA

P-GAP

Batch size {64, 16}
Learning rate η (Lr) {2e-4, 1e-4, 5e-5}
ϵ 1e-2
Window size k 100
Number of probe perturbations h 10
Rank r {128,256,512}
Projection magnitude δ Initialized as 2 and gradually decayed it to 0

P-GAP (LoRA)

Batch size {64, 16}
Learning rate η (Lr) {3e-2, 5e-2, 1e-2}
ϵ 1e-1
Window size k 100
Number of probe perturbations h 10
Rank r {8}
Projection magnitude δ Initialized as 2 and gradually decayed it to 0

Algorithm 1 Corrected Projected Gradient Directions with Low-Dimensional Perturbations (Lazy
ZO for LLMs)

Require: Parameters θ, dataset D, window size k, number of probe perturbations h, rank r, pertur-
bation scale ε, learning rate η, projection magnitude δ, loss function L, iteration steps T , set of
all matrices needed to be fine-tunedM

1: t← 0
2: while t ≤ T do
3: if t mod k = 0 then
4: ({U ℓ

r ,S
ℓ
r,V

ℓ
r })ℓ∈M ← LOWERDIMGENERATE(θ, h, r, ε)

5: end if
6: for all parameter Wℓ ∈ θ do
7: if Wℓ is matrix and ℓ ∈M then
8: Sample Zinit ∼ N (0, Ir×r)

9: Z ← PROJECTION(Zinit,S
r
ℓ , δ) ▷ ⟨Sr

ℓ ,Z⟩F = ξ
√
δ∥Sr

ℓ ∥F
10: Zf ← U ℓ

rZ(V ℓ
r )

T

11: else
12: Sample Zf ∼ N (0, I)
13: end if
14: end for
15: L+ ← L(θ + εz), L− ← L(θ − εz)
16: Gt ← (ℓ+ − ℓ−)/(2ε)
17: for all Wℓ ∈ θ do
18: Wℓ ←Wℓ − η GtZf

19: end for
20: t← t+ 1
21: end while

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We have provide the computational process of P-GAP in the Algorithm 1. As discussed in our
analysis of variance in Appendix B.1, the reduction in the number of perturbed parameters necessitates
corresponding adjustments to both the learning rate η and the perturbation scale ϵ. The specific
choices of learning rate η and perturbation scale ϵ used in our experiments are detailed in Table
6. In our experiments, we found that the projection magnitude δ can be set relatively large at the
beginning of training and then gradually reduced in the later stages. This strategy leads to better
final performance and improved convergence efficiency. Therefore, in practice, we initialized the
projection magnitude δ = 2 and gradually decayed it to 0 as the training progressed. Moreover, we
set k = 100 and h = 10 in all of our experiments.

Algorithm 2 LOWERDIMGENERATE(θ, h, r, ε)

Require: Current parameters θ, number of probe perturbations h, rank r, step size ε
1: for all matrix parameter Wℓ, ℓ ∈M do
2: Gℓ ← 0
3: end for
4: for j = 1 to h do
5: Sample Qj

ℓ with each Qj
ℓ ∼ N (0, I)

6: Lj
+ ← L(θ + εQj

ℓ); L
j
+− ← L(θ − εQj

ℓ)

7: ρ← (Lj
+ − L

j
−)/(2ε)

8: for all matrix Wℓ do
9: Gℓ ← Gℓ +

ρ
hQ

j
ℓ

10: end for
11: end for
12: for all matrix Wℓ do
13: (U ℓ

r ,S
ℓ
r,V

ℓ
r )← svd_lowrank(Gℓ, q = r)

14: end for
15: return (U ℓ

r ,S
ℓ
r,V

ℓ
r )M

Algorithm 3 PROJECTION(Zinit,S
r
ℓ , δ)

Require: Initial Zinit ∈ Rr×r; coefficient matrix Sr
ℓ ; projection magnitude δ

Ensure: We want to get the projected parallel component Z of Zinit such that ⟨Sr
ℓ ,Z⟩F =

ξ
√
δ ∥Sr

ℓ ∥F , with ξ ∈ {−1, 1}

1: ξ ∼ Uniform{−1, 1}
2: f ← ⟨Sr

ℓ ,Zinit⟩F , g ← ∥Sr
ℓ ∥F

3: α← f − ξ
√
δ g

g2 + 10−12

4: return Z ← Zinit − αSr
ℓ

B.4 MORE RESULTS

We also provide fine-tuning experiments of KerZOO on the LLaMA-3 model series. Hyperparameters
are generally the same with OPT series models fine-tuning. The detailed results of the experiments
are shown in Table 7 and 8 below.

We further evaluate the training efficiency and memory footprint of P-GAP on the OPT-2.7B model
across SST-2 and RTE. Compared with MeZO and HiZOO, P-GAP achieves a better balance between
memory usage and convergence speed. On both datasets, P-GAP substantially reduces training time
while keeping the memory cost within a moderate increase compared to MeZO but less than HiZOO.
In particular, when combined with LoRA on RTE, P-GAP+LoRA consumes less than 20% of the
training time of MeZO, yet maintains competitive performance. These results highlight that P-GAP
can serve as an efficient and scalable alternative for large-scale fine-tuning.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: Experiment results on LLaMA3-3B (1000 training samples)

Task SST-2 RTE CB WSC WIC
FT 94.2 81.2 91.4 72.2 63.8
MeZO 89.0 63.8 69.6 62.5 58.2
P-GAP 92.3 63.8 73.2 64.6 59.8

Table 8: Experiment results on LLaMA3-8B (1000 training samples)

Task SST-2 RTE CB WSC WIC
MeZO 91.2 61.0 73.2 64.4 59.2
P-GAP 93.0 67.2 75.0 65.8 60.2

Table 9: Memory and training time comparison of OPT-2.7B on SST-2 dataset (35 tokens per
example on average)

Method Memory cost Iteration step GPU hours

FT 45.4G 9.3% 16.8%
LoRA 18.5G 5.6% 4.3%

MeZO 6.8G 100.0% 100.0%
HiZOO 11.3G 59.2% 87.4%
P-GAP 8.7G 34.9% 68.0%

MeZO+LoRA 5.5G 74.1% 43.7%
HiZOO+LoRA 5.7G 46.3% 41.0%
P-GAP+LoRA 5.9G 34.7% 29.9%

Table 10: Memory and training time comparison of OPT-2.7B on RTE dataset (180 tokens per
example on average)

Method Memory cost Iteration step GPU hours

FT 62.2G 10.0% 16.2%
LoRA 42.5G 8.3% 6.6%

MeZO 7.8G 100.0% 100.0%
HiZOO 13.2G 63.3% 88.9%
P-GAP 10.5G 24.5% 64.1%

MeZO+LoRA 7.5G 73.3% 34.8%
HiZOO+LoRA 7.8G 56.7% 35.9%
P-GAP+LoRA 7.6G 16.9% 8.7%

23


	Introduction
	Preliminaries
	Methodology
	Projected Gradient-Aligned Perturbation
	Low-dimensional Gradient Space Design
	Adapting Projected Gradient-Aligned Perturbation in Low-dimensional Gradient Space

	Experiments
	Results on medium-sized model
	Results on large autoregressive Models
	Performance on LLMs with Various Scales
	Convergence and Wall-clock Time Analysis
	Memory analysis

	Related Work
	Conclusion
	Claim of LLM usage
	Appendix
	Variance with the perturbation space dimension
	Convergence Analysis
	Algorithm and hyperparameter settings
	More results


