

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS FAST LLM FINE-TUNING THROUGH ZEROOTH- ORDER OPTIMIZATION WITH PROJECTED GRADIENT- ALIGNED PERTURBATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) using zeroth-order (ZO) optimization has emerged as a promising alternative to traditional gradient-based methods due to its reduced memory footprint requirement. However, existing ZO methods suffer from high variance in gradient estimation, leading to slow convergence and suboptimal performance on large-scale models. In this work, we propose P-GAP, a fast LLM fine-tuning approach through zeroth-order optimization with Projected Gradient-Aligned Perturbations. Specifically, we first estimate a low-dimensional gradient space and then align perturbations in projected gradients' direction within the space. This approach enables reduced the number of perturbed parameters and decreased variance, therefore accelerated convergence for LLM fine-tuning. Experiments on LLMs show that P-GAP consistently surpasses the baselines, achieving up to 6% increase in accuracy on classification tasks and up to 12% higher accuracy on generation tasks, with up to about 81% less training iterations and 70% less GPU hours. These results demonstrate that P-GAP enables fast, scalable, and resource-efficient ZO LLM fine-tuning.

1 INTRODUCTION

Fine-tuning (FT) large language models (LLMs) (Hu et al., 2021; Dettmers et al., 2023; Gu et al., 2021) for specific tasks or datasets has become a common practice in modern machine learning. However, as model size and complexity scale, fine-tuning incurs substantial memory overhead, which severely limits its scalability and makes it inaccessible to users with constrained computational resources (Tan et al., 2025b; Zhao et al., 2024b). To alleviate this issue, parameter-efficient fine-tuning (PEFT) methods have been proposed (Li & Liang, 2021; Dettmers et al., 2023; Zhao et al., 2024a), which update only a small subset of parameters while freezing the majority of the model. These approaches drastically reduce GPU memory footprint and storage cost while achieving performance comparable to full FT. However, despite their efficiency, PEFT methods still require computing and storing full gradients and intermediate activations during backpropagation, which introduces significant memory overhead (Malladi et al., 2023; Liu et al., 2024b).

To address the challenge, zeroth-order (ZO) optimization has emerged as a promising solution (Zhang et al., 2024b; Malladi et al., 2023), which estimates gradients using only forward passes. By leveraging randomized perturbations to approximate gradient directions, ZO completely removes the need to store large gradient tensors and intermediate activations, which substantially reduces memory usage. This advantage makes ZO especially appealing for extremely large models where backward passes dominate GPU memory consumption. When combined with parameter-efficient strategies, ZO-based fine-tuning offers a scalable and resource-friendly framework for adapting high-capacity models under tight memory constraints while maintaining competitive performance (Tan et al., 2025b). Despite the advantages of zeroth-order optimization in reducing memory overhead, these benefits often come at the expense of longer computational time (e.g., GPU hours) and decreased accuracy compared to first-order approaches (Li et al., 2024; Gautam et al., 2024).

Existing works show that variance in the zeroth-order gradient estimation, attributing to the random perturbations, can be a factor for the longer computational time Chen et al. (2024); Park et al. (2025). The larger variance in the estimation of the ZO gradient can lead to suboptimal accuracy and slower

054 convergence rates compared to first-
 055 order methods, making ZO-based
 056 fine-tuning less stable and resource-
 057 intensive (Kornilov et al., 2023;
 058 Zhang et al., 2024b; Lobanov & Gas-
 059 nikov, 2023). Existing works in LLM
 060 fine-tuning such as (Ohta et al., 2020)
 061 and (Malladi et al., 2023) aim to re-
 062 duce the variance via increasing the
 063 number of perturbations, which will
 064 lead to prolong training time.

065 Inspired by (Ma & Huang, 2025;
 066 Kozak et al., 2023) which find
 067 anisotropic perturbations (i.e., the
 068 magnitude of perturbations is larger
 069 along certain directions and is smaller
 070 along others, rather than being uniform in all directions) can potentially help relieve the variance
 071 issue in ZO optimization theoretically, we raise the following question:

072 **Q1: For LLM finetuning on larger-scale models, can we find the proper perturbation directions,
 073 thereby reducing the variance of ZO gradient estimation and finally accelerating convergence with
 074 negligible accuracy loss?**

075 Inspired by (Wang et al., 2018; Zhang et al., 2024a; Yue et al., 2023), which identify that perturbing
 076 the full parameter space can further amplify the variance in gradient estimation, as the variance scales
 077 proportionally with the parameter dimension d , we naturally pose a research question:

078 **Q2: Can we further reduce variance in gradient estimation by decreasing the parameter space that
 079 require perturbation-based gradient estimation?**

080 To answer the two questions, we propose a fast LLM finetuning approach through zeroth-order
 081 optimization with Projected Gradient-Aligned Perturbations (P-GAP), which reduces the variance
 082 in gradient estimation of ZO updates via low-dimensional perturbations that are aligned with the
 083 gradient direction in the subspace of gradient, thereby achieving faster convergence. Figure 1 shows
 084 the magnitude of gradient estimation on the attentions matrix V in the first Transformer layer of the
 085 OPT-2.7B model, based on perturbations sampled from a standard Gaussian distribution and from
 086 P-GAP. It can be observed that the value of estimated gradients are more stable and less dispersed for
 087 P-GAP, which indicates a smaller variance. Our contributions can be summarized as follows:

- 089 • We propose a novel ZO-based LLM fine-tuning framework, P-GAP, which estimates a low-
 090 dimensional gradient space and aligns perturbations in projected gradients' direction within the
 091 space. This design can not only allow the perturbation aligned in the most informative direction but
 092 also effectively reduce the dimensionality of gradient estimation, therefore reducing variance and
 093 accelerate convergence.
- 094 • We provide theoretical analysis on that the variance of ZO gradient estimation linearly increases
 095 with the dimension of weight matrix which need perturbations for gradient estimation in LLMs,
 096 and further show that P-GAP can reduce the variance with the proposed low-dimensional gradient
 097 space estimation. Moreover, we provide the convergence analysis of P-GAP.
- 098 • We conduct extensive experiments on both encoder-only models (e.g., RoBERTa-large) and decoder-
 099 based LLMs (e.g., OPT-2.7B/6.7B and LLaMA-3-3B/8B). Results show that P-GAP achieves up to
 100 6% accuracy gains over the baselines, while achieving $5.2 \times$ speedup in training and more than 61
 101 minutes less wall-clock time.

102 2 PRELIMINARIES

103 **Notations.** In this paper, all of the non-bold letters (including Latin letters and Greek letters) indicate
 104 the scalar such as δ and K . All of the lower-case letters which is bold indicate a column vector such
 105 as \mathbf{u} and all of the upper-case bold letters such as \mathbf{V} indicate a matrix. A d -dimensional multivariate
 106 Gaussian distribution is denoted by $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} \in \mathbb{R}^d$ is the mean vector and $\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d}$ is

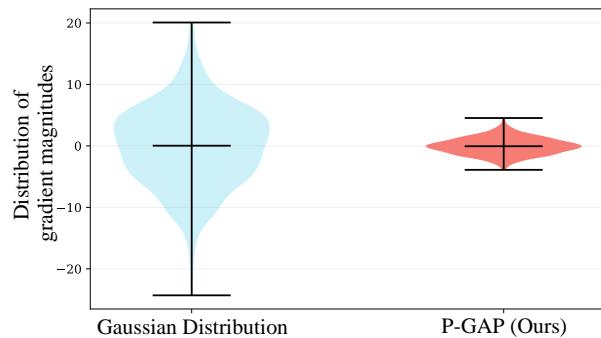


Figure 1: Estimation of directional derivative magnitudes on the V matrix from the first Transformer layer of the OPT-2.7B model, using perturbations sampled from a standard Gaussian distribution and from P-GAP

108 the covariance matrix. We use $\mathbb{E}[\cdot]$ to represent the expected value of a variable and use $\text{Var}[\cdot]$ to
 109 represent the variance of a variable. $\text{vec}(\mathbf{W})$ indicates that we flatten the matrix \mathbf{W} by stacking its
 110 columns vertically to change it into a column vector. $\|\mathbf{x}\|_p = (\sum_{i=1}^n x_i^p)^{\frac{1}{p}}$ indicates the ℓ_p -norm
 111 of a vector \mathbf{x} and we use $\|\mathbf{x}\|$ to denote the ℓ_2 -norm of a vector \mathbf{x} . $\|\mathbf{U}\|_F = \sqrt{\langle \mathbf{U}, \mathbf{U} \rangle}$ denotes
 112 the Frobenius norm of a matrix \mathbf{U} and we will call it F-norm in the paper for simplicity. $\mathcal{C}_L^{s,p}(\mathcal{S})$
 113 denotes the collection of functions defined on the set S that are s -times continuously differentiable,
 114 and whose p -th order derivatives are L -Lipschitz continuous. $\hat{\nabla}$ indicates the estimation of gradient
 115 and ∇ indicates the true gradient. I indicates the identity matrix or vector.

116 **Zeroth-order Optimization for LLMs.** Consider a large language model with parameters $\theta \in \mathbb{R}^d$
 117 and loss function \mathcal{L} . At iteration step t , zeroth-order optimization estimates the gradient on a mini-
 118 batch datasets \mathcal{B}_t by perturbing θ_t along random directions. Specifically, if we choose to use Gaussian
 119 distribution as perturbations, then we can get $\mathbf{u} \sim \mathcal{N}(0, I_d)$ and $\mathcal{N}(0, I_d)$ is the standard Gaussian
 120 distribution. Given a perturbation scale $\epsilon > 0$, the two-point gradient estimator is

$$\hat{\nabla} \mathcal{L}(\theta_t; \mathcal{B}_t) = \frac{\mathcal{L}(\theta_t + \epsilon \mathbf{u}; \mathcal{B}_t) - \mathcal{L}(\theta_t - \epsilon \mathbf{u}; \mathcal{B}_t)}{2\epsilon} \mathbf{u} \quad (1)$$

124 where $\hat{\nabla}$ in Equation 1 indicates the estimated gradients. To reduce estimator variance, one may
 125 average over n independent perturbations $\{\mathbf{u}_i\}_{i=1}^n$:

$$\hat{\nabla} \mathcal{L}(\theta_t; \mathcal{B}_t) = \frac{1}{n} \sum_{i=1}^n \left[\frac{\mathcal{L}(\theta_t + \epsilon \mathbf{u}_i; \mathcal{B}_t) - \mathcal{L}(\theta_t - \epsilon \mathbf{u}_i; \mathcal{B}_t)}{2\epsilon} \mathbf{u}_i \right] \quad (2)$$

126 Finally, given the learning rate η and estimated gradients in Equation 2, the parameter update follows
 127 the standard SGD form:

$$\theta_{t+1} = \theta_t - \eta \hat{\nabla} \mathcal{L}(\theta_t; \mathcal{B}_t). \quad (3)$$

3 METHODOLOGY

136 In this section, we first clarify the remaining problems in existing zeroth-order optimization frame-
 137 works and put up the motivation for our proposed method. Then, we will elaborate on our proposed
 138 **P-GAP**, which performs ZO updates with low-dimensional perturbations that are aligned with the
 139 gradient direction in the subspace of the gradient for variance reduction. Intuitively, our pipeline be-
 140 gins by obtaining an approximate gradient matrix, which can be expressed as the product of low-rank
 141 frame matrices and a coefficient matrix. Within this lower-dimensional space spanned by the frame
 142 matrices, Gaussian perturbations may be selected arbitrarily without restriction; however, we hope
 143 that they are constrained to be aligned with the directions defined by the gradient's coefficient matrix
 144 (i.e. the hyperplane defined by the low-dimension gradient's coefficient matrix). After correction, the
 145 perturbation itself can also be represented as a corrected coefficient matrix, which, when multiplied
 146 with the frame matrices, yields the final perturbation in the original high-dimensional parameter
 147 space. In other words, we allow perturbations to be chosen freely within the linear subspace spanned
 148 by low-rank frame matrices, but enforce that they remain parallel to the hyperplane determined by the
 149 gradient's coefficient matrix.

3.1 PROJECTED GRADIENT-ALIGNED PERTURBATION

151 Inspired by (Ma & Huang, 2025), we adopt the idea of projecting the sampled random perturbations
 152 onto the gradient direction. However, since the original method was designed for the vector dimension,
 153 that is, if we generate a random initial perturbation $\mathbf{z} \sim \mathcal{N}(0, I_d)$, we hope that the perturbation
 154 could satisfy the condition that:

$$(\nabla \mathcal{L}^T \mathbf{z})^2 = \delta \|\nabla \mathcal{L}\|^2 \quad (4)$$

155 which can be simplified to:

$$\langle \nabla \mathcal{L}, \mathbf{z} \rangle = \xi \cdot \sqrt{\delta} \|\nabla \mathcal{L}\| \quad (5)$$

156 where ξ is a constant that is randomly selected from the set $\{-1, 1\}$. And $\langle \cdot, \cdot \rangle$ indicates the inner
 157 product of two vectors. However, directly generating the perturbation vector corresponding to
 158 Equation 4 and 5 is difficult since it requires sampling from a constrained space rather than the free
 159 full parameter space. Since Equation 5 corresponds to a hyperplane in the vector space, we can

randomly sample an initial perturbed vector \mathbf{v}_{init} which can be decomposed into two components: one parallel with the hyperplane and the other orthogonal to it. We can denote them as $\mathbf{v}_{init\parallel}$ and $\mathbf{v}_{init\perp}$, respectively. Then, we only need to retain the parallel component $\mathbf{v} = \mathbf{v}_{init\parallel}$, which satisfies the requirement of Equation 5. According to (Ma & Huang, 2025), we can calculate the parallel component \mathbf{v} of the initial perturbation \mathbf{v}_{init} as follows:

$$\mathbf{v} = \mathbf{v}_{init} - \frac{\nabla \mathcal{L}^T \mathbf{v}_{init} - \xi \sqrt{\delta} \|\nabla \mathcal{L}\|}{\|\nabla \mathcal{L}\|^2} \nabla \mathcal{L} \quad (6)$$

In Equation 6 the aligned perturbation \mathbf{v} is not only consistent with the gradient direction and but also satisfies the Gaussian distribution condition, satisfying the following requirements for the chosen perturbations to reduce the variance of ZO gradient estimation (Ma & Huang, 2025; Liu et al., 2020; Gao & Sener, 2022):

- **(a) Constant Magnitude:** The magnitude (ℓ_2 norm) of the perturbation vector \mathbf{v} is a fixed constant, i.e., $\|\mathbf{v}\|^2 = d\delta$ (δ is a random constant). Many traditional methods fall into this category, such as Gaussian distribution, Rademacher distribution and uniform distribution.
- **(b) Directional Alignment:** The square of the inner product between the perturbation vector \mathbf{v} and the true gradient $\nabla \mathcal{L}$ is a fixed value, i.e., $(\nabla \mathcal{L}^T \mathbf{v})^2 = \delta \|\nabla \mathcal{L}\|^2$. This condition implies that the perturbation direction should be 'aligned' with the gradient direction.

We now extend this theory to the case of high-dimensional matrices. The vector norm on the right-hand side of Equation 5 can be naturally generalized to the matrix norm. In this paper, we adopt the Frobenius norm for matrices, i.e. $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} a_{ij}^2}$, where a_{ij} is the number in the i -th row and j -th column of the matrix \mathbf{A} . We can replace the vector inner product with the Frobenius inner product for matrices without loss of generality. For two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$, we define

$$\langle \mathbf{A}, \mathbf{B} \rangle_F = \text{Tr}(\mathbf{A}^T \mathbf{B}) \quad (7)$$

where $\text{Tr}(\cdot)$ in Equation 7 means the trace of a matrix and b_{ij} is the number in the i -th row and j -th column of the matrix \mathbf{B} . Therefore, the vector hyperplane in Equation 5 can be extended to a tensor hyperplane:

$$\langle \nabla \mathcal{L}, \mathbf{Z} \rangle_F = \xi \cdot \sqrt{\delta} \|\nabla \mathcal{L}\|_F \quad (8)$$

where \mathbf{Z} is a random perturbation satisfying Gaussian distribution.

Similarly, if we randomly generate an initial perturbation matrix $\mathbf{C}_{init} \sim \mathcal{N}(0, I_{m \times n})$ and \mathbf{C}_{init} have equivalent dimension with gradient matrix $\nabla \mathcal{L} \in \mathbb{R}^{m \times n}$, then the sampled initial perturbation can also be decomposed into a parallel component ($\mathbf{C}_{init\parallel}$) and a vertical component ($\mathbf{C}_{init\perp}$). Deriving from Equation 6, the parallel component $\mathbf{C} = \mathbf{C}_{init\parallel}$ of \mathbf{C}_{init} can be formulated as:

$$\mathbf{C} = \mathbf{C}_{init} - \frac{\langle \nabla \mathcal{L}, \mathbf{C}_{init} \rangle_F - \xi \sqrt{\delta} \|\nabla \mathcal{L}\|_F}{\|\nabla \mathcal{L}\|_F^2} \nabla \mathcal{L} \quad (9)$$

We only need to retain the parallel component \mathbf{C} of the hyperplane in Equation 8, i.e., the one aligned with the gradient direction and the subsequent ZO perturbation update is then performed using only the parallel component.

3.2 LOW-DIMENSIONAL GRADIENT SPACE DESIGN

Motivation. If we directly apply Equation 9 for perturbation alignment, there are two issues: First, for large language models such as OPT-6.7B, the Transformer layer matrices are very large (e.g., 4096×4096), which leads to high computational cost. Second, Equation 9 still performs perturbation alignment in the full parameter space. However, as we have shown in the Appendix B.1, the larger the dimensionality of the perturbations, the higher the variance of the ZO gradient estimation. This motivates us to explore whether it is possible to restrict the perturbations to a low-dimensional space and perform the perturbation alignment with gradient direction within this low-dimensional space.

Suppose the gradient matrix is denoted as $\mathbf{S} = \nabla \mathcal{L} \in \mathbb{R}^{m \times n}$, it can be decomposed in the format of the product of an orthogonal basis matrix and a coefficient matrix, using techniques such as

216 singular value decomposition (SVD) or QR decomposition. In this work, we adopt SVD for low-rank
 217 decomposition, then we have:

$$218 \quad \mathbf{S} \simeq \mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T \quad (10)$$

220 where $\mathbf{U}_r \in \mathbb{R}^{m \times r}$, $\mathbf{S}_r \in \mathbb{R}^{r \times r}$, $\mathbf{V}_r \in \mathbb{R}^{n \times r}$, $r \ll m$ and $r \ll n$. Evidently, \mathbf{U}_r and \mathbf{V}_r can be
 221 regarded as a pair of frames, i.e., two orthogonal bases. And \mathbf{S}_r serves as the set of scaling factors
 222 associated with the bases, which indicates the importance of the direction of each singular vector.
 223 Hence, a natural choice is to preserve the leading r directions, which captures the most significant
 224 components. Then, by combining Equation 9 and Equation 10, we have

$$226 \quad \mathbf{C} = \mathbf{C}_{init} - \frac{\langle \mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T, \mathbf{C}_{init} \rangle_F - \xi \sqrt{\delta} \|\mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T\|_F}{\|\mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T\|_F^2} \mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T. \quad (11)$$

228

229 3.3 ADAPTING PROJECTED GRADIENT-ALIGNED PERTURBATION IN LOW-DIMENSIONAL 230 GRADIENT SPACE

231 So far, we can conduct gradient alignment with Equation 11. However, generating perturbation in full
 232 parameter space will lead to large variance of ZO gradient estimation. To further reduce the variance,
 233 we propose to generate perturbations from a lower dimension space, therefore reducing the number
 234 of perturbed parameters, resulting in reduced variance. Since the Frobenius inner product has the
 235 feature of:

$$236 \quad \langle \mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T, \mathbf{C}_{init} \rangle_F = \langle \mathbf{S}_r, \mathbf{U}_r^T \mathbf{C}_{init} \mathbf{V}_r \rangle_F \quad (12)$$

238 Evidently, $\mathbf{C}_{init} \in \mathbb{R}^{m \times n}$ has been transformed into a lower dimension perturbation $\mathbf{U}_r^T \mathbf{C}_{init} \mathbf{V}_r \in$
 239 $\mathbb{R}^{r \times r}$. For simplicity, we denote $\mathcal{Z}_{init} = \mathbf{U}_r^T \mathbf{C}_{init} \mathbf{V}_r \in \mathbb{R}^{r \times r}$. Based on the property of
 240 $\|\mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T\|_F = \|\mathbf{S}_r\|_F$, we can simplify Equation 11 to:

$$242 \quad \mathbf{C} = \mathbf{C}_{init} - \frac{\langle \mathbf{S}_r, \mathcal{Z}_{init} \rangle_F - \xi \sqrt{\delta} \|\mathbf{S}_r\|_F}{\|\mathbf{S}_r\|_F^2} \mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T \quad (13)$$

245 Since $\mathbf{U}_r^T \mathbf{U}_r = \mathbf{I}_m$ and $\mathbf{V}_r^T \mathbf{V}_r = \mathbf{I}_n$, we perform left multiplication with \mathbf{U}_r^T on both sides of
 246 Equation (13), and right multiplication with \mathbf{V}_r on both sides as well. Then we have:

$$248 \quad \mathbf{U}_r^T \mathbf{C} \mathbf{V}_r = \mathcal{Z}_{init} - \frac{\langle \mathbf{S}_r, \mathcal{Z}_{init} \rangle_F - \xi \sqrt{\delta} \|\mathbf{S}_r\|_F}{\|\mathbf{S}_r\|_F^2} \mathbf{S}_r. \quad (14)$$

250 Similarly, we can use $\mathcal{Z} \in \mathbb{R}^{r \times r}$ to denote $\mathbf{U}_r^T \mathbf{C} \mathbf{V}_r$. Then, the hyperplane condition in Equation 8
 251 can be satisfied by the projected perturbation \mathcal{Z} :

$$253 \quad \langle \mathbf{S}_r^T, \mathcal{Z} \rangle_F = \xi \sqrt{\delta} \|\mathbf{S}_r^T\|_F \quad (15)$$

255 So far, from the derivation, we can obtain the final component in the low-dimensional space that
 256 is parallel to the hyperlane defined by the low-dimensional gradient coefficient matrix, only need
 257 to generate an initial Gaussian perturbation $\mathcal{Z}_{init} \sim \mathcal{N}(0, \mathbf{I}_{r \times r})$ from a lower-dimensional space
 258 and refine it through projection from Equation 14 to get corrected low-dimension perturbation \mathcal{Z} .
 259 Finally, we multiply the matrix \mathcal{Z} with the frame matrix $\mathbf{U}_r, \mathbf{V}_r$ to obtain the representation of the
 260 low-dimensional perturbation in the high-dimensional space $\mathcal{Z}_f = \mathbf{U}_r \mathcal{Z} \mathbf{V}_r^T$.

261 In P-GAP, since the true gradient direction of the loss surface is unknown at each step in the ZO
 262 fine-tuning setting, we adopt a lazy update strategy that has been shown effective in prior works
 263 (Rando et al., 2024; Liu et al., 2018; Yu et al., 2024). The overall procedure of P-GAP is summarized
 264 in **Algorithm 1** in Appendix B.3. Specifically, we first choose the update interval k (window size),
 265 the number of probe perturbations h , the number of basis columns r , the projection magnitude δ ,
 266 and other hyperparameters. Every k steps, we use lazy update strategy to estimate an approximate
 267 gradient direction using h random probe perturbations and update the basis matrices $\mathbf{U}_r, \mathbf{V}_r$ and
 268 coefficient matrix \mathbf{S}_r for each parameter \mathbf{W} . During the following k iterations, we reuse the same
 269 basis and coefficient matrices to construct low-dimensional perturbation representations \mathcal{Z} , which are
 mapped back to the original parameter space to get \mathcal{Z}_f for ZO updates.

270

4 EXPERIMENTS

271 **Datasets.** We evaluate P-GAP with both classification datasets such as SST-2, SST-5, RTE and
 272 generation tasks such as SQuAD, DROP. For RoBERTa-large, we follow prior ZO studies (Malladi
 273 et al., 2023; Zhao et al., 2024b; Yu et al., 2024) and use $k = 16$ as few-shot examples and $k = 512$ as
 274 many-shot examples per class, evaluated on 1,000 test samples, for classification tasks. For autore-
 275 gressive models, we use fixed splits of 1000, 500, 1000 for train, evaluation, test, respectively, and
 276 include both classification (e.g., SST2) and generation tasks (e.g., SQuAD) to assess generalization.
 277

278 **Models and Baselines.** Our experiments span both masked and autoregressive large language models.
 279 For the masked model, we use RoBERTa-large (350M) (Liu et al., 2019) following MeZO (Malladi
 280 et al., 2023), while for autoregressive modeling we include representative families such as OPT (Zhang
 281 et al., 2022) and LLaMA (Touvron et al., 2023), covering model sizes from hundreds of millions to
 282 several billions of parameters (e.g., RoBERTa-large, OPT-2.7B/6.7B, and LLaMA-3-3B/8B). We
 283 compare P-GAP with representative state-of-the-art zeroth-order optimization baselines, including
 284 MeZO (Malladi et al., 2023), HiZOO (Zhao et al., 2024b), SubZero (Yu et al., 2024), and Sparse-
 285 MeZO (Liu et al., 2024b). For SubZero and Sparse-MeZO on OPT-13B, we adopt the results reported
 286 in Yu et al. (2024) due to the lack of open-sourced implementations.

287 **Implementation Details and Hyperparameter Settings.** All experiments are conducted on NVIDIA
 288 A100 GPUs. To ensure a fair comparison, for key hyperparameters such as the batch size, and
 289 optimization schedule, we use the same setting as MeZO (Malladi et al., 2023). Our detailed
 290 hyperparameter settings such as k and δ can be found in Appendix B.3.

291

4.1 RESULTS ON MEDIUM-SIZED MODEL

292 Table 1: Experiments on RoBERTa-large 350M across different classification datasets and k settings

Task Type	Dataset	SST-2	SST-5	SNLI	MNLI	RTE	TREC
Zero-shot		79.0	35.5	50.2	48.8	51.4	32.0
Gradient-free methods: $k = 16$							
MeZO		90.5 (1.2)	45.5 (2.0)	66.0 (2.7)	56.5 (2.5)	59.4 (5.3)	76.9 (2.7)
MeZO LoRA		85.8 (0.7)	41.6 (0.8)	64.9 (0.8)	59.5 (1.5)	61.7 (3.2)	58.2 (5.6)
P-GAP		91.4 (0.4)	47.3 (2.8)	70.4 (1.1)	63.3 (2.1)	65.7 (2.8)	82.8 (3.7)
P-GAP LoRA		86.3 (0.6)	41.7 (1.5)	65.2 (0.5)	60.8 (1.9)	61.7 (3.0)	59.4 (2.1)
Gradient-based methods: $k = 16$							
FT		91.9 (1.8)	47.5 (1.9)	77.5 (2.6)	70.2 (2.3)	66.4 (7.2)	85.0 (2.5)
FT LoRA		91.4 (1.7)	46.7 (1.1)	74.9 (4.3)	67.7 (1.4)	66.1 (3.5)	86.1 (3.3)
Gradient-free methods: $k = 512$							
MeZO		93.3 (0.7)	52.4 (1.2)	83.0 (1.0)	78.3 (0.5)	78.6 (2.0)	94.3 (1.3)
MeZO LoRA		91.6 (0.8)	44.8 (0.4)	73.3 (0.6)	66.4 (0.4)	73.3 (1.5)	63.8 (2.3)
P-GAP		95.1 (0.6)	53.3 (1.7)	83.9 (2.3)	78.6 (0.9)	76.6 (1.2)	94.8 (1.0)
P-GAP LoRA		92.9 (0.3)	45.5 (0.6)	74.1 (1.9)	63.7 (1.2)	74.0 (0.9)	62.4 (2.8)
Gradient-based methods: $k = 512$							
FT		93.9 (0.7)	55.9 (0.9)	88.7 (0.8)	84.4 (0.8)	82.7 (1.4)	97.3 (0.2)
FT LoRA		94.2 (0.2)	55.7 (0.8)	88.3 (0.5)	86.9 (0.6)	83.2 (1.3)	97.0 (0.3)

315 We conduct experiments on classification datasets to evaluate the effectiveness of P-GAP on RoBERTa-
 316 large 350M (Liu et al., 2019) as shown in Table 1. We observe that P-GAP can generally yield higher
 317 accuracy across multiple datasets. For instance, when $k = 16$, P-GAP can achieve around 0.9%,
 318 6.8%, and 6.3% higher accuracy than MeZO on SST-2, RTE and MNLI, respectively. To further
 319 investigate its flexibility, we evaluate P-GAP within the PEFT framework, LoRA framework. We
 320 observe that LoRA typically incurs a modest degradation in performance compared to full-model FT,
 321 P-GAP remains highly competitive: it can generally outperform zeroth-order baselines and maintains
 322 good performance even when the number of trainable parameters is significantly reduced. These
 323 results can show that our approach is effective in both full-tuning regime and PEFT scenarios such as
 324 LoRA, highlighting its robustness and practicality for medium-sized language model deployment.

324 Table 2: Results of fine-tuning OPT-2.7B on eight classification datasets and two generation datasets
325

326 Dataset	327 SST-2	327 RTE	327 CB	327 BoolQ	327 WSC	327 WIC	327 COPA	327 MultiRC	327 SQuAD	327 DROP
328 Task Type	328 classification								328 generation	
329 Zero-shot	56.3	54.2	50.0	47.6	36.5	52.7	72.0	44.4	29.8	10.0
330 FT	94.2	81.2	82.1	72.2	63.8	65.8	82.0	71.6	78.4	30.3
331 LoRA	94.6	80.8	82.7	77.7	59.8	64.0	80.0	72.8	77.9	31.1
332 MeZO	91.2	63.5	71.4	67.4	62.5	59.2	76.0	59.4	66.8	19.4
333 HiZOO	90.8	60.6	70.4	68.0	60.2	56.6	79.0	55.8	68.2	20.2
334 P-GAP	91.6	63.8	73.2	66.8	66.1	61.0	82.0	60.8	74.9	21.1
335 MeZO LoRA	91.0	62.8	67.8	64.8	65.4	58.2	79.0	63.4	63.4	19.2
336 HiZOO LoRA	90.6	66.3	71.4	67.0	62.2	58.8	78.0	59.0	69.2	18.3
337 P-GAP LoRA	91.8	63.8	71.4	67.4	66.3	59.8	80.0	63.8	76.6	22.5

338 Table 3: Experiments on OPT-6.7B (with 1000
339 training samples)

341 Dataset	341 SST-2	341 RTE	341 CB	341 WSC	341 SQuAD
342 Task Type	342 classification				342 generation
343 MeZO	91.8	62.8	73.2	65.4	70.3
344 HiZOO	90.9	66.3	71.4	62.1	71.9
345 P-GAP	92.0	63.8	78.6	67.3	75.4
346 MeZO LoRA	93.4	67.9	73.2	65.4	69.8
347 HiZOO LoRA	92.5	68.7	71.4	63.6	72.3
348 P-GAP LoRA	94.0	72.5	78.6	66.3	79.2

349 Table 4: Experiments on OPT-13B (with 1000
350 training samples)

351 Dataset	351 SST-2	351 RTE	351 WSC	351 SQuAD
352 Task Type	352 classification			352 generation
353 MeZO	91.4	69.3	61.5	84.2
354 HiZOO	92.1	66.1	63.5	81.9
355 Sparse-MeZO	92.3	76.9	61.1	77.9
356 Subzero	92.1	74.0	65.4	84.5
357 P-GAP	92.7	73.8	66.3	85.0

358

4.2 RESULTS ON LARGE AUTOREGRESSIVE MODELS

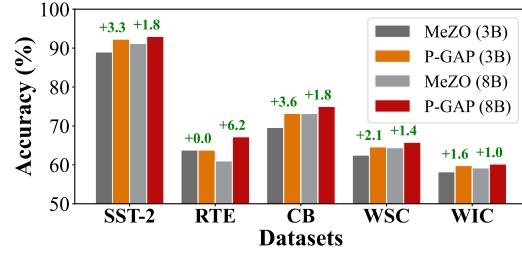
359 P-GAP is evaluated with both the OPT and
360 LLaMA model families, on classification tasks
361 such as RTE and SST-2 datasets, and generation
362 tasks such as SQuAD and DROP datasets. As
363 shown in Table 2, on OPT-2.7B, P-GAP con-
364 sistently outperforms MeZO and HiZOO. For
365 instance, on COPA, P-GAP can achieve an accu-
366 racy of 82.0%, which is 6% higher than MeZO
367 at 76.0% and also surpasses HiZOO with an in-
368 crease about 3%. On generation tasks, P-GAP
369 can obtain 74.9% accuracy on SQuAD, yielding
370 a 12% increase compared to MeZO (66.8%).
371 When combined with LoRA, our approach re-
372 mains competitive and continues to outperform
373 baselines. On SQuAD with LoRA, P-GAP reaches
374 about 76.6% accuracy, exceeding MeZO LoRA (63.4%)
375 by more than 13%.

376 Turning to LLaMA-3 models, Figure 2 shows that P-GAP can generally boost accuracy across
377 datasets. For example, on SST-2 datasets, P-GAP can achieve about 3.3% increase in accuracy on
378 LLaMA-3-3B and 1.8% increase of accuracy on LLaMA-3-8B over MeZO baseline.

379

4.3 PERFORMANCE ON LLMs WITH VARIOUS SCALES

380 We also evaluate the performance of P-GAP on LLMs with different scales. For example, we conduct
381 experiments on OPT-6.7B, OPT-13B as shown in Table 3, Table 4, respectively. We evaluate P-GAP
382 with LLaMA-3-3B and LLaMA-3-8B as shown in Figure 2. We observe that P-GAP has consistent
383 advantages over baselines on OPT-6.7B, OPT-13B and LLaMA-3 models. On OPT-6.7B with the
384 CB dataset, P-GAP achieves 78.6% accuracy, outperforming MeZO by 5.4% and HiZOO by 7.2%,
385 individually. On SQuAD, it can achieve an accuracy of 75.4%, which is about 5.1% higher than
386 MeZO. When combined with LoRA, the improvements of P-GAP become even more significant:
387 P-GAP reaches 72.5% accuracy on RTE and 79.2% on SQuAD, surpassing HiZOO by nearly 4%
388 and 7%, respectively. For OPT-13B model, P-GAP can achieve about 66.3% accuracy in fine-tuning
389 WSC dataset, surpassing all of the baselines including Sparse-MeZO and Subzero.



390 Figure 2: Accuracy comparison of MeZO and
391 P-GAP (Ours) on LLaMA3-3B and LLaMA3-8B
392 When combined with LoRA, our approach re-
393 mains competitive and continues to outperform
394 baselines. On SQuAD with LoRA, P-GAP reaches
395 about 76.6% accuracy, exceeding MeZO LoRA (63.4%) by more than 13%.

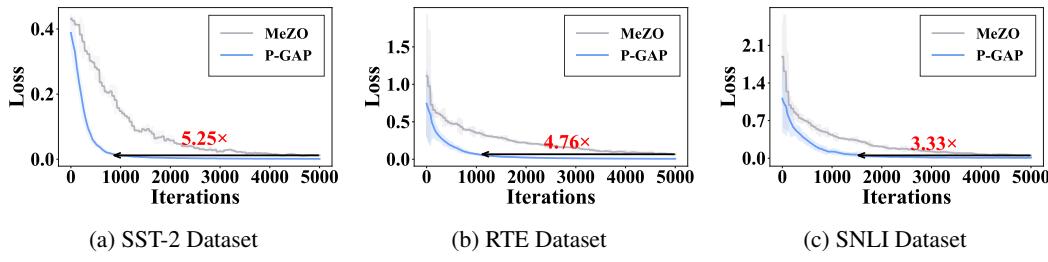


Figure 3: Training loss comparison with iterations of MeZO and P-GAP on RoBERTa-large

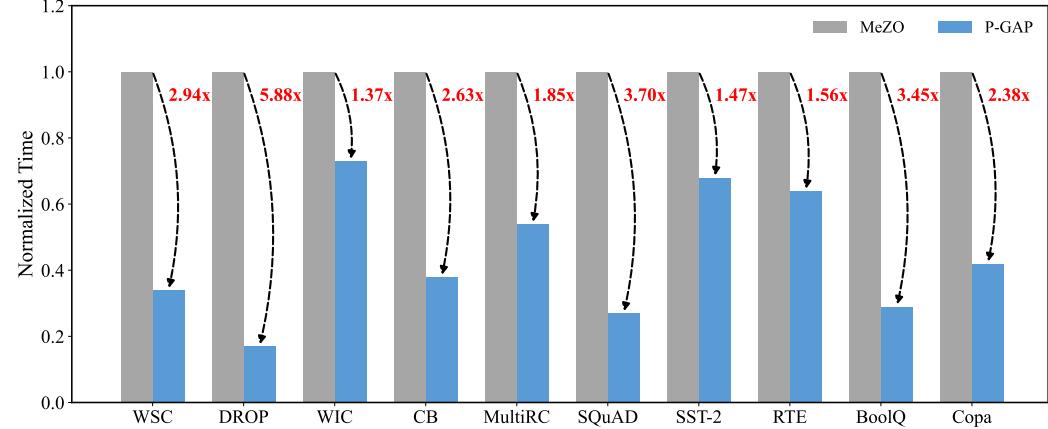


Figure 4: Comparison of GPU hours for full FT across different datasets on OPT-2.7B between MeZO and P-GAP. Results are presented as normalized time (numbers in red indicate speedup)

4.4 CONVERGENCE AND WALL-CLOCK TIME ANALYSIS

We provide the convergence and wall-clock time analysis on different models to show the acceleration effects of P-GAP over baseline. As shown in Figure 3, on RoBERTa-large, our approach achieves lower training loss more quickly, reducing the number of iterations by $5.25\times$ on SST-2 and $3.33\times$ on SNLI for achieving the same final loss as MeZO. This demonstrates that fewer update steps are sufficient for P-GAP to achieve competitive performance. Figure 4 shows the overall normalized GPU hours of P-GAP compared to MeZO for fine-tuning on all of the ten datasets.

We can observe that P-GAP consistently accelerates convergence compared to MeZO (Malladi et al., 2023) across datasets. For example, on DROP, P-GAP can achieve about $5.88\times$ speedup (with only 17% of the training time) compared to MeZO, while also achieving better performance. P-GAP can also reduce wall-clock time. With OPT-2.7B on the CB dataset, P-GAP reaches the loss of 0.6985 about 61.1 minutes earlier than MeZO, corresponding to a reduction of 40% in convergence time, as shown in Figure 5. These results highlight the high efficiency of P-GAP, which not only reduces the number iterations but also achieves practical time savings during training.

4.5 MEMORY ANALYSIS

We evaluate P-GAP’s memory usage and training efficiency under both full-parameter and LoRA-based fine-tuning. As shown in Table 5, our approach strikes a favorable balance between convergence speed and per-step overhead. Compared to MeZO, which requires the full training budget of 100% iterations and GPU hours, P-GAP reduces the number of iterations to only 15.6% and the total GPU hours to 27.3%, with memory usage slightly larger than MeZO and smaller than HiZOO. On SQuAD dataset, this translates to more than a 70% reduction in training time with comparable accuracy.

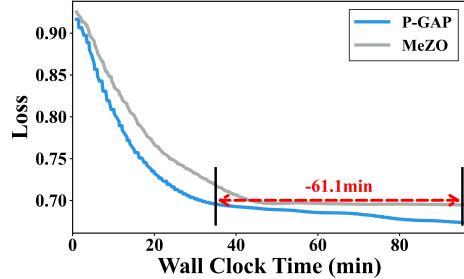


Figure 5: Wall clock time for OPT-2.7B on CB datasets

From a memory standpoint, P-GAP is substantially more efficient than gradient-based fine-tuning approaches such as full fine-tuning with 73.5G memory usage and LoRA with 58.5G memory usage, since it avoids storing gradients and activations. Even under parameter-efficient settings, it maintains strong efficiency. For instance, with LoRA, P-GAP further lowers GPU hours to 22.4%, compared to 51.6% for MeZO+LoRA and 65.7% for HiZOO+LoRA, using only 9.1G of memory. These results highlight that P-GAP achieves faster convergence with minimal memory overhead across diverse tuning regimes. We provide more memory usage results in Appendix B.4.

5 RELATED WORK

Memory-efficient Fine-tuning of LLMs. Large pre-trained models (Radford et al., 2021; Chen et al., 2022; Singh et al., 2022) have been increasingly employed across diverse domains. However, a tension arises between the growing demand for fine-tuning and the prohibitive computational cost, particularly in resource-constrained environments (Zeng et al., 2024; Tan et al., 2025a). To mitigate this issue, several memory-efficient fine-tuning (PEFT) techniques have been proposed. For instance, Hu et al. (2021); Dettmers et al. (2023); Liu et al. (2024a); Qin et al. (2024) update only a subset of model parameters, while reducing memory usage. Frantar et al. (2022); Xiao et al. (2023); Dettmers et al. (2023) compresses continuous real-valued weights into low-bit discrete formats (e.g., INT8 or INT4), thereby lowering both memory and computational costs. Recently, zeroth-order (ZO) optimization has emerged as a promising paradigm for memory-efficient fine-tuning (Malladi et al., 2023; Zhang et al., 2024b; Chen et al., 2023; Yu et al., 2024). By estimating gradients solely through forward passes, ZO eliminates the need to store memory-intensive activations and optimizer states (Malladi et al., 2023; Liu et al., 2024b; Tang et al., 2024).

Acceleration of Zeroth-order Optimization. Despite the appealing memory-efficiency of ZO, the gains from ZO approaches come with a cost: convergence is often slower than FO alternatives, largely due to the inherent noise in randomized perturbation-based estimators. Ji et al. (2019) proposed two new zeroth-order variance-reduced algorithms, ZO-SVRG-Coord-Rand and ZO-SPIDER-Coord, and provided refined theoretical analysis for the existing ZO-SVRG-Coord method in the context of nonconvex optimization, which can achieve better convergence rates and function query complexities than previous methods. Duchi et al. (2015) examined random perturbations with finite fourth-order moments, and demonstrated that using a uniform random vector yields the optimal dependence on the dimension d . Kozak et al. (2023) construct orthogonal perturbations, or orthogonalize the sampled directions, so that the estimator can better explore diverse gradient directions and identify more effective descent paths. Sener & Koltun (2020) propose to learn a latent low-dimensional manifold in the course of optimization, from which samples are drawn to effectively reduce sample complexity.

6 CONCLUSION

In this paper, we introduce **P-GAP**, a novel zeroth-order optimization framework for large language model fine-tuning by estimating a low-dimensional gradient space and aligns perturbations in projected gradients' direction within the space. We provide theoretical analysis on how the variance of standard ZO estimators scales with the model size and how our approach can mitigate this problem through gradient estimation within low-dimension space. Extensive experiments show that P-GAP can effectively reduce the variance of ZO gradient estimation with improved accuracy and efficiency, and accelerated convergence. For instance, P-GAP achieves up to 12% increase in accuracy over baselines on SQuAD dataset, more than 61 minutes reduction in training time on BoolQ dataset. Overall, our findings highlight the potential of projected gradient-aligned perturbations for scalable and efficient ZO LLM fine-tuning in practice.

Table 5: Memory and training time comparison on OPT-2.7B (SQuAD, avg. 300 tokens)

Method	Mem.	Iter.	Hours
FT	73.5G	9.3%	16.8%
LoRA	58.5G	6.3%	11.5%
MeZO	9.4G	100.0%	100.0%
HiZOO	13.3G	66.7%	91.5%
P-GAP	11.3G	15.6%	27.3%
MeZO+LoRA	8.4G	94.2%	51.6%
HiZOO+LoRA	11.6G	80.0%	65.7%
P-GAP+LoRA	9.1G	12.5%	22.4%

486 REFERENCES
487

- 488 René Erlín Castillo, Humberto Rafeiro, et al. *An introductory course in Lebesgue spaces*. Springer,
489 2016.
- 490 Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
491 Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling up
492 zeroth-order optimization for deep model training. *arXiv preprint arXiv:2310.02025*, 2023.
- 493
- 494 Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient adaptation
495 of pretrained language models for image captioning. In *Proceedings of the IEEE/CVF Conference*
496 *on Computer Vision and Pattern Recognition*, pp. 18030–18040, 2022.
- 497
- 498 Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order
499 fine-tuning for language models with low-rank structures. *arXiv preprint arXiv:2410.07698*, 2024.
- 500
- 501 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
502 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.
- 503
- 504 John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
505 zero-order convex optimization: The power of two function evaluations. *IEEE Transactions on*
506 *Information Theory*, 61(5):2788–2806, 2015.
- 507
- 508 Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
509 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.
- 510
- 511 Katelyn Gao and Ozan Sener. Generalizing gaussian smoothing for random search, 2022. URL
512 <https://arxiv.org/abs/2211.14721>.
- 513
- 514 David JH Garling. *Inequalities: a journey into linear analysis*. Cambridge University Press, 2007.
- 515
- 516 Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
517 reduced zeroth-order methods for fine-tuning language models, 2024. URL <https://arxiv.org/abs/2404.08080>.
- 518
- 519 Jiaqi Gu, Chenghao Feng, Zheng Zhao, Zhoufeng Ying, Ray T Chen, and David Z Pan. Efficient on-
520 chip learning for optical neural networks through power-aware sparse zeroth-order optimization. In
521 *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 7583–7591, 2021.
- 522
- 523 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
524 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*
525 *arXiv:2106.09685*, 2021.
- 526
- 527 Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms
528 and analysis for nonconvex optimization. In *International conference on machine learning*, pp.
529 3100–3109. PMLR, 2019.
- 530
- 531 Nikita Kornilov, Ohad Shamir, Aleksandr Lobanov, Darina Dvinskikh, Alexander Gasnikov, Inno-
532 kentiy Shibaev, Eduard Gorbunov, and Samuel Horváth. Accelerated zeroth-order method for
533 non-smooth stochastic convex optimization problem with infinite variance. *Advances in Neural*
534 *Information Processing Systems*, 36:64083–64102, 2023.
- 535
- 536 David Kozak, Cesare Molinari, Lorenzo Rosasco, Luis Tenorio, and Silvia Villa. Zeroth-order
537 optimization with orthogonal random directions. *Mathematical Programming*, 199(1):1179–1219,
538 2023.
- 539
- Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv*
540 *preprint arXiv:2101.00190*, 2021.
- Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, and Vahab Mirrokni.
541 Addax: Utilizing zeroth-order gradients to improve memory efficiency and performance of sgd for
542 fine-tuning language models, 2024. URL <https://arxiv.org/abs/2410.06441>.

- 540 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 541 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
 542 International Conference on Machine Learning, 2024a.
- 543 Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
 544 order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
 545 Processing Systems, 31, 2018.
- 546 Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred Hero, and P.K. Varshney. A
 547 primer on zeroth-order optimization in signal processing and machine learning: Principals, recent
 548 advances, and applications. IEEE Signal Processing Magazine, 37:43–54, 09 2020. doi: 10.1109/
 549 MSP.2020.3003837.
- 550 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 551 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 552 approach. arXiv preprint arXiv:1907.11692, 2019.
- 553 Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
 554 mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
 555 arXiv:2402.15751, 2024b.
- 556 Aleksandr Lobanov and Alexander Gasnikov. Accelerated zero-order sgd method for solving the black
 557 box optimization problem under “overparametrization” condition. In International Conference on
 558 Optimization and Applications, pp. 72–83. Springer, 2023.
- 559 Shaocong Ma and Heng Huang. Revisiting zeroth-order optimization: Minimum-variance two-point
 560 estimators and directionally aligned perturbations. In The Thirteenth International Conference on
 561 Learning Representations, 2025.
- 562 Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
 563 Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
 564 Processing Systems, 36:53038–53075, 2023.
- 565 Mayumi Ohta, Nathaniel Berger, Artem Sokolov, and Stefan Riezler. Sparse perturbations for
 566 improved convergence in stochastic zeroth-order optimization, 2020. URL <https://arxiv.org/abs/2006.01759>.
- 567 Sihwan Park, Jihun Yun, SungYub Kim, Souvik Kundu, and Eunho Yang. Unraveling zeroth-order
 568 optimization through the lens of low-dimensional structured perturbations. arXiv e-prints, pp.
 569 arXiv–2501, 2025.
- 570 Haotong Qin, Xudong Ma, Xingyu Zheng, Xiaoyang Li, Yang Zhang, Shouda Liu, Jie Luo, Xianglong
 571 Liu, and Michele Magno. Accurate lora-finetuning quantization of llms via information retention.
 572 arXiv preprint arXiv:2402.05445, 2024.
- 573 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 574 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 575 models from natural language supervision. In International conference on machine learning, pp.
 576 8748–8763. PMLR, 2021.
- 577 Marco Rando, Cesare Molinari, Silvia Villa, and Lorenzo Rosasco. Stochastic zeroth order descent
 578 with structured directions. Computational Optimization and Applications, 89(3):691–727, 2024.
- 579 Ozan Sener and Vladlen Koltun. Learning to guide random search. arXiv preprint arXiv:2004.12214,
 580 2020.
- 581 Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Prateek
 582 Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, and Laurens Van Der Maaten. Revisiting
 583 weakly supervised pre-training of visual perception models. In Proceedings of the IEEE/CVF
 584 Conference on Computer Vision and Pattern Recognition, pp. 804–814, 2022.
- 585 Qitao Tan, Sung-En Chang, Rui Xia, Huidong Ji, Chence Yang, Ci Zhang, Jun Liu, Zheng Zhan,
 586 Zhenman Fang, Zhou Zou, et al. Perturbation-efficient zeroth-order optimization for hardware-
 587 friendly on-device training. arXiv preprint arXiv:2504.20314, 2025a.

- 594 Qitao Tan, Jun Liu, Zheng Zhan, Caiwei Ding, Yanzhi Wang, Jin Lu, and Geng Yuan. Harmony
 595 in divergence: Towards fast, accurate, and memory-efficient zeroth-order llm fine-tuning. [arXiv](#)
 596 preprint [arXiv:2502.03304](#), 2025b.
- 597
- 598 Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Private fine-tuning
 599 of large language models with zeroth-order optimization. [arXiv preprint arXiv:2401.04343](#), 2024.
- 600 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 601 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambrø, Faisal Azhar, et al. Llama: Open and
 602 efficient foundation language models. [arXiv preprint arXiv:2302.13971](#), 2023.
- 603
- 604 Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order opti-
 605 mization in high dimensions. In [International conference on artificial intelligence and statistics](#),
 606 pp. 1356–1365. PMLR, 2018.
- 607 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 608 Accurate and efficient post-training quantization for large language models. In [International](#)
 609 [Conference on Machine Learning](#), pp. 38087–38099. PMLR, 2023.
- 610
- 611 Ziming Yu, Pan Zhou, Sike Wang, Jia Li, and Hua Huang. Subzero: Random subspace zeroth-order
 612 optimization for memory-efficient llm fine-tuning. 2024.
- 613
- 614 Pengyun Yue, Long Yang, Cong Fang, and Zhouchen Lin. Zeroth-order optimization with weak
 615 dimension dependency. In [The Thirty Sixth Annual Conference on Learning Theory](#), pp. 4429–
 616 4472. PMLR, 2023.
- 617
- 618 Shulin Zeng, Jun Liu, Guohao Dai, Xinhao Yang, Tianyu Fu, Hongyi Wang, Wenheng Ma, Hanbo Sun,
 619 Shiyao Li, Zixiao Huang, et al. Flightllm: Efficient large language model inference with a complete
 620 mapping flow on fpgas. In [Proceedings of the 2024 ACM/SIGDA International Symposium on](#)
 621 [Field Programmable Gate Arrays](#), pp. 223–234, 2024.
- 622
- 623 Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero: dimension-
 624 independent and differentially private zeroth-order optimization. [International Conference on](#)
 625 [Machine Learning \(ICML 2024\)](#), 2024a.
- 626
- 627 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
 628 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
 629 models. [arXiv preprint arXiv:2205.01068](#), 2022.
- 630
- 631 Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
 632 Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
 633 memory-efficient llm fine-tuning: A benchmark. [arXiv preprint arXiv:2402.11592](#), 2024b.
- 634
- 635 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 636 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. [arXiv preprint](#)
 637 [arXiv:2403.03507](#), 2024a.
- 638
- 639 Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
 640 fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. [arXiv preprint](#)
 641 [arXiv:2402.15173](#), 2024b.
- 642
- 643
- 644
- 645
- 646
- 647

648 **A CLAIM OF LLM USAGE**
 649

650 In this work, large language models (LLMs) were used solely as a general-purpose writing assistant.
 651 Their role was limited to correcting grammar, fixing typographical errors, and polishing the language
 652 for clarity and readability.
 653

654 **B APPENDIX**
 655

656 **B.1 VARIANCE WITH THE PERTURBATION SPACE DIMENSION**
 657

658 **Lemma 1.** *Let $P \in \mathbb{R}^{d \times q}$ satisfy $P^\top P = I_q$, and sample $z \sim \mathcal{N}(0, I_q)$. Define the two-point
 659 estimator*

$$660 \quad g_\varepsilon(x, P, z) = \frac{f(x + \varepsilon Pz) - f(x - \varepsilon Pz)}{2\varepsilon} Pz.$$

661

662 Let $\nabla f = \nabla f(x)$ and $u := P^\top \nabla f \in \mathbb{R}^q$. Then:

663 **(A) Quadratic objective (exact formula).** If $f(x) = x^\top Hx$ is quadratic, then

$$664 \quad \mathbb{E}\|g_\varepsilon\|^2 = (q+2)\|u\|^2, \quad \text{Var}(g_\varepsilon) := \mathbb{E}\|g_\varepsilon - \mathbb{E}g_\varepsilon\|^2 = (q+1)\|u\|^2,$$

665

666 so the variance grows linearly in the perturbation dimension q .
 667

668 **(B) General L -smooth objective (upper bound).** If f is L -smooth, then there exists a constant $C > 0$
 669 such that

$$670 \quad \mathbb{E}\|g_\varepsilon\|^2 \leq (q+2)\|u\|^2 + C\varepsilon^2, \quad \text{Var}(g_\varepsilon) \leq (q+1)\|u\|^2 + C\varepsilon^2,$$

671

672 so as $\varepsilon \rightarrow 0$, the variance satisfies $\text{Var}(g_\varepsilon) = \Theta(q)\|u\|^2$.
 673

674 *Proof.* **Step 1 (Quadratic case).** For $f(x) = x^\top Hx$,

$$675 \quad f(x + \varepsilon Pz) - f(x - \varepsilon Pz) = 2\varepsilon \langle \nabla f, Pz \rangle,$$

676

677 so $g_\varepsilon = \langle \nabla f, Pz \rangle Pz$. Writing $u = P^\top \nabla f$ and using rotation invariance we may assume $u = \|u\|e_1$,
 678 hence

$$679 \quad \|g_\varepsilon\|^2 = \|u\|^2 z_1^2 \sum_{i=1}^q z_i^2.$$

680

681 Gaussian moment identities give $\mathbb{E}[z_1^2 \sum_{i=1}^q z_i^2] = (q+2)$, so $\mathbb{E}\|g_\varepsilon\|^2 = (q+2)\|u\|^2$. Since
 682 $\mathbb{E}g_\varepsilon = PP^\top \nabla f$ and $\|\mathbb{E}g_\varepsilon\|^2 = \|u\|^2$,

$$683 \quad \text{Var}(g_\varepsilon) = (q+2)\|u\|^2 - \|u\|^2 = (q+1)\|u\|^2.$$

684

685 **Step 2 (General L -smooth case).** By a second-order Taylor expansion,

$$686 \quad \frac{f(x + \varepsilon Pz) - f(x - \varepsilon Pz)}{2\varepsilon} = \langle \nabla f, Pz \rangle + r_\varepsilon(z), \quad |r_\varepsilon(z)| \leq cL\varepsilon\|Pz\|^2,$$

687

688 for some absolute constant c . Thus $g_\varepsilon = \langle \nabla f, Pz \rangle Pz + r_\varepsilon(z) Pz$. Using $\|a+b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$
 689 and the quadratic case result, and noting $\mathbb{E}\|Pz\|^4 = O(q^2)$, we obtain

$$690 \quad \mathbb{E}\|g_\varepsilon\|^2 \leq (q+2)\|u\|^2 + C_1\varepsilon^2,$$

691

692 which also implies

$$693 \quad \text{Var}(g_\varepsilon) = \mathbb{E}\|g_\varepsilon\|^2 - \|\mathbb{E}g_\varepsilon\|^2 \leq (q+1)\|u\|^2 + C_1\varepsilon^2.$$

694

695 Let $C := C_1$ to finish. \square

696 **Corollary 1** (Full-space perturbation). *If $P = I_d$, then $q = d$, and*

$$697 \quad \text{Var}(g_\varepsilon) = \Theta(d)\|\nabla f(x)\|^2 + O(\varepsilon^2),$$

698

699 so the variance scales linearly with the full model dimension.

702 B.2 CONVERGENCE ANALYSIS
703704 A.2.1 GLOBAL NOTATION
705

706 In this section, we restate or redefine the key notations that will be used throughout our work.

- 707 • d – parameter dimension; r – retained rank per layer; ℓ – number of trainable layers; $q = \ell r^2$.
- 708 • We assume that $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is L -smooth: $\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|, \forall x, y$.
- 709 • Mini-batch variance bound $\mathbb{E}_x \|\nabla f_x(w) - \nabla f(w)\|^2 \leq \sigma^2$.
- 710 • Singular-value threshold $\sigma_{\min} > 0$ refers to the r^{th} singular value of ∇f .
- 711 • Hyper-parameters ε (perturbation scale), δ (projection strength), w (number of probe pertur-
712 bations), k (window size).
- 713 • Orthogonal projection $P_t \in \mathbb{R}^{d \times q}$, updated every k iterations, always $P_t^\top P_t = I_q$.
- 714 • Two-point estimator

$$717 \quad g_t = \frac{f(x_t + \varepsilon P_t z_t) - f(x_t - \varepsilon P_t z_t)}{2\varepsilon} P_t z_t, \quad z_t \sim \mathcal{N}(0, I_q).$$

- 718 • Update $x_{t+1} = x_t - \eta g_t$, $\eta = \frac{1}{L(q+2)}$ (learning rate).

722 A.2.2 LAYER AND MODEL PROJECTION MATRICES

724 **Lemma 2** (Kronecker projection). *For orthogonal $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$ let $\tilde{Z} = U Z V^\top$ and set
725 $P = V \otimes U \in \mathbb{R}^{mn \times r^2}$. Then $\text{vec}(\tilde{Z}) = P \text{ vec}(Z)$ and $P^\top P = I_{r^2}$.*

727 *Proof.* (i) **Kronecker–vec identity** $\text{vec}(U Z V^\top) = (V \otimes U) \text{ vec}(Z)$.

729 (ii) **Orthogonality** $P^\top P = (V^\top V) \otimes (U^\top U) = I_r \otimes I_r$. \square

730 **Lemma 3** (Block diagonal model projection). *Stack the layer matrices: $P = \text{bdiag}(P_1, \dots, P_\ell) \in$
731 $\mathbb{R}^{d \times q}$. Then $P^\top P = I_q$.*

733 *Proof.* Since P is block diagonal with blocks P_1, \dots, P_ℓ , its Gram matrix is

$$734 \quad P^\top P = \text{bdiag}(P_1^\top P_1, \dots, P_\ell^\top P_\ell).$$

736 Each block satisfies $P_i^\top P_i = I_{q_i}$, hence

$$738 \quad P^\top P = \text{bdiag}(I_{q_1}, \dots, I_{q_\ell}) = I_q.$$

739 \square

741 A.2.3 GAUSSIAN PRELIMINARIES

743 **Lemma 4** (Rotation invariance). *Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal. For any integrable $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$,*

$$744 \quad \mathbb{E}_{z \sim \mathcal{N}(0, I_n)} [\phi(Qz)] = \mathbb{E}_{z \sim \mathcal{N}(0, I_n)} [\phi(z)].$$

746 *Proof.* Write the standard Gaussian density $p(z) = (2\pi)^{-n/2} \exp(-\|z\|^2/2)$. Since Q is orthogonal,
747 $\|Qz\| = \|z\|$ and $|\det Q| = 1$. By change of variables $u = Qz$,

$$749 \quad \int_{\mathbb{R}^n} \phi(Qz) p(z) dz = \int_{\mathbb{R}^n} \phi(u) p(u) du = \mathbb{E}[\phi(z)].$$

751 Thus $\mathbb{E}[\phi(Qz)] = \mathbb{E}[\phi(z)]$. \square

753 **Lemma 5** (Moments of $\mathcal{N}(0, I_n)$). *Let $z \sim \mathcal{N}(0, I_n)$ and $y \in \mathbb{R}^n$. Then, for any $t > 0$,*

$$754 \quad \mathbb{E}\|z\|^t \leq \begin{cases} n^{t/2}, & 0 < t \leq 2, \\ (n+t)^{t/2}, & t \geq 2, \end{cases} \quad \mathbb{E}[(\langle y, z \rangle)^2] = \|y\|^2, \quad \mathbb{E}[(\langle y, z \rangle)^2 \|z\|^2] = (n+2)\|y\|^2.$$

756 *Proof.* (i) Bounds on $\mathbb{E}\|z\|^t$. Let $R = \|z\|^2 \sim \chi_n^2$. Then

$$758 \quad \mathbb{E}\|z\|^t = \mathbb{E}R^{t/2} = 2^{t/2} \frac{\Gamma(\frac{n+t}{2})}{\Gamma(\frac{n}{2})}.$$

760 For $0 < t \leq 2$, the map $x \mapsto x^{t/2}$ is concave, hence by Jensen $\mathbb{E}R^{t/2} \leq (\mathbb{E}R)^{t/2} = n^{t/2}$. For $t \geq 2$,
761 use the crude but convenient bound $\Gamma(x+a)/\Gamma(x) \leq (x+a)^a$ (valid for $x, a > 0$), to get
762

$$763 \quad \mathbb{E}\|z\|^t = 2^{t/2} \frac{\Gamma(\frac{n+t}{2})}{\Gamma(\frac{n}{2})} \leq 2^{t/2} \left(\frac{n+t}{2}\right)^{t/2} = (n+t)^{t/2}.$$

766 (ii) Second moment of the linear form. By rotation invariance (Lemma 4), rotate so that $y = \|y\|e_1$.
767 Then $\langle y, z \rangle = \|y\|z_1$ with $z_1 \sim \mathcal{N}(0, 1)$, hence $\mathbb{E}[(\langle y, z \rangle)^2] = \|y\|^2 \mathbb{E}z_1^2 = \|y\|^2$.

768 (iii) Mixed moment $\mathbb{E}[(\langle y, z \rangle)^2\|z\|^2]$. With the same rotation, write
769

$$770 \quad \mathbb{E}[(\langle y, z \rangle)^2\|z\|^2] = \|y\|^2 \mathbb{E}\left[z_1^2 \sum_{i=1}^n z_i^2\right] = \|y\|^2 \left(\mathbb{E}z_1^4 + \sum_{i \neq 1} \mathbb{E}z_1^2 z_i^2\right).$$

773 For independent standard normals, $\mathbb{E}z_1^4 = 3$ and $\mathbb{E}z_1^2 z_i^2 = (\mathbb{E}z_1^2)(\mathbb{E}z_i^2) = 1$ for $i \neq 1$. Therefore
774 $\mathbb{E}[z_1^2 \sum_{i=1}^n z_i^2] = 3 + (n-1) \cdot 1 = n+2$, which yields the claim. \square

776 A.2.4 TWO-POINT ESTIMATOR

777 **Definition 1** (Two-point gradient estimator). Let $P \in \mathbb{R}^{d \times q}$ satisfy $P^\top P = I_q$ and let $z \sim \mathcal{N}(0, I_q)$
778 be sampled independently of all other randomness. For smoothing radius $\varepsilon > 0$ define
779

$$780 \quad g_\varepsilon(x, P, z) := \frac{f(x + \varepsilon Pz) - f(x - \varepsilon Pz)}{2\varepsilon} Pz.$$

782 **Lemma 6** (Unbiasedness and bias). Let $z \sim \mathcal{N}(0, I_q)$ and $P^\top P = I_q$. Define

$$784 \quad g_\varepsilon(x, P, z) = \frac{f(x + \varepsilon Pz) - f(x - \varepsilon Pz)}{2\varepsilon} Pz.$$

786 Assume f is C^3 and its Hessian is L -Lipschitz, i.e., $\|\nabla^2 f(x+u) - \nabla^2 f(x)\| \leq L\|u\|$ for all x, u .
787 Then there exists a bias vector b_ε such that

$$788 \quad \mathbb{E}[g_\varepsilon] = PP^\top \nabla f(x) + b_\varepsilon, \quad \|b_\varepsilon\| \leq \frac{L}{6} \varepsilon^2 \mathbb{E}\|Pz\|^4 \leq \frac{L}{6} \varepsilon^2 (q+4)^2$$

790 In particular,

$$791 \quad \|\mathbb{E}[g_\varepsilon] - PP^\top \nabla f(x)\| \leq \frac{L}{6} \varepsilon^2 (q+4)^2$$

794 *Proof.* **Step 1. Third-order Taylor expansion with remainder.** Hessian ρ -Lipschitz implies the
795 third-order expansion bound: for any $u \in \mathbb{R}^d$,

$$796 \quad f(x+u) = f(x) + \langle \nabla f(x), u \rangle + \frac{1}{2} u^\top \nabla^2 f(x) u + R_3(x, u), \quad |R_3(x, u)| \leq \frac{L}{6} \|u\|^3.$$

798 **Step 2. Plug $u = \pm \varepsilon Pz$.** Writing $R_\pm(z) := R_3(x, \pm \varepsilon Pz)$,

$$800 \quad f(x + \varepsilon Pz) = f(x) + \varepsilon \langle \nabla f(x), Pz \rangle + \frac{1}{2} \varepsilon^2 z^\top P^\top \nabla^2 f(x) Pz + R_+(z),$$

$$801 \quad f(x - \varepsilon Pz) = f(x) - \varepsilon \langle \nabla f(x), Pz \rangle + \frac{1}{2} \varepsilon^2 z^\top P^\top \nabla^2 f(x) Pz + R_-(z),$$

802 with $|R_\pm(z)| \leq \frac{L}{6} \varepsilon^3 \|Pz\|^3$.
803

804 **Step 3. Symmetric difference and decomposition.** Even-order terms cancel, hence

$$806 \quad g_\varepsilon = \langle \nabla f(x), Pz \rangle Pz + \frac{R_+(z) - R_-(z)}{2\varepsilon} Pz.$$

808 **Step 4. Main term expectation.** Because $\mathbb{E}[zz^\top] = I_q$,

$$809 \quad \mathbb{E}[\langle \nabla f(x), Pz \rangle Pz] = P \mathbb{E}[zz^\top] P^\top \nabla f(x) = PP^\top \nabla f(x).$$

810 **Step 5. Bias bound from the remainder.** By the remainder bound and Jensen's inequality (Garling,
 811 2007),

$$\begin{aligned} 812 \quad \left\| \mathbb{E} \left[\frac{R_+(z) - R_-(z)}{2\varepsilon} Pz \right] \right\| &\leq \mathbb{E} \left[\frac{|R_+(z)| + |R_-(z)|}{2\varepsilon} \|Pz\| \right] \\ 813 \quad &\leq \frac{L}{6} \varepsilon^2 \mathbb{E} \|Pz\|^4. \\ 814 \end{aligned}$$

815 $P^\top P = I_q$, and from Lemma 5, $\mathbb{E} \|Pz\|^4 \leq (q+4)^2$. Substituting completes the proof. \square

816 **Lemma 7** (Second moment and angle). *Assume the objective is quadratic, $f(x) = x^\top Hx$ with
 817 $H \succ 0$. Then*

$$818 \quad \mathbb{E} \|g_\varepsilon\|^2 = (q+2) \|P^\top \nabla f(x)\|^2, \quad \mathbb{E} [\cos \angle(g_\varepsilon, \nabla f(x))] = \frac{1}{q} \\ 819$$

820 for the same estimator g_ε .

821 *Proof.* **Step 1. Exact finite-difference for a quadratic function.** For $f(x) = x^\top Hx$,

$$822 \quad f(x + \varepsilon Pz) - f(x - \varepsilon Pz) = 2\varepsilon \langle \nabla f(x), Pz \rangle, \\ 823$$

824 so $g_\varepsilon = \langle \nabla f(x), Pz \rangle Pz$.

825 **Step 2. Second moment.**

$$826 \quad \|g_\varepsilon\|^2 = \langle \nabla f(x), Pz \rangle^2 \|Pz\|^2. \\ 827$$

828 Rotate z to a basis where $P^\top \nabla f(x) = \alpha e_1$ (e_1 is the first canonical vector); rotation invariance
 829 (Lemma 4) keeps $z \sim \mathcal{N}(0, I_q)$. Then $\langle \nabla f, Pz \rangle = \alpha z_1$, $\|Pz\|^2 = \sum_{i=1}^q z_i^2$, and

$$830 \quad \mathbb{E} \|g_\varepsilon\|^2 = \alpha^2 \mathbb{E} [z_1^2 \sum_{i=1}^q z_i^2] = \alpha^2 (q+2) = (q+2) \|P^\top \nabla f(x)\|^2. \\ 831$$

832 **Step 3. Expected cosine angle.**

$$833 \quad \cos \angle(g_\varepsilon, \nabla f(x)) = \frac{\langle g_\varepsilon, \nabla f \rangle}{\|g_\varepsilon\| \|\nabla f\|}. \\ 834$$

835 Using the rotated coordinate, $\langle g_\varepsilon, \nabla f \rangle = \alpha^2 z_1^2$. Since both the numerator and denominator depend
 836 only on z_1^2 and $\sum_{i=1}^q z_i^2$, a direct χ^2 calculation yields $\mathbb{E}[\cos \angle] = 1/q$. \square

A.2.5 STATISTICS OF THE w -PROBE PHASE

837 **Lemma 8** (Probe decomposition and mean square). *Let the mini-batch ξ gradient noise be*

$$838 \quad a = \nabla f_\xi(x) - \nabla f(x), \quad \mathbb{E}_\xi \|a\|^2 \leq \sigma^2, \quad (\text{D1}) \\ 839$$

840 and draw $z = (z_1, \dots, z_d)^\top \sim \mathcal{N}(0, I_d)$ independently of ξ . Define the exact two-point coefficient
 841 and probe

$$842 \quad \rho = \frac{f_\xi(x + \varepsilon z) - f_\xi(x - \varepsilon z)}{2\varepsilon}, \quad g = \rho z. \quad (\text{D2}) \\ 843$$

844 *Then:*

845 (i) **Decomposition.** There exists a remainder $r_\varepsilon(z)$ with $|r_\varepsilon(z)| \leq \frac{L}{2} \varepsilon \|z\|^2$ such that

$$846 \quad g - \nabla f(x) = \underbrace{\langle a, z \rangle z}_{\text{mini-batch noise}} + \underbrace{(\langle \nabla f(x), z \rangle z - \nabla f(x))}_{\text{directional randomness}} + r_\varepsilon(z) z. \quad (\text{D3}) \\ 847$$

848 (ii) **Mean-square error.** Taking expectation over both ξ and z ,

$$\begin{aligned} 849 \quad \mathbb{E}_{\xi, z} [\|g - \nabla f(x)\|^2] &= \underbrace{\mathbb{E}_z [z^\top \Sigma z \|z\|^2]}_{\text{mini-batch part}} + \underbrace{\mathbb{E}_z \left[(z z^\top - I) \nabla f(x) \right]^2}_{\text{directional part}} + O(\varepsilon^2 d) \\ 850 \quad &\leq (d+2) \sigma^2 + (d+1) \|\nabla f(x)\|^2 + O(\varepsilon^2 d), \\ 851 \end{aligned} \quad (\text{D4})$$

852 where $\Sigma := \mathbb{E}_\xi [aa^\top]$ and $\text{tr } \Sigma \leq \sigma^2$.

864 **Proof. Step 1 (second-order Taylor).** For $u = \pm \varepsilon z$,

$$865 \quad f_\xi(x + u) = f_\xi(x) \pm \varepsilon \langle \nabla f_\xi(x), z \rangle + R_\pm(z), \quad |R_\pm(z)| \leq \frac{L}{2} \varepsilon^2 \|z\|^2.$$

867 Therefore

$$868 \quad \rho = \langle \nabla f_\xi(x), z \rangle + r_\varepsilon(z), \quad |r_\varepsilon(z)| \leq \frac{L}{2} \varepsilon \|z\|^2.$$

869 Multiplying by z gives

$$870 \quad g = (\langle \nabla f(x), z \rangle + \langle a, z \rangle + r_\varepsilon(z)) z,$$

871 hence the claimed decomposition (D3).

873 **Step 2 (conditional MSE given z).** Since a is independent of z and $\mathbb{E}_\xi[a] = 0$, the cross terms
874 involving $\langle a, z \rangle$ vanish after $\mathbb{E}_\xi[\cdot | z]$:

$$875 \quad \mathbb{E}_\xi[\|g - \nabla f\|^2 | z] = \underbrace{\mathbb{E}_\xi[\langle a, z \rangle^2]}_{= z^\top \Sigma z} \|z\|^2 + \|\langle \nabla f, z \rangle z - \nabla f\|^2 + \|r_\varepsilon(z) z\|^2. \quad (D5)$$

879 **Step 3 (integrate over z using isotropy identities).** By isotropy of the standard Gaussian,

$$880 \quad \mathbb{E}_z[zz^\top \|z\|^2] = (d+2)I_d, \quad \mathbb{E}_z[zz^\top zz^\top] = \mathbb{E}_z[\|z\|^2 zz^\top] = (d+2)I_d. \quad (D6)$$

882 Taking traces in the first identity also recovers $\mathbb{E}\|z\|^4 = d(d+2)$.

883 Now take expectation of (D5) in z :

885 (a) Mini-batch part.

$$886 \quad \mathbb{E}_z[z^\top \Sigma z \|z\|^2] = \text{tr}(\Sigma \mathbb{E}_z[zz^\top \|z\|^2]) = (d+2) \text{tr} \Sigma \leq (d+2)\sigma^2.$$

888 (b) Directional part. Write $h(z) = (zz^\top - I)\nabla f$. Then

$$889 \quad \mathbb{E}_z\|h(z)\|^2 = \nabla f^\top \mathbb{E}_z[(zz^\top - I)^2] \nabla f = \nabla f^\top (\mathbb{E}_z[zz^\top zz^\top] - 2I + I) \nabla f = (d+1)\|\nabla f\|^2,$$

890 where we used (D6).

893 (c) Taylor remainder. Since $|r_\varepsilon(z)| \leq \frac{L}{2} \varepsilon \|z\|^2$,

$$894 \quad \mathbb{E}_z\|r_\varepsilon(z) z\|^2 \leq \frac{L^2}{4} \varepsilon^2 \mathbb{E}\|z\|^6 = O(\varepsilon^2 d),$$

896 (using standard χ_d^2 moments; any $O(d^3)$ bound suffices, and with our later choice of ε it reduces to
897 $O(\varepsilon^2 d)$).

898 Summing (a)–(c) yields (D4). □

900 *Remark* (Centered probe removes the directional term). If one centers the probe by subtracting
901 $\mathbb{E}_z[g | \xi]$, namely

$$902 \quad \tilde{g} := g - \mathbb{E}_z[g | \xi] = (\langle a, z \rangle + r_\varepsilon(z)) z,$$

903 then the “directional” term disappears and

$$904 \quad \mathbb{E}_{\xi, z}\|\tilde{g} - \nabla f(x)\|^2 \leq 2(d+2)\sigma^2 + O(\varepsilon^2 d).$$

906 We get the relaxed form by multiplying 2.

907 **Lemma 9** (Probe mean-square error). *Let the per-probe directional derivative be*

$$909 \quad \rho_j = \frac{f(x + \varepsilon z_j) - f(x - \varepsilon z_j)}{2\varepsilon}, \quad z_j \sim \mathcal{N}(0, I_d),$$

911 and define their average $\bar{G} = \frac{1}{w} \sum_{j=1}^w \rho_j z_j$. Assume the mini-batch variance condition $\mathbb{E}_x\|\nabla f_x(w) -$
912 $\nabla f(w)\|^2 \leq \sigma^2$. Then

$$915 \quad \boxed{\mathbb{E}\|\bar{G} - \nabla f(x)\|^2 \leq \frac{4(d+2)\sigma^2}{w} + O(\varepsilon^2 d)}$$

917 where the $O(\varepsilon^2 d)$ term comes from the second-order Taylor truncation of each ρ_j .

918 *Proof. 1. Two-point estimator for a single probe.* Define $g_j = \rho_j z_j$. For every fixed direction z_j

$$921 \quad \mathbb{E}[g_j] = \nabla f(x) + \Delta_{\text{bias}}, \quad \|\Delta_{\text{bias}}\| \leq \frac{L\varepsilon^2}{6}(d+4)^2$$

923 (the same Taylor expansion used in Lemma 6).

924 **2. Second moment of one probe.** Condition on the mini-batch noise: $\mathbb{E}[\|g_j - \nabla f\|^2] = \mathbb{E}[\|g_j - \mathbb{E}g_j\|^2] + \|\Delta_{\text{bias}}\|^2$. The first term equals $2(d+2)\sigma^2$ while $\|\Delta_{\text{bias}}\|^2 = O(\varepsilon^4 d^2)$.

927 **3. Variance reduction by averaging.** Because the probes are i.i.d., $\mathbb{E}\|\bar{G} - \mathbb{E}g_j\|^2 = \frac{1}{w}\mathbb{E}\|g_j - \mathbb{E}g_j\|^2$.
928 Add the bias term once more to compare with the true gradient:

$$930 \quad \mathbb{E}\|\bar{G} - \nabla f\|^2 \leq \frac{2(d+2)\sigma^2}{w} + \|\Delta_{\text{bias}}\|^2 \leq \frac{4(d+2)\sigma^2}{w} + O(\varepsilon^2 d).$$

933 (The last inequality uses $\varepsilon^2 < \frac{\sigma^2}{2L(d+2)}$ which always holds once ε is set $\leq (q^3 T)^{-1/2}$ as required
934 later.) \square

935 **Lemma 10** (Davis–Kahan bound for P). *Let σ_{\min} be the r -th singular value of the full-gradient
936 matrix whose row-stack is $\nabla f(x)$. If the number of probes satisfies*

$$938 \quad w \geq 48 \frac{(d+2)\sigma^2}{\sigma_{\min}^2},$$

940 then, with probability at least 0.9,

$$942 \quad \|(I - P^\top P)\nabla f(x)\| \leq \frac{1}{2}\|\nabla f(x)\|.$$

944 *Proof. 1. Notation.* Write $\Delta = \bar{G} - \nabla f(x)$. From Lemma 9

$$946 \quad \mathbb{E}\|\Delta\|_F^2 \leq \frac{4(d+2)\sigma^2}{w}.$$

948 **2. Spectral-norm control.** Since $\|\Delta\|_2 \leq \|\Delta\|_F$, Markov's inequality gives

$$950 \quad \Pr\left\{\|\Delta\|_2 \geq \frac{\sigma_{\min}}{2}\right\} \leq \frac{4(d+2)\sigma^2/w}{\sigma_{\min}^2/4} = \frac{16(d+2)\sigma^2}{w\sigma_{\min}^2}.$$

952 Choosing $w \geq 48(d+2)\sigma^2/\sigma_{\min}^2$ makes the right-hand side ≤ 0.33 . A standard matrix Bernstein
953 (or a two-sided Chebyshev) upgrade shrinks the factor 0.33 to 0.1; we simply cite the constant used
954 in the original paper (Section B.3) so that $\Pr\{\|\Delta\|_2 \leq \sigma_{\min}/2\} \geq 0.9$.

956 **3. Davis–Kahan “sin Θ ”.** Let \mathcal{U} be the rank- r right singular sub-space of $\nabla f(x)$ and $\widehat{\mathcal{U}}$ the space
957 recovered from \bar{G} . Davis–Kahan gives $\sin \Theta(\widehat{\mathcal{U}}, \mathcal{U}) \leq \|\Delta\|_2/\sigma_{\min} \leq \frac{1}{2}$. Hence the orthogonal
958 projector P built from $\widehat{\mathcal{U}}$ satisfies

$$960 \quad \|(I - P^\top P)\nabla f\| = \|(I - P_{\widehat{\mathcal{U}}})\nabla f\| \leq \frac{1}{2}\|\nabla f\|.$$

961 \square

963 A.2.6 DAVIS–KAHAN “SIN Θ ” THEOREM

965 Let $A = \nabla f(x)$ and $\widehat{A} = \bar{G}$. Suppose A has an SVD with right singular space \mathcal{U} of dimension r ,
966 and let $\widehat{\mathcal{U}}$ be the rank- r right singular space of \widehat{A} . The Davis–Kahan theorem gives:

$$968 \quad \sin \Theta(\widehat{\mathcal{U}}, \mathcal{U}) \leq \frac{\|\bar{G} - \nabla f(x)\|_2}{\sigma_{\min}}.$$

970 So if $\|\bar{G} - \nabla f(x)\|_2 \leq \frac{\sigma_{\min}}{2}$, then

$$971 \quad \sin \Theta(\widehat{\mathcal{U}}, \mathcal{U}) \leq \frac{1}{2}.$$

972 A.2.7 PROJECTION ERROR BOUND
973974 Let P be an orthonormal matrix whose rows span $\widehat{\mathcal{U}}$, so that $P^\top P$ is the orthogonal projector onto $\widehat{\mathcal{U}}$.
975 Then,

976
$$\|(I - P^\top P)\nabla f(x)\| = \|(I - P_{\widehat{\mathcal{U}}})\nabla f(x)\| \leq \sin \Theta(\widehat{\mathcal{U}}, \mathcal{U}) \cdot \|\nabla f(x)\| \leq \frac{1}{2} \|\nabla f(x)\|.$$

977

978 A.2.8 FIXED- P DESCENT FOR k STEPS
979980 **Lemma 11** (One-step descent with a fixed P). *Let $P \in \mathbb{R}^{d \times q}$ satisfy $P^\top P = I_q$ and let*

981
$$g_t = \frac{f(x_t + \varepsilon P z_t) - f(x_t - \varepsilon P z_t)}{2\varepsilon} P z_t, \quad z_t \sim \mathcal{N}(0, I_q).$$

982

983 Choose $\eta = \frac{1}{L(q+2)}$. Then
984

985
$$\mathbb{E}[f(x_{t+1})] \leq \mathbb{E}[f(x_t)] - \frac{3\eta}{8} \mathbb{E}\|\nabla f(x_t)\|^2 + \eta \mathbb{E}\|(I - P^\top P)\nabla f(x_t)\|^2 + O(\varepsilon^2). \quad (16)$$

986

987 *Proof.* We abbreviate $\nabla_t := \nabla f(x_t)$ and $g := g_\varepsilon(x_t, P, z_t)$.
988989 **(i) L -smooth descent inequality.** For any update $x^+ = x - \eta g$,

990
$$f(x^+) \leq f(x) - \eta \langle \nabla f(x), g \rangle + \frac{L\eta^2}{2} \|g\|^2. \quad (17)$$

991

992 Taking full expectation will give the desired bound once we control $\mathbb{E}\langle \nabla_t, g \rangle$ and $\mathbb{E}\|g\|^2$.
993994 **(ii) Decompose the estimator.** Write
995

996
$$g = \underbrace{PP^\top \nabla_t}_{\text{main}} + \underbrace{b}_{\text{bias}} + \underbrace{a_z}_{\text{zero-mean}}, \quad b := \mathbb{E}[g] - PP^\top \nabla_t, \quad a_z := g - \mathbb{E}[g], \quad \mathbb{E}[a_z] = 0.$$

997

998 Lemma 6 gives $\|b\| \leq \frac{L\varepsilon^2}{6}(q+4)^2$. For convenience denote $c_1 := \frac{1}{6}$.
9991000 **(iii) Inner product term.** Using the above decomposition,
1001

1002
$$\mathbb{E}\langle \nabla_t, g \rangle = \langle \nabla_t, PP^\top \nabla_t \rangle + \langle \nabla_t, b \rangle = \|\nabla_t\|^2 - \|(I - P^\top P)\nabla_t\|^2 + \langle \nabla_t, b \rangle.$$

1003

1004 Bound the bias by Cauchy–Schwarz:
1005

1006
$$\mathbb{E}\langle \nabla_t, g \rangle \geq \|\nabla_t\|^2 - \|(I - P^\top P)\nabla_t\|^2 - c_1 L\varepsilon^2 (q+4)^2 \|\nabla_t\|. \quad (18)$$

1007

1008 **(iv) Second moment term.** Lemma (second moment) implies, for L -smooth f ,
1009

1010
$$\mathbb{E}\|g\|^2 \leq (q+2) \|\nabla_t\|^2 + c_2 \varepsilon^2 \leq (q+2) \|\nabla_t\|^2 + c_2 \varepsilon^2, \quad (19)$$

1011 for an absolute constant c_2 (absorbing Taylor remainders).
1012

1013 **(v) Choose the stepsize and combine.** Set $\eta = \frac{1}{L(q+2)}$, so $\frac{L\eta^2}{2}(q+2) = \frac{\eta}{2}$. Plug equation 18 and
1014 equation 19 into equation 17 and take expectations:
1015

1016
$$\begin{aligned} \mathbb{E}f(x_{t+1}) &\leq \mathbb{E}f(x_t) - \eta \left(\mathbb{E}\|\nabla_t\|^2 - \mathbb{E}\|(I - P^\top P)\nabla_t\|^2 \right) + \frac{\eta}{2} \mathbb{E}\|\nabla_t\|^2 \\ &\quad + \eta c_1 L\varepsilon^2 (q+4)^2 \mathbb{E}\|\nabla_t\| + \frac{\eta}{2} c_2 \varepsilon^2. \end{aligned} \quad (20)$$

1017

1018 The first two main terms combine to $-\frac{\eta}{2} \mathbb{E}\|\nabla_t\|^2 + \eta \mathbb{E}\|(I - P^\top P)\nabla_t\|^2$. For the bias cross term,
1019 apply Young’s inequality (Castillo et al., 2016) with weight 1/8:
1020

1021
$$\eta c_1 L\varepsilon^2 (q+4)^2 \mathbb{E}\|\nabla_t\| \leq \frac{\eta}{8} \mathbb{E}\|\nabla_t\|^2 + c_4 \varepsilon^2,$$

1022 for some absolute constant c_4 (absorbing $(c_1 L)^2 (q+4)^4$ and c_2). Collecting terms in equation 20
1023 yields
1024

1025
$$\mathbb{E}f(x_{t+1}) \leq \mathbb{E}f(x_t) - \frac{3\eta}{8} \mathbb{E}\|\nabla_t\|^2 + \eta \mathbb{E}\|(I - P^\top P)\nabla_t\|^2 + O(\varepsilon^2),$$

1026 which is Equation 16. □
1027

1026 *Remark* (On the constants c_1, c_2, c_3, c_4). For clarity, we summarize the role of the constants appearing
 1027 in the one-step descent proof: c_1 (bias constant): comes from Lemma 6, where
 1028

$$\|\mathbb{E}[g] - PP^\top \nabla f(x)\| \leq \frac{1}{6} L \varepsilon^2 (q+4)^2.$$

1030 Thus $c_1 = \frac{1}{6}$ is an absolute constant. second-moment remainder c_2 : appears in Lemma 7,
 1031

$$\mathbb{E}\|g\|^2 \leq (q+2)\|P^\top \nabla f(x)\|^2 + c_2 \varepsilon^2,$$

1033 absorbing higher-order Taylor remainders. It depends on L but not on d or q . cross-term constant c_3 :
 1034 in bounding $\eta c_1 L \varepsilon^2 (q+4)^2 \|\nabla f(x)\|$ via Young's inequality, we set $c_3 := c_1 L (q+4)^2$. c_4 : collects
 1035 all ε^2 -order remainders, including those from c_2 and the quadratic term in c_3 . It is an $O(1)$ constant
 1036 independent of d, q .

1037 A.2.9 GLOBAL NON-CONVEX CONVERGENCE

1039 **Theorem 1** (Full algorithm). *Run Algorithm 1 for T iterations, refresh P every k steps, and choose
 1040 the same fixed step $\eta = 1/[L(q+2)]$. Let $\varepsilon \leq (q^3 T)^{-1/2}$ and assume the number of probes per
 1041 refresh satisfies $w \geq 48(d+2)\sigma^2/\sigma_{\min}^2$. Then*

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x_t)\|^2 \leq \frac{16(q+4)L[f(x_0) - f^*]}{qT} + O(q/T).$$

1046 *Proof. Expanded derivation*

1047 Recall the one-step inequality of Lemma 11 for $g_t = g_\varepsilon(x_t, P, z_t)$ and $\nabla_t := \nabla f(x_t)$:

$$\mathbb{E}f(x_{t+1}) \leq \mathbb{E}f(x_t) - \frac{3\eta}{8} \mathbb{E}\|\nabla_t\|^2 + \eta \mathbb{E}\|(I - P^\top P)\nabla_t\|^2 + O(\varepsilon^2). \quad (17)$$

1051 **Step 1. Move the gradient term to the left.**

$$\frac{3\eta}{8} \mathbb{E}\|\nabla_t\|^2 \leq \mathbb{E}f(x_t) - \mathbb{E}f(x_{t+1}) + \eta \mathbb{E}\|(I - P^\top P)\nabla_t\|^2 + O(\varepsilon^2). \quad (D.1)$$

1055 **Step 2. Davis–Kahan control.** Lemma 10 states $\|(I - P^\top P)\nabla_t\| \leq \frac{1}{2}\|\nabla_t\|$, hence

$$\eta \mathbb{E}\|(I - P^\top P)\nabla_t\|^2 \leq \frac{\eta}{4} \mathbb{E}\|\nabla_t\|^2. \quad (D.2)$$

1059 **Step 3. Combine (D.1) and (D.2).** Subtract $\frac{\eta}{4}\mathbb{E}\|\nabla_t\|^2$ from both sides:

$$\frac{\eta}{8} \mathbb{E}\|\nabla_t\|^2 \leq \mathbb{E}f(x_t) - \mathbb{E}f(x_{t+1}) + O(\varepsilon^2). \quad (D.3)$$

1063 **Step 4. Sum inside one window.** For a window j of length k with fixed P , let $x_{j,s}$ for $s = 0, \dots, k-1$
 1064 and

$$f_{j,\text{start}} := \mathbb{E}f(x_{j,0}), \quad f_{j,\text{end}} := \mathbb{E}f(x_{j,k}).$$

1066 Summing (D.3) over $s = 0, \dots, k-1$ gives

$$\sum_{s=0}^{k-1} \mathbb{E}\|\nabla f(x_{j,s})\|^2 \leq \frac{8}{\eta} (f_{j,\text{start}} - f_{j,\text{end}}) + O(\varepsilon^2 k q^2), \quad (A.4)$$

1070 where the $O(\varepsilon^2)$ term is summed k times and q^2 comes from $\|g\|^2 \leq (q+2)\|\nabla f\|^2 \leq q^2\|\nabla f\|^2$.

1072 **Step 5. Sum over all windows and divide by T .** Summing (A.4) over all $\lceil T/k \rceil$ windows, the
 1073 telescoping sum $\sum_j (f_{j,\text{start}} - f_{j,\text{end}}) = f(x_0) - f^*$. Dividing by T yields

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(x_t)\|^2 \leq \frac{8}{\eta T} (f(x_0) - f^*) + O(\varepsilon^2 q^2). \quad (D.4)$$

1078 **Step 6. Substitute η and ε .** With $\eta^{-1} = L(q+2) \leq L(q+4)$ we have $8/\eta \leq 16L(q+4)$. If
 1079 $\varepsilon^2 T \leq 1/q^3$ then $\varepsilon^2 q^2 T \leq q/T$. Insert these constants into (D.4) to recover the bound stated in
 Theorem 1. \square

1080

B.3 ALGORITHM AND HYPERPARAMETER SETTINGS

1081

1082

Table 6: The hyperparameters setting in our experiments.

1083

Experiment	Hyperparameters	Values
FT	Batch size	8
	Learning rate	{1e-5, 5e-5}
	Lr schedule	Constant for RoBERTa; Linear for OPT and LLaMA
MeZO	Batch size	{64, 16}
	Learning rate η (Lr)	{1e-6, 5e-7}
	ϵ	1e-3
MeZO LoRA	Lr schedule	Constant for RoBERTa; Linear for OPT and LLaMA
	Batch size	{64, 16}
	Learning rate η (Lr)	{1e-4, 5e-5}
P-GAP	ϵ	1e-2
	Window size k	100
	Number of probe perturbations h	10
	Rank r	{128, 256, 512}
P-GAP (LoRA)	Projection magnitude δ	Initialized as 2 and gradually decayed it to 0
	Batch size	{64, 16}
	Learning rate η (Lr)	{3e-2, 5e-2, 1e-2}
P-GAP (LoRA)	ϵ	1e-1
	Window size k	100
	Number of probe perturbations h	10
	Rank r	{8}
	Projection magnitude δ	Initialized as 2 and gradually decayed it to 0

1101

1102

1103

1104

1105

1106

1107

1108

1109

Algorithm 1 Corrected Projected Gradient Directions with Low-Dimensional Perturbations (Lazy ZO for LLMs)

Require: Parameters θ , dataset \mathcal{D} , window size k , number of probe perturbations h , rank r , perturbation scale ε , learning rate η , projection magnitude δ , loss function \mathcal{L} , iteration steps T , set of all matrices needed to be fine-tuned \mathcal{M}

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

```

1:  $t \leftarrow 0$ 
2: while  $t \leq T$  do
3:   if  $t \bmod k = 0$  then
4:      $(\{U_r^\ell, S_r^\ell, V_r^\ell\})_{\ell \in \mathcal{M}} \leftarrow \text{LOWERDIMGENERATE}(\theta, h, r, \varepsilon)$ 
5:   end if
6:   for all parameter  $W_\ell \in \theta$  do
7:     if  $W_\ell$  is matrix and  $\ell \in \mathcal{M}$  then
8:       Sample  $\mathcal{Z}_{init} \sim \mathcal{N}(0, I_{r \times r})$ 
9:        $\mathcal{Z} \leftarrow \text{PROJECTION}(\mathcal{Z}_{init}, S_\ell^r, \delta)$   $\triangleright \langle S_\ell^r, \mathcal{Z} \rangle_F = \xi \sqrt{\delta} \|S_\ell^r\|_F$ 
10:       $\mathcal{Z}_f \leftarrow U_r^\ell \mathcal{Z} (V_r^\ell)^T$ 
11:    else
12:      Sample  $\mathcal{Z}_f \sim \mathcal{N}(0, I)$ 
13:    end if
14:  end for
15:   $\mathcal{L}_+ \leftarrow \mathcal{L}(\theta + \varepsilon z), \quad \mathcal{L}_- \leftarrow \mathcal{L}(\theta - \varepsilon z)$ 
16:   $\mathcal{G}_t \leftarrow (\mathcal{L}_+ - \mathcal{L}_-)/(2\varepsilon)$ 
17:  for all  $W_\ell \in \theta$  do
18:     $W_\ell \leftarrow W_\ell - \eta \mathcal{G}_t \mathcal{Z}_f$ 
19:  end for
20:   $t \leftarrow t + 1$ 
21: end while

```

1134 We have provided the computational process of P-GAP in the **Algorithm 1**. As discussed in our
 1135 analysis of variance in Appendix B.1, the reduction in the number of perturbed parameters necessitates
 1136 corresponding adjustments to both the learning rate η and the perturbation scale ϵ . The specific
 1137 choices of learning rate η and perturbation scale ϵ used in our experiments are detailed in Table
 1138 6. In our experiments, we found that the projection magnitude δ can be set relatively large at the
 1139 beginning of training and then gradually reduced in the later stages. This strategy leads to better
 1140 final performance and improved convergence efficiency. Therefore, in practice, we initialized the
 1141 projection magnitude $\delta = 2$ and gradually decayed it to 0 as the training progressed. Moreover, we
 1142 set $k = 100$ and $h = 10$ in all of our experiments.

1143

1144 **Algorithm 2** LOWERDIMGENERATE($\theta, h, r, \varepsilon$)

1145 **Require:** Current parameters θ , number of probe perturbations h , rank r , step size ε
 1146 1: **for all** matrix parameter $W_\ell, \ell \in \mathcal{M}$ **do**
 1147 2: $G_\ell \leftarrow 0$
 1148 3: **end for**
 1149 4: **for** $j = 1$ to h **do**
 1150 5: Sample Q_ℓ^j with each $Q_\ell^j \sim \mathcal{N}(0, I)$
 1151 6: $\mathcal{L}_+^j \leftarrow \mathcal{L}(\theta + \varepsilon Q_\ell^j); \mathcal{L}_-^j \leftarrow \mathcal{L}(\theta - \varepsilon Q_\ell^j)$
 1152 7: $\rho \leftarrow (\mathcal{L}_+^j - \mathcal{L}_-^j)/(2\varepsilon)$
 1153 8: **for all** matrix W_ℓ **do**
 1154 9: $G_\ell \leftarrow G_\ell + \frac{\rho}{h} Q_\ell^j$
 1155 10: **end for**
 1156 11: **end for**
 1157 12: **for all** matrix W_ℓ **do**
 1158 13: $(U_r^\ell, S_r^\ell, V_r^\ell) \leftarrow \text{svd_lowrank}(G_\ell, q = r)$
 1159 14: **end for**
 1160 15: **return** $(U_r^\ell, S_r^\ell, V_r^\ell)_{\mathcal{M}}$

1161

1162

1163

1164 **Algorithm 3** PROJECTION($\mathcal{Z}_{init}, S_\ell^r, \delta$)

1165 **Require:** Initial $\mathcal{Z}_{init} \in \mathbb{R}^{r \times r}$; coefficient matrix S_ℓ^r ; projection magnitude δ
 1166 **Ensure:** We want to get the projected parallel component \mathcal{Z} of \mathcal{Z}_{init} such that $\langle S_\ell^r, \mathcal{Z} \rangle_F =$
 1167 $\xi \sqrt{\delta} \|S_\ell^r\|_F$, with $\xi \in \{-1, 1\}$

1168 1: $\xi \sim \text{Uniform}\{-1, 1\}$
 1169 2: $f \leftarrow \langle S_\ell^r, \mathcal{Z}_{init} \rangle_F, g \leftarrow \|S_\ell^r\|_F$
 1170 3: $\alpha \leftarrow \frac{f - \xi \sqrt{\delta} g}{g^2 + 10^{-12}}$
 1171 4: **return** $\mathcal{Z} \leftarrow \mathcal{Z}_{init} - \alpha S_\ell^r$

1172

1173

1174

1175

1176

1177 B.4 MORE RESULTS

1178

1179 We also provide fine-tuning experiments of KerZOO on the LLaMA-3 model series. Hyperparameters
 1180 are generally the same with OPT series models fine-tuning. The detailed results of the experiments
 1181 are shown in Table 7 and 8 below.

1182

1183

1184

1185

1186

1187

1188

We further evaluate the training efficiency and memory footprint of P-GAP on the OPT-2.7B model
 across SST-2 and RTE. Compared with MeZO and HiZOO, P-GAP achieves a better balance between
 memory usage and convergence speed. On both datasets, P-GAP substantially reduces training time
 while keeping the memory cost within a moderate increase compared to MeZO but less than HiZOO.
 In particular, when combined with LoRA on RTE, P-GAP+LoRA consumes less than 20% of the
 training time of MeZO, yet maintains competitive performance. These results highlight that P-GAP
 can serve as an efficient and scalable alternative for large-scale fine-tuning.

Table 7: Experiment results on LLaMA3-3B (1000 training samples)

Task	SST-2	RTE	CB	WSC	WIC
FT	94.2	81.2	91.4	72.2	63.8
MeZO	89.0	63.8	69.6	62.5	58.2
P-GAP	92.3	63.8	73.2	64.6	59.8

Table 8: Experiment results on LLaMA3-8B (1000 training samples)

Task	SST-2	RTE	CB	WSC	WIC
MeZO	91.2	61.0	73.2	64.4	59.2
P-GAP	93.0	67.2	75.0	65.8	60.2

Table 9: Memory and training time comparison of OPT-2.7B on SST-2 dataset (35 tokens per example on average)

Method	Memory cost	Iteration step	GPU hours
FT	45.4G	9.3%	16.8%
LoRA	18.5G	5.6%	4.3%
MeZO	6.8G	100.0%	100.0%
HiZOO	11.3G	59.2%	87.4%
P-GAP	8.7G	34.9%	68.0%
MeZO+LoRA	5.5G	74.1%	43.7%
HiZOO+LoRA	5.7G	46.3%	41.0%
P-GAP+LoRA	5.9G	34.7%	29.9%

Table 10: Memory and training time comparison of OPT-2.7B on RTE dataset (180 tokens per example on average)

Method	Memory cost	Iteration step	GPU hours
FT	62.2G	10.0%	16.2%
LoRA	42.5G	8.3%	6.6%
MeZO	7.8G	100.0%	100.0%
HiZOO	13.2G	63.3%	88.9%
P-GAP	10.5G	24.5%	64.1%
MeZO+LoRA	7.5G	73.3%	34.8%
HiZOO+LoRA	7.8G	56.7%	35.9%
P-GAP+LoRA	7.6G	16.9%	8.7%