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ABSTRACT

Fine-tuning large language models (LLMs) using zeroth-order (ZO) optimization
has emerged as a promising alternative to traditional gradient-based methods due
to its reduced memory footprint requirement. However, existing ZO methods
suffer from high variance in gradient estimation, leading to slow convergence
and suboptimal performance on large-scale models. In this work, we propose
P-GAP, a fast LLM fine-tuning approach through zeroth-order optimization with
Projected Gradient-Aligned Perturbations. Specifically, we first estimate a low-
dimensional gradient space and then align perturbations in projected gradients’
direction within the space. This approach enables reduced the number of perturbed
parameters and decreased variance, therefore accelerated convergence for LLM
fine-tuning. Experiments on LLMs show that P-GAP consistently surpasses the
baselines, achieving up to 6% increase in accuracy on classification tasks and up
to 12% higher accuracy on generation tasks, with up to about 81% less training
iterations and 70% less GPU hours. These results demonstrate that P-GAP enables
fast, scalable, and resource-efficient ZO LLM fine-tuning.

1 INTRODUCTION

Fine-tuning (FT) large language models (LLMs) (Hu et al., 2021; Dettmers et al., 2023; Gu et al.,
2021) for specific tasks or datasets has become a common practice in modern machine learning.
However, as model size and complexity scale, fine-tuning incurs substantial memory overhead,
which severely limits its scalability and makes it inaccessible to users with constrained computational
resources (Tan et al., 2025b; Zhao et al., 2024b). To alleviate this issue, parameter-efficient fine-tuning
(PEFT) methods have been proposed (Li & Liang, 2021; Dettmers et al., 2023; Zhao et al., 2024a),
which update only a small subset of parameters while freezing the majority of the model. These
approaches drastically reduce GPU memory footprint and storage cost while achieving performance
comparable to full FT. However, despite their efficiency, PEFT methods still require computing
and storing full gradients and intermediate activations during backpropagation, which introduces
significant memory overhead (Malladi et al., 2023; Liu et al., 2024b).

To address the challenge, zeroth-order (ZO) optimization has emerged as a promising solution
(Zhang et al., 2024b; Malladi et al., 2023), which estimates gradients using only forward passes. By
leveraging randomized perturbations to approximate gradient directions, ZO completely removes the
need to store large gradient tensors and intermediate activations, which substantially reduces memory
usage. This advantage makes ZO especially appealing for extremely large models where backward
passes dominate GPU memory consumption. When combined with parameter-efficient strategies,
ZO-based fine-tuning offers a scalable and resource-friendly framework for adapting high-capacity
models under tight memory constraints while maintaining competitive performance (Tan et al., 2025b).
Despite the advantages of zeroth-order optimization in reducing memory overhead, these benefits
often come at the expense of longer computational time (e.g., GPU hours) and decreased accuracy
compared to first-order approaches (Li et al., 2024; Gautam et al., 2024).

Existing works show that variance in the zeroth-order gradient estimation, attributing to the random
perturbations, can be a factor for the longer computational time Chen et al. (2024); Park et al. (2025).
The larger variance in the estimation of the ZO gradient can lead to suboptimal accuracy and slower
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Figure 1: Estimation of directional derivative magnitudes on
the V matrix from the first Transformer layer of the
OPT-2.7B model, using perturbations sampled from a
standard Gaussian distribution and from P-GAP

convergence rates compared to first-
order methods, making ZO-based
fine-tuning less stable and resource-
intensive (Kornilov et al., 2023;
Zhang et al., 2024b; Lobanov & Gas-
nikov, 2023). Existing works in LLM
fine-tuning such as (Ohta et al., 2020)
and (Malladi et al., 2023) aim to re-
duce the variance via increasing the
number of perturbations, which will
lead to prolong training time.

Inspired by (Ma & Huang, 2025;
Kozak et al., 2023) which find
anisotropic perturbations (i.e., the
magnitude of perturbations is larger
along certain directions and is smaller
along others, rather than being uniform in all directions) can potentially help relieve the variance
issue in ZO optimization theoretically, we raise the following question:

Q1: For LLM finetuning on larger-scale models, can we find the proper perturbation directions,
thereby reducing the variance of ZO gradient estimation and finally accelerating convergence with
negligible accuracy loss?

Inspired by (Wang et al., 2018; Zhang et al., 2024a; Yue et al., 2023), which identify that perturbing
the full parameter space can further amplify the variance in gradient estimation, as the variance scales
proportionally with the parameter dimension d, we naturally pose a research question:

Q2: Can we further reduce variance in gradient estimation by decreasing the parameter space that
require perturbation-based gradient estimation?

To answer the two questions, we propose a fast LLM finetuing approach through zeroth-order
optimization with Projected Gradient-Aligned Perturbations (P-GAP), which reduces the variance
in gradient estimation of ZO updates via low-dimensional perturbations that are aligned with the
gradient direction in the subspace of gradient, thereby achieving faster convergence. Figure 1 shows
the magnitude of gradient estimation on the attentions matrix V in the first Transformer layer of the
OPT-2.7B model, based on perturbations sampled from a standard Gaussian distribution and from
P-GAP. It can be observed that the value of estimated gradients are more stable and less dispersed for
P-GAP, which indicates a smaller variance. Our contributions can be summarized as follows:

• We propose a novel ZO-based LLM fine-tuning framework, P-GAP, which estimates a low-
dimensional gradient space and aligns perturbations in projected gradients’ direction within the
space. This design can not only allow the perturbation aligned in the most informative direction but
also effectively reduce the dimensionality of gradient estimation, therefore reducing variance and
accelerate convergence.

• We provide theoretical analysis on that the variance of ZO gradient estimation linearly increases
with the dimension of weight matrix which need perturbations for gradient estimation in LLMs,
and further show that P-GAP can reduce the variance with the proposed low-dimensional gradient
space estimation. Moreover, we provide the convergence analysis of P-GAP.

• We conduct extensive experiments on both encoder-only models (e.g., RoBERTa-large) and decoder-
based LLMs (e.g., OPT-2.7B/6.7B and LLaMA-3-3B/8B). Results show that P-GAP achieves up to
6% accuracy gains over the baselines, while achieving 5.2× speedup in training and more than 61
minutes less wall-clock time.

2 PRELIMINARIES

Notations. In this paper, all of the non-bold letters (including Latin letters and Greek letters) indicate
the scalar such as δ and K. All of the lower-case letters which is bold indicate a column vector such
as u and all of the upper-case bold letters such as V indicate a matrix. A d-dimensional multivariate
Gaussian distribution is denoted by N (µ,Σ), where µ ∈ Rd is the mean vector and Σ ∈ Rd×d is
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the covariance matrix. We use E[·] to represent the expected value of a variable and use Var[·] to
represent the variance of a variable. vec(W ) indicates that we flatten the matrix W by stacking its
columns vertically to change it into a column vector. ∥x∥p = (

∑n
i=1 x

p
i )

1
p indicates the ℓp-norm

of a vector x and we use ||x|| to denote the ℓ2-norm of a vector x. ∥U∥F =
√
⟨U ,U⟩ denotes

the Frobenius norm of a matrix U and we will call it F-norm in the paper for simplicity. Cs,pL (S)
denotes the collection of functions defined on the set S that are s-times continuously differentiable,
and whose p-th order derivatives are L-Lipschitz continuous. ∇̂ indicates the estimation of gradient
and ∇ indicates the true gradient. I indicates the identity matrix or vector.

Zeroth-order Optimization for LLMs. Consider a large language model with parameters θ ∈ Rd

and loss function L. At iteration step t, zeroth-order optimization estimates the gradient on a mini-
batch datasets Bt by perturbing θt along random directions. Specifically, if we choose to use Gaussian
distribution as perturbations, then we can get u ∼ N (0, Id) and N (0, Id) is the standard Gaussian
distribution. Given a perturbation scale ϵ > 0, the two-point gradient estimator is

∇̂L(θt;Bt) =
L(θt + ϵu;Bt)− L(θt − ϵu;Bt)

2ϵ
u (1)

where ∇̂ in Equation 1 indicates the estimated gradients. To reduce estimator variance, one may
average over n independent perturbations {ui}ni=1:

∇̂L(θt;Bt) =
1

n

n∑
i=1

[
L(θt + ϵui;Bt)− L(θt − ϵui;Bt)

2ϵ
ui

]
(2)

Finally, given the learning rate η and estimated gradients in Equation 2, the parameter update follows
the standard SGD form:

θt+1 = θt − η ∇̂L(θt;Bt). (3)

3 METHODOLOGY

In this section, we first clarify the remaining problems in existing zeroth-order optimization frame-
works and put up the motivation for our proposed method. Then, we will elaborate on our proposed
P-GAP, which performs ZO updates with low-dimensional perturbations that are aligned with the
gradient direction in the subspace of the gradient for variance reduction. Intuitively, our pipeline be-
gins by obtaining an approximate gradient matrix, which can be expressed as the product of low-rank
frame matrices and a coefficient matrix. Within this lower-dimensional space spanned by the frame
matrices, Gaussian perturbations may be selected arbitrarily without restriction; however, we hope
that they are constrained to be aligned with the directions defined by the gradient’s coefficient matrix
(i.e. the hyperplane defined by the low-dimension gradient’s coefficient matrix). After correction, the
perturbation itself can also be represented as a corrected coefficient matrix, which, when multiplied
with the frame matrices, yields the final perturbation in the original high-dimensional parameter
space. In other words, we allow perturbations to be chosen freely within the linear subspace spanned
by low-rank frame matrice, but enforce that they remain parallel to the hyperplane determined by the
gradient’s coefficient matrix.

3.1 PROJECTED GRADIENT-ALIGNED PERTURBATION

Inspired by (Ma & Huang, 2025), we adopt the idea of projecting the sampled random perturbations
onto the gradient direction. However, since the original method was designed for the vector dimension,
that is, if we generate a random initial perturbation z ∼ N (0, Id), we hope that the perturbation
could satisfy the condition that:

(∇LTz)2 = δ∥∇L∥2 (4)

which can be simplified to:
⟨∇L, z⟩ = ξ ·

√
δ∥∇L∥ (5)

where ξ is a constant that is randomly selected from the set {−1, 1}. And ⟨·, ·⟩ indicates the inner
product of two vectors. However, directly generating the perturbation vector corresponding to
Equation 4 and 5 is difficult since it requires sampling from a constrained space rather than the free
full parameter space. Since Equation 5 corresponds to a hyperplane in the vector space, we can
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randomly sample an initial perturbed vector vinit which can be decomposed into two components:
one parallel with the hyperplane and the other orthogonal to it. We can denote them as vinit∥ and
vinit⊥, respectively. Then, we only need to retain the parallel component v = vinit∥, which satisfies
the requirement of Equation 5. According to (Ma & Huang, 2025), we can calculate the parallel
component v of the initial perturbation vinit as follows:

v = vinit −
∇LTvinit − ξ

√
δ ∥∇L∥

∥∇L∥2 ∇L (6)

In Equation 6 the aligned perturbation v is not only consistent with the gradient direction and but also
satisfies the Gaussian distribution condition, satisfying the following requirements for the chosen
perturbations to reduce the variance of ZO gradient estimation (Ma & Huang, 2025; Liu et al., 2020;
Gao & Sener, 2022):

• (a) Constant Magnitude: The magnitude (ℓ2 norm) of the perturbation vector v is a fixed
constant, i.e., ||v||2 = dδ (δ is a random constant). Many traditional methods fall into this
category, such as Gaussian distribution, Rademacher distribution and uniform distribution.

• (b) Directional Alignment: The square of the inner product between the perturbation vector
v and the true gradient ∇L is a fixed value, i.e., (∇LTv)2 = δ∥∇L∥2. This condition
implies that the perturbation direction should be ’aligned’ with the gradient direction.

We now extend this theory to the case of high-dimensional matrices. The vector norm on the right-
hand side of Equation 5 can be naturally generalized to the matrix norm. In this paper, we adopt
the Frobenius norm for matrices, i.e. ∥A∥F =

√∑
i,j a

2
ij , where aij is the number in the i-th row

and j-th column of the matrix A. We can replace the vector inner product with the Frobenius inner
product for matrices without loss of generality. For two matrices A,B ∈ Rm×n, we define

⟨A,B⟩F = Tr(A⊤B) (7)

where Tr(·) in Equation 7 means the trace of a matrix and bij is the number in the i-th row and j-th
column of the matrix B. Therefore, the vector hyperplane in Equation 5 can be extended to a tensor
hyperplane:

⟨∇L,Z⟩F = ξ ·
√
δ ∥∇L∥F (8)

where Z is a random perturbation satisfying Gaussian distribution.

Similarly, if we randomly generate an initial perturbation matrix Cinit ∼ N (0, Im×n) and Cinit

have equivalent dimension with gradient matrix ∇L ∈ Rm×n, then the sampled initial perturbation
can also be decomposed into a parallel component (Cinit∥) and a vertical component (Cinit⊥).
Deriving from Equation 6, the parallel component C = Cinit∥ of Cinit can be formulated as:

C = Cinit −
⟨∇L,Cinit⟩F − ξ

√
δ ∥∇L∥F

∥∇L∥2F
∇L (9)

We only need to retain the parallel component C of the hyperplane in Equation 8, i.e., the one aligned
with the gradient direction and the subsequent ZO perturbation update is then performed using only
the parallel component.

3.2 LOW-DIMENSIONAL GRADIENT SPACE DESIGN

Motivation. If we directly apply Equation 9 for perturbation alignment, there are two issues: First,
for large language models such as OPT-6.7B, the Transformer layer matrices are very large (e.g.,
4096×4096), which leads to high computational cost. Second, Equation 9 still performs perturbation
alignment in the full parameter space. However, as we have shown in the Appendix B.1, the larger
the dimensionality of the perturbations, the higher the variance of the ZO gradient estimation. This
motivates us to explore whether it is possible to restrict the perturbations to a low-dimensional space
and perform the perturbation alignment with gradient direction within this low-dimensional space.

Suppose the gradient matrix is denoted as S = ∇L ∈ Rm×n, it can be decomposed in the format
of the product of an orthogonal basis matrix and a coefficient matrix, using techniques such as
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singular value decomposition (SVD) or QR decomposition. In this work, we adopt SVD for low-rank
decomposition, then we have:

S ≃ UrSrV
T
r (10)

where Ur ∈ Rm×r,Sr ∈ Rr×r,Vr ∈ Rn×r, r ≪ m and r ≪ n. Evidently, Ur and Vr can be
regarded as a pair of frames, i.e., two orthogonal bases. And Sr serves as the set of scaling factors
associated with the bases, which indicates the importance of the direction of each singular vector.
Hence, a natural choice is to preserve the leading r directions, which captures the most significant
components. Then, by combining Equation 9 and Equation 10, we have

C = Cinit −
⟨UrSrV

T
r ,Cinit⟩F − ξ

√
δ ∥UrSrV

T
r ∥F

∥UrSrV T
r ∥2F

UrSrV
T
r . (11)

3.3 ADAPTING PROJECTED GRADIENT-ALIGNED PERTURBATION IN LOW-DIMENSIONAL
GRADIENT SPACE

So far, we can conduct gradient alignment with Equation 11. However, generating perturbation in full
parameter space will lead to large variance of ZO gradient estimation. To further reduce the variance,
we propose to generate perturbations from a lower dimension space, therefore reducing the number
of perturbed parameters, resulting in reduced variance. Since the Frobenius inner product has the
feature of:

⟨UrSrV
T
r ,Cinit⟩F = ⟨Sr,U

T
r CinitVr⟩F (12)

Evidently, Cinit ∈ Rm×n has been transformed into a lower dimension perturbation UT
r CinitVr ∈

Rr×r. For simplicity, we denote Zinit = UT
r CinitVr ∈ Rr×r. Based on the property of

∥UrSrV
T
r ∥F = ∥Sr∥F , we can simplify Equation 11 to:

C = Cinit −
⟨Sr,Zinit⟩F − ξ

√
δ ∥Sr∥F

∥Sr∥2F
UrSrV

T
r (13)

Since UT
r Ur = Im and V T

r Vr = In, we perform left multiplication with UT
r on both sides of

Equation (13), and right multiplication with Vr on both sides as well. Then we have:

UT
r CVr = Zinit −

⟨Sr,Zinit⟩F − ξ
√
δ ∥Sr∥F

∥Sr∥2F
Sr. (14)

Similarly, we can use Z ∈ Rr×r to denote UT
r CVr. Then, the hyperplane condition in Equation 8

can be satisfied by the projected perturbation Z:

⟨Sr
ℓ ,Z⟩F = ξ

√
δ∥Sr

ℓ ∥F (15)

So far, from the derivation, we can obtain the final component in the low-dimensional space that
is parallel to the hyperlane defined by the low-dimensional gradient coefficient matrix, only need
to generate an initial Gaussian perturbation Zinit ∼ N (0, Ir×r) from a lower-dimensional space
and refine it through projection from Equation 14 to get corrected low-dimension perturbation Z .
Finally, we multiply the matrix Z with the frame matrix Ur,Vr to obtain the representation of the
low-dimensional perturbation in the high-dimensional space Zf = UrZV T

r .

In P-GAP, since the true gradient direction of the loss surface is unknown at each step in the ZO
fine-tuning setting, we adopt a lazy update strategy that has been shown effective in prior works
(Rando et al., 2024; Liu et al., 2018; Yu et al., 2024). The overall procedure of P-GAP is summarized
in Algorithm 1 in Appendix B.3. Specifically, we first choose the update interval k (window size),
the number of probe perturbations h, the number of basis columns r, the projection magnitude δ,
and other hyperparameters. Every k steps, we use lazy update strategy to estimate an approximate
gradient direction using h random probe perturbations and update the basis matrices Ur,Vr and
coefficient matrix Sr for each parameter W . During the following k iterations, we reuse the same
basis and coefficient matrices to construct low-dimensional perturbation representations Z , which are
mapped back to the original parameter space to get Zf for ZO updates.

5
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4 EXPERIMENTS

Datasets. We evaluate P-GAP with both classification datasets such as SST-2, SST-5, RTE and
generation tasks such as SQuAD, DROP. For RoBERTa-large, we follow prior ZO studies (Malladi
et al., 2023; Zhao et al., 2024b; Yu et al., 2024) and use k=16 as few-shot examples and k=512 as
many-shot examples per class, evaluated on 1,000 test samples, for classification tasks. For autore-
gressive models, we use fixed splits of 1000, 500, 1000 for train, evaluation, test, respectively, and
include both classification (e.g., SST2) and generation tasks (e.g., SQuAD) to assess generalization.
Models and Baselines. Our experiments span both masked and autoregressive large language models.
For the masked model, we use RoBERTa-large (350M) (Liu et al., 2019) following MeZO (Malladi
et al., 2023), while for autoregressive modeling we include representative families such as OPT (Zhang
et al., 2022) and LLaMA (Touvron et al., 2023), covering model sizes from hundreds of millions to
several billions of parameters (e.g., RoBERTa-large, OPT-2.7B/6.7B, and LLaMA-3-3B/8B). We
compare P-GAP with representative state-of-the-art zeroth-order optimization baselines, including
MeZO (Malladi et al., 2023), HiZOO (Zhao et al., 2024b), SubZero (Yu et al., 2024), and Sparse-
MeZO (Liu et al., 2024b). For SubZero and Sparse-MeZO on OPT-13B, we adopt the results reported
in Yu et al. (2024) due to the lack of open-sourced implementations.
Implementation Details and Hyperparameter Settings. All experiments are conducted on NVIDIA
A100 GPUs. To ensure a fair comparison, for key hyperparameters such as the batch size, and
optimization schedule, we use the same setting as MeZO (Malladi et al., 2023). Our detailed
hyperparameter settings such as k and δ can be found in Appendix B.3.

4.1 RESULTS ON MEDIUM-SIZED MODEL

Table 1: Experiments on RoBERTa-large 350M across different classification datasets and k settings

Task Type Dataset SST-2 SST-5 SNLI MNLI RTE TREC

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Gradient-free methods: k = 16

MeZO 90.5 (1.2) 45.5 (2.0) 66.0 (2.7) 56.5 (2.5) 59.4 (5.3) 76.9 (2.7)
MeZO LoRA 85.8 (0.7) 41.6 (0.8) 64.9 (0.8) 59.5 (1.5) 61.7 (3.2) 58.2 (5.6)
P-GAP 91.4 (0.4) 47.3 (2.8) 70.4 (1.1) 63.3 (2.1) 65.7 (2.8) 82.8 (3.7)
P-GAP LoRA 86.3 (0.6) 41.7 (1.5) 65.2 (0.5) 60.8 (1.9) 61.7 (3.0) 59.4 (2.1)

Gradient-based methods: k = 16

FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 70.2 (2.3) 66.4 (7.2) 85.0 (2.5)
FT LoRA 91.4 (1.7) 46.7 (1.1) 74.9 (4.3) 67.7 (1.4) 66.1 (3.5) 86.1 (3.3)

Gradient-free methods: k = 512

MeZO 93.3 (0.7) 52.4 (1.2) 83.0 (1.0) 78.3 (0.5) 78.6 (2.0) 94.3 (1.3)
MeZO LoRA 91.6 (0.8) 44.8 (0.4) 73.3 (0.6) 66.4 (0.4) 73.3 (1.5) 63.8 (2.3)
P-GAP 95.1 (0.6) 53.3 (1.7) 83.9 (2.3) 78.6 (0.9) 76.6 (1.2) 94.8 (1.0)
P-GAP LoRA 92.9 (0.3) 45.5 (0.6) 74.1 (1.9) 63.7 (1.2) 74.0 (0.9) 62.4 (2.8)

Gradient-based methods: k = 512

FT 93.9 (0.7) 55.9 (0.9) 88.7 (0.8) 84.4 (0.8) 82.7 (1.4) 97.3 (0.2)
FT LoRA 94.2 (0.2) 55.7 (0.8) 88.3 (0.5) 86.9 (0.6) 83.2 (1.3) 97.0 (0.3)

We conduct experiments on classification datasets to evaluate the effectiveness of P-GAP on RoBERTa-
large 350M (Liu et al., 2019) as shown in Table 1. We observe that P-GAP can generally yield higher
accuracy across multiple datasets. For instance, when k = 16, P-GAP can achieve around 0.9%,
6.8%, and 6.3% higher accuracy than MeZO on SST-2, RTE and MNLI, respectively. To further
investigate its flexibility, we evaluate P-GAP within the PEFT framework, LoRA framework. We
observe that LoRA typically incurs a modest degradation in performance compared to full-model FT,
P-GAP remains highly competitive: it can generally outperform zeroth-order baselines and maintains
good performance even when the number of trainable parameters is significantly reduced. These
results can show that our approach is effective in both full-tuning regime and PEFT scenarios such as
LoRA, highlighting its robustness and practicality for medium-sized language model deployment.
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Table 2: Results of fine-tuning OPT-2.7B on eight classification datasets and two generation datasets

Dataset SST-2 RTE CB BoolQ WSC WIC COPA MultiRC SQuAD DROP
Task Type classification generation

Zero-shot 56.3 54.2 50.0 47.6 36.5 52.7 72.0 44.4 29.8 10.0
FT 94.2 81.2 82.1 72.2 63.8 65.8 82.0 71.6 78.4 30.3
LoRA 94.6 80.8 82.7 77.7 59.8 64.0 80.0 72.8 77.9 31.1

MeZO 91.2 63.5 71.4 67.4 62.5 59.2 76.0 59.4 66.8 19.4
HiZOO 90.8 60.6 70.4 68.0 60.2 56.6 79.0 55.8 68.2 20.2
P-GAP 91.6 63.8 73.2 66.8 66.1 61.0 82.0 60.8 74.9 21.1

MeZO LoRA 91.0 62.8 67.8 64.8 65.4 58.2 79.0 63.4 63.4 19.2
HiZOO LoRA 90.6 66.3 71.4 67.0 62.2 58.8 78.0 59.0 69.2 18.3
P-GAP LoRA 91.8 63.8 71.4 67.4 66.3 59.8 80.0 63.8 76.6 22.5

Table 3: Experiments on OPT-6.7B (with 1000
training samples)

Dataset SST-2 RTE CB WSC SQuAD
Task Type classification generation

MeZO 91.8 62.8 73.2 65.4 70.3
HiZOO 90.9 66.3 71.4 62.1 71.9
P-GAP 92.0 63.8 78.6 67.3 75.4
MeZO LoRA 93.4 67.9 73.2 65.4 69.8
HiZOO LoRA 92.5 68.7 71.4 63.6 72.3
P-GAP LoRA 94.0 72.5 78.6 66.3 79.2

Table 4: Experiments on OPT-13B (with 1000
training samples)

Dataset SST-2 RTE WSC SQuAD
Task Type classification generation

MeZO 91.4 69.3 61.5 84.2
HiZOO 92.1 66.1 63.5 81.9
Sparse-MeZO 92.3 76.9 61.1 77.9
Subzero 92.1 74.0 65.4 84.5
P-GAP 92.7 73.8 66.3 85.0

4.2 RESULTS ON LARGE AUTOREGRESSIVE MODELS
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Figure 2: Accuracy comparison of MeZO and
P-GAP (Ours) on LLaMA3-3B and LLaMA3-8B

P-GAP is evaluated with both the OPT and
LLaMA model families, on classification tasks
such as RTE and SST-2 datasets, and generation
tasks such as SQuAD and DROP datasets. As
shown in Table 2, on OPT-2.7B, P-GAP con-
sistently outperforms MeZO and HiZOO. For
instance, on COPA, P-GAP can achieve an accu-
racy of 82.0%, which is 6% higher than MeZO
at 76.0% and also surpasses HiZOO with an in-
crease about 3%. On generation tasks, P-GAP
can obtain 74.9% accuracy on SQuAD, yielding
a 12% increase compared to MeZO (66.8%). When combined with LoRA, our approach remains
competitive and continues to outperform baselines. On SQuAD with LoRA, P-GAP reaches about
76.6% accuracy, exceeding MeZO LoRA (63.4%) by more than 13%.

Turning to LLaMA-3 models, Figure 2 shows that P-GAP can generally boost accuracy across
datasets. For example, on SST-2 datasets, P-GAP can acheive about 3.3% increase in accuracy on
LLaMA-3-3B and 1.8% increase of accuracy on LLaMA-3-8B over MeZO baseline.

4.3 PERFORMANCE ON LLMS WITH VARIOUS SCALES

We also evaluate the performance of P-GAP on LLMs with different scales. For example, we conduct
experiments on OPT-6.7B, OPT-13B as shown in Table 3, Table 4, respectively. We evaluate P-GAP
with LLaMA-3-3B and LLaMA-3-8B as shown in Figure 2. We observe that P-GAP has consistent
advantages over baselines on OPT-6.7B, OPT-13B and LLaMA-3 models. On OPT-6.7B with the
CB dataset, P-GAP achieves 78.6% accuracy, outperforming MeZO by 5.4% and HiZOO by 7.2%,
individually. On SQuAD, it can achieve an accuracy of 75.4%, which is about 5.1% higher than
MeZO. When combined with LoRA, the improvements of P-GAP become even more significant:
P-GAP reaches 72.5% accuracy on RTE and 79.2% on SQuAD, surpassing HiZOO by nearly 4%
and 7%, respectively. For OPT-13B model, P-GAP can achieve about 66.3% accuracy in fine-tuning
WSC dataset, surpassing all of the baselines including Sparse-MeZO and Subzero.
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Figure 3: Training loss comparison with iterations of MeZO and P-GAP on RoBERTa-large

WSC DROP WIC CB MultiRC SQuAD SST-2 RTE BoolQ Copa
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 T
im

e

2.94x 5.88x 1.37x 2.63x 1.85x 3.70x 1.47x 1.56x 3.45x 2.38x

MeZO P-GAP

Figure 4: Comparison of GPU hours for full FT across different datasets on OPT-2.7B between
MeZO and P-GAP. Results are presented as normalized time (numbers in red indicate speedup)

4.4 CONVERGENCE AND WALL-CLOCK TIME ANALYSIS
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Figure 5: Wall clock time for OPT-2.7B on CB
datasets

We provide the convergence and wall-clock time
analysis on different models to show the acceler-
ation effects of P-GAP over baseline. As shown
in Figure 3, on RoBERTa-large, our approach
achieves lower training loss more quickly, reduc-
ing the number of iterations by 5.25× on SST-2
and 3.33× on SNLI for achiving the same final
loss as MeZO. This demonstrates that fewer up-
date steps are sufficient for P-GAP to achieve com-
petitive performance. Figure 4 shows the overall
normalized GPU hours of P-GAP compared to
MeZO for fine-tuning on all of the ten datasets.
We can observe that P-GAP consistently accelerates convergence compared to MeZO (Malladi et al.,
2023) across datasets. For example, on DROP, P-GAP can achieve about 5.88× speedup (with only
17% of the training time) compared to MeZO, while also achieving better performance. P-GAP can
also reduce wall-clock time. With OPT-2.7B on the CB dataset, P-GAP reach the loss of 0.6985
about 61.1 minutes earlier than MeZO, corresponding to a reduction of 40% in convergence time, as
shown in Figure 5. These results highlight the high efficiency of P-GAP, which not only reduces the
number iterations but also achieves practical time savings during training.

4.5 MEMORY ANALYSIS

We evaluate P-GAP’s memory usage and training efficiency under both full-parameter and LoRA-
based fine-tuning. As shown in Table 5, our approach strikes a favorable balance between convergence
speed and per-step overhead. Compared to MeZO, which requires the full training budget of 100%
iterations and GPU hours, P-GAP reduces the number of iterations to only 15.6% and the total GPU
hours to 27.3%, with memory usage slightly larger than MeZO and smaller than HiZOO. On SQuAD
dataset, this translates to more than a 70% reduction in training time with comparable accuracy.
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Table 5: Memory and training time comparison on
OPT-2.7B (SQuAD, avg. 300 tokens)

Method Mem. Iter. Hours

FT 73.5G 9.3% 16.8%
LoRA 58.5G 6.3% 11.5%

MeZO 9.4G 100.0% 100.0%
HiZOO 13.3G 66.7% 91.5%
P-GAP 11.3G 15.6% 27.3%

MeZO+LoRA 8.4G 94.2% 51.6%
HiZOO+LoRA 11.6G 80.0% 65.7%
P-GAP+LoRA 9.1G 12.5% 22.4%

From a memory standpoint, P-GAP is substan-
tially more efficient than gradient-based fine-
tuning approaches such as full fine-tuning with
73.5G memory usage and LoRA with 58.5G
memory usage, since it avoids storing gradi-
ents and activations. Even under parameter-
efficient settings, it maintains strong efficiency.
For instance, with LoRA, P-GAP further lowers
GPU hours to 22.4%, compared to 51.6% for
MeZO+LoRA and 65.7% for HiZOO+LoRA,
using only 9.1G of memory. These results high-
light that P-GAP achieves faster convergence
with minimal memory overhead across diverse
tuning regimes. We provide more memory us-
age results in Appendix B.4.

5 RELATED WORK

Memory-efficient Fine-tuning of LLMs. Large pre-trained models (Radford et al., 2021; Chen
et al., 2022; Singh et al., 2022) have been increasingly employed across diverse domains. However,
a tension arises between the growing demand for fine-tuning and the prohibitive computational
cost, particularly in resource-constrained environments (Zeng et al., 2024; Tan et al., 2025a). To
mitigate this issue, several memory-efficient fine-tuning (PEFT) techniques have been proposed. For
instance, Hu et al. (2021); Dettmers et al. (2023); Liu et al. (2024a); Qin et al. (2024) update only a
subset of model parameters, while reducing memory usage. Frantar et al. (2022); Xiao et al. (2023);
Dettmers et al. (2023) compresses continuous real-valued weights into low-bit discrete formats (e.g.,
INT8 or INT4), thereby lowering both memory and computational costs. Recently, zeroth-order
(ZO) optimization has emerged as a promising paradigm for memory-efficient fine-tuning (Malladi
et al., 2023; Zhang et al., 2024b; Chen et al., 2023; Yu et al., 2024). By estimating gradients solely
through forward passes, ZO eliminates the need to store memory-intensive activations and optimizer
states (Malladi et al., 2023; Liu et al., 2024b; Tang et al., 2024).

Acceleration of Zeroth-order Optimization. Despite the appealing memory-efficiency of ZO, the
gains from ZO approaches come with a cost: convergence is often slower than FO alternatives, largely
due to the inherent noise in randomized perturbation-based estimators. Ji et al. (2019) proposed
two new zeroth-order variance-reduced algorithms, ZO-SVRG-Coord-Rand and ZO-SPIDER-Coord,
and provided refined theoretical analysis for the existing ZO-SVRG-Coord method in the context of
nonconvex optimization, which can achieve better convergence rates and function query complexities
than previous methods. Duchi et al. (2015) examined random perturbations with finite fourth-order
moments, and demonstrated that using a uniform random vector yields the optimal dependence on the
dimension d. Kozak et al. (2023) construct orthogonal perturbations, or orthogonalize the sampled
directions, so that the estimator can better explore diverse gradient directions and identify more
effective descent paths. Sener & Koltun (2020) propose to learn a latent low-dimensional manifold in
the course of optimization, from which samples are drawn to effectively reduce sample complexity.

6 CONCLUSION

In this paper, we introduce P-GAP, a novel zeroth-order optimization framework for large language
model fine-tuning by estimating a low-dimensional gradient space and aligns perturbations in pro-
jected gradients’ direction within the space. We provide theoretical analysis on how the variance of
standard ZO estimators scales with the model size and how our approach can mitigate this problem
through gradient estimation within low-dimension space. Extensive experiments show that P-GAP
can effectively reduce the variance of ZO gradient estimation with improved accuracy and efficiency,
and accelerated convergence. For instance, P-GAP achieves up to 12% increase in accuracy over
baselines on SQuAD dataset, more than 61 minutes reduction in training time on BoolQ dataset.
Overall, our findings highlight the potential of projected gradient-aligned perturbations for scalable
and efficient ZO LLM fine-tuning in practice.
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A CLAIM OF LLM USAGE

In this work, large language models (LLMs) were used solely as a general-purpose writing assistant.
Their role was limited to correcting grammar, fixing typographical errors, and polishing the language
for clarity and readability.

B APPENDIX

B.1 VARIANCE WITH THE PERTURBATION SPACE DIMENSION

Lemma 1. Let P ∈ Rd×q satisfy P⊤P = Iq, and sample z ∼ N (0, Iq). Define the two-point
estimator

gε(x, P, z) =
f(x+ εPz)− f(x− εPz)

2ε
Pz.

Let ∇f = ∇f(x) and u := P⊤∇f ∈ Rq . Then:

(A) Quadratic objective (exact formula). If f(x) = x⊤Hx is quadratic, then

E∥gε∥2 = (q + 2) ∥u∥2, Var(gε) := E∥gε − Egε∥2 = (q + 1) ∥u∥2,

so the variance grows linearly in the perturbation dimension q.

(B) General L-smooth objective (upper bound). If f is L-smooth, then there exists a constant C > 0
such that

E∥gε∥2 ≤ (q + 2) ∥u∥2 + C ε2, Var(gε) ≤ (q + 1) ∥u∥2 + C ε2,

so as ε→0, the variance satisfies Var(gε) = Θ(q) ∥u∥2.

Proof. Step 1 (Quadratic case). For f(x) = x⊤Hx,

f(x+ εPz)− f(x− εPz) = 2ε ⟨∇f, Pz⟩,

so gε = ⟨∇f, Pz⟩Pz. Writing u = P⊤∇f and using rotation invariance we may assume u = ∥u∥e1,
hence

∥gε∥2 = ∥u∥2 z21
q∑

i=1

z2i .

Gaussian moment identities give E[z21
∑q

i=1 z
2
i ] = (q + 2), so E∥gε∥2 = (q + 2)∥u∥2. Since

Egε = PP⊤∇f and ∥Egε∥2 = ∥u∥2,

Var(gε) = (q + 2)∥u∥2 − ∥u∥2 = (q + 1)∥u∥2.

Step 2 (General L-smooth case). By a second-order Taylor expansion,

f(x+ εPz)− f(x− εPz)

2ε
= ⟨∇f, Pz⟩ + rε(z), |rε(z)| ≤ cL ε ∥Pz∥2,

for some absolute constant c. Thus gε = ⟨∇f, Pz⟩Pz+rε(z)Pz. Using ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2
and the quadratic case result, and noting E∥Pz∥4 = O(q2), we obtain

E∥gε∥2 ≤ (q + 2)∥u∥2 + C1 ε
2,

which also implies

Var(gε) = E∥gε∥2 − ∥Egε∥2 ≤ (q + 1)∥u∥2 + C1 ε
2.

Let C := C1 to finish.

Corollary 1 (Full-space perturbation). If P = Id, then q = d, and

Var(gε) = Θ(d) ∥∇f(x)∥2 +O(ε2),

so the variance scales linearly with the full model dimension.
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B.2 CONVERGENCE ANALYSIS

A.2.1 GLOBAL NOTATION

In this section, we restate or redefine the key notations that will be used throughout our work.

• d – parameter dimension; r – retained rank per layer; ℓ – number of trainable layers; q = ℓr2.
• We assume that f : Rd→R is L-smooth: ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y.
• Mini-batch variance bound Ex∥∇fx(w)−∇f(w)∥2 ≤ σ2.
• Singular-value threshold σmin > 0 refers to the rth singular value of∇f .
• Hyper-parameters ε (perturbation scale), δ (projection strength), w (number of probe pertur-

bations), k (window size).
• Orthogonal projection Pt ∈ Rd×q , updated every k iterations, always P⊤

t Pt = Iq .
• Two-point estimator

gt =
f(xt + εPtzt)− f(xt − εPtzt)

2ε
Ptzt, zt ∼ N (0, Iq).

• Update xt+1 = xt − η gt, η =
1

L (q + 2)
(learning rate).

A.2.2 LAYER AND MODEL PROJECTION MATRICES

Lemma 2 (Kronecker projection). For orthogonal U ∈Rm×r, V ∈Rn×r let Z̃ = UZV⊤ and set
P = V ⊗ U ∈ Rmn×r2 . Then vec(Z̃) = P vec(Z) and P⊤P = Ir2 .

Proof. (i) Kronecker–vec identity vec(UZV⊤) = (V ⊗ U) vec(Z).

(ii) Orthogonality P⊤P = (V⊤V )⊗(U⊤U) = Ir⊗ Ir.

Lemma 3 (Block diagonal model projection). Stack the layer matrices: P = bdiag(P1, . . . , Pℓ) ∈
Rd×q . Then P⊤P = Iq .

Proof. Since P is block diagonal with blocks P1, . . . , Pℓ, its Gram matrix is

P⊤P = bdiag(P⊤
1 P1, . . . , P

⊤
ℓ Pℓ).

Each block satisfies P⊤
i Pi = Iqi , hence

P⊤P = bdiag(Iq1 , . . . , Iqℓ) = Iq.

A.2.3 GAUSSIAN PRELIMINARIES

Lemma 4 (Rotation invariance). Let Q ∈ Rn×n be orthogonal. For any integrable ϕ : Rn → R,

Ez∼N (0,In)[ϕ(Qz)] = Ez∼N (0,In)[ϕ(z)].

Proof. Write the standard Gaussian density p(z) = (2π)−n/2 exp(−∥z∥2/2). Since Q is orthogonal,
∥Qz∥ = ∥z∥ and |detQ| = 1. By change of variables u = Qz,∫

Rn

ϕ(Qz) p(z) dz =

∫
Rn

ϕ(u) p(u) du = E[ϕ(z)].

Thus E[ϕ(Qz)] = E[ϕ(z)].

Lemma 5 (Moments of N (0, In)). Let z ∼ N (0, In) and y ∈ Rn. Then, for any t > 0,

E∥z∥t ≤

{
nt/2, 0 < t ≤ 2,

(n+ t)t/2, t ≥ 2,
E
[
(⟨y, z⟩)2

]
= ∥y∥2, E

[
(⟨y, z⟩)2∥z∥2

]
= (n+2)∥y∥2.
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Proof. (i) Bounds on E∥z∥t. Let R = ∥z∥2 ∼ χ2
n. Then

E∥z∥t = ERt/2 = 2t/2
Γ
(
n+t
2

)
Γ
(
n
2

) .

For 0 < t ≤ 2, the map x 7→ xt/2 is concave, hence by Jensen ERt/2 ≤ (ER)t/2 = nt/2. For t ≥ 2,
use the crude but convenient bound Γ(x+ a)/Γ(x) ≤ (x+ a)a (valid for x, a > 0), to get

E∥z∥t = 2t/2
Γ(n+t

2 )

Γ(n2 )
≤ 2t/2

(
n+t
2

)t/2

= (n+ t)t/2.

(ii) Second moment of the linear form. By rotation invariance (Lemma 4), rotate so that y = ∥y∥e1.
Then ⟨y, z⟩ = ∥y∥z1 with z1 ∼ N (0, 1), hence E[(⟨y, z⟩)2] = ∥y∥2 Ez21 = ∥y∥2.
(iii) Mixed moment E[(⟨y, z⟩)2∥z∥2]. With the same rotation, write

E
[
(⟨y, z⟩)2∥z∥2

]
= ∥y∥2 E

[
z21

n∑
i=1

z2i

]
= ∥y∥2

(
Ez41 +

∑
i̸=1

Ez21z2i
)
.

For independent standard normals, Ez41 = 3 and Ez21z2i = (Ez21)(Ez2i ) = 1 for i ̸= 1. Therefore
E[z21

∑n
i=1 z

2
i ] = 3 + (n− 1) · 1 = n+ 2, which yields the claim.

A.2.4 TWO-POINT ESTIMATOR

Definition 1 (Two-point gradient estimator). Let P ∈ Rd×q satisfy P⊤P = Iq and let z ∼ N (0, Iq)
be sampled independently of all other randomness. For smoothing radius ε > 0 define

gε(x, P, z) :=
f(x+ εPz) − f(x− εPz)

2ε
Pz.

Lemma 6 (Unbiasedness and bias). Let z ∼ N (0, Iq) and P⊤P = Iq . Define

gε(x, P, z) =
f(x+ εPz)− f(x− εPz)

2ε
Pz.

Assume f is C3 and its Hessian is L-Lipschitz, i.e., ∥∇2f(x+ u)−∇2f(x)∥ ≤ L∥u∥ for all x, u.
Then there exists a bias vector bε such that

E[gε] = PP⊤∇f(x) + bε, ∥bε∥ ≤
L

6
ε2 E∥Pz∥4 ≤ L

6
ε2(q + 4)2

In particular,

∥E[gε]− PP⊤∇f(x)∥ ≤ L

6
ε2(q + 4)2

Proof. Step 1. Third-order Taylor expansion with remainder. Hessian ρ-Lipschitz implies the
third-order expansion bound: for any u ∈ Rd,

f(x+ u) = f(x) + ⟨∇f(x), u⟩+ 1
2u

⊤∇2f(x)u+R3(x, u), |R3(x, u)| ≤ L
6 ∥u∥

3.

Step 2. Plug u = ±εPz. Writing R±(z) := R3(x,±εPz),

f(x+ εPz) = f(x) + ε⟨∇f(x), P z⟩+ 1
2ε

2z⊤P⊤∇2f(x)Pz +R+(z),

f(x− εPz) = f(x)− ε⟨∇f(x), P z⟩+ 1
2ε

2z⊤P⊤∇2f(x)Pz +R−(z),

with |R±(z)| ≤ L
6 ε

3∥Pz∥3.

Step 3. Symmetric difference and decomposition. Even-order terms cancel, hence

gε =
〈
∇f(x), P z

〉
Pz +

R+(z)−R−(z)

2ε
Pz.

Step 4. Main term expectation. Because E[zz⊤] = Iq ,

E
[
⟨∇f(x), P z⟩Pz

]
= P E[zz⊤]P⊤∇f(x) = PP⊤∇f(x).
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Step 5. Bias bound from the remainder. By the remainder bound and Jensen’s inequality (Garling,
2007), ∥∥∥E[R+(z)−R−(z)

2ε
Pz

]∥∥∥ ≤ E
[ |R+(z)|+ |R−(z)|

2ε
∥Pz∥

]
≤ L

6
ε2 E∥Pz∥4.

P⊤P = Iq , and from Lemma 5, E∥Pz∥4 ≤ (q + 4)2. Substituting completes the proof.

Lemma 7 (Second moment and angle). Assume the objective is quadratic, f(x) = x⊤Hx with
H ≻ 0. Then

E∥gε∥2 = (q + 2) ∥P⊤∇f(x)∥2, E
[
cos∠(gε,∇f(x))

]
= 1

q

for the same estimator gε.

Proof. Step 1. Exact finite-difference for a quadratic function. For f(x) = x⊤Hx,

f(x+ εPz)− f(x− εPz) = 2ε
〈
∇f(x), P z

〉
,

so gε = ⟨∇f(x), P z⟩Pz.

Step 2. Second moment.
∥gε∥2 =

〈
∇f(x), P z

〉2 ∥Pz∥2.
Rotate z to a basis where P⊤∇f(x) = αe1 (e1 is the first canonical vector); rotation invariance
(Lemma 4) keeps z ∼ N (0, Iq). Then ⟨∇f, Pz⟩ = αz1, ∥Pz∥2 =

∑q
i=1 z

2
i , and

E∥gε∥2 = α2 E
[
z21

q∑
i=1

z2i
]
= α2 (q + 2) = (q + 2)∥P⊤∇f(x)∥2.

Step 3. Expected cosine angle.

cos∠(gε,∇f(x)) =
⟨gε,∇f⟩
∥gε∥ ∥∇f∥

.

Using the rotated coordinate, ⟨gε,∇f⟩ = α2z21 . Since both the numerator and denominator depend
only on z21 and

∑q
i=1 z

2
i , a direct χ2 calculation yields E[cos∠] = 1/q.

A.2.5 STATISTICS OF THE w-PROBE PHASE

Lemma 8 (Probe decomposition and mean square). Let the mini-batch ξ gradient noise be

a = ∇fξ(x) − ∇f(x), Eξ∥a∥2 ≤ σ2, (D1)

and draw z = (z1, . . . , zd)
⊤ ∼ N (0, Id) independently of ξ. Define the exact two-point coefficient

and probe

ρ =
fξ(x+ εz)− fξ(x− εz)

2ε
, g = ρ z. (D2)

Then:

(i) Decomposition. There exists a remainder rε(z) with |rε(z)| ≤ L
2 ε ∥z∥2 such that

g −∇f(x) = ⟨a, z⟩z︸ ︷︷ ︸
mini-batch noise

+
(
⟨∇f(x), z⟩z −∇f(x)

)︸ ︷︷ ︸
directional randomness

+ rε(z) z. (D3)

(ii) Mean–square error. Taking expectation over both ξ and z,

Eξ,z

[
∥g −∇f(x)∥2

]
= Ez

[
z⊤Σz ∥z∥2

]︸ ︷︷ ︸
mini-batch part

+Ez

∥∥ (zz⊤−I)∇f(x)∥∥2︸ ︷︷ ︸
directional part

+O(ε2d)

≤ (d+ 2)σ2 + (d+ 1) ∥∇f(x)∥2 + O(ε2d),

(D4)

where Σ := Eξ[aa
⊤] and tr Σ ≤ σ2.
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Proof. Step 1 (second-order Taylor). For u = ±εz,

fξ(x+ u) = fξ(x)± ε⟨∇fξ(x), z⟩+R±(z), |R±(z)| ≤ L
2 ε2∥z∥2.

Therefore
ρ = ⟨∇fξ(x), z⟩+ rε(z), |rε(z)| ≤ L

2 ε ∥z∥2.
Multiplying by z gives

g =
(
⟨∇f(x), z⟩+ ⟨a, z⟩+ rε(z)

)
z,

hence the claimed decomposition (D3).

Step 2 (conditional MSE given z). Since a is independent of z and Eξ[a] = 0, the cross terms
involving ⟨a, z⟩ vanish after Eξ[· | z]:

Eξ

[
∥g −∇f∥2

∣∣ z] = Eξ

[
⟨a, z⟩2

]︸ ︷︷ ︸
= z⊤Σz

∥z∥2 +
∥∥⟨∇f, z⟩z −∇f∥∥2 + ∥rε(z) z∥2. (D5)

Step 3 (integrate over z using isotropy identities). By isotropy of the standard Gaussian,

Ez

[
zz⊤∥z∥2

]
= (d+ 2) Id, Ez

[
zz⊤zz⊤

]
= Ez

[
∥z∥2zz⊤

]
= (d+ 2) Id. (D6)

Taking traces in the first identity also recovers E∥z∥4 = d(d+ 2).

Now take expectation of (D5) in z:

(a) Mini-batch part.

Ez

[
z⊤Σz ∥z∥2

]
= tr

(
ΣEz[zz

⊤∥z∥2]
)
= (d+ 2) trΣ ≤ (d+ 2)σ2.

(b) Directional part. Write h(z) = (zz⊤− I)∇f . Then

Ez∥h(z)∥2 = ∇f⊤ Ez

[
(zz⊤ − I)2

]
∇f = ∇f⊤

(
Ez[zz

⊤zz⊤]− 2I + I
)
∇f = (d+ 1)∥∇f∥2,

where we used (D6).

(c) Taylor remainder. Since |rε(z)| ≤ L
2 ε∥z∥2,

Ez∥rε(z) z∥2 ≤ L2

4 ε2 E∥z∥6 = O(ε2d),

(using standard χ2
d moments; any O(d3) bound suffices, and with our later choice of ε it reduces to

O(ε2d)).

Summing (a)–(c) yields (D4).

Remark (Centered probe removes the directional term). If one centers the probe by subtracting
Ez[g | ξ], namely

g̃ := g − Ez[g | ξ] = (⟨a, z⟩+ rε(z)) z,

then the “directional” term disappears and

Eξ,z∥g̃ −∇f(x)∥2 ≤ 2(d+ 2)σ2 + O(ε2d).

We get the relaxed form by multiplying 2.
Lemma 9 (Probe mean–square error). Let the per–probe directional derivative be

ρj =
f(x+ εzj)− f(x− εzj)

2ε
, zj ∼ N (0, Id),

and define their average Ḡ =
1

w

w∑
j=1

ρjzj . Assume the mini–batch variance condition Ex∥∇fx(w)−

∇f(w)∥2 ≤ σ2. Then

E
∥∥Ḡ−∇f(x)∥∥2 ≤ 4(d+ 2)σ2

w
+ O(ε2d)

where the O(ε2d) term comes from the second–order Taylor truncation of each ρj .
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Proof. 1. Two–point estimator for a single probe. Define gj = ρjzj . For every fixed direction zj

E[gj ] = ∇f(x) + ∆bias, ∥∆bias∥ ≤
Lε2

6
(d+ 4)2

(the same Taylor expansion used in Lemma 6).

2. Second moment of one probe. Condition on the mini–batch noise: E
[
∥gj −∇f∥2

]
= E

[
∥gj −

Egj∥2
]
+ ∥∆bias∥2. The first term equals 2(d+ 2)σ2 while ∥∆bias∥2 = O(ε4d2).

3. Variance reduction by averaging. Because the probes are i.i.d., E
∥∥Ḡ−Egj∥∥2 = 1

wE∥gj−Egj∥2.
Add the bias term once more to compare with the true gradient:

E
∥∥Ḡ−∇f∥∥2 ≤ 2(d+ 2)σ2

w
+ ∥∆bias∥2 ≤

4(d+ 2)σ2

w
+O(ε2d).

(The last inequality uses ε2 < σ2

2L(d+2) which always holds once ε is set ≤ (q3T )−1/2 as required
later.)

Lemma 10 (Davis–Kahan bound for P ). Let σmin be the r-th singular value of the full-gradient
matrix whose row–stack is∇f(x). If the number of probes satisfies

w ≥ 48
(d+ 2)σ2

σ2
min

,

then, with probability at least 0.9,∥∥(I − P⊤P )∇f(x)
∥∥ ≤ 1

2 ∥∇f(x)∥.

Proof. 1. Notation. Write ∆ = Ḡ−∇f(x). From Lemma 9

E∥∆∥2F ≤
4(d+ 2)σ2

w
.

2. Spectral–norm control. Since ∥∆∥2 ≤ ∥∆∥F , Markov’s inequality gives

Pr
{
∥∆∥2 ≥ σmin

2

}
≤ 4(d+ 2)σ2/w

σ2
min/4

=
16(d+ 2)σ2

wσ2
min

.

Choosing w ≥ 48(d+ 2)σ2/σ2
min makes the right–hand side ≤ 0.33. A standard matrix Bernstein

(or a two–sided Chebyshev) upgrade shrinks the factor 0.33 to 0.1; we simply cite the constant used
in the original paper (Section B.3) so that Pr

{
∥∆∥2 ≤ σmin/2

}
≥ 0.9.

3. Davis–Kahan “sin Θ”. Let U be the rank-r right singular sub-space of∇f(x) and Û the space
recovered from Ḡ. Davis–Kahan gives sinΘ

(
Û ,U

)
≤ ∥∆∥2/σmin ≤ 1

2 . Hence the orthogonal
projector P built from Û satisfies

∥(I − P⊤P )∇f∥ = ∥
(
I − PÛ

)
∇f∥ ≤ 1

2 ∥∇f∥.

A.2.6 DAVIS–KAHAN “SIN Θ” THEOREM

Let A = ∇f(x) and Â = Ḡ. Suppose A has an SVD with right singular space U of dimension r,
and let Û be the rank-r right singular space of Â. The Davis–Kahan theorem gives:

sinΘ(Û ,U) ≤ ∥Ḡ−∇f(x)∥2
σmin

.

So if ∥Ḡ−∇f(x)∥2 ≤ σmin

2 , then

sinΘ(Û ,U) ≤ 1

2
.
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A.2.7 PROJECTION ERROR BOUND

Let P be an orthonormal matrix whose rows span Û , so that P⊤P is the orthogonal projector onto Û .
Then, ∥∥(I − P⊤P )∇f(x)

∥∥ =
∥∥(I − PÛ

)
∇f(x)

∥∥ ≤ sinΘ(Û ,U) · ∥∇f(x)∥ ≤ 1

2
∥∇f(x)∥.

A.2.8 FIXED-P DESCENT FOR k STEPS

Lemma 11 (One-step descent with a fixed P ). Let P ∈ Rd×q satisfy P⊤P = Iq and let

gt =
f(xt + εPzt)− f(xt − εPzt)

2ε
Pzt, zt ∼ N (0, Iq).

Choose η = 1
L(q+2) . Then

E[f(xt+1)] ≤ E[f(xt)]−
3η

8
E∥∇f(xt)∥2 + η E∥(I − P⊤P )∇f(xt)∥2 +O(ε2). (16)

Proof. We abbreviate∇t := ∇f(xt) and g := gε(xt, P, zt).

(i) L-smooth descent inequality. For any update x+ = x− ηg,

f(x+) ≤ f(x) − η ⟨∇f(x), g⟩ +
Lη2

2
∥g∥2. (17)

Taking full expectation will give the desired bound once we control E⟨∇t, g⟩ and E∥g∥2.

(ii) Decompose the estimator. Write

g = PP⊤∇t︸ ︷︷ ︸
main

+ b︸︷︷︸
bias

+ az︸︷︷︸
zero-mean

, b := E[g]− PP⊤∇t, az := g − E[g], E[az] = 0.

Lemma 6 gives ∥b∥ ≤ Lε2

6 (q + 4)2. For convenience denote c1 := 1
6 .

(iii) Inner product term. Using the above decomposition,

E⟨∇t, g⟩ = ⟨∇t, PP⊤∇t⟩+ ⟨∇t, b⟩ = ∥∇t∥2 − ∥(I − P⊤P )∇t∥2 + ⟨∇t, b⟩.
Bound the bias by Cauchy–Schwarz:

E⟨∇t, g⟩ ≥ ∥∇t∥2 − ∥(I − P⊤P )∇t∥2 − c1 Lε
2(q + 4)2 ∥∇t∥. (18)

(iv) Second moment term. Lemma (second moment) implies, for L-smooth f ,

E∥g∥2 ≤ (q + 2) ∥P⊤∇t∥2 + c2 ε
2 ≤ (q + 2) ∥∇t∥2 + c2 ε

2, (19)
for an absolute constant c2 (absorbing Taylor remainders).

(v) Choose the stepsize and combine. Set η = 1
L(q+2) , so Lη2

2 (q + 2) = η
2 . Plug equation 18 and

equation 19 into equation 17 and take expectations:

Ef(xt+1) ≤ Ef(xt)− η
(
E∥∇t∥2 − E∥(I − P⊤P )∇t∥2

)
+

η

2
E∥∇t∥2

+ η c1Lε
2(q + 4)2 E∥∇t∥+

η

2
c2 ε

2.
(20)

The first two main terms combine to −η
2E∥∇t∥2 + η E∥(I − P⊤P )∇t∥2. For the bias cross term,

apply Young’s inequality (Castillo et al., 2016) with weight 1/8:

η c1Lε
2(q + 4)2 E∥∇t∥ ≤

η

8
E∥∇t∥2 + c4 ε

2,

for some absolute constant c4 (absorbing (c1L)
2(q + 4)4 and c2). Collecting terms in equation 20

yields

Ef(xt+1) ≤ Ef(xt)−
3η

8
E∥∇t∥2 + η E∥(I − P⊤P )∇t∥2 +O(ε2),

which is Equation 16.
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Remark (On the constants c1, c2, c3, c4). For clarity, we summarize the role of the constants appearing
in the one-step descent proof: c1 (bias constant): comes from Lemma 6, where

∥E[g]− PP⊤∇f(x)∥ ≤ 1
6Lε

2(q + 4)2.

Thus c1 = 1
6 is an absolute constant. second-moment remainder c2: appears in Lemma 7,

E∥g∥2 ≤ (q + 2)∥P⊤∇f(x)∥2 + c2ε
2,

absorbing higher-order Taylor remainders. It depends on L but not on d or q. cross-term constant c3:
in bounding ηc1Lε

2(q+ 4)2∥∇f(x)∥ via Young’s inequality, we set c3 := c1L(q+ 4)2. c4: collects
all ε2-order remainders, including those from c2 and the quadratic term in c3. It is an O(1) constant
independent of d, q.

A.2.9 GLOBAL NON-CONVEX CONVERGENCE

Theorem 1 (Full algorithm). Run Algorithm 1 for T iterations, refresh P every k steps, and choose
the same fixed step η = 1/[L(q + 2)]. Let ε ≤ (q3T )−1/2 and assume the number of probes per
refresh satisfies w ≥ 48(d+ 2)σ2/σ2

min. Then

1

T

T−1∑
t=0

E
∥∥∇f(xt)

∥∥2 ≤ 16(q + 4)L [ f(x0)− f⋆ ]

qT
+ O

(
q/T

)
.

Proof. Expanded derivation

Recall the one-step inequality of Lemma 11 for gt = gε(xt, P, zt) and ∇t := ∇f(xt):

Ef(xt+1) ≤ Ef(xt)−
3η

8
E∥∇t∥2 + η E

∥∥(I − P⊤P )∇t

∥∥2 +O(ε2). (17)

Step 1. Move the gradient term to the left.
3η

8
E∥∇t∥2 ≤ Ef(xt)− Ef(xt+1) + η E

∥∥(I − P⊤P )∇t

∥∥2 +O(ε2). (D.1)

Step 2. Davis–Kahan control. Lemma 10 states ∥(I − P⊤P )∇t∥ ≤ 1
2∥∇t∥, hence

η E
∥∥(I − P⊤P )∇t

∥∥2 ≤ η

4
E∥∇t∥2. (D.2)

Step 3. Combine (D.1) and (D.2). Subtract η
4E∥∇t∥2 from both sides:

η

8
E∥∇t∥2 ≤ Ef(xt)− Ef(xt+1) +O(ε2). (D.3)

Step 4. Sum inside one window. For a window j of length k with fixed P , let xj,s for s = 0, . . . , k−1
and

fj,start := Ef(xj,0), fj,end := Ef(xj,k).

Summing (D.3) over s = 0, . . . , k − 1 gives
k−1∑
s=0

E∥∇f(xj,s)∥2 ≤
8

η

(
fj,start − fj,end

)
+O(ε2kq2), (A.4)

where the O(ε2) term is summed k times and q2 comes from ∥g∥2 ≤ (q + 2)∥∇f∥2 ≤ q2∥∇f∥2.

Step 5. Sum over all windows and divide by T . Summing (A.4) over all ⌈T/k⌉ windows, the
telescoping sum

∑
j(fj,start − fj,end) = f(x0)− f⋆. Dividing by T yields

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤
8

η T

(
f(x0)− f⋆

)
+O(ε2q2). (D.4)

Step 6. Substitute η and ε. With η−1 = L(q + 2) ≤ L(q + 4) we have 8/η ≤ 16L(q + 4). If
ε2T ≤ 1/q3 then ε2q2T ≤ q/T . Insert these constants into (D.4) to recover the bound stated in
Theorem 1.
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B.3 ALGORITHM AND HYPERPARAMETER SETTINGS

Table 6: The hyperparameters setting in our experiments.

Experiment Hyperparameters Values

FT
Batch size 8
Learning rate {1e-5, 5e-5}
Lr schedule Constant for RoBERTa; Linear for OPT and LLaMA

MeZO

Batch size {64, 16}
Learning rate η (Lr) {1e-6, 5e-7}
ϵ 1e-3
Lr schedule Constant for RoBERTa; Linear for OPT and LLaMA

MeZO LoRA

Batch size {64, 16}
Learning rate η (Lr) {1e-4, 5e-5}
ϵ 1e-2
Lr schedule Constant for RoBERTa; Linear for OPT and LLaMA

P-GAP

Batch size {64, 16}
Learning rate η (Lr) {2e-4, 1e-4, 5e-5}
ϵ 1e-2
Window size k 100
Number of probe perturbations h 10
Rank r {128,256,512}
Projection magnitude δ Initialized as 2 and gradually decayed it to 0

P-GAP (LoRA)

Batch size {64, 16}
Learning rate η (Lr) {3e-2, 5e-2, 1e-2}
ϵ 1e-1
Window size k 100
Number of probe perturbations h 10
Rank r {8}
Projection magnitude δ Initialized as 2 and gradually decayed it to 0

Algorithm 1 Corrected Projected Gradient Directions with Low-Dimensional Perturbations (Lazy
ZO for LLMs)

Require: Parameters θ, dataset D, window size k, number of probe perturbations h, rank r, pertur-
bation scale ε, learning rate η, projection magnitude δ, loss function L, iteration steps T , set of
all matrices needed to be fine-tunedM

1: t← 0
2: while t ≤ T do
3: if t mod k = 0 then
4: ({U ℓ

r ,S
ℓ
r,V

ℓ
r })ℓ∈M ← LOWERDIMGENERATE(θ, h, r, ε)

5: end if
6: for all parameter Wℓ ∈ θ do
7: if Wℓ is matrix and ℓ ∈M then
8: Sample Zinit ∼ N (0, Ir×r)

9: Z ← PROJECTION(Zinit,S
r
ℓ , δ) ▷ ⟨Sr

ℓ ,Z⟩F = ξ
√
δ∥Sr

ℓ ∥F
10: Zf ← U ℓ

rZ(V ℓ
r )

T

11: else
12: Sample Zf ∼ N (0, I)
13: end if
14: end for
15: L+ ← L(θ + εz), L− ← L(θ − εz)
16: Gt ← (ℓ+ − ℓ−)/(2ε)
17: for all Wℓ ∈ θ do
18: Wℓ ←Wℓ − η GtZf

19: end for
20: t← t+ 1
21: end while
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We have provide the computational process of P-GAP in the Algorithm 1. As discussed in our
analysis of variance in Appendix B.1, the reduction in the number of perturbed parameters necessitates
corresponding adjustments to both the learning rate η and the perturbation scale ϵ. The specific
choices of learning rate η and perturbation scale ϵ used in our experiments are detailed in Table
6. In our experiments, we found that the projection magnitude δ can be set relatively large at the
beginning of training and then gradually reduced in the later stages. This strategy leads to better
final performance and improved convergence efficiency. Therefore, in practice, we initialized the
projection magnitude δ = 2 and gradually decayed it to 0 as the training progressed. Moreover, we
set k = 100 and h = 10 in all of our experiments.

Algorithm 2 LOWERDIMGENERATE(θ, h, r, ε)

Require: Current parameters θ, number of probe perturbations h, rank r, step size ε
1: for all matrix parameter Wℓ, ℓ ∈M do
2: Gℓ ← 0
3: end for
4: for j = 1 to h do
5: Sample Qj

ℓ with each Qj
ℓ ∼ N (0, I)

6: Lj
+ ← L(θ + εQj

ℓ); L
j
+− ← L(θ − εQj

ℓ)

7: ρ← (Lj
+ − L

j
−)/(2ε)

8: for all matrix Wℓ do
9: Gℓ ← Gℓ +

ρ
hQ

j
ℓ

10: end for
11: end for
12: for all matrix Wℓ do
13: (U ℓ

r ,S
ℓ
r,V

ℓ
r )← svd_lowrank(Gℓ, q = r)

14: end for
15: return (U ℓ

r ,S
ℓ
r,V

ℓ
r )M

Algorithm 3 PROJECTION(Zinit,S
r
ℓ , δ)

Require: Initial Zinit ∈ Rr×r; coefficient matrix Sr
ℓ ; projection magnitude δ

Ensure: We want to get the projected parallel component Z of Zinit such that ⟨Sr
ℓ ,Z⟩F =

ξ
√
δ ∥Sr

ℓ ∥F , with ξ ∈ {−1, 1}

1: ξ ∼ Uniform{−1, 1}
2: f ← ⟨Sr

ℓ ,Zinit⟩F , g ← ∥Sr
ℓ ∥F

3: α← f − ξ
√
δ g

g2 + 10−12

4: return Z ← Zinit − αSr
ℓ

B.4 MORE RESULTS

We also provide fine-tuning experiments of KerZOO on the LLaMA-3 model series. Hyperparameters
are generally the same with OPT series models fine-tuning. The detailed results of the experiments
are shown in Table 7 and 8 below.

We further evaluate the training efficiency and memory footprint of P-GAP on the OPT-2.7B model
across SST-2 and RTE. Compared with MeZO and HiZOO, P-GAP achieves a better balance between
memory usage and convergence speed. On both datasets, P-GAP substantially reduces training time
while keeping the memory cost within a moderate increase compared to MeZO but less than HiZOO.
In particular, when combined with LoRA on RTE, P-GAP+LoRA consumes less than 20% of the
training time of MeZO, yet maintains competitive performance. These results highlight that P-GAP
can serve as an efficient and scalable alternative for large-scale fine-tuning.
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Table 7: Experiment results on LLaMA3-3B (1000 training samples)

Task SST-2 RTE CB WSC WIC
FT 94.2 81.2 91.4 72.2 63.8
MeZO 89.0 63.8 69.6 62.5 58.2
P-GAP 92.3 63.8 73.2 64.6 59.8

Table 8: Experiment results on LLaMA3-8B (1000 training samples)

Task SST-2 RTE CB WSC WIC
MeZO 91.2 61.0 73.2 64.4 59.2
P-GAP 93.0 67.2 75.0 65.8 60.2

Table 9: Memory and training time comparison of OPT-2.7B on SST-2 dataset (35 tokens per
example on average)

Method Memory cost Iteration step GPU hours

FT 45.4G 9.3% 16.8%
LoRA 18.5G 5.6% 4.3%

MeZO 6.8G 100.0% 100.0%
HiZOO 11.3G 59.2% 87.4%
P-GAP 8.7G 34.9% 68.0%

MeZO+LoRA 5.5G 74.1% 43.7%
HiZOO+LoRA 5.7G 46.3% 41.0%
P-GAP+LoRA 5.9G 34.7% 29.9%

Table 10: Memory and training time comparison of OPT-2.7B on RTE dataset (180 tokens per
example on average)

Method Memory cost Iteration step GPU hours

FT 62.2G 10.0% 16.2%
LoRA 42.5G 8.3% 6.6%

MeZO 7.8G 100.0% 100.0%
HiZOO 13.2G 63.3% 88.9%
P-GAP 10.5G 24.5% 64.1%

MeZO+LoRA 7.5G 73.3% 34.8%
HiZOO+LoRA 7.8G 56.7% 35.9%
P-GAP+LoRA 7.6G 16.9% 8.7%
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