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Abstract

Process Reward Models (PRMs) aim to improve multi-step reasoning in Large1

Language Models (LLMs) by supervising intermediate steps and identifying errors2

throughout the reasoning process. However, building effective PRMs remains chal-3

lenging due to the lack of scalable, high-quality annotations. Existing approaches4

rely on costly human labeling, LLM-based self-evaluation prone to hallucination,5

or Monte Carlo (MC) estimation, which infers step quality solely from rollout6

outcomes, often introducing noisy and misaligned supervision due to credit mis-7

attribution. These issues result in three core limitations: noisy rewards, low8

factual fidelity, and misalignment with step-level reasoning objectives. To address9

these challenges, we introduce GroundedPRM, a tree-guided and fidelity-aware10

framework for automatic process supervision. To reduce reward noise and enable11

fine-grained credit assignment, we construct structured reasoning paths via Monte12

Carlo Tree Search (MCTS). To eliminate hallucinated supervision, we validate each13

intermediate step using an external tool, providing precise, execution-grounded14

correctness signals. To combine both step-level validation and global outcome as-15

sessment, we design a hybrid reward aggregation mechanism that fuses tool-based16

verification with MCTS-derived feedback. Finally, we format the reward signal17

into a rationale-enhanced, generative structure to promote interpretability and com-18

patibility with instruction-tuned LLMs. GroundedPRM is trained on only 40K19

automatically labeled samples, amounting to just 10% of the data used by the best-20

performing PRM trained with auto-labeled supervision. Nevertheless, it achieves21

up to a 26% relative improvement in average performance on ProcessBench.22

When used for reward-guided greedy search, GroundedPRM outperforms even23

PRMs trained with human-labeled supervision, offering a scalable and verifiable24

path toward high-quality process-level reasoning.25

1 Introduction26

Large Language Models (LLMs) [1, 30, 9] have demonstrated impressive capabilities in planning [13,27

42], decision-making [19], and complex task execution [36, 43]. However, they remain prone to28

hallucinations and reasoning errors, particularly in multi-step tasks such as mathematical problem29

solving. Existing methods like Chain-of-Thought prompting [35, 38] and Test-Time Scaling [26, 21]30

improve final accuracy, yet LLMs often produce solutions that appear coherent while containing31

errors in reasoning or calculation. These issues are further exacerbated by outcome-level supervision32

and coarse decoding strategies, e.g., majority voting, which overlook step-level correctness and33

provide little guidance during intermediate reasoning.34

To mitigate these shortcomings, Process Reward Models (PRMs) have emerged as a promising direc-35

tion [20]. PRMs assign step-level scores to reasoning trajectories, enabling fine-grained supervision36
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that supports better control and interpretability in multi-step reasoning. However, developing effective37

PRMs remains challenging due to the lack of reliable and faithful reward signals for training. Human38

annotation [20], while accurate, is costly and unscalable. LLM-as-a-judge [46] is more efficient but39

susceptible to hallucination, often rewarding fluent yet incorrect reasoning and thus compromising40

factual fidelity. Monte Carlo (MC) estimation [34, 22] provides another alternative by inferring41

step quality from final rollout outcomes, but it introduces noisy reward due to credit misattribution:42

correct steps may be penalized if the rollout fails, while flawed steps may be rewarded if the final43

answer happens to be correct [44]. Moreover, MC estimation typically evaluates only final outcomes,44

ignoring explicit assessment of intermediate step correctness, which misaligns the supervision signal45

with the objective of step-wise reasoning accuracy.46

Several recent works have attempted to refine MC-based supervision, but core limitations persist.47

OmegaPRM [22] uses a binary search strategy to locate the first incorrect step, but still relies on48

rollout success to infer correctness, leaving credit assignment coarse. Qwen2.5-Math-PRM [44]49

filters samples based on agreement between MC estimation and LLM judgments, but this strategy50

inherits hallucination bias and scores each step solely based on rollout outcomes, without assessing51

whether it contributes to or hinders correct reasoning. BiRM [7] augments PRM with a value head to52

predict future success probability, but both reward and value signals are derived from noisy rollouts53

and lack external validation. These approaches offer partial improvements, yet remain constrained by54

outcome-based heuristics, hallucination-prone feedback, or weak step-level credit modeling.55

To address these challenges, we propose GroundedPRM, a tree-guided and fidelity-aware framework56

for automatic process supervision. GroundedPRM is designed to resolve three core limitations in57

existing PRMs: noisy rewards, low factual fidelity, and misalignment with step-level reasoning58

objectives. First, to reduce reward noise and improve credit attribution, GroundedPRM leverages59

Monte Carlo Tree Search (MCTS) to construct structured reasoning paths and assess each step based60

on its contribution within the trajectory. Second, to ensure factual grounding, each intermediate step61

is verified using an external math tool, producing correctness signals based on executable logic rather62

than LLM-generated feedback, thereby eliminating hallucinated supervision. Third, to combine step-63

level validation with global outcome assessment, we design a hybrid reward aggregation mechanism64

that fuses tool-based verification with MCTS-derived feedback. Finally, all rewards are formatted65

into binary decisions paired with rationale-enhanced justifications, enabling interpretable supervision66

signals that are compatible with LLM-based generation and downstream reasoning workflows.67

We evaluate GroundedPRM on ProcessBench and observe substantial gains in both data efficiency68

and overall performance. It is trained on only 40K automatically labeled samples, just 10% of the69

data used by the best-performing PRM trained with auto-labeled supervision, yet achieves up to a70

26% relative improvement in average performance. Furthermore, when deployed in reward-guided71

greedy search, where candidate steps are selected based on predicted reward, GroundedPRM surpasses72

even PRMs trained with human-labeled supervision, establishing new state-of-the-art results across73

multiple mathematical reasoning benchmarks. These findings highlight the effectiveness, scalability,74

and practical value of our structured and fidelity-aware supervision framework for both training and75

inference.76

The key contributions of this work are:77

1. We propose GroundedPRM, a tree-guided and fidelity-aware process reward modeling78

framework that leverages MCTS to construct structured reasoning paths and support step-79

level credit assignment.80

2. We introduce a fidelity-aware verification mechanism that validates each reasoning step using81

an external math tool, ensuring correctness grounded in executable logic and eliminating82

hallucinated supervision.83

3. We design a hybrid reward aggregation mechanism that integrates tool-based step validation84

with feedback derived from MCTS-guided reasoning paths.85

4. We format rewards into a rationale-enhanced, generative structure to improve interpretability86

and enable seamless integration into inference-time decoding and downstream reasoning87

workflows.88

5. We demonstrate strong data efficiency and inference performance by evaluating Grounded-89

PRM on ProcessBench and reward-guided greedy search.90
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Action a: Simplifying the equation: 60x - 600 + 30x =
660,  which yields x = 14.

Query q: Solve[{x + y == 20, 60x - 30y == 660}, {x, y}]

Let’s break down the problem to verify the
solution. 
For Simplifying the equation: 60x - 600 + 30x =
660.  x = 14
...
The result from the tool is: x = 14 and y = 16
...
The calculations are correct

Update

Rollout Reward u

Tool answer: x = 14 and y = 16

Step Verification vProblem P: Find all x
values in equation 60x
- 600 + 30x = 660 

Step1 Selection Step2 Expansion

Step3 Simulation Step4 Backpropagation

Current Node

Real Node

Simulation Node

Correct Node

Incorrect Node

LLM

Math Tool

Ground Truth
Final Outcome
Correctness F

Figure 1: Overview of the GroundedPRM framework. GroundedPRM constructs reasoning paths via
MCTS, where each node corresponds to an LLM-generated step. During simulation, intermediate
steps are verified using symbolic tools, and final answers are checked against ground truth. Step-level
and outcome-level correctness signals are aggregated into a rollout reward, which is backpropagated
to guide search. The framework enables verifiable, interpretable, and structure-aware process
supervision for multi-step reasoning. The generative rationale provides interpretable feedback for
each step.

2 Related Work91

2.1 Mathematical Reasoning with LLMs92

Large Language Models (LLMs) have shown remarkable progress in solving math problems via Chain-93

of-Thought (CoT) reasoning, where step-by-step solutions often improve final answer accuracy [35].94

Building on this, recent efforts have focused on enhancing reasoning capabilities through pretraining95

on math-related corpora [15, 24, 40], instruction tuning with annotated derivations [38, 19, 41, 39],96

and prompting strategies tailored for symbolic tasks [4, 17, 14]. Despite these improvements,97

LLMs remain vulnerable to intermediate reasoning errors, even when final answers are correct [45].98

This discrepancy undermines the reliability of generated solutions, motivating the use of external99

verification or inference-time selection strategies [25, 31, 9]. Such approaches typically operate at100

the output level, offering limited supervision for correcting internal steps. Unlike prior methods101

that intervene at the output level, our approach supervises the reasoning process itself via step-102

level reward modeling, enabling finer-grained error identification and more faithful alignment with103

symbolic objectives.104

2.2 Process Reward Models for Step-Level Supervision105

To enhance reasoning fidelity and identify intermediate errors, PRMs have emerged as a promising106

alternative to outcome-level supervision [20, 32]. PRMs evaluate the correctness of individual107

reasoning steps and have been shown to improve alignment and generalization across math tasks [34,108

44]. A key challenge lies in generating reliable step-level annotations. Early methods rely on109

expert-labeled datasets such as PRM800K [20], which are expensive to scale. Recent work has110

explored automatic synthesis through MC estimation [34, 22], often leveraging rollout outcomes to111

infer step validity. However, MC-based supervision introduces noise due to credit misattribution112

and dependency on the quality of the completion model [45, 44]. To mitigate this, several methods113

combine MC with LLM-as-a-judge consensus filtering [44] or adopt preference-based learning114

frameworks [6]. In contrast, our method GroundedPRM constructs PRM supervision from the ground115

up by integrating tree-structured search via MCTS [5], symbolic verification (via external math116

tools), and fused value-correctness reward modeling. This pipeline produces reward signals that are117

verifiable, structurally grounded, and directly aligned with symbolic reasoning objectives, addressing118

the core fidelity and alignment issues that prior methods leave unresolved.119
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3 Methodology120

GroundedPRM is designed to address three core limitations of existing process reward modeling121

methods: noisy rewards, low factual fidelity caused by hallucinated self-assessment, and misalignment122

with step-level reasoning objectives. These challenges call for a framework that can assign fine-123

grained credit, validate the factual correctness of individual steps, and integrate local and global124

signals into a reliable and interpretable supervision objective. To this end, GroundedPRM introduces a125

tree-guided and fidelity-aware reward modeling framework composed of four core components. First,126

it employs Monte Carlo Tree Search (MCTS) to construct structured reasoning paths and assess each127

step based on its contribution within the search trajectory, enabling more stable and attribution-aware128

supervision than flat sampling-based methods. Second, it verifies each intermediate step using an129

external tool, producing binary correctness labels grounded in executable logic and thereby mitigating130

hallucinated feedback from the model. Third, it unifies verified step-level signals and final-answer131

correctness into a joint supervision objective, maintaining fine-grained credit assignment while132

offering stable and reasoning-grounded supervision. Finally, the reward supervision is formatted133

into a rationale-enhanced generative structure, pairing each step with both a binary score and an134

explanation to support interpretability and compatibility with instruction-tuned LLMs. An overview135

of this framework is illustrated in Fig. 1.136

3.1 Tree-Guided Reasoning Path Construction137

To enable stable and attribution-aware process supervision, GroundedPRM employs MCTS to138

construct structured reasoning paths for each input problem P . Each node in the search tree is139

associated with a partial reasoning state s = {s1, . . . , si}, representing the sequence of previously140

generated reasoning steps. In addition to the state, each node stores auxiliary information including141

tool queries q, verification outcomes v, and value estimates Q. A reasoning step is represented as142

an action a, defined as a natural language expression generated by the LLM that extends the current143

reasoning state, transitioning it from state s to a new state s′. The value function Q(s, a) estimates144

the expected return of applying action a in state s, and is updated through feedback from simulated145

rollouts. The search process consists of four stages:146

Selection. Starting from the root node, the algorithm recursively selects child nodes according to a147

tree policy until reaching a node that is not fully expanded. To balance exploration and exploitation,148

we use the Upper Confidence Bound for Trees (UCT) [16], which balances estimated value with149

an exploration bonus that decreases as a node is visited more often, thereby encouraging the search150

toward promising yet under-explored nodes.151

Expansion. If the selected node is not terminal, it is expanded by sampling up to m new actions152

from LLM, each producing a distinct child state s′. We set m = 3 in our experiments. This constrains153

the branching factor while maintaining reasoning diversity.154

Simulation. From the newly expanded node, we simulate a complete reasoning trajectory by155

sequentially sampling steps si+1, . . . , sT until the model produces a final answer. We sample from156

the current state using the LLM in a left-to-right fashion to complete the solution. For each step sj157

where j ∈ {i+ 1, ..., T − 1}, we obtain a binary correctness label vj ∈ {−1, 1} using the tool-based158

verification procedure described in Section 3.2. Additionally, the final answer is compared against159

the ground-truth solution to determine the overall outcome F ∈ {−1, 1}. We adopt signed labels160

{-1,+1} instead of {0,1} so that incorrect steps propagate negative feedback, thereby decreasing node161

values during MCTS search rather than being treated as neutral. These per-step and final correctness162

signals are subsequently aggregated into a single rollout reward u, as defined in Section 3.3.163

Backpropagation. The reward u computed for the simulated trajectory is propagated backward164

along the path traversed during selection. For each visited state-action pair (sk, ak) at depth dk from165

the terminal node, we update its value as:166

Q(sk, ak)← Q(sk, ak) + γdk · (ui + vi), (1)

where k ∈ {0, ..., i− 1}, γ ∈ (0, 1) is a decay factor controlling temporal discount, and dk denotes167

the number of steps from the terminal node. This update scheme assigns stronger credit to steps168

closer to the final outcome, aligning attribution with their causal impact in the reasoning process.169
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By iteratively executing the four MCTS stages, GroundedPRM constructs a structured and diverse170

distribution over reasoning paths. This search process prioritizes trajectories with high step-level171

validity and globally correct outcomes, yielding supervision signals that are both structure-aware and172

attribution-sensitive. The resulting credit assignments are more stable and fine-grained than those173

produced by flat Monte Carlo rollouts, directly addressing reward noise and misattribution. Multiple174

rollouts are performed per input to balance path diversity with search efficiency.175

3.2 Fidelity-Aware Step Verification with External Tool176

To ensure reward fidelity and eliminate hallucinated supervision, GroundedPRM integrates symbolic177

verification into each reasoning step via external tools. During simulation (Section 3.1), the LLM178

generates a sequence of reasoning steps {si+1, . . . , sT }, where each sj (i+ 1 ≤ j ≤ T − 1) denotes179

an intermediate reasoning step expressed in natural language during rollout.180

For each step sj , we construct a corresponding structured math query and submit it to a symbolic181

solver, such as Wolfram Alpha (WA). The tool’s response is parsed to determine whether the182

computation or transformation expressed in sj is factually correct. We represent this outcome183

as a binary verification label vj ∈ {−1, 1}, where vj = 1 indicates successful verification and184

vj = −1 denotes failure. The resulting sequence {vi+1, . . . , vT−1} provides a fine-grained step-level185

correctness evaluation for the entire reasoning trace. These step-level signals are used during rollout186

to compute the aggregated reward u (Section 3.3). Unlike LLM-based self-evaluation, which often187

overestimates fluent but invalid reasoning, this fidelity-aware mechanism grounds supervision in188

objective, tool-based verification.189

While WA is used in our experiments due to its strong symbolic reasoning capabilities, such as190

equation solving and equivalence checking, our verification module is tool-agnostic. It supports191

integration with alternatives like SymPy or domain-specific solvers. This modular design ensures that192

GroundedPRM generalizes across reasoning domains while maintaining high verification precision.193

3.3 Hybrid Reward Aggregation194

To construct reward signals that are both verifiable and forward-looking, GroundedPRM introduces195

a hybrid aggregation mechanism that combines symbolic step-level verification with trajectory-196

level outcome assessment. This design balances two supervision objectives: (1) factual fidelity of197

intermediate reasoning steps, and (2) global correctness of the final answer.198

Given a simulated reasoning trace of length T , we collect step-level correctness signals199

{vi+1, . . . , vT−1}, where each vi ∈ {−1, 1} is obtained via external tool verification (Section 3.2).200

In addition, we evaluate the final answer against ground truth to obtain a binary outcome signal201

F ∈ {−1, 1}. These signals are aggregated into a single scalar reward:202

ui =
1

T − 1

T−1∑
j=1

dj · vj + β · F, (2)

where β ≥ 0 is a weighting coefficient that adjusts the contribution of final answer correctness203

relative to step-level reliability. The resulting reward u is used during backpropagation in MCTS204

(Section 3.1) to update value estimates and guide exploration. We further define the MCTS value205

estimate at each state–action pair (si, ai) as:206

Q(si, ai) = ui + vi. (3)

By fusing local and global correctness signals, this hybrid reward formulation offers more stable and207

interpretable supervision than prior MC-based methods that rely solely on rollout success. Moreover,208

this mechanism directly addresses the three core limitations of existing PRMs: it reduces reward209

noise via structure-aware simulation, avoids unverifiable supervision through symbolic validation,210

and aligns the reward objective with both step-wise precision and task-level success.211

3.4 Generative Process Reward Model212

GroundedPRM adopts a generative reward modeling paradigm, enabling seamless integration with213

instruction-tuned LLMs and providing supervision for open-ended reasoning workflows. Each214

5



training instance is structured as a rationale-enhanced sequence that pairs intermediate reasoning215

steps with corresponding verification outcomes and justifications.216

Formally, each instance includes: (1) the original problem P ; (2) the full reasoning trajectory217

{s1, . . . , sT }; (3) binary correctness labels {v1, . . . , vT } obtained via tool-based verification (Sec-218

tion 3.2); and (4) natural language explanations derived from external tool feedback.219

Unlike conventional discriminative reward models that treat reward prediction as a binary classifica-220

tion task, we train GroundedPRM autoregressively to generate both correctness labels and rationales221

conditioned on the problem and its intermediate reasoning trace. This generative formulation improves222

interpretability and enables seamless integration into LLM-based reasoning pipelines.223

3.5 Data Construction for GroundedPRM Training224

To train GroundedPRM, we apply the full supervision framework described above to the MATH225

dataset [11], constructing a reward-labeled dataset with symbolic verification and hybrid scoring.226

For each problem, the policy model generates intermediate reasoning steps, which are verified using227

external tools (Section 3.2). Each step is labeled based on symbolic correctness, and the full trajectory228

is scored using the hybrid reward mechanism introduced in Section 3.3. To ensure coverage and229

diversity, we adopt a multi-round MCTS rollout strategy that explores both optimal and suboptimal230

paths. Post-processing includes filtering incomplete, inconsistent, or tool-unverifiable traces, and231

formatting the final data into a rationale-enhanced generative structure (Section 3.4). Each instance232

includes the problem, a full reasoning trace, correctness labels, and explanations. The resulting233

dataset contains approximately 40K verified samples, covering a broad spectrum of problem types234

and reasoning strategies with high symbolic fidelity.235

4 Experiment236

4.1 Experimental Setup237

Benchmarks. We evaluate GroundedPRM from two perspectives: its ability to accurately identify238

erroneous steps within multi-step reasoning processes, and its effectiveness in directly enhancing239

downstream task performance.240

• ProcessBench [45]. This benchmark evaluates the ability of reward models to supervise241

step-level reasoning in mathematical problems. Each instance includes an LLM-generated242

solution with the first incorrect step annotated by human experts. Models are evaluated243

based on their ability to accurately identify the first faulty step or confirm that all steps are244

valid, following standard PRM evaluation protocols.245

• Reward-Guided Greedy Search. To further assess the utility of GroundedPRM in guid-246

ing multi-step reasoning, we perform inference-time decoding using a reward-guided247

greedy strategy. At each generation step, we sample N = 8 candidate actions from248

Qwen2.5-7B-Instruct [23] using a temperature of 1, and select the candidate with the highest249

predicted reward assigned by the PRM. This process is repeated iteratively until a com-250

plete solution is generated. We evaluate this procedure on six mathematical benchmarks:251

AMC23 [3], AIME24 [2], MATH [11], College MATH [29], OlympiadBench [10], and252

Minerva MATH [18]. We also report the result of majority voting among eight samplings253

(maj@8), and pass@n, i.e., the proportion of test samples where any of the n samplings lead254

to the correct final answers.255

Baselines. For both ProcessBench and reward-guided greedy search experiments, we compare256

GroundedPRM against the following representative baselines. These baselines span a diverse set of257

supervision strategies, including models trained with human-labeled rewards, automated annotations,258

and hybrid approaches, as well as a range of training data scales.259

• Math-Shepherd [34]: Utilizes MC estimation to perform automated step-level annotation260

with hard labels.261

• RLHFlow-PRM series [8]: Includes DeepSeek and Mistral variants, both of which use MC262

estimation for data generation, but adopt the Direct Preference Optimization (DPO) training263

paradigm.264
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Table 1: F1 scores on ProcessBench for models trained with auto-labeled data. Models marked with ∗

share the same base model: Qwen2.5-Math-7B-Instruct. GroundedPRM achieves the highest average
F1, surpassing the strongest existing model, Math-Shepherd-PRM-7B, by 26% relative improvement
while using only 10% of the training data. All baseline results are directly cited from [44]. Oly.
denotes OlympiadBench.

Model #Sample GSM8K MATH Oly. Omni-MATH Avg.
RLHFlow-DeepSeek-8B 253K 38.8 33.8 16.9 16.9 26.6
RLHFlow-Mistral-8B 273K 50.4 33.4 13.8 15.8 28.4
Qwen2.5-Math-7B-Math-Shepherd∗ 445K 62.5 31.6 13.7 7.7 28.9
EurusPRM-Stage1∗ 453K 44.3 35.6 21.7 23.1 31.2
EurusPRM-Stage2∗ 230K 47.3 35.7 21.2 20.9 31.3
Math-Shepherd-PRM-7B 445K 47.9 29.5 24.8 23.8 31.5
GroundedPRM 40K 43.4 47.0 33.8 34.4 39.7

• Math-PSA-7B [33]: Trained on mixed annotated data, namely PRM800K [20], Math-265

Shepherd [34], and generated data following [22].266

• EurusPRM-series [27]: EurusPRM-Stage1 and EurusPRM-Stage2 constructs weakly267

supervised labels from final outcomes using noise-aware heuristics.268

• Qwen2.5-Math-7B series [45, 44]: Qwen2.5-Math-7B-Math-Shepherd and Qwen2.5-Math-269

7B-PRM800K are trained with Math-Shepherd [34] and PRM800K [20] using Qwen2.5-270

Math-7B-Instruct [38], respectively.271

• Llemma-PRM800K-7B [28]: Utilizes MC estimation to perform automated step-level272

annotation with hard labels.273

• ReasonEval-7B [37]: Prompt-based model for evaluating step validity and redundancy.274

Implementation Details. All reward models are fine-tuned on step-labeled reasoning trajectories275

using LoRA [12] for parameter-efficient adaptation. We use Qwen2.5-7B-Instruct [23] as the base276

model. The baseline methods adopt standardized prompt templates for critique generation, as detailed277

in Appendix, to ensure consistency in reward format and reasoning structure.278

4.2 Results on ProcessBench279

GroundedPRM Achieves Strong Supervision Performance with High Data Efficiency. As280

shown in Tab. 1 , GroundedPRM achieves the highest average F1 score among all PRMs trained with281

automatically labeled data, outperforming the second-best model, Math-Shepherd-PRM-7B, by a282

relative improvement of 26% while using only 10% training samples. GroundedPRM also ranks first283

on MATH, OlympiadBench, and Omni-MATH, indicating strong capability in evaluating complex284

symbolic reasoning steps. These results reinforce our central hypothesis: verifiable, structure-guided285

supervision is substantially more effective than scale alone. GroundedPRM’s fidelity-aware rewards,286

grounded in symbolic tool validation and MCTS-based credit assignment, enable efficient learning287

under low-resource constraints.288

Generative Supervision Enhances Interpretability and Robust Generalization. Unlike prior289

PRMs that produce only binary decisions, GroundedPRM adopts a generative format that outputs290

both a step-level reward and an accompanying rationale. This design improves alignment with291

instruction-tuned LLMs, encourages interpretable supervision, and enables the model to better292

distinguish between fluent but incorrect reasoning and truly valid logic. Empirically, GroundedPRM293

achieves notable improvements on challenging benchmarks like OlympiadBench and MATH, where294

fine-grained error localization is essential. These results suggest that explanation-based rewards foster295

more robust and generalizable reasoning behavior.296

4.3 Analysis and Discussions297

GroundedPRM Provides Superior Data Efficiency through Structured and Fidelity-Aware298

Supervision. To compare the effectiveness of our automatically labeled supervision against human-299
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Table 2: F1 scores on ProcessBench under different supervision strategies. GroundedPRM combines
symbolic step validation with trajectory-level outcome assessment. Outcome-Only and Step-Only
variants use single-source supervision, leading to misaligned or incomplete reward signals.

Scoring Strategy GSM8K MATH OlympiadBench OmniMATH Avg.

Step-Only 40.1 42.3 28.3 29.2 35.0
Outcome-Only 1.4 3.3 1.0 1.0 1.7
GroundedPRM 43.4 47.0 33.8 34.4 39.7

Table 3: F1 scores of GroundedPRM and Qwen2.5-Math-7B-PRM800K under matched training
sizes. Both methods are trained using Qwen2.5-7B-Instruct but differ in supervision sources. Despite
relying solely on automatically labeled data, GroundedPRM consistently outperforms Qwen2.5-Math-
7B-PRM800K across all data scales. Oly. denotes OlympiadBench.

#Sample Model GSM8K MATH Oly. Omni-MATH Avg.

10K Qwen2.5-Math-7B-PRM800K 30.3 31.6 21.9 19.8 25.9
GroundedPRM 39.0 41.9 29.4 29.8 35.0

20K Qwen2.5-Math-7B-PRM800K 37.4 32.9 29.9 30.6 32.7
GroundedPRM 39.9 44.0 30.1 31.4 36.4

30K Qwen2.5-Math-7B-PRM800K 37.5 40.0 28.4 34.8 35.2
GroundedPRM 42.1 47.4 30.7 31.7 38.0

40K Qwen2.5-Math-7B-PRM800K 43.1 46.0 32.9 34.0 39.0
GroundedPRM 43.4 47.0 33.8 34.6 39.7

labeled reward models under identical data budgets, we conduct a controlled comparison with the300

Qwen2.5-PRM series using the same model architecture, i.e., Qwen2.5-7B-Instruct, and matched301

training sizes. For each training size, we randomly sample a subset of examples to ensure a fair302

comparison. This setup isolates the effect of supervision quality by ensuring that both methods are303

evaluated under the same data scale. As shown in Tab. 3, GroundedPRM consistently achieves higher304

F1 scores across all training sizes, despite relying entirely on automatically constructed labels.305

Dual-Signal Supervision Enhances Data Fidelity and Credit Attribution. To assess the contribu-306

tion of our dual-signal supervision, we compare GroundedPRM against two ablations: Outcome-Only307

Supervision, which assigns labels based solely on final-answer correctness from MCTS rollouts, and308

Step-Only Supervision, which uses external tool verification without considering global trajectory309

outcomes. As shown in Tab. 2, Outcome-Only Supervision severely underperforms due to credit310

misattribution. Correct steps may be penalized if downstream steps fail, while flawed steps may be311

rewarded if the final answer happens to be correct. Step-Only Supervision achieves higher recall312

but suffers from precision loss, as symbolic tools can detect surface-level arithmetic errors but often313

fail to capture deeper logical flaws, resulting in false positives. In contrast, GroundedPRM fuses314

step-level correctness signals with trajectory-level feedback, enabling accurate credit assignment315

that is grounded in both local fidelity and global reasoning success. This hybrid design achieves316

the highest average F1, demonstrating the effectiveness of our supervision framework in producing317

reliable and structurally aligned reward signals.318

4.4 Results on Reward-Guided Greedy Search319

As shown in Tab. 4, GroundedPRM achieves the highest average accuracy across all PRMs under320

the reward-guided greedy search setting. Despite being trained on only 40K automatically labeled321

examples, it surpasses all PRMs trained on automated, mixed, or human-annotated data. Ground-322

edPRM achieves new state-of-the-art results on AMC23 and matches or outperforms all baselines323

on MATH and Minerva MATH. These results confirm the effectiveness of GroundedPRM’s design:324

symbolic verification improves fidelity, tree-based path construction ensures stable credit assign-325

ment, and rationale-enhanced generative supervision enables precise scoring under multi-candidate326
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Table 4: Accuracy of reward-guided greedy search using different PRMs to supervise the Qwen2.5-
7B-Instruct policy model. GroundedPRM outperforms all PRMs trained with human, mixed, or
automated labels, achieving the highest average accuracy. Oly. denotes OlympiadBench.

Model #Sample AMC23 AIME24 MATH College Oly. Minerva Avg.

pass@1 - 50.0 10.0 73.4 48.5 30.0 29.8 40.3
major@8 - 57.5 13.3 80.4 53.0 36.5 36.7 46.2
pass@8(Upper Bound) - 82.5 20.0 90.4 61.0 48.0 49.6 58.6

Reward-Guided Greedy Search (prm@8)

Trained on Human Annotated Data (PRM800K)
Qwen2.5-Math-7B-PRM800K 264K 60.0 10.0 75.6 36.5 23.5 29.0 39.1
Llemma-PRM800K-7B 350K 42.5 6.7 72.2 47.5 27.6 29.5 37.7
ReasonEval-7B 350K 52.5 6.7 76.0 33.8 33.8 30.0 41.9

Trained on a Mix of Human and Automated Annotation Data
Math-PSA-7B 860K 47.5 13.3 69.8 46.0 27.6 33.5 39.6

Trained on Automated Annotation Data
Math-Shepherd-PRM-7B 445K 45.0 10.0 74.8 48.5 28.0 29.0 39.2
RLHFlow-Mistral-8B 253K 50.0 6.7 74.2 48.0 30.9 27.5 39.5
RLHFlow-Mistral-8B 273K 37.5 13.3 74.8 50.5 29.8 30.0 39.3
EurusPRM-Stage1 453K 47.5 10.0 73.0 49.0 30.1 31.0 40.1
EurusPRM-Stage2 230K 45.0 13.3 73.6 51.0 31.6 32.5 41.1
GroundedPRM 40K 57.5 10.0 74.8 49.0 31.3 32.5 42.4

decoding. By scoring each candidate step with accurate and verifiable feedback, GroundedPRM327

successfully guides the policy model toward accurate multi-step reasoning without requiring external328

demonstration or value-based lookahead.329

5 Conlcusion330

We introduced GroundedPRM, a tree-guided and fidelity-aware framework for process supervision.331

By combining structured path exploration via MCTS, symbolic step-level verification, hybrid reward332

aggregation, and rationale-enhanced supervision formatting, GroundedPRM addresses three core333

limitations of prior PRMs: low factual fidelity, noisy reward signals, and misalignment with step-334

level reasoning objectives. GroundedPRM is trained on only 40K automatically labeled samples,335

amounting to just 10% of the data used by the best-performing PRM trained with auto-labeled336

supervision. Nevertheless, it achieves up to a 26% relative improvement in average performance on337

ProcessBench. When used for reward-guided greedy search, GroundedPRM outperforms even PRMs338

trained with human-labeled supervision. These results underscore the effectiveness of structured,339

verifiable reward modeling in enhancing the reasoning capabilities of LLMs.340

6 Future Work341

While GroundedPRM provides a strong foundation for verifiable and structured process supervision,342

several directions remain open for further enhancement. Its performance can potentially benefit from343

stronger LLMs to improve trajectory quality. Expanding beyond a single symbolic tool could also344

extend the framework’s applicability to more diverse reasoning domains. Additionally, integrating345

human preferences may further align supervision with interpretable and human-aligned reasoning.346

These extensions offer promising avenues to broaden the impact and generality of GroundedPRM in347

increasingly complex reasoning settings.348

References349

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni350

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4351

technical report. arXiv preprint arXiv:2303.08774, 2023.352

9



[2] AI-MO. Amc 2023, 2024b. aimo-validation-aime, 2024.353

[3] AI-MO. Amc 2023, 2024b. aimo-validation-amc. https://huggingface.co/354

datasets/AI-MO/aimo-validation-amc, 2024. Accessed: 2025-07-30.355

[4] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,356

and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated357

sampling. arXiv preprint arXiv:2407.21787, 2024.358

[5] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,359

Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.360

A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence361

and AI in games, 4(1):1–43, 2012.362

[6] Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization363

for mathematical reasoning. arXiv preprint arXiv:2406.10858, 2024.364

[7] Wenxiang Chen, Wei He, Zhiheng Xi, Honglin Guo, Boyang Hong, Jiazheng Zhang, Rui Zheng,365

Nijun Li, Tao Gui, Yun Li, et al. Better process supervision with bi-directional rewarding366

signals. arXiv preprint arXiv:2503.04618, 2025.367

[8] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen368

Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.369

arXiv preprint arXiv:2405.07863, 2024.370

[9] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,371

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in372

llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.373

[10] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,374

Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for375

promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint376

arXiv:2402.14008, 2024.377

[11] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn378

Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.379

arXiv preprint arXiv:2103.03874, 2021.380

[12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,381

Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,382

1(2):3, 2022.383

[13] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,384

Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey, 2024.385

[14] Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using386

large language models. arXiv preprint arXiv:2303.05398, 2023.387

[15] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec388

Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv389

preprint arXiv:2412.16720, 2024.390

[16] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European391

conference on machine learning, pages 282–293. Springer, 2006.392

[17] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large393

language models are zero-shot reasoners. Advances in neural information processing systems,394

35:22199–22213, 2022.395

[18] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay396

Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quan-397

titative reasoning problems with language models. Advances in neural information processing398

systems, 35:3843–3857, 2022.399

10

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc


[19] Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem400

Gokmen, Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking401

llms for embodied decision making. Advances in Neural Information Processing Systems,402

37:100428–100534, 2024.403

[20] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,404

Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The405

Twelfth International Conference on Learning Representations, 2023.406

[21] Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen407

Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. arXiv408

preprint arXiv:2502.06703, 2025.409

[22] Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan410

Li, Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by411

automated process supervision. arXiv preprint arXiv:2406.06592, 2024.412

[23] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,413

Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,414

Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,415

Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji416

Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang417

Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5418

technical report, 2025.419

[24] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,420

Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical421

reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.422

[25] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-423

mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,424

2024.425

[26] Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute426

optimally can be more effective than scaling parameters for reasoning. In The Thirteenth427

International Conference on Learning Representations, 2025.428

[27] Lin Sun, Chuang Liu, Xiaofeng Ma, Tao Yang, Weijia Lu, and Ning Wu. Freeprm: Training429

process reward models without ground truth process labels. arXiv preprint arXiv:2506.03570,430

2025.431

[28] Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang432

Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. Advances in433

Neural Information Processing Systems, 37:51118–51168, 2024.434

[29] Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction435

tuning for mathematical reasoning. arXiv preprint arXiv:2403.02884, 2024.436

[30] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,437

Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly438

capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.439

[31] Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. Hugging Face, 2024.440

[32] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,441

Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with442

process-and outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.443

[33] Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Ziqin Gong, Yan Song,444

Lei Chen, Lionel M Ni, et al. Openr: An open source framework for advanced reasoning with445

large language models. arXiv preprint arXiv:2410.09671, 2024.446

11



[34] Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang447

Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv448

preprint arXiv:2312.08935, 2023.449

[35] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,450

Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.451

Advances in neural information processing systems, 35:24824–24837, 2022.452

[36] Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen453

Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based454

agents across diverse environments. arXiv preprint arXiv:2406.04151, 2024.455

[37] Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical456

reasoning beyond accuracy. In Proceedings of the AAAI Conference on Artificial Intelligence,457

volume 39, pages 27723–27730, 2025.458

[38] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng459

Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward460

mathematical expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.461

[39] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is462

more for reasoning. arXiv preprint arXiv:2502.03387, 2025.463

[40] Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan464

Ma, Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language465

models toward verifiable reasoning. arXiv preprint arXiv:2402.06332, 2024.466

[41] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,467

Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical468

questions for large language models. arXiv preprint arXiv:2309.12284, 2023.469

[42] Yao Zhang, Chenyang Lin, Shijie Tang, Haokun Chen, Shijie Zhou, Yunpu Ma, and Volker Tresp.470

Swarmagentic: Towards fully automated agentic system generation via swarm intelligence.471

arXiv preprint arXiv:2506.15672, 2025.472

[43] Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile473

and autonomous multi-agent system for web task execution with strategic exploration. In474

Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 23378–23386,475

2025.476

[44] Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng477

Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in478

mathematical reasoning. arXiv preprint arXiv:2501.07301, 2025.479

[45] Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng480

Liu, Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical481

reasoning. arXiv preprint arXiv:2412.06559, 2024.482

[46] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,483

Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and484

chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.485

12



NeurIPS Paper Checklist486

1. Claims487

Question: Do the main claims made in the abstract and introduction accurately reflect the488

paper’s contributions and scope?489

Answer: [Yes]490

Justification: The abstract and introduction state the three limitations addressed (noisy re-491

wards, low factual fidelity, misalignment) and the four components (MCTS, tool verification,492

hybrid aggregation, generative PRM), which match the methodology and results reported in493

Section 3 and Section 4.494

Guidelines:495

• The answer NA means that the abstract and introduction do not include the claims496
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Answer: [Yes]507
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to make their results reproducible or verifiable.566
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instructions for how to replicate the results, access to a hosted model (e.g., in the case573

of a large language model), releasing of a model checkpoint, or other means that are574

appropriate to the research performed.575
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sions to provide some reasonable avenue for reproducibility, which may depend on the577

nature of the contribution. For example578

(a) If the contribution is primarily a new algorithm, the paper should make it clear how579

to reproduce that algorithm.580

(b) If the contribution is primarily a new model architecture, the paper should describe581

the architecture clearly and fully.582

(c) If the contribution is a new model (e.g., a large language model), then there should583

either be a way to access this model for reproducing the results or a way to reproduce584
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In the case of closed-source models, it may be that access to the model is limited in589

some way (e.g., to registered users), but it should be possible for other researchers590
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5. Open access to data and code592
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Question: Does the paper provide open access to the data and code, with sufficient instruc-593

tions to faithfully reproduce the main experimental results, as described in supplemental594

material?595

Answer: [Yes]596

Justification: See Code.597

Guidelines:598

• The answer NA means that paper does not include experiments requiring code.599

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/600

public/guides/CodeSubmissionPolicy) for more details.601

• While we encourage the release of code and data, we understand that this might not be602

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not603

including code, unless this is central to the contribution (e.g., for a new open-source604

benchmark).605

• The instructions should contain the exact command and environment needed to run to606

reproduce the results. See the NeurIPS code and data submission guidelines (https:607

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.608

• The authors should provide instructions on data access and preparation, including how609

to access the raw data, preprocessed data, intermediate data, and generated data, etc.610

• The authors should provide scripts to reproduce all experimental results for the new611

proposed method and baselines. If only a subset of experiments are reproducible, they612

should state which ones are omitted from the script and why.613

• At submission time, to preserve anonymity, the authors should release anonymized614

versions (if applicable).615

• Providing as much information as possible in supplemental material (appended to the616

paper) is recommended, but including URLs to data and code is permitted.617

6. Experimental setting/details618

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-619

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the620

results?621

Answer: [Yes] .622

Justification: We report datasets/benchmarks, sampling/search configs, LoRA settings,623

optimizer, LR schedule, seed, and hardware (4×A100 80GB) in Sec. 4 and App. B, App. C.624

Guidelines:625

• The answer NA means that the paper does not include experiments.626

• The experimental setting should be presented in the core of the paper to a level of detail627

that is necessary to appreciate the results and make sense of them.628

• The full details can be provided either with the code, in appendix, or as supplemental629

material.630

7. Experiment statistical significance631

Question: Does the paper report error bars suitably and correctly defined or other appropriate632

information about the statistical significance of the experiments?633

Answer: [Yes]634

Justification: We report results averaged over 3 independent runs.635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The authors should answer "Yes" if the results are accompanied by error bars, confi-638

dence intervals, or statistical significance tests, at least for the experiments that support639

the main claims of the paper.640

• The factors of variability that the error bars are capturing should be clearly stated (for641

example, train/test split, initialization, random drawing of some parameter, or overall642
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• The method for calculating the error bars should be explained (closed form formula,644

call to a library function, bootstrap, etc.)645

• The assumptions made should be given (e.g., Normally distributed errors).646

• It should be clear whether the error bar is the standard deviation or the standard error647

of the mean.648
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of Normality of errors is not verified.651
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error rates).654

• If error bars are reported in tables or plots, The authors should explain in the text how655

they were calculated and reference the corresponding figures or tables in the text.656

8. Experiments compute resources657

Question: For each experiment, does the paper provide sufficient information on the com-658

puter resources (type of compute workers, memory, time of execution) needed to reproduce659

the experiments?660

Answer: [Yes]661

Justification: We specify GPU type and memory (4×A100 80GB) and main training config-662

uration in App. B.663
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• The answer NA means that the paper does not include experiments.665

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,666

or cloud provider, including relevant memory and storage.667

• The paper should provide the amount of compute required for each of the individual668

experimental runs as well as estimate the total compute.669

• The paper should disclose whether the full research project required more compute670

than the experiments reported in the paper (e.g., preliminary or failed experiments that671

didn’t make it into the paper).672
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Question: Does the research conducted in the paper conform, in every respect, with the674

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?675

Answer: [Yes]676

Justification: The work uses public math datasets and does not involve personal data or677

human subjects; we follow dataset licenses and anonymity requirements.678

Guidelines:679

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.680

• If the authors answer No, they should explain the special circumstances that require a681

deviation from the Code of Ethics.682

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-683

eration due to laws or regulations in their jurisdiction).684

10. Broader impacts685

Question: Does the paper discuss both potential positive societal impacts and negative686

societal impacts of the work performed?687

Answer: [Yes]688

Justification: We discuss this in Section 6.689

Guidelines:690

• The answer NA means that there is no societal impact of the work performed.691

• If the authors answer NA or No, they should explain why their work has no societal692

impact or why the paper does not address societal impact.693
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• Examples of negative societal impacts include potential malicious or unintended uses694

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations695

(e.g., deployment of technologies that could make decisions that unfairly impact specific696

groups), privacy considerations, and security considerations.697

• The conference expects that many papers will be foundational research and not tied698

to particular applications, let alone deployments. However, if there is a direct path to699

any negative applications, the authors should point it out. For example, it is legitimate700

to point out that an improvement in the quality of generative models could be used to701

generate deepfakes for disinformation. On the other hand, it is not needed to point out702

that a generic algorithm for optimizing neural networks could enable people to train703

models that generate Deepfakes faster.704

• The authors should consider possible harms that could arise when the technology is705

being used as intended and functioning correctly, harms that could arise when the706

technology is being used as intended but gives incorrect results, and harms following707

from (intentional or unintentional) misuse of the technology.708

• If there are negative societal impacts, the authors could also discuss possible mitigation709

strategies (e.g., gated release of models, providing defenses in addition to attacks,710

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from711

feedback over time, improving the efficiency and accessibility of ML).712

11. Safeguards713

Question: Does the paper describe safeguards that have been put in place for responsible714

release of data or models that have a high risk for misuse (e.g., pretrained language models,715

image generators, or scraped datasets)?716

Answer: [NA]717

Justification: We do not release a high-risk generative model or scraped sensitive data.718

Guidelines:719

• The answer NA means that the paper poses no such risks.720

• Released models that have a high risk for misuse or dual-use should be released with721

necessary safeguards to allow for controlled use of the model, for example by requiring722

that users adhere to usage guidelines or restrictions to access the model or implementing723

safety filters.724

• Datasets that have been scraped from the Internet could pose safety risks. The authors725

should describe how they avoided releasing unsafe images.726

• We recognize that providing effective safeguards is challenging, and many papers do727

not require this, but we encourage authors to take this into account and make a best728

faith effort.729

12. Licenses for existing assets730

Question: Are the creators or original owners of assets (e.g., code, data, models), used in731

the paper, properly credited and are the license and terms of use explicitly mentioned and732

properly respected?733

Answer: [Yes]734

Justification: We cite all datasets/models.735

Guidelines:736

• The answer NA means that the paper does not use existing assets.737

• The authors should cite the original paper that produced the code package or dataset.738

• The authors should state which version of the asset is used and, if possible, include a739

URL.740

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.741

• For scraped data from a particular source (e.g., website), the copyright and terms of742

service of that source should be provided.743

• If assets are released, the license, copyright information, and terms of use in the package744

should be provided. For popular datasets, paperswithcode.com/datasets has745

curated licenses for some datasets. Their licensing guide can help determine the license746

of a dataset.747
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• For existing datasets that are re-packaged, both the original license and the license of748

the derived asset (if it has changed) should be provided.749

• If this information is not available online, the authors are encouraged to reach out to750

the asset’s creators.751

13. New assets752

Question: Are new assets introduced in the paper well documented and is the documentation753

provided alongside the assets?754

Answer: [NA]755

Justification: We do not release a new dataset. Supervision data are constructed from public756

sources with described pipeline.757

Guidelines:758

• The answer NA means that the paper does not release new assets.759

• Researchers should communicate the details of the dataset/code/model as part of their760

submissions via structured templates. This includes details about training, license,761

limitations, etc.762

• The paper should discuss whether and how consent was obtained from people whose763

asset is used.764

• At submission time, remember to anonymize your assets (if applicable). You can either765

create an anonymized URL or include an anonymized zip file.766

14. Crowdsourcing and research with human subjects767

Question: For crowdsourcing experiments and research with human subjects, does the paper768

include the full text of instructions given to participants and screenshots, if applicable, as769

well as details about compensation (if any)?770

Answer: [NA]771

Justification: No crowdsourcing or human-subject studies are involved.772

Guidelines:773

• The answer NA means that the paper does not involve crowdsourcing nor research with774

human subjects.775

• Including this information in the supplemental material is fine, but if the main contribu-776

tion of the paper involves human subjects, then as much detail as possible should be777

included in the main paper.778

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,779

or other labor should be paid at least the minimum wage in the country of the data780

collector.781

15. Institutional review board (IRB) approvals or equivalent for research with human782

subjects783

Question: Does the paper describe potential risks incurred by study participants, whether784

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)785

approvals (or an equivalent approval/review based on the requirements of your country or786

institution) were obtained?787

Answer: [NA]788

Justification: No human-subject research is conducted.789

Guidelines:790

• The answer NA means that the paper does not involve crowdsourcing nor research with791

human subjects.792

• Depending on the country in which research is conducted, IRB approval (or equivalent)793

may be required for any human subjects research. If you obtained IRB approval, you794

should clearly state this in the paper.795

• We recognize that the procedures for this may vary significantly between institutions796

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the797

guidelines for their institution.798
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• For initial submissions, do not include any information that would break anonymity (if799

applicable), such as the institution conducting the review.800

16. Declaration of LLM usage801

Question: Does the paper describe the usage of LLMs if it is an important, original, or802

non-standard component of the core methods in this research? Note that if the LLM is used803

only for writing, editing, or formatting purposes and does not impact the core methodology,804

scientific rigorousness, or originality of the research, declaration is not required.805

Answer: [Yes]806

Justification: LLMs are central to MCTS rollouts and generative PRM training; we specify807

the base model, prompts, and decoding settings in Section 4.808

Guidelines:809

• The answer NA means that the core method development in this research does not810

involve LLMs as any important, original, or non-standard components.811

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/812

LLM) for what should or should not be described.813
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