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Abstract

The past few years have seen an intense research
interest in the practical needs of the “right to be
forgotten”, which has motivated researchers to
develop machine unlearning methods to unlearn a
fraction of training data and its lineage. While ex-
isting machine unlearning methods prioritize the
protection of individuals’ private data, they over-
look investigating the unlearned models’ suscepti-
bility to adversarial attacks and security breaches.
In this work, we uncover a novel security vul-
nerability of machine unlearning based on the
insight that adversarial vulnerabilities can be bol-
stered, especially for adversarially robust models.
To exploit this observed vulnerability, we pro-
pose a novel attack called Adversarial Unlearning
Attack (AdvUA), which aims to generate a small
fraction of malicious unlearning requests during
the unlearning process. AdvUA causes a signif-
icant reduction of adversarial robustness in the
unlearned model compared to the original model,
providing an entirely new capability for adver-
saries that is infeasible in conventional machine
learning pipelines. Notably, we also show that
AdvUA can effectively enhance model stealing
attacks by extracting additional decision bound-
ary information, further emphasizing the breadth
and significance of our research. We also conduct
both theoretical analysis and computational com-
plexity of AdvUA. Extensive numerical studies
are performed to demonstrate the effectiveness
and efficiency of the proposed attack.

1. Introduction
In recent years, many countries have raised concerns about
protecting personal privacy. In practice, users may choose
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to have their data completely removed from a system, es-
pecially sensitive systems such as those do with finance
or healthcare (Nguyen et al., 2022). Recent regulations
(e.g., the well-known European Union’s GDPR (Voigt &
Von dem Bussche, 2017)) now compel organizations to give
users “the right to be forgotten”, i.e., the right to have all
or part of their data deleted from a system on request (Liu
et al., 2024b; Che et al., 2023; Chourasia & Shah, 2023;
Zhang et al., 2022b; Graves et al., 2021; Chen et al., 2021;
Wang et al., 2023; Brophy & Lowd, 2021; Liu et al., 2023a).
The most straightforward approach is to retrain the model
on all data except the portion that has been removed, but this
approach is in general impractical since the computational
resources consumed are usually costly. Thus, aiming to
efficiently remove data as well as their contribution to the
model, a new machine learning privacy protection research
direction has emerged, called machine unlearning.

Numerous research efforts have been dedicated to address-
ing the challenge of data removal in inefficient retraining.
Two prominent research fields that have emerged in this con-
text are exact unlearning (Yan et al., 2022; Yu et al., 2022b;
Brophy & Lowd, 2021; Bourtoule et al., 2021b; Qian et al.,
2022) and approximate unlearning (Tarun et al., 2023; Jia
et al., 2023; Chen et al., 2022; Gupta et al., 2021; Neel
et al., 2021; Sekhari et al., 2021). Exact unlearning aims to
completely reverse the effects of the previously learned data
points. Instead of aiming for a perfect reversal of the learned
data, approximate unlearning seeks to achieve a reasonably
close approximation. This can be beneficial in situations
where complete unlearning is computationally expensive
or impractical, providing a compromise between removal
efficiency and performance retention.

However, current machine unlearning methods exhibit an
important limitation as they primarily concentrate on effi-
ciently removing the effects of specific data instances from
a trained machine learning model. Consequently, it remains
uncertain whether these existing techniques might unexpect-
edly influence the adversarial robustness of the associated
machine learning models. Note that adversarial robustness,
in the context of machine learning, refers to the ability of
a trained model to maintain its accuracy and performance
even when it is exposed to deliberately perturbed input data
known as adversarial examples (Li et al., 2019; Goodfellow
et al., 2014; Szegedy et al., 2013; Zhu et al., 2021). Despite
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Figure 1. Robustness degradation of defended robust models against FGSM, PGD, and CW attacks after randomly removing different
percentages of training samples on SVHN and CIFAR-10.

the great importance of studying adversarial robustness from
the selective forgetting perspective, there is no existing work
exploring the adversarial robustness properties of the un-
learned models in the context of the right to be forgotten.
Therefore, it is natural to ask

Q1: Does unlearning amplify the vulnerability of unlearned
models to adversarial attacks?

To answer this question, we first conducted initial experi-
ments to investigate adversarial robustness degradation of
the defended and undefended models1 by randomly deleting
some training samples in the context of machine unlearn-
ing. In the experiments, the defended robust models are
constructed using adversarial training (Madry et al., 2018;
Goodfellow et al., 2014), which proves to be the most ef-
fective method against adversarial attacks (Bai et al., 2021;
Pang et al., 2020; Maini et al., 2020). The randomly chosen
training samples are removed using the first-order based
unlearning method (Warnecke et al., 2023). The experimen-
tal results are presented in Figure 1, with additional details
available in the full version of this paper. Notably, these
experimental results show that the random removal strategy
substantially amplifies the adversarial vulnerabilities of de-
fended robust models. Additionally, in our experiments, we
also found that compared with naturally undefended models,
adversarially robust models are indeed more susceptible to
malicious unlearning samples. The reason is that existing
robust training methods heavily rely on the training data to
enhance the model’s robustness against adversarial attacks.
Motivated by this, it is important to further investigate that

Q2: Are there specific requested unlearning samples that
play a pivotal role in generating these new successful ad-
versarial examples, which were unattainable before the un-
learning process?

1Throughout the paper, we use “undefended (natural) model”
and “defended (robust) model” to denote the machine learning
model with natural training algorithm and robust training algo-
rithm, respectively.

This work aims to provide answers to the above questions
and highlight a potential adversarial attack vulnerability in
the unlearning process – an adversary can make use of the
unlearning pipeline to craft malicious unlearning requests
to achieve his desired adversarial attack goals. Note that
like traditional data poisoning attacks, the recent works (Hu
et al., 2023; Qian et al., 2023; Di et al., 2022) still focus on
how to poison the training data, and fail to study the impact
of unlearning on the models’ vulnerabilities to adversarial
attacks. Therefore, in this paper, we aim to conduct an inves-
tigation into the adversarial risks associated with exercising
the “right to be forgotten” from machine learning models,
without altering the training data.

Our Contributions. To develop an understanding of ad-
versarial risks associated with the process of unlearning,
we in this paper present a novel attack named Adversarial
Unlearning Attack (AdvUA), which exploits the unlearning
pipeline to increase adversarial vulnerabilities. The key idea
behind AdvUA is to select unlearning samples that are not
only in close proximity to the target victim samples but also
align with the adversarial attack directions. Specifically, in
our proposed method, we first design a distance evaluation
metric to estimate the space-filling capability of the region
surrounding the target victim samples in the representation
space. Then, based on the insight that not all nearest neigh-
bor samples are equally critical for performing adversarial
unlearning attacks, we propose a direction alignment loss
to closely match the adversarial attack with the unlearning
attack. Our method is orthogonal to existing approaches on
adversarial attacks and can be easily integrated with them to
create advanced adversarial attack strategies. Furthermore,
it is worth highlighting that AdvUA can also bolster the
effectiveness of model stealing attacks by extracting more
decision boundary information, underlining the extensive
scope and importance of our research.

We also empirically demonstrate the attack effectiveness
and computational efficiency of AdvUA on various bench-
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marks, including CIFAR-10 (Krizhevsky & Hinton, 2010)
and ImageNet (Deng et al., 2009), against various robust
learning methods in Section 4. Our evaluation also indi-
cates that AdvUA performs well across different model
architectures and machine unlearning methods. Overall, by
conducting this study, we aim to shed light on the potential
consequences of applying machine unlearning techniques to
adversarially robust models and to gain insights into the in-
terplay between data removal and model robustness against
adversarial attacks. Ultimately, our findings will contribute
to a more comprehensive understanding of the implications
of machine unlearning in the context of adversarial machine
learning and its implications for real-world applications.

2. Background and Related Work
Notations and Machine Unlearning. Let S =
{(xi, yi)}ni=1 denote the dataset, where xi ∈ X ⊂ Rd is
a d-dimensional feature and yi ∈ Y = {1, · · · , C}. Let us
suppose that a C-label classifier F (W ) : Rd → RC labels
a sample x as argmaxc∈Y F (x;W )[c], where W ∈ W rep-
resents the parameters of F . For F , we denote H as the
representation learning function and G as the final prediction
head, i.e., F (W ) = G ◦H . Given the learning algorithm
L and S, the model owner can train a model F (W ∗) such
that F (W ∗) achieves a low empirical loss. In machine un-
learning, users can submit data removal requests Su ⊂ S to
eliminate the influence of Su from W ∗, leading to the cre-
ation of the unlearned model Wu ∈ W . Note that machine
unlearning can be divided into: exact and approximate. Be-
low, we outline the definitions of existing approximate and
exact unlearning techniques (Warnecke et al., 2023; Gupta
et al., 2021; Neel et al., 2021; Guo et al., 2019).

Definition 2.1. Consider a learning algorithm L and its
unlearning function UL : (S,L(S), Su) → Wu. The
pair (L,UL) achieves exact unlearning if ∀S and Su ⊂ S,
Pr(L(Sr)) = Pr(UL(S,L(S), Su)), where Sr = S \ Su.
This implies that it becomes indistinguishable whether the
model was trained after unlearning Su from L(S) or if
it was trained exclusively on Sr. The pair (L,UL) sat-
isfies (γ, ζ)-unlearning if ∀S, Su ⊂ S, and ∀Z ⊆ W ,
Pr(UL(S,L(S), Su) ∈ Z) ≤ eγPr(L(Sr) ∈ Z) + ζ and
Pr(L(Sr) ∈ Z) ≤ eγPr(UL(S,L(S), Su) ∈ Z) + ζ.

Related Work. Since the discovery of adversarial exam-
ples (Goodfellow et al., 2014), constructing adversarially
robust models has become one of the most studied research
topics (Mao et al., 2023; Glöckler et al., 2023; Attias &
Hanneke, 2022; Ilyas et al., 2019; Schmidt et al., 2018;
Sinha et al., 2023; Huai et al., 2022b). Among various
existing defense strategies, adversarial training has been
found to be the most effective approach against adversar-
ial attacks (Mao et al., 2023; Singh et al., 2023; Yu et al.,
2022a; Ghamizi et al., 2023; Wang & Wang, 2022; Qin

et al., 2019; Goodfellow et al., 2014). Additionally, there
is another prominent category of defense methodologies
known as certified defense. These methods usually provide
theoretically guaranteed bounds on the model’s adversarial
robustness (Zhang et al., 2022a; 2021; Gowal et al., 2018;
Huai et al., 2022a; Yoshida & Miyato, 2017). For example,
Gowal et al. (2018) employs the interval bound propagation
to achieve fast and stable verified robust training. On the
other hand, despite the great importance of studying ad-
versarial robustness from the unlearning perspective, there
is no existing work exploring the adversarial robustness
properties of the unlearned models in the context of the
right to be forgotten. Our work is different from Liu et al.
(2023a), which investigates unlearning methods for adver-
sarially trained models. Although recent works (Hu et al.,
2023; Qian et al., 2023; Zhao et al., 2023; Di et al., 2022;
Liu et al., 2024a) study potential pitfalls during unlearn-
ing, they fail to study adversarial robustness. Their main
emphasis is on crafting malicious perturbations to perform
data poisoning attacks. To the best of our knowledge, no
prior research has examined the adversarial risks associated
with the standard unlearning process from the perspective
of adversarial attacks.

3. Adversarial Unlearning Attack

3.1. Building Motivation

From Definition 2.1, we know that machine unlearning pro-
vides a solution to mitigate these privacy risks, and involves
the design of sophisticated unlearning techniques to remove
private information from a trained machine learning model.
Despite the focus on safeguarding individuals’ private and
sensitive data, existing unlearning methods neglect to assess
the vulnerability of the unlearned models to adversarial at-
tacks and security breaches. This oversight raises concerns
regarding the adversarial robustness and overall security of
the unlearning process. As no previous literature has studied
the adversarial vulnerabilities of the unlearning system, for
the threat model, we start by discussing the adversary’s
objectives, capabilities, and knowledge for our attack. The
objective of the adversary is to make malicious unlearning
requests to deliberately undermine the adversarial robust-
ness of the unlearned model. The adversary can generate the
unlearning requests during the unlearning process. Since
the AdvUA does not make any perturbations on the training
data, in our main evaluation, we do not require a constraint
for a malicious unlearning request as long as it is a training
sample. We first consider a white-box setting where the
AdvUA adversary knows the original model W ∗, and sub-
sequently, we delve into the black-box setting. Note that the
white-box threat model represents the most powerful adver-
sary that can appear in real-world scenarios and is of crucial
importance to thoroughly study the adversary’s behaviors.
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Figure 2. Illustrations of the target test example and training examples in low-density
region and high-density region.
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Figure 3. An illustration example of distance eval-
uation metric.

In the context of the right to be forgotten, adversarial un-
learning robustness describes the property of an unlearned
model to consistently predict the target class label for all
perturbed inputs x′ in an lp-norm ball Bϵpp (x) = {x′ ∈ X :
||x− x′||p ≤ ϵp} of radius ϵp, after deleting the requested
unlearning samples. To formalize this concept, we provide
the following definition of adversarial robustness within the
context of the right to be forgotten.

Definition 3.1 (Aϵp
Su

(x) – Adversarial Unlearning Ro-
bustness). Consider a sample x ∈ X , a scalar ϵp, and
a distance metric D(x, x′) = ||x − x′||p. We use
F (x;Wu) to denote the unlearned model, which is de-
rived by removing the requested unlearning samples Su

from the original model W ∗. The unlearned model
F (x;Wu) is robust to adversarial perturbations of mag-
nitude ϵp at input x if and only if ∀(x + δ) ∈ Bϵp

p (x),
argmaxc∈Y F (x;Wu)[c] = argmaxc∈Y F (x+δ;Wu)[c],
where Wu = UL(S,L(S), Su), and δ ∈ Rd is the adversar-
ial perturbation for x.

Our goal in this paper is to investigate whether the process
of unlearning hinders an unlearned model’s ability to with-
stand adversarial perturbations. Specifically, in this paper,
we motivate our study with the previously raised scientific
questions (i.e., Q1 and Q2 in Section 1). In Definition 3.1,
we allow a bounded worst-case perturbation before passing
the perturbed sample to the unlearned model Wu in the
context of the right to be forgotten. In particular, based on
the above definition, we can obtain that when ϵp = 0 and
argmaxc∈Y F (x;Wu)[c] ̸= argmaxc∈Y F (x+δ;Wu)[c],
the adversary misleads the unlearned model Wu to directly
misclassify the target victim samples without any further
perturbations. Without loss of generality, we set p =∞ in
this paper and omit this subscript for simplicity of notations.
Additionally, using Definition 3.1, we can easily estimate
the adversarial unlearning robustness of the unlearned model
Wu across a population of data samples.

3.2. Formulation of AdvUA

As previously discussed (see Figure 1), we have observed
that the adversarial robustness of unlearned models can be
substantially compromised even with random data removal.
To gain a deeper understanding, we now examine how un-
learning samples affect both successful and unsuccessful
adversarial examples. Then we present two visual examples
that demonstrate the successful adversarial example in Fig-
ure 2a and the unsuccessful adversarial example in Figure 2b
after unlearning. Here, we consider the first-order based
unlearning method. Note that the two target test examples
in Figure 2 cannot be adversarially attacked with the same
perturbation sets before unlearning. Here we utilize the
last representation layer and apply UMAP (McInnes et al.,
2018) to project the adversarial examples, along with their
50 nearest neighbors. From this figure, we can observe
that the target victim example shown in Figure 2a has now
transitioned to a low-density region, and can easily fool the
unlearned model. In contrast, the target victim example
depicted in Figure 2b remains situated within a high-density
region, making it difficult to generate a successful adversar-
ial example for this particular target example.

Low-density Regions Generation. Drawing on the afore-
mentioned observations, we make the following key contri-
bution to exacerbating adversarial vulnerability in the un-
learned models: employing unlearning techniques to strate-
gically position target victim samples within low-density
regions. As a result, the unlearned models may not have
learned robust decision boundaries or patterns for these re-
gions, making them more susceptible to adversarial attacks
and misclassifications. Let V = {(xv, yv)}Vv=1 represent
the victim samples that adversaries intend to attack. We use
NKv

(xv) to denote the top-Kv nearest neighbors for the tar-
get sample xv . Let xmax

v ∈ NKv
(xv) denote the sample that

has the largest distance from the target victim sample xv . To
estimate the space-filling capability of the region surround-
ing sample xv , we compute the relative distance information
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Figure 5. Illustration of adversarial direction align-
ment for unlearning training examples.

of its neighbors, with respect to xmax
v , utilizing classical

expansion models (Ma et al., 2018; Houle, 2017; Houle
et al., 2012; Karger & Ruhl, 2002). Specifically, for xv , the
relative distance of xi ∈ NKv

(xv) with respect to xmax
v in

the representation space is calculated as log(||H(xi;W
u)−

H(xv;W
u)||2/||H(xmax

v ;Wu) − H(xv;W
u)||2). How-

ever, if we directly calculate this distance value, we may
encounter the case where ∀xi∈ NKv

(xv), ||H(xi;W
u)−

H(xv;W
u)||2 = ||H(xmax

v ;Wu) − H(xv;W
u)||2. On

the other hand, relying solely on relative distances can be
challenging, as they do not provide insights into the ab-
solute values of data points. As illustrated in Figure 3,
even though x1 and x2 have the same relative distance
values, x2 is more likely to be vulnerable to adversarial
attacks. Therefore, in addition to the relative distances,
we should also take absolute distance information into ac-
count. For xv and its neighbors NKv

(xv), we can calcu-
late the Euclidean distance between this sample and its
neighbor xi ∈ NKv (xv) as D(H(xi;W

u), H(xv;W
u)) =

||H(xi;W
u)−H(xv;W

u)||22, where H(xi;W
u) is the rep-

resentation of xi. By combining the above, we formulate
the following measure

ℓwd(xv,NKv
(xv);W

u) = −λ1(
1

Kv
(1)∑

xi∈NKv (xv)

log
||H(xi;W

u)−H(xv;W
u)||2

||H(xmax
v ;Wu)−H(xv;Wu)||2 + β

)−1

+
(1− λ1)

Kv

∑
xi∈NKv (xv)

D(H(xi;W
u), H(xv;W

u)),

where λ1 ∈ [0, 1] and Kv = |NKv (xv)|. In the above, β is
a pre-defined value to avoid cases where the fraction has a
zero denominator. The first term in ℓwd is used to quantify
the local density around xi measured in the space subse-
quent to unlearning Su (Zhang et al., 2019; Ma et al., 2018;
Houle, 2017). The second one ensures a comprehensive
characterization of the local behavior around xv .

To assess the impact of unlearning on density as expressed in
Eqn. (1), we focus on hard samples that are attacked success-

fully (yielding incorrect predictions) in standard training but
failed (resulting in correct predictions) in adversarial train-
ing. In Figure 4, we adopt the first-order based unlearning
method and compare the average density of success cases
(attack success after unlearning) and failure cases (attack
fail after unlearning) within different local density scales
(nearest neighbors). More details can be found in the full
version of this paper. Figure 4 shows that success cases
typically have higher ℓwd compared to failure cases after
unlearning, which suggests that success cases are located
in relatively low-density regions and are thus susceptible to
attacks (consistent with observations in Figure 2).

Attack Direction Alignment. From the above, we know
that for a target sample xv located in a low-density region,
it tends to experience successful attacks during inference
since it is less likely to be covered by the distribution of the
training samples. The next question we want to explore is
whether all of the nearest samples are equally critical for
performing adversarial unlearning attacks to assign a wrong
label to xv. However, we find an intriguing phenomenon:
not all of the nearest samples are equally important for
adversarial unlearning attacks. This phenomenon reveals
that for xv, the efficient unlearning directions towards the
low-density regions should align well with its adversarial
attack direction, which is determined by∇xv

L(xv, yv;W ),
where yv is the label of xv . To help understanding, we give
an illustration example for the attack direction alignment
in Figure 5, where the grey area represents the high-density
region for the target test example and red zones highlight
directions that are positively aligned with the red arrow.
From this figure, the samples that fall within the intersection
of the grey and red areas are the ones we should focus on.
Given sample xv and its neighbor sample xi ∈ NKv (xv),
we propose the following measure to estimate the alignment
between the unlearning attack and the adversarial attack

ℓdirc(xi, xv;W
u) = (2)

(H(xi;W
u)−H(xv;W

u)) · (∇HL(xv, yv;W
u))

||H(xi;Wu)−H(xv;Wu)||2 ∗ ||∇HL(xv, yv;Wu)||2
,
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where H(xi;W
u)−H(xv;W

u) is the unlearning direction
when we unlearn a sample xi ∈ NKv (xv). In the above,
we use the normalized adversarial attack to remove the
influence of the scaling factor when comparing different
models. Based on the equation, for the effective unlearning
samples, they should closely match the adversarial attack
with the unlearning direction.

Overall Loss. Based on the above observations, to under-
stand the worst-case attack performance, we design a novel
adversarial unlearning attack framework to increase the in-
herent adversarial vulnerability of the unlearned models.
Let Se = {xt}Tt=1 represent a subset of S that is accessible
to the adversary. For each xt ∈ Se, we define a discrete
indication parameter ξt ∈ {0, 1} to indicate whether the
sample xt should be completely deleted (ξt = 1) or not
(ξt = 0). The forget set Su to be unlearned is denoted
as Su = Se ◦ Φ = {xt|xt ∈ Se and ξt = 1}, where
Φ = {ξt}Tt=1. We use {(xv, yv)}Vv=1 to denote the hard
target samples, which cannot be successfully attacked from
the original model W ∗ using the same perturbation budget
ϵ. Therefore, to effectively attack these hard target samples
(i.e., {(xv, yv)}Vv=1), we formulate the below overall loss

max
{δv∈Bϵ(xv)}V

v=1

V∑
v=1

L(xv + δv, yv;W
u(Φ))

s.t.Φ← argmax
Φ

V∑
v=1

ℓwd(xv,NKv
(xv);W

u(Φ))

−
V∑

v=1

λ2

Kv

∑
xi∈NKv (xv)

ℓdirc(xi, xv;W
u(Φ)),

(3)

where Kv = |NKv
(xv)| and Wu(Φ) = UL(S,W

∗, Su =
Se ◦ Φ). L is the loss function to enforce the adversarial
example xv + δv to be predicted as a different label than yv .
Notably, in the above, when δv = 0, the requested malicious
unlearning samples can cause the unlearned model Wu to
directly misclassify sample xv without the need for any
further adversarial manipulations. Exactly solving Eqn. (3)
would be computationally infeasible (Korte et al., 2011), and
instead, we refer to an empirical greedy approach (Barron
et al., 2008) and a discrete relaxation approach to solve the
above optimization problem. Due to space limitation, both
the algorithms for optimizing the above formulated over-
all loss and the corresponding computational complexity
analysis are deferred to the full version of this paper.

Theorem 3.2. Consider a data distributionX characterized
by a Gaussian distribution with mean µ ∈ Rd and variance
σ2I , i.e., X ∼ N(µ, σ2I). Let {xi}ni=1 be a set of samples
drawn from N(µ, σ2I). Then the expected local density

around point x̃ is lower bounded by

E{xi}n
i=1∼X

[
n∑

i=1

1

{
∥xi − x̃∥22 ≤ q

}]
≥

n×

[
1− σ2d

(q − ∥µ− x̃∥22)
2

] (4)

where x̃ ∈ Rd and q ∈ R.

Proof. To begin with, the expectation
E{xi}n

i=1∼X

[∑n
i=1 1

{
∥xi − x̃∥22 ≤ kσ

}]
is expressed as

the expected value of a binomial distribution with N trials.
Then we can have

E{xi}n
i=1∼X

[
n∑

i=1

1

{
∥xi − x̃∥22 ≤ kσ

}]

=

n∑
i=1

Exi∼X

[
1

{
∥xi − x̃∥22 ≤ kσ

}]
= n× P

(
∥xi − x̃∥22 ≤ kσ

)
= n× P

(
∥xi − µ+ µ− x̃∥22 ≤ kσ

)
≥ n× P

(
∥xi − µ∥22 + ∥µ− x̃∥22 ≤ kσ

)
= n× P

(
∥xi − µ∥22 ≤ kσ − ∥µ− x̃∥22

)
= n× P

(
∥xi − µ∥22 ≤ σ ·

(
k − 1

σ
∥µ− x̃∥22

))
= n× P

(√
(xi − µ)

⊤
σ−2I (xi − µi)

≤ k − 1

σ
∥µ− x̃∥22

)
.

(5)

Upon applying the Multidimensional Chebyshev’s Inequal-
ity (Chen, 2007), we can obtain

E{xi}n
i=1∼X

[
n∑

i=1

1

{
∥xi − x̃∥22 ≤ kσ

}]

≥ n×

[
1− d(

k − 1
σ∥µ− x̃∥22

)2
]
.

(6)

Let q = kσ, then we can get

E{xi}n
i=1∼X

[
n∑

i=1

1

{
∥xi − x̃∥22 ≤ q

}]

≥ n×

[
1− σ2d

(q − ∥µ− x̃∥22)
2

]
.

(7)
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Theorem 3.3. Let gn be any learning algorithm, i.e., a
function from n ≥ 0 samples in Rd × {±1} to a binary
classifier fn. Moreover, let W ∈ Rd be the weight of fn
and W = 1

n

∑n
i=1 yixi, and let θ ∈ Rd be drawn from

N(0, I), ∥θ∥2 =
√
d. We draw n1, n2 samples from the

(θ, σ)-Gaussian model, which generates (x, y) ∈ Rd ×
{±1} by first randomly selecting a label y ∈ {±1} and
then sampling x ∈ Rd from N(y ·θ⋆, σ2I). Let the expected
lϵ∞-robust classification errors of fn1 , fn2 are R1, R2. Then
it can be deduced that R1 ≤ R2 holds with a probability
at least 1 − 2 exp

(
− d

8(σ2+1)

)
if n1 ≥ c2ϵ

2
√
d and n2 ≤

ϵ2σ2

8 log d , where 0 ≤ σ ≤ c1d
1/4,

√
8 log d
σ2 ≤ ϵ ≤ 1

2 .

In Theorem 3.2, we estimate the local density at a given
point x̃ by counting the number of data covered within a ball
centered as x̃ with radius q. This theorem demonstrates that
as the quantity of training data decreases, the average local
density also experiences a proportional decline. Theorem
3.3 illustrates the relation between the number of training
samples and the associated lϵ∞-adversarial robust error. The-
orem 3.3 shows that when the training set size diminishes
from n1 to n2 under the conditions mentioned in this the-
orem, there is a high probability that the robust error will
increase. The proof of Theorem 3.3 is deferred to the full
version of this paper.

Discussions on the Black-box Setting. In the black-box
scenario, it’s assumed that the adversaries are unaware of
any prior knowledge about the target well-trained model,
including the model architecture and model parameters. Fol-
lowing existing works (Wen et al., 2023; Liu et al., 2023b;
Byun et al., 2022; Di et al., 2022; Zhou et al., 2018; Liu et al.,
2017), the black-box attack can be executed by constructing
a substitute model and transferring adversarial examples,
which leverages shared decision boundaries among various
models. This approach can reduce exposure risk, and hence,
many existing works have been focused on adversarial trans-
ferability. In our black-box setting, we can train several
substitute models and transfer both the selected unlearning
samples and generated adversarial examples to attack the
target victim model.

Enhanced Model Stealing Attacks. Traditional model
stealing attacks (Genç et al., 2023; Yu et al., 2020; Tramèr
et al., 2016) first send a series of queries Q to the target vic-
tim model and then use the collected query-response pairs
to train a surrogate model that approximates the behavior of
the victim model. The key to the success of model stealing
is to find query samples lying approximately on the deci-
sion boundary of the victim model, which is not easy. To
improve the query effectiveness, our goal here is to make
malicious unlearning requests to learn the decision bound-
ary information of the victim target model W ∗. Instead
of starting from scratch, following existing works, we first

construct an initialized primitive surrogate model. Here,
we consider the scenarios where the adversary has a set
of query samples Q for querying the victim target model.
In the context of machine unlearning, we also assume the
adversary has available unlearning samples, denoted as Se.
Based on AdvUA (in Eqn. (3)), we can select a set of mali-
cious unlearning samples to increase its query effectiveness
by revealing the important decision boundary information
of the victim model.

4. Experimental Results
In this section, we conduct experiments to validate the per-
formance of AdvUA. All experiments are performed for 10
trials, and we report the mean and standard errors in the
following analyses. For more experimental details (e.g.,
experimental setup and parameter settings) and experimen-
tal results (e.g., running time, attack performance against
certified defenses, more unlearning methods and ablation
studies), please refer to the full version of this paper.

4.1. Experimental Setup

Datasets and Models. In experiments, we adopt the fol-
lowing datasets: ImageNet (Deng et al., 2009), CIFAR-
10 (Krizhevsky & Hinton, 2010), SVHN (Netzer et al.,
2011), and IRIS (Fisher, 1988). We consider various deep
learning models, including ResNet-50, ResNet-18 (He et al.,
2016), DenseNet-121 (Huang et al., 2017), VGG-19 (Si-
monyan & Zisserman, 2015), a 5-layer ConvNet with max-
pooling and dropout, and a multilayer perceptron (MLP).

Baselines. We compare the performance of AdvUA with
the following baselines: random deletion and k-nearest
neighbors (kNN) deletion. The random deletion method
randomly removes some training samples from the training
set, regardless of the target sample. The kNN deletion
method removes the k closest training samples to a target
sample in the input space.

Implementation Details. We conduct comprehensive exper-
iments to evaluate the attack performance of AdvUA on both
undefended and defended models. The undefended models
are constructed using natural training algorithms, and the
defended models are constructed using adversarial training
and certified defense methods. The adversarial training in-
volves training the model against a PGD adversary with l∞
project gradient descent of ϵ = 8/255 (Madry et al., 2018).
The certified defense methods utilize techniques including
spectral norm regularization (Yoshida & Miyato, 2017) and
interval bound propagation (Gowal et al., 2018) to provide
provably robustness bounds. We evaluate the robustness of
undefended and defended models against FGSM (Goodfel-
low et al., 2015), PGD (Madry et al., 2018), and CW (Car-
lini & Wagner, 2017) adversarial attacks. Specifically, we
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Figure 6. Attack performance of AdvUA on adversarially trained models against various attacks.

use a perturbation budget of ϵ = 8/255 to generate adver-
sarial examples, setting the iteration steps to 7 for PGD
attacks and 30 for CW attacks. Regarding the unlearning
methods for removing the training samples, we select the
first-order based unlearning method (Warnecke et al., 2023),
the second-order based unlearning method (Warnecke et al.,
2023), the unrolling SGD unlearning method (Thudi et al.,
2022), and SISA (Bourtoule et al., 2021a).

Table 1. Attack transferability of FGSM with AdvUA.

Method # of unlearning
samples VGG-19 DenseNet-121

Baseline None 63.0%± 4.7% 61.0%± 6.9%

AdvUA
10 88.0%± 2.9% 88.0%± 2.9%
20 88.0%± 2.9% 90.0%± 1.5%
30 92.0%± 2.0% 96.0%± 1.6%

4.2. Attack Performance Against Robust Training

We first investigate the attack performance of AdvUA on the
defended models against FGSM, PGD, and CW attacks. The
defended models are adversarially trained with ResNet-18
on CIFAR-10 and ConvNet on SVHN. The results are shown
in Figure 6a and Figure 6b for CIFAR-10, and Figure 6c
for SVHN. Here, we randomly select hard samples that are
correctly classified on the defended model and then remove
various quantities of training samples for each sample using
the first-order based unlearning method. As shown in the
figures, AdvUA significantly enhances the attack success
rates on the defended models. The increase in vulnerabil-
ity can be primarily because, after the unlearning process,
test samples shift to low-density regions that adversarially
trained models struggle to cover effectively, especially along
the adversarial direction. As more training samples are re-
moved, these test samples migrate to even sparser regions,
resulting in higher attack success rates. For instance, when
unlearning 100 training samples for each hard sample, Ad-
vUA achieves approximately 88% attack success rates on
CIFAR-10 against FGSM and PGD attacks and 90% on
SVHN against CW attacks. In comparison, the attack per-

formance of the random baseline is notably poor. While
the kNN baseline slightly improves, it still significantly lags
behind AdvUA. One reason is that although the kNN might
reduce local density to a degree, it is not as effective as
AdvUA. Additionally, AdvUA uniquely aligns the direction
of unlearning with the adversarial direction. Therefore, this
experiment illustrates the efficacy and superiority of Ad-
vUA in selecting crucial unlearning samples to achieve the
desired attack goals.

Table 2. Test accuracy of model stealing attacks.
Query
count

Query-based
attack

Query-based attack
+ unlearn (AdvUA)

100 45.24%± 6.17% 85.71%± 4.92% (1.89×)
200 56.19%± 9.85% 88.57%± 2.41% (1.58×)
300 85.56%± 2.81% 90.00%± 2.85% (1.05×)
400 86.11%± 5.74% 92.22%± 1.41% (1.07×)

4.3. Attack Transferability and Model Stealing Attacks

Effectiveness on Attack Transferability. We consider a
black-box scenario to examine the effectiveness of AdvUA
on adversarial transferability. We use a substitute model
to unlearn various numbers of training samples with the
first-order based method and then generate the adversar-
ial examples. Subsequently, these unlearning samples and
adversarial examples are transferred to attack the target
model. Table 1 presents the attack transferability of FGSM
on the undefended models on ImageNet, where we adopt
the ResNet-50 as the substitute model and the VGG-19 and
DenseNet-121 as the target models. For comparison, we
also include the attack transferability of the baseline method,
which directly applies generated adversarial samples to at-
tack the target models (without unlearning). Conversely,
AdvUA employs unlearning to create a sparse local density
environment around the test sample prior to the transfer pro-
cess. The results show that AdvUA outperforms the baseline
by a large margin in both target models. For instance, when
transferring ResNet-50 to DenseNet-121, AdvUA achieves
a 96% attack success rate with 30 unlearning samples, while
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Figure 7. Ablation studies over sampling density, perturbation bound, and unlearning method.

the baseline only receives a 61% attack success rate. These
findings indicate that AdvUA effectively boosts attack trans-
ferability in the realm of adversarial machine learning.

Effectiveness on Model Stealing Attacks. We also evalu-
ate the effectiveness of AdvUA on model stealing attacks.
We initially train a target model composed of an MLP us-
ing the IRIS dataset and then employ a synthetic dataset
as queries to steal this model, as outlined in Tramèr et al.
(2016). Table 2 shows the test accuracy of the extracted
model obtained with and without unlearning. Regarding the
unlearning method, we utilize the first-order based approach.
The numbers in the parentheses represent the improvement
of test accuracy by integrating AdvUA. The results indicate
that our method boosts the performance of model stealing
attacks, especially when queries are limited. For instance,
AdvUA enhances the test accuracy of the extracted model by
a factor of 1.89× with 100 queries compared to the original
model stealing attacks. By strategically unlearning samples
to diminish the local density near the target query, espe-
cially close to the decision boundary, we create a localized
region with reduced robustness around the target query. This
adjustment makes the query more effective in training the
derived model, leading to superior accuracy compared to
the original query-based attack. In summary, AdvUA effec-
tively improves the performance of model stealing attacks,
providing another perspective to validate the influence of
unlearning on model robustness. The corresponding query
time can be found in the full version of this paper.

4.4. Ablation Study

In this section, we conduct ablation studies over sampling
density, perturbation bound, and unlearning methods. We
adopt the first-order based unlearning method for Figure 7a
and Figure 7b, and the SISA unlearning method for Fig-
ure 7c. As depicted in Figure 7a, when unlearning the same
number of training samples on CIFAR-10, test samples ini-
tially from low-density regions exhibit higher PGD attack
success rates than those from high-density regions. No-
tably, even when selecting test samples from high-density
regions, AdvUA still achieves remarkable outcomes. We

also compare attack success rates with different perturba-
tion bounds during CW attacks on CIFAR-10. As shown
in Figure 7b, despite larger perturbation bounds benefiting
baselines, AdvUA consistently outperforms them. In addi-
tion, Figure 7c illustrates the effectiveness of AdvUA with
the SISA unlearning method, to attack the defended model
against FGSM, PGD, and CW attacks on CIFAR-10. For
example, AdvUA can achieve around 66% CW attack suc-
cess rates with 50 unlearning samples. In these ablation
studies, our experimental results emphasize the efficacy of
AdvUA in increasing the defended model’s vulnerability,
irrespective of variations in sampling density, perturbation
bounds, and unlearning techniques.

5. Conclusion and Future Work

In this paper, we take a significant step towards developing
a comprehensive understanding of the adversarial risks as-
sociated with machine unlearning. We show that the low
density of the target sample in the space, along with the
alignment between adversarial attacks and unlearning direc-
tions, are crucial factors for generating successful adversar-
ial examples, which were not achievable prior to unlearning.
Drawing upon our insightful observations, in this paper,
we design a new adversarial unlearning attack (AdvUA),
with the ultimate goal of exacerbating the adversarial vul-
nerability of the unlearned models. Additionally, AdvUA
can also make model stealing attacks more effective and
stealthy. Our extensive experimental results serve as strong
empirical evidence of the effectiveness and computational
efficiency of the proposed attack, underscoring the impor-
tance of considering security implications alongside data
privacy concerns within the domain of machine unlearning.

In the future, we will investigate the detection and defense
mechanisms to mitigate and defend against adversarial un-
learning attacks in the context of the right to be forgotten.
Besides deep learning models, we will also investigate the
potential threats of adversarial unlearning attacks in other
domains (e.g., federated learning, and graph neural net-
works) using different unlearning methods.
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Impact Statement
In this paper, we uncover a significant adversarial threat in-
herent within the machine unlearning process, wherein the
model’s adversarial robustness may suffer a notable decline.
Addressing this issue is critical for the development of reli-
able and robust unlearning systems, particularly in light of
the escalating demand for privacy and data protection.

References
Attias, I. and Hanneke, S. Adversarially robust learning of

real-valued functions. arXiv preprint arXiv:2206.12977,
2022.

Bai, T., Luo, J., Zhao, J., Wen, B., and Wang, Q. Recent
advances in adversarial training for adversarial robustness.
arXiv preprint arXiv:2102.01356, 2021.

Barron, A. R., Cohen, A., Dahmen, W., and DeVore, R. A.
Approximation and learning by greedy algorithms. The
annals of statistics, 36(1):64–94, 2008.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot, N.
Machine unlearning. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy, May 2021a.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159. IEEE, 2021b.

Brophy, J. and Lowd, D. Machine unlearning for random
forests. In International Conference on Machine Learn-
ing, pp. 1092–1104. PMLR, 2021.

Byun, J., Cho, S., Kwon, M.-J., Kim, H.-S., and Kim, C.
Improving the transferability of targeted adversarial ex-
amples through object-based diverse input. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 15244–15253, June
2022.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pp. 39–57. Ieee, 2017.

Che, T., Zhou, Y., Zhang, Z., Lyu, L., Liu, J., Yan, D., Dou,
D., and Huan, J. Fast federated machine unlearning with
nonlinear functional theory. In International conference
on machine learning, pp. 4241–4268. PMLR, 2023.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. When machine unlearning jeopardizes
privacy. In Proceedings of the 2021 ACM SIGSAC con-
ference on computer and communications security, pp.
896–911, 2021.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. Graph unlearning. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 499–513, 2022.

Chen, X. A new generalization of chebyshev inequality for
random vectors. arXiv preprint arXiv:0707.0805, 2007.

Chourasia, R. and Shah, N. Forget unlearning: Towards true
data-deletion in machine learning. In International Con-
ference on Machine Learning, pp. 6028–6073. PMLR,
2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Di, J. Z., Douglas, J., Acharya, J., Kamath, G., and Sekhari,
A. Hidden poison: Machine unlearning enables camou-
flaged poisoning attacks. In NeurIPS ML Safety Work-
shop, 2022.

Fisher, R. A. Iris. UCI Machine Learning Repository, 1988.
DOI: https://doi.org/10.24432/C56C76.
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