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Abstract

Deep generative models (DGMs) have shown
great potential in structured-based drug design
(SBDD). However, existing methods overlook a
crucial physical constraint during both the learn-
ing and inference processes. That is, due to the
attractive and repulsive forces, two atoms need
to maintain a minimum distance as defined by
their atomic radii. We refer to cases that violate
this principle as atomic collisions. To address this
problem, we first introduce three novel metrics to
measure the atomic collisions at three granular-
ities. We then demonstrate that existing DGMs
for SBDD can generate ligands exhibiting atomic
collisions. To mitigate such an issue, we further
devise NucleusDiff. It jointly models the distribu-
tion of atomic nuclei and surrounding electrons on
a manifold, ensuring adherence to physical laws
by constraining the distance between the nucleus
and the manifold. Empirical findings demonstrate
that NucleusDiff not only achieves superior per-
formance on four out of seven metrics for stability
and potency but also circumvents collision issues
by up to 30% on the three novel metrics, lead-
ing to a more efficient and effective drug design
pipeline.

1. Introduction
Structure-based drug design (SBDD) is a cornerstone
of drug discovery, aiming to design and optimize 3D
small molecules (known as ligands) based on the three-
dimensional structures of biological targets, often the pro-
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(a) Atom. (b) Manifold. (c) Mesh points.

(d) Pipeline of NucleusDiff.

Figure 1. Illustrations on atoms and molecules. Figure 1(a) dis-
plays the nucleus, electron cloud, and the manifold around the
electron cloud. Figure 1(b) depicts the manifold surrounding
molecule, and Figure 1(c) shows the mesh points after discretizing
the manifold. Figure 1(d) illustrates the pipeline of NucleusDiff.
NucleusDiff conducts denoising diffusion on both nuclei and mesh
points, and the mean of the corresponding nuclei and mesh points
are close to the van der Waals radii.

tein pocket structures. SBDD is challenging because of the
large chemical searching space and the intricate geomet-
ric complexities between two molecules within Euclidean
space (Johnson & Karanicolas, 2013).

With this regard, machine learning (ML) emerges as
a potent tool for navigating the design space of small
molecules, leveraging geometric information from both lig-
ands and proteins. Current state-of-the-art deep generative
models (DGMs) employ SE(3)-equivariant scoring func-
tions (Thomas et al., 2018; Liu et al., 2023) to estimate
ligand geometry distributions based on the pocket struc-
tures within proteins. This includes methods such as de-
noising score matching (DSM) (Vincent, 2011; Song &
Ermon, 2019) and denoising diffusion probabilistic models
(DDPM) (Ho et al., 2020).

In addition to the SE(3)-equivariance, other physical prin-
ciples must also be adhered to during modeling. One such
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property is the attraction and repulsion. In reality, each
atom occupies a distinct sphere surrounding the atomic nu-
cleus. This sphere is known as the electron cloud, the region
where electrons are most likely found orbiting the nucleus.
Within the electron cloud, attractive forces on each electron
pulls it towards the nucleus and repulsive forces on each
electron repel it from other electrons. Both the attractive
forces and repulsive forces influence the distribution and
arrangement of electrons. As a result, the atomic radii is
derived as the average distance from the nucleus to the out-
ermost electrons in the electron cloud. We illustrate this
in Figure 1.

However, existing DGMs for SBDD presume that each atom
is a solid point and overlook the physical properties induced
by the law of electrostatic attraction and repulsion. Conse-
quently, the atomic collision issue occurs: two atoms ap-
proach each other too closely during the generation process,
violating the principle of electron attraction and repulsion
by having atom pairwise distance below the atomic radii
threshold. We illustrate this phenomenon in Figure 2.

Our Contributions. In this work, we aim to address the
aforementioned challenge. In a nutshell, we first design
three metrics for measuring the atomic collision in the
existing DGMs for SBDD. Then we propose NucleusD-
iff, a manifold-constrained denoising diffusion model for
the structure-based drug design framework. NucleusDiff
consists of two generative components: one for modeling
the atomic nuclei and one for modeling the electron cloud
around each nucleus, as shown in Figure 1. This enables
NucleusDiff to maintain, during learning and generation,
the atomic radii between nuclei and their corresponding
manifolds. We verify the effectiveness of NucleusDiff using
100K protein-ligand binding complexes from the Cross-
Docked2020 (Francoeur et al., 2020). Our quantitative
analysis demonstrates that NucleusDiff significantly out-
performs the state-of-the-art SBDD models. For instance,
NucleusDiff exhibits a 22.16% improvement in Vina Score
compared to TargetDiff. Moreover, NucleusDiff particu-
larly excels in reducing the collision ratio, as evidenced
by enhancements of over 30.00% across all three proposed
collision metrics, ultimately achieving an almost negligible
collision ratio.

We believe this work will pioneer a new direction in integrat-
ing physical laws into generative models for structure-based
drug discovery. It underscores the importance of ensuring
that learning models comply with these essential physical
principles.

2. Method
2.1. Backgrounds

Small Molecules and Proteins. In our work, we consider
small molecule ligands, which are sets of atoms in the

3D Euclidean space, {vL,xL}, where vL represents the
atomic number and xL represents the atomic nucleus
coordinate, respectively. Proteins are macromolecules, i.e.,
chains of residues (or amino acids). In nature, there are 20
types of residues. Each residue is a small molecule, with
a fixed backbone structure: a basic amino group, an acidic
carboxyl group, a side chain that is unique to each amino
acid, and a carbon Cα connecting three components. In this
work, we consider modeling proteins in the backbone-level
information, i.e., the backbone atomic number and
backbone atomic nucleus coordinates, {vP ,xP }.

Nucleus and Electron Cloud. Each atom constitutes a
nucleus and an electron cloud surrounds each nucleus, as
shown in Figure 1. Recent works employ manifold learning
on such an electron cloud for molecule property predic-
tion (Zhang et al., 2023; Wang et al., 2022) and protein mod-
eling in structure-based drug design (Mallet et al., 2023).
In this work, we consider modeling the manifold around
each nucleus with the atomic radius in the ligands. Then
we discretize the manifold into triangle mesh points, a form
suitable for computational analysis. This is implemented us-
ing the Python package PyMesh (Zhou, 2019). For notation,
for each ligand atom (vL,xL), the coordinate and nuclei
type are the same as atom-level features, i.e., vN = vL and
xN = xL. The coordinate of the discretized point on the
manifold is marked as xM . Notice that we use a special
token to delegate the electron points on the manifold.

Structure-based Drug Design. The structure-based drug
design (SBDD) task utilizes the geometric structures of pro-
teins to design and optimize ligands, like small molecules.
This can be formulated as a conditional distribution mod-
eling problem, p(xL,vL|vP ,xP ). Notice that Nucle-
usDiff improves this objective function by introducing
nucleus-level modeling combined with manifold-sensitive
constraints of small molecules, so the problem formula-
tion becomes p(xN ,vN ,xM |vP ,xP ). More details will
be discussed in the Method Section.

2.2. Atomic Collision and Measurement

The atomic collision occurs when two atoms come into
proximity such that their electron clouds overlap, violating
the principle of electron attraction and repulsion. We intro-
duce using van der Waals radii d for measuring. Suppose
we have one ligand atom coordinate xi, one protein atom
coordinate xj , and the corresponding van der Waals radii
are di and dj . Then during the sampling process for lig-
and generation, if two atoms get too close to each other,
i.e., ∥xj − xj∥ ≤ Dij = di + dj , we refer to this as the
atomic collision issue. To quantify this phenomenon, we
propose three measurable metrics from three assessment
granularities.

Pairwise-Level Collision Ratio (PLCR). The first metric
is the atom pairwise-level ratio (PLCR), which quantifies
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the collision ratio between all the ligand atoms and protein
atoms. For each ligand atom (xL

i ), we extract its K nearest
protein atoms within the binding site. Then the PLCR is
defined as

PLCR =

∑
k∈Nmol,i∈Nk

atom,j∈Ni
nearest

1(∥xi − xj∥ < Dij)

K ·
∑

k∈Nmol
Nk

atom
, (1)

where Nmol is the number of ligand molecules, Nk
atom is the

number of atoms in the k-th molecule, N i
nearest is the number

of the nearest protein atoms of the t-th ligand atom, and 1(·)
is the indicator function.
Atom-Level Collision Ratio (ALCR). The second met-
ric is the atom-level collision ratio (ALCR). It measures
the collision ratio for each ligand atom by aggregating the
pairwise-level collisions. An atom is marked as collision
if at least one of its k nearest protein atoms is within a
distance smaller than the sum of their van der Waals radii.
More rigorously, it is defined as

ALCR =

∑
k∈Nmol,i∈Nk

atom
1(

∑
j∈Ni

nearest
1(∥xi − xj∥ < Dij))∑

k∈Nmol
Nk

atom
.

(2)

Molecule-Level Collision Ratio (MLCR). The last met-
ric is the molecule-level collision ratio (MLCR). It mea-
sures the collision ratio for each molecule by aggregating
the atom-level collisions. A molecule is marked as collision
if at least one of its atoms raises the atom-level collision.
More rigorously, it is defined as

MLCR =

∑
k∈Nmol

1(
∑

i∈Nk
atom,j∈Ni

nearest
1(∥xi − xj∥ < Dij))

Nmol
.

(3)

The three defined metrics gauge atomic collisions between
pockets and generated ligands, aiding in understanding the
ML inference process for SBDD tasks. We initially tested
them on a widely used ML method for SBDD (Guan et al.,
2022). As illustrated in Figure 2, existing works exhibit
atomic collision issues. Subsequently, we introduce Nucle-
usDiff to address this challenge in the following sections.

2.3. Manifold-Constrained Nucleus-Level DDPM:
NucleusDiff

We propose NucleusDiff to reduce the atomic collision in
ML for the SBDD task. The main idea here is to jointly
model the atomic nucleus and manifold over the electron
cloud using the denoising diffusion model. In this section,
we provide a brief introduction to NucleusDiff, and more
detailed descriptions can be found in the Method section.

Diffusion Model for Geometry Generation. We first
introduce the denoising diffusion model for density esti-
mation on general geometries, x. The denoising diffu-
sion probabilistic model (DDPM) (Ho et al., 2020) con-
sists of two stages: a forward and a backward process.
The forward process gradually adds noise to the input ge-
ometric data x0 = x to a prior Gaussian distribution xT ,

Collision
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Figure 2. Illustration on atomic collision. (a): Visualization of
Collision problem. (b-d): Visualization of the atomic collision
ratio in TargetDiff and NucleusDiff. The x-axis is the number of
diffusion steps and the y-axis is the atomic collision ratio.

and the backward process is the denoising process from
the prior distribution to the data distribution. In concrete,
suppose the data distribution is x ∼ q(x), and we have
T forward and backward steps with the scheduled vari-
ance {βt}Tt=1. Then each forward step can be represented
as q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), which gives

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), where αt = 1− βt

and ᾱt =
∏t

s=1 αs. Following the Bayes theorem, the pos-
terior q(xt−1|xt,x0) can also be expressed as a Gaussian
distribution:

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI), (4)

where µ̃(xt,x0) =
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1

1−ᾱt
xt and β̃t =

1−ᾱt−1

1−ᾱt
. The goal is to maximize the log-likelihood of

data distribution p(x), and after reparameterization, we aim
to directly predict the ground-truth coordinates x0 with
a parameterized network x̂0 = ϕθ(xt, t). The training
objective is

Lt−1(x) = Eq

[
∥x0 − x̂0∥2

]
. (5)

Please refer to (Ho et al., 2020) for detailed derivations. We
note that Equation (5) holds for arbitrary density estimation,
and in the following paragraphs, we will discuss how we
adapt this for our proposed NucleusDiff for structure-based
drug design.

Nucleus Diffusion for Ligand Generation. Recall that in
SBDD, the goal is to model the atomic types and coordinates
in ligands given the pocket structure: p(vL,xL|vP ,xP ).
To adapt this into Equation (5), we can have the training
objective over atomic coordinates as

Lt−1(x
N ) = Eq

[
∥xN

0 − x̂N
0 (xN

t , t,vP ,xP )∥2
]
. (6)
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Notice the training objective for SBDD includes a categori-
cal term Lt−1(v

L) on atomic types and a continuous term
Lt−1(x

L) on atomic coordinates (Guan et al., 2022). In this
section, we are mainly discussing the continuous part, while
the discrete objective function Lt−1(v

N ) is described in the
Method section.

Manifold Diffusion as Soft Constraint. Meanwhile, to
reduce the atomic collision issue, we introduce an extra
soft constraint: we should keep the distance between the
nucleus and the manifold over the electron cloud as atomic
radii, R. This constraint aligns with chemical principles, as
electron clouds exert both attraction and repulsion forces,
preventing atomic collisions. To adopt this into modeling,
for each nucleus, we obtain its K closest mesh points in
the manifold, marked as xM . Thus, the goal becomes the
joint distribution of nuclei and mesh points conditioned
on the pocket, as p(vN ,xN ,xM |vP ,xP ). To adapt this
into Equation (5), the objective of the manifold is

Lt−1(x
M ) = Eq

[
∥xM

0 − x̂M
0 (xM

t , t,vP ,xP )∥2
]
. (7)

On the other hand, recall that the mesh points are scattered
around the nuclei with a fixed atomic radius R. Thus we
add a regularization term by forcing the distance between
each mesh point xN

j and nuclei xM
i to be close to R:

Lt−1(x
N ,xM , R)

=
∑
i

∑
j

∥∥x̂N
0 (xN

t , t,vP ,xP )− x̂M
0 (xM

t , t,vP ,xP )∥ −Rij∥.

(8)
The complete objective function becomes

L = Et[Lt−1(x
N )+Lt−1(v

N )+Lt−1(x
M )+Lt−1(x

N ,xM , R)].
(9)

3. Experiment
3.1. Experimental Setup

Datasets. We utilize CrossDocked2020 (Francoeur et al.,
2020) to train and evaluate our model. Similar to (Luo et al.,
2021), we further refined the 22.5 million docked protein
binding complexes by only selecting the poses with a low
(< 1Å) and sequence identity less than 30%. In the end, we
have 100,000 complexes for training and 100 complexes for
testing.
Construction of Mesh Datasets for CrossDock. We uti-
lize MSMS (Ewing & Hermisson, 2010) to compute the
solvent-excluded surface of the molecule, employing a
probe radius of 1.5 Å and a sampling density of 3.0 for small
molecules, generating a triangular mesh representation. To
further refine the surface mesh, we employ PyMesh (Zhou,
2019), which helps in reducing the number of vertices and
correcting poorly meshed regions. Addressing degenerate
vertices or disconnected surfaces is crucial, as these issues
can lead to an improper distribution of mesh points when

training the models. Finally, we selected the n mesh points
that are closest to the Van der Waals radii distance from
the nucleus to construct a mesh point dataset for the ligand.
This dataset predominantly includes the 3D coordinates of
the mesh points.

3.2. Evaluation of NucleusDiff for the Collision
Problems

The Collision Metrics. For analysis, we compare Nu-
cleusDiff and TargetDiff, one of the most recent works
for SBDD. Both methods are diffusion-based, which al-
lows us to gain a comprehensive understanding of how the
atomic collision issue evolves during the inference process
of DDPM for SBDD. For both DDPM methods, we set the
same timesteps (1000 steps) for learning and inference, and
we analyze three metrics for atomic collision at 11 timesteps,
every 100 steps from Step-0 to Step-1000. The main results
are presented in Appendix D. For brevity, we present the
results from Step-700 to Step-1000 in Table 1.

Analysis. In Table 1, it is evident that TargetDiff exhibits
stable performance from Step-700 to Step-1000. Similarly,
NucleusDiff shows a consistently low collision ratio during
the same inference steps. However, it is noteworthy that
NucleusDiff significantly outperforms TargetDiff by nearly
one order of magnitude on all three collision metrics (PCLR,
ACLR, and MLCR). Remarkably, in the last sampling steps,
NucleusDiff ultimately achieves an almost negligible col-
lision ratio, further highlighting its superior performance.
Referring back to Figure 2, we observe a stark contrast in
the convergence trends between NucleusDiff and Target-
Diff across the three metrics, with NucleusDiff exhibiting
a markedly more pronounced convergence trend than Tar-
getDiff. Additional results and analyses of NucleusDiff’s
collision performance are provided in Appendix D.

Table 1. Atomic collision results among pocket-ligand pair for
structure-based drug design.

Metrics Targetdiff NucleusDiff

PCLR ACLR MLCR PCLR ACLR MLCR

Step-700 78/2300930 70/230093 45/10000 7/2300930 7/230093 7/10000
Step-800 77/2300930 70/230093 45/10000 4/2300930 4/230093 4/10000
Step-900 78/2300930 70/230093 43/10000 2/2300930 2/230093 2/10000
Step-1000 65/2300930 60/230093 37/10000 0/2300930 0/230093 0/10000

4. Conclusion
In this work, we first propose three novel metrics and scruti-
nize the atomic collision issue in the current ML for ligand
design in the structure-based drug design tasks. Then we
devise NucleusDiff, which models the manifold over the
electron cloud to alleviate such a collision issue. Empirical
results reveal that NucleusDiff not only reaches better per-
formance on the existing metrics on stability and potency
but also avoids the atomic issue and converges faster to the
target geometric distribution.
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A. More Related Work
Structure-based Drug Design. In recent years, the availability of structural data has catalyzed the development of
numerous generative models for the target-aware molecule generation task. Such models include those by (Skalic et al.,
2019; Xu et al., 2021), which generate SMILES representations based on protein contexts, and the flow-based model
proposed by (Tan et al., 2022) for generating molecular graphs conditional on protein target sequence embeddings. (Ragoza
et al., 2022) have explored the generation of 3D molecules through the voxelization of molecules in atomic density grids
within a conditional VAE framework. Further, (Li et al., 2021) have employed Monte-Carlo Tree Search coupled with
a policy network for optimizing molecules in 3D space. Notably, (Luo et al., 2021; Liu et al., 2022; Peng et al., 2022)
have developed autoregressive models for atom-by-atom 3D molecule generation using Graph Neural Networks (GNNs).
Despite these advancements, current models still grapple with several challenges. These include the separate encoding of
small molecules and protein pockets (Skalic et al., 2019; Xu et al., 2021; Tan et al., 2022; Ragoza et al., 2022), reliance on
voxelization techniques and non-equivariance networks (Skalic et al., 2019; Xu et al., 2021; Ragoza et al., 2022), and the
limitations inherent to autoregressive sampling methods (Luo et al., 2021; Liu et al., 2022; Peng et al., 2022). Contrasting
with these approaches, our proposed equivariant model uniquely addresses the interactions between proteins and molecules
in a 3D context and facilitates non-autoregressive sampling, thus ensuring a closer alignment between training and sampling
methodologies.

Molecular & Protein Manifold Learning. Recent advancements in manifold learning for Molecular&Protein have
garnered widespread attention in the scientific community. Several studies (Boscaini et al., 2020; Zhang et al., 2023; Wang
et al., 2022; Mallet et al., 2023) have embarked on an innovative trajectory by employing or integrating sophisticated
representational learning techniques pertaining to molecular and protein surfaces. This approach facilitates a precise
articulation and comprehension of the intricate complexities inherent in molecular structures. (Boscaini et al., 2020)
introduces MaSIF, a method using deep learning to identify and predict how proteins interact with other molecules by
analyzing patterns on their surfaces. SurfGen (Zhang et al., 2023), introducing its two neural networks, Geodesic-GNN
and Geoatom-GNN, effectively analyzes topological interactions on pocket surfaces and spatial interactions between
ligand atoms and surface nodes for advanced molecular prediction. HMR (Wang et al., 2022) employs Laplace-Beltrami
eigenfunctions for representing molecules on 2D Riemannian manifolds, enhancing molecular encoding through harmonic
message passing. Atomsurf (Mallet et al., 2023) explores the use of 3D mesh surfaces for representing proteins, revealing
that while promising, this method alone is less effective than 3D grids, and proposes a novel framework that synergistically
combines surface representations with graph-based methods for improved protein representation learning.

3D Molecular Generation. Recent research has mainly focused on 2D molecule (Jin et al., 2018; Liu et al., 2018; Shi
et al., 2019), but interest in 3D molecule generation has grown. Techniques like G-Schnet and G-SphereNet (Gebauer et al.,
2019; Luo & Ji, 2022) use autoregressive methods to build molecules by adding atoms or fragments sequentially, also
applying these to drug design (Li et al., 2021; Peng et al., 2022; Powers et al., 2022). Yet, this requires carefully defining
action spaces and sequences. Some methods use atomic density grids for one-step molecule creation in 3D space (Kingma
& Welling, 2013), but lack equivariance and need additional fitting algorithms. Recently, focus has shifted to using diffusion
models for 3D molecule generation (Hoogeboom et al., 2022; Wu et al., 2022), showing success in drug generation (Lin
et al., 2022; Guan et al., 2022), antibody (Luo et al., 2022), and protein design (Anand & Achim, 2022; Trippe et al., 2022).
However, our work has the distinct honor of pioneering the exploration of atomic collision phenomena within the ambit
of diffusion models for 3D Molecule Generation, an inquiry that positions us at the vanguard of this particular avenue of
scientific inquiry.

7



Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design

B. More Details of Our Method: NucleusDiff
Our main goal is to jointly model the nucleus and the manifoldover the electron cloud surrounding each nucleus, to reduce
the atomic collision issue in the diffusion model sampling process for structure-based drug design. We first explain how the
DDPM model was applied to the existing structure-based drug design modeling. Following this, we introduce how we adopt
the manifold-constrained modeling in NucleusDiff. Last but not least, we provide more details on the training objective and
inference, along with insights into the architecture specifics.

B.1. Nucleus Diffusion for Atomic Nuclei Generation

Here our main goal is to model the nuclei types vN and nuclei coordinates xN given the protein pocket (vP ,xP ):
p(vN ,xN |vP ,xP ). We follow the existing DDPM for the SBDD pipeline by estimating this conditional with a categorical
diffusion model on atomic types and a continuous diffusion model on atomic coordinates (Guan et al., 2022; Hoogeboom
et al., 2021).

In the main manuscript, we define the variance scheduler βt and αt, and how to derive the prior q(xN
t |xN

0 ) and posterior
q(xN

t−1|xN
t ,xN

0 ) for nuclei coordinates at time t. Similarly, for the nuclei types, we use categorical distribution C, and
suppose we have K nuclei types in total. The prior distribution and posterior distribution of nuclei types at time t are

q(vN
t |vN

0 ) = C(vN
t |ᾱtv

N
0 + (1− ᾱt)/K),

q(vN
t |vN

t ,vN
0 ) = C(vN

t |θc(vN
t ,vN

0 )),
(10)

where θc(vN
t ,vN

0 ) = θ∗/
∑

k θ
∗
k, and θ∗ = [αtv

N
t + (1−αt)/K]⊙ [ᾱt−1v

N
0 + (1− ᾱt−1)/K], where ⊙ is element-wise

product. Then after reparameterization, we predict v̂N
0 from vN

t , i.e., ṽN
0 = µθ(v

N
t , t). Injecting this into the posterior, then

the objective functions for the discrete types and continuous coordinates are

Lt−1(v
N ) = KL(q(vN

t |vN
t ,vN

0 )||q(vN |ṽN
0 )) =

∑
k

θc(v
N
t ,vN

0 )k · θc(v
N
t ,vN

0 )k
θc(vN

t , ṽN
0 )k

,

Lt−1(x
N ) = Eq

[
∥xN

0 − x̂N
0 (xN

t , t,vP ,xP )∥2
]
.

(11)

B.2. Manifold Diffusion as Soft Constraint

Meanwhile, as illustrated above, the generated nuclei coordinates should follow the chemical properties: there exist attraction
forces between electrons and nuclei and repulsion forces between electrons, otherwise, the atomic collision can occur. To
alleviate this issue, we jointly model the manifold and nuclei for structure-based drug design.

To be more concrete, for each nucleus, we construct a discrete manifold, where the radius is the atomic radii R. Then for
each nucleus, we obtain its c closest mesh points in the manifold, marked as xM . Thus, instead of p(vN ,xN |vP ,xP ), the
objective is to maximize the following likelihood p(vN ,xN ,xM |vP ,xP ). The objective on the manifold at time t is

Lt−1(x
M ) = Eq

[
∥xM

0 − x̂M
0 (xM

t , t,vP ,xP )∥2
]
. (12)

On the other hand, recall that the mesh points are scattered around the nuclei with atomic radii R. Motivated by this, we add
a regularization term by forcing the distance between each mesh point and nuclei to be close to R as:

Lt−1(x
N ,xM , R) =

∑
i

∑
j

∥∥x̂N
0 (xN

t , t,vP ,xP )− x̂M
0 (xM

t , t,vP ,xP )∥ −Rij∥. (13)

B.3. Learning and Inference

To sum up, the training objective function is composed of three parts:

L = Et[Lt−1(x
N ) + Lt−1(v

N ) + Lt−1(x
M ) + Lt−1(x

N ,xM , R)]. (14)

For inference, because the mesh points from manifold modeling are only used as auxilarate of the physics-guided nuclei
modeling, they can be ignored, while only the nuclei coordinates are required for SBDD.
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B.4. Computational Resources

All algorithms and models have been developed using Python 3.8.13, with PyTorch version 1.12.1 and PyTorch Geometric
version 2.5.2, under CUDA 11.0. Experiments are conducted on a server with 8 NVIDIA V100 GPUs (32 GB memory) and
Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz. We employ a single V100 GPU for training while leveraging eight
GPUs to accelerate the sampling procedure. The models typically converge after approximately 48 hours of training and
sampling 10k ligands using eight GPUs takes about 12 hours.

C. Evaluation of NucleusDiff on the General Metrics
General Metrics for Structure-Based Drug Design. The Vina Score, Vina Min, and Vina Dock metrics are employed
to assess the binding affinity and potential biological efficacy of small molecule drug candidates in interaction with target
proteins, via the computation of docking efficiency scores. Following the methodologies outlined in (Luo et al., 2021),
(Peng et al., 2022), and (Guan et al., 2022), we utilize the open-source AutoDockTools software (Morris et al., 2009) for
these calculations. The High Affinity metric gauges the strength of the ligand-target protein interaction. QED provides a
numerical assessment of a compound’s drug-like characteristics, with higher values indicating a greater propensity for a
compound to embody successful drug attributes. SA quantifies the ease with which a compound can be synthesized. Lastly,
Diversity measures the range and heterogeneity of molecular structures and properties across a set of compounds.

Baselines. For benchmarking, we compare with various baselines: liGAN (Ragoza et al., 2022), AR (Luo et al., 2021),
Pocket2Mol (Peng et al., 2022), GraphBP (Liu et al., 2022) and Targetdiff (Guan et al., 2022). liGAN (Ragoza et al., 2022) is
a 3D CNN-based method that generates 3D voxelized molecular images following a conditional VAE scheme. AR (Luo et al.,
2021), Pocket2Mol (Peng et al., 2022), and GraphBP (Liu et al., 2022) are all GNN-based methods that generate 3D molecules
by sequentially placing atoms into a protein binding pocket. We choose AR-SBDD (Luo et al., 2021) and Pocket2Mol (Peng
et al., 2022) as representative baselines with autoregressive sampling scheme because of their good empirical performance.
Targetdiff (Guan et al., 2022) employs a diffusion-based technique for generating atom coordinates and types.

Analysis Under General Metrics. We generate 100 ligand molecules for each target protein in the test set, resulting in a
total of 10,000 molecules. The size of each generated molecule, i.e., the number of atoms in each molecule, is determined by
sampling from the size distribution observed in the training set. The comprehensive results for NucleusDiff and the baseline
models are displayed in Table 2.

We note that NucleusDiff surpasses all baseline models in nearly every evaluated metric, with the exceptions of QED, SA,
and Diversity. In our evaluation, NucleusDiff is only surpassed by GraphBP (Liu et al., 2022) in terms of Diversity, yet it
exhibits superior performance compared to another diffusion model, TargetDiff (Guan et al., 2022). According to the Vina
Score, NucleusDiff is able to generate the molecules with high affinity to the pocket (-7.90), which is 6.43% better than
the best autoregressive model baseline, AR-SBDD (Luo et al., 2021) and 22.16% than another diffusion model baseline
Targetdiff (Guan et al., 2022). Besides, NucleusDiff surpasses AR-SBDD (Luo et al., 2021) and TargetDiff (Guan et al.,
2022) on High Affinity (60.1%) by 58.6% and 6.7%, and Diversity (0.74) by 6.71% and 4.23%. On the other hand, the SA

Table 2. A summary of various properties of reference molecules and those generated by our model and other baselines is presented. The
symbols (↑) and (↓) indicate whether a higher or lower value is preferable for each property. Due to incompatibility between certain atom
types produced by liGAN (Ragoza et al., 2022) and GraphBP (Liu et al., 2022) and the parsing capabilities of AutoDock Vina, we employ
QVina (Alhossary et al., 2015) to conduct the docking simulations for these two methods.

Metrics Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)

Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - -

liGAN ∗ - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67
GraphBP ∗ - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78
AR-SBDD -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71
Targetdiff -5.01 -5.69 -6.33 -6.47 -7.62 -7.64 56.3% 57.3% 0.48 0.48 0.59 0.58 0.71 0.71

NucleusDiff -6.12 -6.80 -6.93 -6.85 -7.90 -7.76 60.1% 63.0% 0.39 0.39 0.53 0.53 0.74 0.73
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of generated molecules should fall within a reasonable range so that the ability to explore the molecular space confined
by protein pockets is high enough to discover potential molecules. As in Table 2, the QED of NucleusDiff is a little bit
lower than that of AR-SBDD (Luo et al., 2021) and Targetdiff (Guan et al., 2022) but compared to that of liGAN (Ragoza
et al., 2022), implying that our model satisfies this desired property. Notably, the molecules generated by NucleusDiff
perform even better than those in the test set on Vina Score, Vina Min, and Vina Dock, suggesting that NucleusDiff has
great potential to generate more drug-like molecules with higher affinity outside the distribution of the dataset. NucleusDiff
concurrently learns the distribution of electron clouds and the spatial arrangement of atomic nuclei, thereby deepening its
comprehension of physical constraints. This enhanced understanding is critically important for the generation of high-affinity
and realistically viable pharmaceuticals. Besides, although Targetdiff (Guan et al., 2022) also generates molecules in a
one-shot manner. However, the TargetDiff (Guan et al., 2022) model, when learning the distribution of atoms, solely
considers the positional information of atomic nuclei. This approach, which fails to incorporate physical information, is
problematic. Consequently, it is reasonable to assert that the NucleusDiff model, a geometric diffusion generative model
that incorporates spatial physical constraints, provides critical insights for the synthesis of molecules and pharmaceuticals
with high affinity.

C.1. Performance Analysis of NucleusDiff Through Visualization

Figure 3 illustrates the visual representation of the ligands generated by NucleusDiff and TargetDiff, given the specific
binding pockets. We select several pocket proteins to visualize as representative samples for structure analysis. As depicted
in Figure 3, we choose 4U5S, 2GNS, 5MMA, 4RV4, and 2HCJ as the targeted pocket proteins.

We can observe that both TargetDiff and NucleusDiff have the potential to generate relatively stable structures. From the
perspective of the Vina Score, NucleusDiff has the potential to generate ligands with higher affinity compared to those
produced by TargetDiff and the Test Set. This can be specifically observed in the ligands generated for the pockets 4U5S,
2GNS, 5MMA, and 4RV4.

However, when considering the presence of atomic collisions in the generated molecules, a more detailed comparison
between TargetDiff and NucleusDiff can be made. For instance, with the pocket proteins 5MMA and 2HCJ, it is evident that
the ligands generated by TargetDiff have a less clear relative positioning with the pockets, posing a risk of atomic collisions.
In contrast, the ligands generated by NucleusDiff have a much clearer boundary with the protein pockets. This indicates that
NucleusDiff has not only learned the relative positional relationship between the ligands and the protein pockets but also the
physical rules concerning the relative distribution of atomic nuclei and electron clouds within the ligands.
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Figure 3. Visualization of the generated molecules by TargetDiff and NucleusDiff.
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D. More Experiments
In this section, we conducted additional experiments to further ascertain the effectiveness of our proposed model, particularly
in addressing the atomic collision issue.

D.1. More Results on Evaluating Collision Issues

Table 3 presents a comprehensive evaluation of collision issues (PLCR, ALCR, MLCR) from Time Step 0 to Time Step 1000
during the inference phase. The experimental results clearly indicate that NucleusDiff and TargetDiff exhibit nearly identical
performance regarding collision issues in the initial phase of inference (Step 0 to Step 300). However, from Step 400 onward,
NucleusDiff demonstrates a significantly faster convergence rate in addressing collision problems. By approximately Step
700, NucleusDiff appears to have almost completely resolved the collision issues. In contrast, TargetDiff shows rapid
convergence in addressing collision problems from Step 400 to Step 600, after which its performance related to collision
issues shows little to no change. Table 3 provides a complete depiction of the performance of these two diffusion-based
models concerning collision problems during the inference phase, allowing us to gain a more intuitive understanding of how
the trained NucleusDiff model mitigates collision issues.

Table 3. Atomic collision results among pocket-ligand pair for structure-based drug design. A lower value is better.

Metrics Targetdiff NucleusDiff

PLCR ALCR MLCR PLCR ALCR MLCR

Step-0 17103/2300930 13241/230093 4425/10000 17120/2300930 13257/230093 4428/10000
Step-100 11293/2300930 9083/230093 3613/10000 11185/2300930 9040/230093 3627/10000
Step-200 6019/2300930 5079/230093 2543/10000 5779/2300930 4918/230093 2540/10000
Step-300 2482/2300930 2142/230093 1285/10000 2081/2300930 1847/230093 1254/10000
Step-400 751/2300930 671/230093 426/10000 444/2300930 414/230093 321/10000
Step-500 211/2300930 183/230093 124/10000 90/2300930 80/230093 64/10000
Step-600 84/2300930 77/230093 56/10000 29/2300930 28/230093 26/10000
Step-700 78/2300930 70/230093 45/10000 7/2300930 7/230093 7/10000
Step-800 77/2300930 70/230093 45/10000 4/2300930 4/230093 4/10000
Step-900 78/2300930 70/230093 43/10000 2/2300930 2/230093 2/10000
Step-1000 65/2300930 60/230093 37/10000 0/2300930 0/230093 0/10000

D.2. The Ring Size Distribution.

Many previous studies (Peng et al., 2022; Luo & Ji, 2022; Guan et al., 2022) have suggested that if the ligands generated by
a trained model exhibit high structural consistency with the ground truth ligands in the test set, the generative model can be
considered highly successful. However, we argue that this perspective is flawed. A generative model should not only learn a
distribution but also possess strong generalization capabilities. Our goal is to generate a diverse array of ligands beyond the
training distribution, which holds significant practical implications for drug design and discovery. In this section, we present
a detailed analysis of the substructures of the molecules generated by NucleusDiff, specifically focusing on the distribution
of ring sizes in the generated molecules. Table 4 illustrates the distribution of different ring sizes present in the test set, as
well as in the 10,000 molecules generated by the baselines and NucleusDiff. The results reveal that, in comparison to the test
set and another diffusion-based model, TargetDiff, the ring sizes in the molecules generated by these models are primarily
concentrated around 5 and 6. In contrast, the ring sizes in the molecules generated by NucleusDiff are mainly distributed
among 5, 6, 7, 8, and 9. Notably, the proportion of ring sizes 7, 8, and 9 is significantly higher in NucleusDiff compared to
TargetDiff and the test set. This observation leads to two key insights: (1) NucleusDiff has the potential to generate more
complex structures, such as intricate ring structures, compared to TargetDiff. (2) The structures generated by NucleusDiff
are relatively more novel, as evidenced by the discrepancy between the substructure distribution of the ground-truth ligands
in the test set and that of the molecules generated by NucleusDiff.
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Table 4. Percentage of different ring sizes for reference and model generated molecules.

Ring Size Ref. liGAN AR Pocket2Mol TargetDiff NucleusDiff

3 1.7% 28.1% 29.9% 0.1% 0.0% 0.0%
4 0.0% 15.7% 0.0% 0.0% 2.5% 8.8%
5 30.2% 29.8% 16.0% 16.4% 30.6% 21.4%
6 67.4% 22.7% 51.2% 80.4% 51.8% 37.3%
7 0.7% 2.6% 1.7% 2.6% 11.8% 21.2%
8 0.0% 0.8% 0.7% 0.3% 2.5% 7.6%
9 0.0% 0.3% 0.5% 0.1% 0.8% 3.7%

D.3. The Bond Distribution.

In our study, we evaluated the performance of various generative models in terms of their ability to reproduce the bond
distributions observed in reference molecules. Our primary focus was on the NucleusDiff model, which demonstrated a
unique capability in generating diverse molecular substructures. Table 5 presents a comparative analysis of the bond
distributions for different models, including liGAN, GraphBP, AR, Pocket2Mol, TargetDiff, and NucleusDiff. The
NucleusDiff model consistently shows a balanced distribution across various bond types (C-C, C=C, C-N, C=N, C-
O, C=O, C:C, C:N), indicating its proficiency in capturing the structural diversity inherent in the reference dataset. Table 5
provides quantitative insights through the Jensen-Shannon divergence between the bond distance distributions of reference
molecules and those generated by each model. The NucleusDiff model exhibits competitive divergence values across all
bond types, highlighting its effectiveness in mimicking the bond length distributions of real molecules. Notably, for bonds
like C=N and C=O, NucleusDiff achieves divergence values of 0.649 and 0.464, respectively, which are relatively low and
suggest a high degree of similarity to the reference distributions. The superior performance of NucleusDiff in generating
diverse substructures can be attributed to its advanced architectural design, which allows for fine-grained control over
molecular features. This is evident from its ability to generate molecules with a wide range of bond types, maintaining
a high degree of structural fidelity to natural molecules. Consequently, NucleusDiff not only ensures the generation of
chemically valid molecules but also enhances the exploration of the chemical space by producing a variety of substructures,
which is crucial for applications in drug discovery and materials science. In summary, the NucleusDiff model stands out
in its ability to generate molecular substructures with considerable diversity, closely mirroring the bond distributions of
reference molecules. This capability underscores its potential as a powerful tool for the generation of novel and diverse
molecular entities.

Table 5. The Jensen-Shannon divergence between the distributions of bond distances for reference versus generated molecules is analyzed.
In this context, ”-”, ”=”, and ”:” denote single, double, and aromatic bonds, respectively.

Bond liGAN GraphBP AR Pocket2Mol TargetDiff NucleusDiff

C−C 0.601 0.368 0.609 0.496 0.367 0.544
C=C 0.665 0.530 0.620 0.561 0.507 0.599
C−N 0.634 0.456 0.474 0.416 0.361 0.478
C=N 0.749 0.693 0.635 0.629 0.551 0.649
C−O 0.656 0.467 0.492 0.454 0.424 0.559
C=O 0.661 0.471 0.558 0.516 0.467 0.464
C:C 0.497 0.407 0.451 0.416 0.264 0.517
C:N 0.638 0.689 0.552 0.487 0.234 0.464

13



Manifold-Constrained Nucleus-Level Denoising Diffusion Model for Structure-Based Drug Design

D.4. Visualization of the Training Process.

The visualizations in Figure 4 provide insights into the training dynamics of the model. The Total Training Loss Curve (a)
shows overall loss with noticeable fluctuations but a general downward trend, indicating that the model is learning over time.
The training loss curves for molecular and mesh modeling (b-f) exhibit significant variability, suggesting challenges in these
specific tasks. In contrast, the Training Loss Curve for Mesh Feature (g) displays lower values and less fluctuation, indicating
that the model finds it easier to learn mesh features. The Constrained Loss curve (h) shows fewer oscillations, implying
that constraints help stabilize the training process. The Learning Rate Curve (i) remains relatively constant, suggesting a
stable learning rate policy. The Gradient Normalization Curve (j) with occasional spikes indicates moments of large gradient
changes, while the Atom Type Accuracy Curve (k) shows stable accuracy, reflecting consistent performance in predicting
atom types. The Iteration Curve (l) linearly increases, reflecting the progression of training steps.

The validation loss curves (m-o) mirror the training loss curves, showing high variability but general downward trends,
which suggests that the model is generalizing well to the validation data. Despite the fluctuations, the general improvement
over time indicates effective learning. The stable learning rate and gradient norms indicate a controlled training environment.
However, the persistent oscillations in the loss curves suggest that further optimization might be necessary to achieve
smoother convergence and more stable training dynamics.
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(a) Total Training Loss Curve (b) Training Loss Curve for Molecular Modeling (c) Training Loss Curve for Molecular Position 

(d) Training Loss Curve for Molecular Feature (e) Training Loss Curve for Mesh Modeling (f) Training Loss Curve for Mesh Position

(g) Training Loss Curve for Mesh Feature (h) Training Loss Curve for Constrained Loss (i) Learning Rate Curve

(J) Gradient Normalization Curve (k) Atom Type Accuracy Curve (l) Iteration Curve

(m) Validation Loss Curve for Molecular Modeling (n) Validation Loss Curve for Molecular Position (o) Validation Loss Curve for Molecular Feature

Figure 4. The visualization of the training process of NucleusDiff.
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E. Details of the Experimental Setup
E.1. CrossDock Datasets

We conducted experiments to evaluate the generative performance of NucleusDiff on the CrossDocked dataset (Francoeur
et al., 2020). This dataset comprises 22.5 million docked protein-ligand pairs, with each pair exhibiting various poses across
multiple pockets within the Protein Data Bank. The ligands associated with specific pockets were docked with each receptor
assigned to those pockets using smina through Pocketome. Binding data (pK) for the CrossDocked2020 set were sourced
from PDBbind v2017, revealing that 41.9% of the complexes have available binding affinity data. For a fair comparison, we
followed previous works (Luo & Ji, 2022; Guan et al., 2022) by selecting only binding pose data with root-mean-squared
deviations (RMSD) of less than 1 ÅṪhe dataset was further refined through clustering at 30% sequence identity using
MMseqs2 (Steinegger & Söding, 2017). This process yielded 100,000 pairs for training and 100 pairs for evaluation.

We utilize MSMS (Ewing & Hermisson, 2010) to compute the solvent-excluded surface of the molecule, employing a probe
radius of 1.5 Å and a sampling density of 3.0 for small molecules, generating a triangular mesh representation. To further
refine the surface mesh, we employ PyMesh (Zhou, 2019), which helps in reducing the number of vertices and correcting
poorly meshed regions. Addressing degenerate vertices or disconnected surfaces is crucial, as these issues can lead to an
improper distribution of mesh points when training the models. Finally, we selected the n mesh points that are closest to the
Van der Waals radii distance from the nucleus to construct a mesh point dataset for the ligand. This dataset predominantly
includes the 3D coordinates of the mesh points.

E.2. Training Details

The model is trained using the gradient descent method Adam (Kingma & Ba, 2014) with init learning rate=0.001,
betas=(0.95, 0.999), batch size=4, and clip gradient norm=8. To balance the scales of the two losses,
we apply a factor of α = 100 to the atom type loss. During the training phase, we add small Gaussian noise with a standard
deviation of 0.1 to protein atom coordinates as data augmentation. We also schedule to decay the learning rate exponentially
with a factor of 0.6 and a minimum learning rate of 1e-6. The learning rate is decayed if there is no
improvement in the validation loss over 10 consecutive evaluations. The evaluation is performed for every
100 training steps.

E.3. Implementation Details

Our NucleusDiff comprises two score models, each consisting of 9 equivariant layers. Each layer is a Transformer (Vaswani
et al., 2017) with hidden dim=128 and n heads=16. The key/value embeddings and attention scores are generated
through a 2-layer MLP with LayerNorm and ReLU activation. For atom coordinates, we use a sigmoid β schedule with
β1 = 1e-7 and βT = 2e-3. For atom types, we adopt a cosine β schedule as suggested by (Nichol & Dhariwal, 2021),
with s=0.01. We set the number of diffusion steps to 1000.

E.4. Baselines

We conducted a comparative evaluation of NucleusDiff with leading generative models for structure-based drug design,
including liGAN *, GraphBP †, AR-SBDD ‡, Pocket2Mol §, and TargetDiff ¶. For each comparison model, we utilized the
source code obtained from the respective repositories.

E.5. Configuration

All algorithms and models have been developed using Python 3.8.13, with PyTorch version 1.12.1 and PyTorch Geometric
version 2.5.2, under CUDA 11.0. Experiments are conducted on a server with 8 NVIDIA V100 GPUs (32 GB memory) and
Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz. We employ a single V100 GPU for model training, while leveraging
eight GPUs to accelerate the sampling procedure.

*LiGAN (GPL-2.0 license): https://github.com/mattragoza/LiGAN.
†GraphBP (GPL-3.0 license): https://github.com/divelab/GraphBP.
‡AR-SBDD (MIT license): https://github.com/luost26/3D-Generative-SBDD.
§Pocket2Mol (MIT license): https://github.com/pengxingang/Pocket2Mol.
¶TargetDiff (MIT license): https://github.com/guanjq/targetdiff.
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