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ABSTRACT

Brain tumor segmentation in multi-modal MRIs poses significant challenges when
one or more modalities are missing. Recent approaches commonly employ par-
allel fusion strategies; however, these methods often risk losing crucial shared
information across modalities, which can degrade segmentation performance. In
this paper, we advocate leveraging sequential information bottleneck fusion to
effectively preserve shared information across modalities. From an information-
theoretic perspective, sequential fusion not only produces more robust fused rep-
resentations in missing-data scenarios but also achieves a tighter generalization
upper bound compared to parallel fusion approaches. Building on this principle,
we propose the Sequential Multi-modal Segmentation Network (SMSN), which
integrates an Information-Bottleneck Fusion Module (IBFM). The IBFM sequen-
tially extracts modality-common features while reconstructing modality-specific
features through a dedicated feature extraction module. Extensive experiments on
the BRATS18 and BRATS20 glioma datasets demonstrate that SMSN consistently
outperforms traditional parallel fusion-based baselines, achieving exceptional ro-
bustness in diverse missing-modality settings. Furthermore, SMSN exhibits supe-
rior cross-domain generalization, as evidenced by its ability to transfer a trained
model from BRATS20 to a brain metastasis dataset without fine-tuning. To ensure
reproducibility, code of the SMSN is provided in the supplementary file.

1 INTRODUCTION

Brain tumors pose a significant threat to human health. Accurate brain tumor segmentation plays a
pivotal role in treatment planning by precisely identifying tumor boundaries in multi-modal Mag-
netic Resonance Imaging (MRI) modalities (Yan et al.| 2020; Bakas et al., 2017)). It is essential to
provide all the relevant modalities to achieve proper segmentation performance (Shaker et al.,[2024).
However, in real-world clinical practice, it is commonly seen that one or more MRI modalities are
unavailable due to various practical defects (Liu et al., 2023} |Tran et al., 2017).
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Table 1: Tllustration of parallel and sequential fusion strategies. X denotes the modality input, f(-)
or f;(+) are fusion functions, and Z is the latent representation.

Recently, the missing-modality challenge has been widely addressed through unified multi-modal
feature learning, where joint fusion representations are constructed from available modalities (Zhang
et al., 2022} |Shi et al., 2023)). These methods aim to disentangle modality-common and modality-
specific information (Zhao et al., 2023). Typically, modalities are fused in parallel via simple
concatenation (Zhang et al.,|2022) or attention mechanisms (Shi et al., 2023), where all modalities
are combined and mapped into a shared latent representation, as shown in Table [I] However, when
certain modalities are absent, the common information may not be adequately preserved, resulting
in degraded segmentation performance, as illustrated in Figure
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Figure 1: Comparison of parallel fusion (top) and sequential fusion (bottom). (a) PCA Visualization.
Large distribution variation when an informative modality is missing indicates weaker robustness,
while compact and consistent embeddings with preserved color gradients indicate better information
preservation. Modalities 1-3 contain decreasing task-relevant information. Different points repre-
sent different samples. (b) Grad-cam Visualization. Sequential fusion (I(X; Z,)) preserves more
information when some modalities are missing, while parallel fusion (I (X; Z,,)) preserves less.

Given the aforementioned disadvantage in parallel fusion paradigms, we advocate that modalities
should be considered by the sequential information bottleneck fusion, where modalities are in-
corporated step by step through recursive updates of the latent state, as shown in Table[I] It could
properly preserve more modality commonality. As illustrated in Figure [} when some modalities
are missing, it will not heavily influence the mutual information between the joint inputs and la-
tent fusion distribution. Importantly, a series of theoretical analysis (see Sec. [3) shows that our
sequential strategy offers a Lipschitz-continuous lower bound. Compared with parallel fusion, it
certifies more stable fused representations in missing-modality scenarios. On the empirical front,
loss landscapes (Figure ) further reveal smoother and flatter optimization surfaces, thus supporting
this advantage. Additionally, our proposed method can yield a provably tighter generalization upper
bound, vs. parallel fusion, thus confirming again the advantages of our sequential fusion strategy.

Building on these findings, in this paper, we develop the Sequential Multi-modal Segmentation
Network (SMSN). Inspired by the ITHP 2024), we introduce a Sequential Fusion Mod-
ule based on the Information Bottleneck objective (IBFM) in the SMSN to facilitate the extraction
of modality-common information regardless of whether modalities are fully available or partially
missing. To further disentangle modality-specific representations, we employ a Transformer-based
Feature Extraction Module, coupled with a series of task-specific losses (Ronneberger et al., 2015).

We validate SMSN on two benchmark datasets, BRATS18 and BRATS20 (Menze et al) [2014),
where improved robustness over state-of-the-art fusion-based baselines can be observed. We further
generalize a trained SMSN on the BRATS20 glioma dataset directly to an unseen brain metastases
dataset (Ramakrishnan et al.l[2024) without any fine-tuning performed, where superior generaliza-
tion performance can be observed comparing with other baselines. Major contributions of this paper
are summarized as follows:

* We propose a novel Sequential Multi-modal Segmentation Network (SMSN) to decompose
the modality-common information with the information bottleneck based fusion module
(IBFM) in missing modality segmentation task.

* We theoretically evidence the generalization and robustness of the sequential IBMF,
demonstrating its superiority to parallel fusion.

* We empirically verify the robustness and generalization of the proposed SMSN on various
brain tumor segmentation datasets.

2 RELATED WORK

2.1 MULTI-MODAL BRAIN TUMOR SEGMENTATION

Multi-modal MRI provides complementary information for brain tumor segmentation (Shaker et al.
2024)), but handling missing modalities remains a major challenge in clinical practice (Liu et al.
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2023)). Non-fusion methods, such as modality reconstruction (Liu et al., [2023)) or shared-specific
feature modeling (Wang et al.,|2023)), have been explored, but their computational overhead and lim-
ited scalability hinder wide adoption. Consequently, most existing works are fusion-based, typically
following a parallel fusion paradigm, for example, mmFormer (Zhang et al.,2022), MZ2FTrans (Shi
et all [2023), MMMViT |Qiu et al.| (2024), and IMS?Trans Zhang et al.| (2024), through concate-
nation or attention. However, parallel fusion may fail to preserve modality-common information
when some modalities are missing, leading to performance degradation. In this paper, we propose a
sequential fusion framework that explicitly addresses this limitation and enhances robustness under
missing-modality scenarios.

2.2 MULTI-MODAL INFORMATION BOTTLENECK

The Information Bottleneck (IB) models the trade-off between information compression and task
relevance. It has been proven to be effective in speech and text classification tasks (Slonim & Tishby,
2000; [Tishby & Zaslavskyl [2015). Recently, IB-based techniques have witnessed achievement for
improving representation quality for multi-modal learning. The ITHP (Xiao et al.l [2024)), for exam-
ple, employs an IB-driven hierarchical framework to distill information from auxiliary modalities
into a compact, task-relevant representation. Building on these insights, we adopt the IB to address
missing modality challenges in multi-modal learning.

3 THEORETIC MOTIVATION

Theorem 1 (Optimality of the Information Bottleneck Representation for Multi-Modal Inputs).
Let Y be a target variable and {X1,Xa,..., XN} be N input modalities that are jointly dis-
tributed with Y . Assume that the modalities can be modeled jointly as a composite random variable

X = (X1, Xo, ..., Xn), with a joint distribution p(x1, . ..,xN,y). Let Z be a stochastic represen-
tation of X, learned via an encoder p(z|x1, ...,z N), by optimizing the Information Bottleneck (IB)
objective:
7" = arg max [(Z:;Y) - BI(X; Z)], (1
p(z|z

where 8 > 0 controls the trade-off between prediction 1(Z;Y) and compression I(X;Z). I(.)
represents the mutual information. Then, for any alternative representation Z such that I (X; Z ) <
I(X; Z*), it holds that:

I(Z%Y) > 1(Z;Y). )

That is, under a fixed information constrain 1(X;Z), the optimal representation Z* maximally
preserves the predictive information about the target variable Y, even when X is composed of
multiple modalities.

Proof. Information bottleneck objective (Tishby et al. [1999), presented as £L = I(Z;Y) —
BI(Z;X), is initially introduced to compress the information with single modality input X. Here,
Z is a stochastic representation of X, and Y is the target. We assume that the multi-modal inputs
X1,...,Xn can be jointly modeled as a single random vector X = (Xy,..., Xy), with a joint
distribution p(x1,...,xN,y) (Wu & Goodman, [2018). Hence, this assumption allows the mutual
information terms I(Z;Y") and I(Z; X ) of multi-modal input to be defined in the same way as in the
Information Bottleneck objective of single modal input. Given this, the objective of multi-modal in-
formation bottleneck is structurally identical to the IB objective defined for single-modal data. Thus,
the optimal representation Z* satisfies the same optimality condition as Eq.[2] Hence, the optimality
result from the single modality IB theorem carries over directly to the multi-modal cases.

Remark 1 (Dominant and Non-Dominant Modalities in Multimodal Learning). In multimodal rep-
resentation learning, modalities contribute differently to predicting the target variable Y. A dom-
inant modality X g is identified when it possesses a higher mutual information with Y, denoted as
I(X4;Y), ie., Xy = argmax; I(X;;Y). Otherwise, modalities with lower mutual information are
considered supportive since it provides less useful information to the prediction.

In the brain tumor segmentation, for instance, MRI sequences such as Flair are often more domi-
nant for whole tumor segmentation, whereas Tlce is crucial for enhancing tumor details. Recent
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empirical results illustrate that dominant modalities consistently outperform non-dominant modali-
ties across key tumor subregion segmentation tasks (Ding et al.| |2021|).

Existing parallel fusion strategies process modalities independently and fuse them at a specific layer;
However, they may rely heavily on dominant modalities. As such, prediction performance degrades
sharply when the dominant modality is absent, as the fused representation lacks the most informative
source. In contrast, Information Bottleneck (IB)-based sequential fusion strategies compress infor-
mation from multiple modalities into a shared latent representation. Since it preserves task-relevant
representation, the fused feature will not rely on the availability of any single dominant input.
Theorem 2 (Generalization Bound with Complexity Measures). (Shalev-Shwartz & Ben-David,
2014; Xu & Raginskyl |2017) Let ‘H be a hypothesis class, and h € H be a learned hypoth-
esis (possibly based on an intermediate representation Z of the input X ). Given a training set
S = {(x;,y:) 1 drawn i.i.d. from distribution D where n is the number of samples, in classical
learning theory (Shalev-Shwartz & Ben-David, |2014)), the generalization error satisfies,

er(h) < es(h) + O ( C””) ,

n

where the complexity term C(H) denotes a hypothesis class complexity measure such as VC dimen-
sion or Rademacher complexity. In information-theoretic learning frameworks, when Z is a learned
representation from function f(.), C(H,Z) can be bounded by the mutual information between Z
and the input X, i.e., I(Z; X) (Xu & Raginsky, 2017). The generalization error satisfies,

er(h) < es(h) + O ( ”i“) Z = f(X).

The generalization bound is adapted from classical learning theory (Shalev-Shwartz & Ben-David,
2014) and its information-theoretic extension (Xu & Raginskyl 2017)). In the following Proposition,
the mutual information-based bound is used for comparison since different kinds of fusion appears
at the intermediate representation 2.

Proposition 1 (Tighter Generalization Bound via IB Fusion). Let Z;p ~ prp(z|z) be the repre-
sentation produced by an Information Bottleneck (IB)-based fusion model, and Z,, ~ py(z|z) be
the representation from a parallel fusion model (e.g., concatenation or multi-head attention without
a bottleneck). Define the empirical risk gap A = es(hip) — €s(hy), and the mutual information
gapg = 1 (Zp; X) — I(Z1B; X). Assume that the IB model compresses task-irrelevant informa-
tion such that g > 0 (i.e., I(Z;p;X) < I(Zp; X)), and that the mutual-information general-
ization inequality in Theorem 2| holds with the same sample size n and hidden constant ¢ > 0:

er(h) <eg(h)+c @ Then the difference in generalization bounds satisfies

ex(hip) — erlhy) < A —c W 17, X) _ \/I<ZIB;X>) |

n n

In particular, the IB model achieves a strictly tighter upper bound on the test error whenever the

threshold condition
1(Z,; X 1(Zig; X
A<c<\/<p, >_\/<IB7 >)
n n

is satisfied. It is typically seen since IB compresses mainly task-irrelevant information. Meanwhile,
A can be a small value when 1(Z,; X)) — I(Z;; X) is positive.

This proposition is proved in Appendix Sec.

The above proof holds under the assumption that the modalities are independent. However, our
analysis can be extended to the case where the modalities are not independent, i.e., when they follow
a joint distribution. If the following assumption hold:

Assumption 1 (Relaxed Cross-Modal Conditional Information Assumption). The aggregated cross-
modal conditional information preserved by the fusion satisfies
N I(ZyXei | Xi) = Y (21(Zrs; Xzi) — I Ziss Xi | X)) 3)
i=1 i=1
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where Z,, denotes the latent representation obtained by ordered fusion, with X o; representing all
modalities before the i-th modality, and Z1p denotes the latent representation obtained by random
fusion, with X_; representing all modalities except the i-th one.

A formal justification of this assumption is provided in Appendix Sec.|B| Based on this assumption,
we have the new relaxed theory:

Proposition 2. Under the relaxed cross-modal conditional information assumption, the following
inequality holds for the aggregated mutual information:

I(Zy; Xq,.... X)) > I(Zrg; X1, ..., X0)

where Z,, is the latent representation obtained by parallel fusion, and Z1p is the latent representa-
tion obtained by the information bottleneck (IB) fusion.

3

This proposition is proved in Appendix Sec. [C]

Please note that the Proposition [T] and Proposition [2] still holds when some of the modalities are
missing. In the following, we will draw remarks based on the different influences on I1(Z; X)
brought by missing modalities.

Case 1: X is missing. Parallel fusion directly maps Z,, = f(Xg) without controlling irrelevant
features, leading to relatively high I(Z,; X4). Sequential IB-based fusion compresses X, but leaves
X ; unaltered. When X is absent, the learned representation Z; g retains only the clean signal from
Xy, yielding I(Z;p; X) < I(Z,; X).

Case 2: X is missing. Parallel fusion maps Z, = f(X,) without any regularization. As remaining
X, might be less informative to the prediction, it leads to a high I(Z,; X,). In contrast, IB-based
fusion explicitly compresses X while preserving task-relevant information, even without X4, Z;p
encodes minimal yet informative patterns: I(Z;5; X) < I(Z; X).

As the result, in both cases, e (hrg) < er(h,) will hold. It proves that the generalization upper
bound for the sequential IB-based fusion model remains strictly tighter than those with parallel
fusion architectures. In the following, we will discuss how IB-based fusion demonstrates a tighter
Lipschitz bound that promotes robustness across different missing modality scenarios.

Assumption 2 (1-Lipschitz Continuity of Modular Components). Fusion-based missing modality
learning framework consists of following modules: (i) an encoder f; : X; — Z; for each modality,
(ii) Let ¢ : Zy X -+ X Zpp — Zpusea be the multimodal fusion function that aggregates all encoded
modality features {Zi}i]‘il into a joint representation Zj.q, and (iii) a decoder g : Zfwsed Y for
prediction. We assume all such components: encoder (L;), fusion (Ly, for parallel fusion and L,
for sequential fusion), and decoder (L) are 1-Lipschitz continuous and all larger than zero.

Remark 2. While achieving strict 1-Lipschitz continuity can be challenging for softmax-based self-
attention, all baselines in our study apply LayerNorm directly after the fusion module. This stabilizes
gradients and prevents their uncontrolled growth. Since such normalization can be easily incorpo-
rated into similar architectures, the required theoretical conditions remain practically attainable.

A formal justification of this assumption is provided in Appendix Sec. D] Based on Assumption 2]
we provide the Lipschitz bound of parallel and sequential fusions in Appendix Sec.|E} In the follow-
ing Proposition, we would like to compare bounds of different fusions.

Proposition 3 (Bound of Different Fusion Methods). Based on Assumption[2} the Lipschitz constant

of the parallel and sequential fusion model satisfies: L' rallel” Lgy-Ly- \/Ziwl L2, Liﬁquemml <

L, - Hf\il Ly, - L;. If each encoder and fusion module are normalized such that L; < 1 and

Ly, <1, then: H£1 Ly, -L; <min; L; < \/Z?L L2, which implies that, under these conditions,
the Lipschitz bound for the sequential fusion model is tighter than that of the parallel fusion model.

Proposition 3] is proved in the Appendix Sec. [F} It establishes that the sequential IB-based fusion
model satisfies a tighter Lipschitz continuity constraint, which encourages a smoother decision
boundary and contributes to greater robustness.

To empirically validate the robustness across fusion strategies, we visualize and compare the loss
landscapes across various missing modality scenarios of: parallel fusion (including concatenation-
based fusion and attention-based fusion), and the proposed sequential IB-based fusion. As illustrated
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Figure 2: Visualization of the loss landscapes across different missing modality scenarios (NM
denotes the number of missing modalities) for Concatenation-based Fusion, Attention-based fusion,
and IB-based fusion. Warm colors represent smooth plains, while cold colors depict sharp terrain in
the landscape. The bar range for Concatenation-based Fusion is [0, 0.4], while those for Attention-
based and IB-based ones are [0, 0.05].

in Figure [2] the sequential IB-based fusion model consistently produces smoother and more stable
loss surfaces compared to the baselines. Notably, as the NM increases, the loss landscapes of parallel
fusion models become increasingly irregular and exhibit sharper curvature. In contrast, the sequen-
tial IB-based fusion model maintains a flatter and more structured loss geometry, even with high
NM values. These observations match theoretical findings in Proposition [3] demonstrating that the
sequential IB-based fusion model achieves a tighter Lipschitz bound and thus improved smoothness.

4 METHODOLOGY

In multi-modal learning, information encoded in each modality can be decomposed into two irrel-
evant components that would be orthogonal between one and the other in high-dimensional fea-
ture space: a modality-specific component and a modality-common one (Zhao et al., [2023)). The
modality-specific component one captures uniqueness in each modality. In contrast, the modality-
common factor encapsulates information that is consistent and shared across multiple modalities.
They are afterwards aggregated together to reduce possible information redundancy that might exist
in the original modality feature representation (Tsai et al., 2018)).

The proposed Sequential Multi-modal Segmentation Network (SMSN) consists of a two-stage in-
formation bottleneck fusion module, a specific feature extraction module, and a loss of orthogonal-
ity, to achieve the objective that separating modality-specific and modality-common representations
of each modality. In particular, based on our discussions in Sec. 3] such sequential information
bottleneck fusion strategy processes appealing robustness and generalization properties. They are
afterwards aggregated and sent to the decoder, to perform segmentation.

Modality Reordering Strategy. We adopt N dedicated modality encoders to extract modality fea-
tures, corresponding to N modalities. Following the Information Bottleneck objective as Eq.
these features are sequentially fused into a shared representation (see Two-Stage Information Bot-

'Please note that the architectures of both the encoder and the decoder follow configurations of the mm-
Former (Zhang et al.|2022) and the M2FTrans (Shi et al.| 2023).
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tleneck Fusion), starting from an initial reference modality. However, placing a missing modality
(represented as a zero tensor) at the beginning of the sequence may degrade the IB objective. To ad-
dress it, we propose a modality reordering strategy: one available modality is randomly selected as
the initial reference, while the remaining N — 1 modalities, regardless of availability, are randomly

re-ordered and fused sequentially.
X1
*2 Random

— or or
Reorder

Two-Stage Information Bottleneck Fusion.
Inspired by the ITHP (Xiao et al.|[2024), we de-
sign a two-stage Information Bottleneck Fusion
Module to extract modality-common represen-
tations. Specifically, given four input modal-
ities, denoted as = = {z;}/_f| we plan the &,
fusion process into two stages: the first stage
fuses modalities x1 and x5, and the second
stage fuses x3 and z4 based on the output of the

> 2; —>\El—> 7 —>

Present
Modality

Missing
Modality

X4 Fused Representation

first stage. Specifically, as illustrated in Fig. [3]
we can obtain two bottleneck representations,
z1 and zo, with each of them containing com-

Figure 3: # = {z;}}_; are the input modality rep-
resentations. They are re-ordered and fused by us-
ing a two-stage information bottleneck.

pressed latent representations from both stages.
The resulted fusion objective F is formulated with the Information Bottleneck (IB) objective as:

F =1([z1,22]; 21) — BL(21590) + (L (21, [T3, Tal; 22) — 7 (225 91)),

stage I

“4)

stage II

where yo and y; are the task-related targets for each stage. [3,~ are hyperparameters control-
ling the trade-off between compression and relevance, refer to Eq. [I] Inspired by the variational
approximation of the Information Bottleneck objective (Alemi et al., [2017), the mutual informa-
tion terms I([z1, 2]; z1) and I(z1, [z3, 4]; 22) are approximated by Kullback—Leibler divergences
(Dk1) (Kullback & Leibler, [1951)) with respect to a tractable prior. The loss L, is formulated as:

Le = Ep(ar o)) [Drr(p(21|[z1, 22]) | 7(20)] + Ep(ey foa,24)) [Pri(P(22]21, [23, 24]) || T(m)()é)

where r(.) is typically a standard normal prior.

Additionally, two individual decoders will be employed by collecting z; and z5 respectively to
reconstruct input modalities from the compressed latent representations to preserve task-relevant
information. To adapt to the missing modality task, we introduce a modality-aware reconstruction
loss by multiplying the decoder output with a binary availability mask M; € {0,1}, where M; = 1
indicates that modality x; is present. Thus, the reconstruction is:

4
+9Ez, | DM -log gy, (zi | 21) | (6)

=3

2
Ly = BB, | > M;-logqy,(x; | 20)

i=1

where gy (z; | z) denotes the decoder that reconstructs modality x; from the latent representation z.
This reconstruction strategy ensures that the network focuses only on reconstructing the modalities
that are available, improving robustness under missing modality conditions.

Specific Feature Extraction. We employ transformer blocks to disentangle modality-specific in-
formation by collecting the concatenation of modality features extracted from N modality encoders
x = {z;}}_, and the fused representation z,. After this, the output will be split to retrieve the
updated modality features corresponding to each of the four input modalities as N modality-specific

components x,,. Here, we expect X, will contain information that is not properly included in By;.
M

To achieve it, we introduce the orthogonality loss: £, = ;" (22 . Ii)Q Then, we can obtain
features of each involved modality by x; =25, + 22.

Final Loss. Following (Zhang et al.l 2022; [Shi et al., [2023), we encapsulate all the segmentation
losses into L, in which L., £,, and £, are also jointly optimized.

2As discussed in Sec. [3] in datasets that we used in this paper, four modalities are involved: T1, Tlce, T2,
and Flair.
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Table 2: Missing modality segmentation results of different fusion-based models on BRATS18 and
BRATS20. For each scenario, from left to right, the four circles represent T2, Tlce, T1, and Flair,
respectively. e represents a modality is present while o represents a modality is missing. The best
results are highlighted in bold.

Modality [ @000 ce00 000 00ce [ @600 0ee0 OOCee €00 e00e OeCe | Ceee e0ee eeCe eeeO | eeee | Avg.
BRATSI18
mmFormer | 84.66 73.05 73.40 86.61 | 8524 76.84 88.54 8493 80.18 88.58 | 88.54 89.46 89.70 8531 | 89.20 | 84.88
M2FTrans | 84.11 73.86 76.88 88.16 | 8552 79.04 8834 8563 89.22 88.88 | 88.41 89.20 8874 8595 | 88.87 | 8539
MMMVIT | 77.92 7038 70.70 79.22 | 78.77 73.67 80.57 7929 81.51 80.46 | 80.83 82.03 81.66 79.19 | 81.86 | 78.54
WT | IMS2Trans | 8355 6852 67.12 8540 | 84.81 71.86 87.79 8422 89.05 88.18 | 87.85 89.30 89.60 84.74 | 88.53 | 83.37
Ours 8549 7633 7626 8438 | 8645 79.62 87.82 86.61 83.51 83.71 | 89.09 89.98 8693 89.39 | 88.71 | 85.62
mmFormer | 64.11 78.04 6290 6093 | 79.42 7990 68.76 69.17 6567 79.34 | 80.82 70.08 79.37 79.93 | 80.33 | 73.25
MMMVIT | 59.60 75.62 63.48 6049 | 77.61 77.89 66.58 65.11 64.51 7748 | 7843 6798 7839 78.69 | 78.95 | 71.39
TC | IMSTrans | 5823 7248 4990 59.18 | 7526 73.83 6489 6296 66.16 76.70 | 76.70 6627 7726 75.02 | 76.60 | 68.76
M>FTrans | 62.18 78.03 6591 62.02 | 79.04 80.51 67.39 67.83 6598 78.13 | 79.11 68.04 78.62 79.66 | 79.28 | 72.78
Ours 68.27 79.72 6234 61.85 | 83.57 80.75 67.70 68.55 70.78 82.35 | 83.17 70.77 82.81 82.96 | 82.35 | 75.20
mmFormer | 36.93 70.93 30.72 30.70 | 70.76 69.54 3540 37.51 3850 71.13 | 72.49 3870 7091 69.92 | 70.94 | 54.34
M2FTrans | 39.51 67.87 3240 3403 | 69.92 7124 3941 39.07 41.15 68.62 | 68.89 4296 69.70 70.03 | 69.44 | 54.95
ET | MMMVIT | 3725 6546 35.07 41.82 | 67.57 6638 4344 39.19 4268 7097 | 68.85 4159 69.93 67.87 | 70.08 | 55.21
IMS2Trans | 40.70 6728 2475 3148 | 7075 66.37 3892 4220 4227 70.82 | 6851 41.69 70.86 70.85 | 71.02 | 54.56
Ours 44.51 78.87 36.55 39.31 | 79.70 79.37 44.42 46.25 46.09 78.58 | 80.30 4571 7891 78.70 | 78.58 | 62.39
BRATS20
mmFormer | 83.88 7580 75.11 86.84 | 86.57 79.71 8871 86.10 89.22 88.82 | 89.40 89.50 89.70 86.90 | 89.85 | 85.74
MMMVIT | 80.67 72.10 72.10 82.60 | 81.82 75.18 84.08 8225 84.89 83.06 | 8392 85.16 84.88 82.09 | 84.87 | 81.31
WT IMS2Trans | 8435 7291 7083 8650 | 86.51 75.58 8894 86.64 89.43 88.16 | 88.96 89.99 89.93 87.27 | 90.27 | 85.08
M2FTrans | 84.75 7607 7521 8712 | 86.82 79.46 87.90 8555 8844 88.17 | 8822 8849 8899 87.28 | 88.97 | 85.43
Ours 87.03 7812 7744 87.11 | 88.17 82.03 89.59 88.14 90.20 89.69 | 89.86 90.07 90.63 88.45 | 90.50 | 87.14
mmFormer | 69.50 82.83 63.54 68.02 | 84.27 84.21 7233 7211 72.87 83.82 | 8490 7422 8442 8491 | 84.85 |77.79
MMMVIT | 67.12 7998 60.19 68.18 | 81.93 80.57 70.73 68.11 7139 8245 | 82.03 71.50 8298 81.89 | 82.75 | 75.45
TC IMS2Trans | 6639 80.14 5609 62.15 | 8494 81.06 67.80 67.20 69.58 83.69 | 8330 69.88 84.57 84.67 | 84.28 | 75.05
M2FTrans | 68.62 82.16 6277 6894 | 8455 8332 7240 71.30 7324 8450 | 85.07 7396 85.19 85.19 | 85.39 | 77.77
Ours 70.65 83.46 65.15 68.17 | 8520 8445 7375 7149 73.84 85.96 | 85.67 7544 86.27 85.62 | 86.90 | 78.80
mmFormer | 42.56 7695 31.80 39.61 | 76.09 76.60 4148 4394 4498 7627 | 76.72 46.81 7521 76.62 | 75.67 | 60.09
MMMVIT | 47.52 69.99 4325 47.60 | 73.69 7338 49.03 50.05 53.27 7290 | 7498 53.68 73.57 7534 | 73.95 | 62.15
ET IMS?Trans | 4425 7490 30.77 3754 | 77.50 7673 4195 4412 50.50 78.85 | 79.46 49.97 79.50 78.40 | 79.85 | 61.62
M2FTrans | 4453 7633 38.18 39.15 | 7806 77.33 4285 4596 4615 79.00 | 80.63 47.89 77.87 79.66 | 79.09 | 62.17
Ours 45.88 7898 38.67 4046 | 79.50 76.86 43.07 4632 49.21 80.54 | 80.09 47.63 79.88 79.75 | 79.74 | 63.06

5 EXPERIMENTS

5.1 ROBUSTNESS ON BRATS MRI

Experimental Settings. To validate the robustness of the proposed SMSN, we perform comparisons
on gliomas segmentation tasks on the BRATS18 and BRATS20 (Menze et al.| 2014)) for the Multi-
modal Brain Tumor Segmentation Challenge without any pre-training performed. Specifically, four
modalities (T1, Tlce, T2, and Flair) are involved in both datasets. We employ the Dice similarity
coefficient as the evaluation metric. For fair comparison, we follow data splits of both sets from
MZ2FTrans (Shi et al.l 2023). We also reproduced the results of each fusion-based baseline with the
respective released codes.

Segmentation Results. We present the comparison results, including the proposed SMSN and
other fusion-based baselines in Table[2] demonstrating robustness brought by the SMSN in handling
missing modality scenarios. Specifically, SMSN consistently outperforms other baselines in both
datasets by evaluating the averaged segmentation performance. Meanwhile, in each missing modal-
ity scenario, the proposed SMSN still demonstrates superiority. Importantly, it particularly excels
in more challenging scenarios when two or three modalities are not present. It is worth mentioning
that although MMVIT predicts better ET than SMSN in certain cases on the BRATS20 dataset, the
average performance does not demonstrate consistency. We think it is a dataset-sensitive approach,
as in the BRATS18 dataset, we can only observe suboptimal performance with the MMViT model.

Except for fusion-based approaches, the proposed SMSN has been proven to outperform non-fusion
methods such as M3AE (Liu et al.l [2023) and ShaSpec (Wang et al.| 2023). Relevant results are
presented in the Appendix Table 0]

Grad-Cam Visualization. Figure ] presents Grad-CAM visualizations on the fused feature to il-
lustrate attention focus to predict tuomors on parts of the source image. Specifically, we present
results of the proposed SMSN and M2FTrans that performs relatively better than other baselines in
Table 2] From these heatmaps, we can observe that the proposed SMSN achieves a more focused
activation pattern, which also well aligns with the ground truth depicted by orange and red contours.
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This finding supports our discussion in Remark [T] that with the proposed SMSN, even though some
certain modality is missing, the fusion is still able to focus on the task-relevant representation and
the prediction task.

5.2 GENERALIZATION FROM GLIOMAS TO METASTASES

Experiment Settings. Except for gliomas, metastases are another kind of malignant brain tumor. As
seen in Sec.[G.6] they differ greatly in morphology. Gliomas appear as infiltrative lesions with indis-
tinct margins and heterogeneous enhancement, whereas metastases are typically well-circumscribed,
round or ovoid with sharp borders and marked surrounding edema. It is challenging to generalize
a prediction model trained only with gliomas to metastases predictions. Here, we employ trained
SMSN and other relevant baselines only with BRATS20 to the Brain Metastases (BM) dataset (Ra-
makrishnan et al., [2024) with identical modalities: T1, T1ce, T2, and Flair.

Segmentation Results As presented in Table |3 the proposed SMSN consistently outperforms other
fusion-based methods, which proved appealing generalization performance. Furthermore, compared
to the second-best M2FTrans model, SMSN exhibits lower standard deviations, indicating enhanced
robustness in varying input conditions. The detailed results of Table 3] with each individual scenario
is presented in the Appendix Table|[7}

5.3 ABLATION STUDIES

Table ] presents ablation studies of the proposed SMSN by evaluating prediction performance upon
removing each constructing individual module/loss discussed in Sec.d] Notably, the orthogonality
loss will is in line with the specific feature extraction module, it will also be removed when that
module is absent. These obtained results demonstrate that each constructing module/loss is essential
to the final prediction result.

It is important to be noticed that IB theoretically can decompose common information from a mixed
feature. However, in real practice, some modality-specific information will still be preserved in the
IB module. To promote modality decomposition, the specific feature extraction module and the
orthogonal loss is additionally applied. Based on acquired results from the ablation study, canceling
orthogonal loss degrades segmentation performance, which confirms our aforementioned analysis.

Table 3: Segmentation results under missing- Table 4: Ablation results of models trained un-
modality conditions on the meta dataset, with  der different combinations of modules/losses on
models trained on BRATS. NM denotes the BRATS20. From left to right, the four circles repre-
number of missing modalities, and FM indi- sent modality reordering strategy, L,., specific fea-
cates all modalities are available. Reported ture extraction module, and £,, respectively. e rep-
values correspond to the mean and standard resents a modality is module/loss while o represents
deviation of Dice scores for each missing- a module/loss is missing.

modality scenario.

Class ceee ecee ©000 e000 L XXX)

WT 85.75 85.65 85.57 85.69 87.14

) NM=3 NM=2 NM=1 EM | Avg. TC 76.38 76.82 76.19 76.61 78.80
Modality Mean Std.|Mean Std. [Mean Std. |Mean | Mean ET 63.09 62.16 62.36 63.19 63.00

mmFormer | 32.53 1071|3085 0.70| 18.55 12.72|37.15| 2843
M2FTrans |49.99 5.73|5540 3.94|58.87 3.43|59.58|55.16
WT|MMMVIT |46.82 3.76(5031 2.23|51.90 0.65|52.72|49.96
IMS2Trans | 48.95 6.96|55.67 4.62|58.70 2.51|60.14|54.98
Ours 5169 4.93|57.64 425(6033 2.36|61.55|57.03
mmFormer | 1034 5.19| 930 539] 5.18 5.90] 12.50] 8.69
M2FTrans |28.83 8.67|38.48 1001|4544 8.88(51.36|38.62
TC |MMMVIT |27.52 10.86|36.04 11.42|43.13 9.88 |48.64|36.50
IMS2Trans | 28.04 13.58|38.60 12.75 |47.10 10.61|53.51|39.04
Ours 3550 12.98(45.37 13.21[53.03 10.56|59.17|45.70
mmFEormer | 6.85 5.66] 5.68 4.03| 4.63 4.07] 673] 5.78 Full Grad-Cam NM = 1 Grad-Cam (Ours) NM = 1 Grad-Cam M2FTrans
M2FTrans |21.34 11.31|31.24 12.92]39.16 11.83|46.67|31.74

TC |MMMVIT |21.90 12.89(29.54 14.00(37.73 12.48 |43.86|30.64 1o 4 This fi . isual
IMS®Trans | 21,90 12.89|29.54 1400|3773 1248 |43.86 | 3064 F1gUre 4: This figure presents a comparative visual-

Ours 26.07 14.12|36.43 14.65|44.69 13.69|51.72(36.89 ization of Grad-CAM heatmaps.
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5.4 SENSITIVE ANALYSIS

Referring to Eq. 5] /3,7 are hyper-parameters controlling the trade-off between compression and
relevance. As shown in Table [5] our experiments indicate that the performance of the information
bottleneck compression is indeed sensitive to the choice of the hyper-parameters + and 5. This
sensitivity is expected because these parameters directly control the trade-off between compression
and task-relevant information preservation: a larger 3 enforces stronger compression, potentially
discarding useful features, while a smaller § retains more information but may reduce the regu-
larization effect. Similarly, v adjusts the relative weighting of different components in the loss,
affecting how strictly the model satisfies the information constraints.

Despite this sensitivity, we observe that across a wide range of v and 3 values, the proposed method
consistently outperforms involved baselines, indicating that the information bottleneck framework
provides robust gains even when the hyper-parameters are not finely tuned.

Table 5: Sensitive Analysis of hyper-parameters trained on BRATS18 and BRATS20. The two
numbers in the first line of each scenario are the values of 3 and ~, respectively.

BRATSIS | [0.1,1] [0.3,0.7] [0.7,0.3] [0.5,0.5] [1,0.1] | BRATS20 | [0.1,1] [0.3,0.7] [0.7,0.3] [0.5,0.5] [L,0.1]
WT 8528 84.69 85.62 85.58 85.69 WT 8727 86.52 87.14 88.33 86.27
TC 74.19 72.72 75.20 74.14 73.55 TC 78.00 79.22 78.80 79.94 79.72
ET 56.71 61.69 62.39 57.34 57.56 ET 62.29 63.59 63.00 61.49 60.34

6 CONCLUSION

We presented the Sequential Multi-modal Segmentation Network (SMSN) to address missing
modalities in multi-modal MRI brain tumor segmentation. By leveraging an Information-Bottleneck
Fusion Module (IBFM), SMSN sequentially disentangles modality-common features while recon-
structing modality-specific information. IBFM provides a Lipschitz-continuous lower bound and a
tighter generalization upper bound, improving robustness and cross-domain adaptability. Experi-
ments on BRATS18 and BRATS20 show that SMSN outperforms the fusion-based baselines under
various missing-modality settings. Result on transferring the model to a brain metastasis dataset
without further fine-tuning confirms its strong generalization capability.
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The datasets we use are publicly available and commonly adopted in the community. We are not
aware of potential ethical risks related to privacy, fairness, or misuse.
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A PROOF OF PROPOSITION 1

Proof. From Theorem the MI-based generalization bounds for h;5 and h,, are

1(Z1p: X 1(Z: X
er(hin) < es(hin) + ¢ % er(hy) < es(hy) +c %

Subtracting the second inequality from the first gives an upper bound on their difference:

er(hig) — er(hy) < A+c <\/I(ZIS;X) - \/I(Zp;m) A= es(hip) —es(hy).

n

The second term ¢(.) in the aforementioned inequality will be negative because the IB objective
explicitly penalizes redundant information from the input:

Lig(h) = es(h) + I(Z; X) — al(Z;Y), B >0.

Thus, Z; 5 compresses X to preserve only a task-relevant subset, often with even smaller I(Z;5; X)
than J(X;Y’). In contrast, the parallel fusion representation Z, does not restrict I(Z; X) and typ-
ically retains more task-irrelevant noise, given I(Zrp; X) < I(Z,; X). Denote g = I(Z,; X) —
I(Z;p; X) > 0, then we will obtain

1(Zip; X) I(Zy X))\ _ cg
%V n _¢71>_\WW%JH¢M%MfQ

The threshold condition
I(Z,; X I(Zrg; X
A<C<¢<p,>_¢(1& Q
n n

is typically easy to satisfy: A remains small because the IB-based fusion model primarily discards
task-irrelevant information. Empirical risk will not be increased significantly, while g is positive as
the parallel fusion model retains additional redundant information. Therefore, the right-hand side of
the inequality for ex(h;p) — er(hy) is strictly negative, leading to er(hrg) < er(h,). Therefore,
the IB model achieves a strictly tighter generalization bound.

B JUSTIFICATION OF ASSUMPTION 1

We now explain that this assumption is reasonable in the case of medical multi-modal fusion tasks.

The term I(Z,; X<, | X;) represents the conditional mutual information between the fusion latent
variable Z,, and all other modalities X ;, given modality X;. This term measures the amount of
information retained by Z,, about the other modalities once X; is known. The term I(Z;p; X, |
X ;) represents the conditional mutual information in the IB model, capturing the dependence of
each modality on the rest of the modalities. We have I(Z,; X«; | X;) > I(Zrp; X)) —1(Z1p; X |
X 751').

In practice, the modalities in our data are strongly correlated. This means that the parallel fusion
model Z,, can preserve more information about the inter-modal relationships compared to the 1B
fusion model, which is designed to compress information to retain only the most relevant aspects

for prediction. As a result, I(Z,; X.; | X;) tends to be larger than the corresponding terms in the
IB model. We may relax the bound to I(Z,; X<; | X;) > 21(Zrp; X)) — I(Z15; X | X24).

To empirically validate this assumption, we compute the mutual information for both the parallel
fusion and IB fusion models on our dataset. The computed values show that: Y7 | I(Z,; X<; |
X;)=02817and Y " | (—1(Zrp; X; | X2i) +I1(Z1B; X)) = 0.0709. These results support the
validity of the relaxed bound, demonstrating that the information preserved by the parallel fusion
model is indeed larger than or equal to the relaxed bound defined by the IB fusion model.

13
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C PROOF OF PROPOSITION 2

Proof. We start by expanding the mutual information for both the parallel fusion model Z,, and the
information bottleneck (IB) fusion model Z; . For the parallel fusion model, we have the following
expansion for the total mutual information:

n

H(Zp; X1, Xn) = (1(Zy; Xi) + 1(Zys X | Xi) = 1(Zp; X i) -
i=1
For the information bottleneck model, we expand the total mutual information as:

I(Zig; X1, Xn) = Y (I(Zrs; Xi) = 1(Z1g: Xi | Xzi) + 1(Zrps X)) -
i=1
We have two more Inequalities: Information of a single modality preserved by parallel fusion larger
than that preserved by IB fusion: Y., I(Z,; X;) > > | I(Z1p; Xi).

Negative value of the information of the preceding modal set in parallel fusion smaller than that in
IB fusion: — Y " | I(Zp; X)) < = >0 I1(Zrp; X opi).

Therefore, we can rewrite the total mutual information for the parallel fusion model Z,, as follows:

H(Zp X1, Xn) = Y (I(Zp; Xi) + 1(Zp; X i | Xi) = 1(Zy; X i)

im1
> Z( I(Z1p; Xi)  + [201(Zrp; Xzi) — I(Z1B; Xi | X))
I(Zp; Xi)21(Z1;Xi)  I(Zp;X<i|X3)>21(Z1;X2:)—1(Z15; X | X24)
+  (=1(Z1B; X))
~— ————

—1(Zp;X<i)<—1(Z1B;X i)

n

> (I(Zip; Xi) + 21(Zip; Xzi) — 1(Z1p; Xi | Xi) — 1(Zr; X 24))

i=1

> (I(Zip; Xi) = I(Zig; Xi | Xoi) + 1(Z13 X 2))
i=1

=1(Z1p; X1, X2,..., Xy)

D JUSTIFICATION OF ASSUMPTION 2

We decompose the fusion-based missing-modality model into three components: encoders, a fusion
function, and a decoder, and show that each satisfies Lipschitz continuity.

For the i-th modality, let the input space be X; and the encoder f; : X; — Z;. Assume that for any
5, x; € A, the encoder is Lipschitz continuous, i.e.,

Ifi(@s) = fi@)ll < Lills — a5ll,
where || - || denotes the norm in the respective space. The fusion function at each step, denoted by
¢i 2 Zi—1 x Z; — ZMed g also Lipschitz continuous, i.e.,

16i(zi-1, zi) — bizi_1, 2)|l < Ly, (lzics — 21l + llzi — 2l ,
and the final decoder g : Zj; — ) is Lipschitz continuous with constant L.

Since the composition of Lipschitz functions is Lipschitz continuous with constant given by the
product of the individual constants, the full function

G(.’I?) :god)Mo"'O(blo(fla"'vfM)(x)
is Lipschitz continuous, where o represents the function composition. In practice, spectral normal-
ization ensures that each module can be implemented as 1-Lipschitz. Therefore, without loss of
generality, the entire missing-modality model can be regarded as 1-Lipschitz, which justifies As-
sumption 2}

14
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E LIPSCHITZ BOUND OF FUSION MODELS

Proposition 4 (Lipschitz constants of IB fusion). Suppose that there are M modalities to be fused.
Let F(x1,...,x0) i= godpro- - 00y (f1(x1), - .., fa(xar)) denote the multi-modal prediction
function based on step-wise IB fusion. o represents the function composition. Under Assumptions|2)
the function F is Lipschitz continuous with Lipschitz constant bounded above by induction on the

number of fusion steps: Ly < L - Hf\il Ly, - L;.

Proof. Let Z; = f1(x1) be the output of the first encoder, which is L -Lipschitz by Assumption

For the first fusion step, define Z, = ¢1 (%1, f2(x2)). By Assumption[2} ¢, is Lg, -Lipschitz in each
argument. Since f5 is Lo-Lipschitz, the composition satisfies 2o is Ly, - Ly - Lo-Lipschitz.

Suppose after ¢ fusion steps, the representation Z;; is Lipschitz with constant
i
Liyi= | [[ Lo, - L; | - Lisa.
j=1

Then for the (¢ + 1)-th step,
Zit2 = Git1(Zit1, fiva(@it2)).
Applying the Lipschitz property of ¢, in each argument and the inductive hypothesis, we obtain

Livo < Lg,y, - Ligr - Liyo.

By induction, after all the M modalities are step-wisely fused, the obtain representation Zp; sat-
isfies the Lipschitz constant

M

H Ly, - Li.

i=1

Finally, applying the decoder g with Lipschitz constant L,, we can obtain:

F(zy,...,zn) = 9g(Zp41)-

Thus, the upper bound of Lipschitz continuous function L with constant will be no greater than
Ly -TIM, Ly, - Li, which is represented by:

M

Lr <Ly [ Lo - Li.
=1

This completes the proof. O

Proposition 5 (Lipschitz constant of concatenation-based fusion). Let Froncat(21,-..,Za) :=go
Reoncat ( fi(zr), fa(za), ..., fu(z M)) denote the overall multi-modal prediction function based on
concatenation fusion, where heoneat @ 21 X + -+ X Zn5 — Ztused performs concatenation followed
by a mapping (e.g., fully connected layer), and g : Zgsea — Y is the final decoder. Assume
each encoder f; : X; — Z; is Lipschitz continuous with constant L;, and heoncas. g are Lipschitz
continuous with constants Leoncar and Ly, respectively. Then Fioncat is Lipschitz continuous with
constant bounded by

LF < Lg : Lconcat .

concat —

M

2
S L2
i=1

Proof. Letz = (fi(x1),..., fa(zpm)) € 21 X - -+ X Z)y. Then, by engaging the Euclidean norm,

M M
Iz = 2/l = | D W filwi) = filelI? < 4| D L3l — )2,
i=1 i=1
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By the Lipschitz continuity of h¢oncat and g, we have

||Fconcat(x) - Fconcat(l'/)” = ||g(hconcat(z)) - g(hconcat(zl))”
< Lthconcat(Z) - hconcat(z/)H
< Lg Lconcat HZ - ZI”

M
< Lg Leconcat ZL%”‘TZ 71’;H2‘
i=1

This proves the stated bound. O
Proposition 6 (Lipschitz constant of attention-based fusion). Let Fygen(z1,...,2p) (= g o
Rattn ( filzr),..., fM(xM)) denote the multi-modal prediction function with attention-based fu-

sion, where each encoder f; : X; — Z; is L;-Lipschitz continuous, haitn is the attention-based
fusion, and g is the decoder. Assume h,n, and g are Lipschitz continuous with constants L.y, and
Ly, respectively. Then F,y is Lipschitz continuous with constant bounded by

LF < Lg . Lattn .

attn —

M
oLz
i=1

Proof. Letz = (f1(x1),..., f;(xp)) € 21 X -+ x Zpr. Then

M M
Iz = 2"l = | D Mfilwi) = filaDl? < | D LE e — |2,
i=1 =1

By the Lipschitz continuity of h,, and g,

| Fattn () — Fattn(wl)” = [lg(hattn(2)) — g(hattn(z/))H
< Lthattn(Z) - hattn(zl)”
< Ly Lagn ||z = /||

M
< Lg Lattn szzn‘rl 717;“2'

i=1
This proves the stated bound. O

Remark 3. Both concatenation-based fusion and attention-based fusion are examples of parallel
fusion. They share the same Lipschitz constant upper bound:

L<Ly-Ly-

where Ly, is replaced by Lconcat OF Lattn depending on respective fusion method.

F PROOF OF PROPOSITION 2

Proof. Since all L; < 1, their product satisfies: Hgl L; < min; L;. By definition of {5 norm
and /., norm, we have: min; I; < max; L; < \/Eij\il L?. Similarly, since Ly, < 1, we have:
Hi]\il Ly, < 1. Combining them together, we will obtain:

M M
HL@. L; < HLi <minL; < ZL?.
=1

i=1
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Multiplying both sides by L, and noting L;, > 1 typically for concatenation mappings, gives

Therefore, Lh* ¢t < pseauential j¢ theoretically evidences that the IB fusion is potentially
smoother. O

G ADDITIONAL EXPERIMENT RESULTS

G.1 SEGMENTATION RESULTS ON NO-FUSION SOTAS

Table [6] presents the comparisons of segmentation with the proposed SMSN and non-fusion ap-
proaches, including Shaspec and m3ae on the BRATS18 and the BRATS20 datasets. SMSN demon-
strates consistent improvements across most missing-modality scenarios. In particular, we observe
average improvements of about 1 DICE for the WT and TC classes, and more than 5 DICE for the
ET class.

Table 6: Missing modality segmentation results of MRI on BRATS18 and BRATS20: Num denotes
the number of missing modalities for different settings. NM is the missing number. Each column
shows the average dice of different NM. The results of each setting are presented accordingly. The
best results are highlighted in red while the second best is highlighted in blue.

Class Method BRATSI18 BRATS20
NM=3 NM=2 NM=I Full AVG. | NM=3 NM=2 NM=1 Full AVG.
m3ae 80.88 85.65 88.24 88.93 8528 | 77.60 84.93 87.98 89.19  84.07
WT Shaspec 78.12 84.80 88.13 89.93  84.25 | 78.77 86.62 88.78 89.91 85.32
ours 80.62 86.29 88.85 88.71  85.62 | 8243 87.97 89.75 90.50  87.14
m3ae 68.40 75.04 79.42 81.59  74.87 | 70.32 77.64 81.59 8476  77.21
ET shaspec 67.77 75.15 79.33 81.79 7474 | 68.85 74.89 80.47 84.87 7543
ours 68.05 75.62 79.93 82.35  75.20 | 71.86 79.12 83.25 86.90  78.80
mmformer | 42.32 53.81 63.01 70.94 5434 | 47.54 56.82 64.42 7140 57.34
TC shaspec 45.34 53.11 60.97 67.64 5410 | 45.98 55.53 63.97 7143 56.29
ours 49.81 62.40 70.91 78.58  62.39 | 51.00 62.58 71.45 79.74  63.00

G.2 DETAILED GENERALIZATION RESULTS

Missing modality segmentation results of different fusion-based models pretrained on BRATS20 and
predicted without any finetuning on the Brain Metastases (BM) dataset is illustrated in Table[7] Our
proposed approach consistently outperforms other fusion-based methods across all missing modality
configurations, demonstrating its superior generalization performance.

Table 7: Missing modality segmentation results of different fusion-based models pretrained on
BRATS20 and predicted without any finetuning on Brain Metastases (BM) dataset. The best re-
sults are highlighted in red while the second best is highlighted in blue. ~ means without. From top
to bottom, it illustrates the results of WT, TC, and ET respectively.

Method T2 TIC TI F T2TIC TITIC FTI TIT2 FT2 FTIC ~T2 ~TIC ~Tl ~F - AVG.
mmFormer 32.17 3620 18.12 43.61 27.38 15.29 32.60 44.86 34.87 30.07 24.03 4.70 3343 12.04 37.15 2843
M2FTrans 51.79 45.84 45.04 57.30 53.82 48.99 58.04 5379 59.16 5859 58.68 6290 59.35 54.53 59.58 55.16
MMVIT 49.14 4520 4234 50.60 50.40 45.89 5191 5085 51.34 5149 5195 5248 52.18 5098 5272 49.96
IMSTrans  50.71 46.62 40.97 57.51 5391 47.62 59.04 5483 59.03 59.59 60.11 59.86 59.89 54.93 60.14 54.98
Ours 54.22 48.87 4642 57.24 56.33 50.65 60.46 5629 59.23 6289 62.86 60.72 60.60 57.15 61.55 57.03
mmFormer 9.46 1435 3.35 1421 6.60 2.63 9.01 1884 822 1051 6.78 0.07 12.83 1.04 12.50 8.69

M2FTrans  21.81 41.09 23.73 28.67 46.52 45.60 31.57 26.17 31.06 49.95 5218 3249 49.96 47.13 51.36 38.62
MMVIT 22.78 4375 20.80 22.75 46.18 43.63 27.07 23.80 26.49 49.09 49.74 2841 4731 47.04 48.64 36.50
IMSTrans 2390 47.77 16.71 23.76 50.36 47.10 2444 2734 29773 5263 5328 31.21 5233 51.57 5351 39.04
Ours 28.29 54.95 28.96 29.78 56.07 55.10 34.05 3258 33.71 60.72 6036 37.35 57.71 56.68 59.17 45.70
mmFormer 8.07 1433 3.10 190 6.01 2.87 3.10 10.82 1.16 10.12 8.08 0.38 815 1.92 673 578

M2FTrans 15.25 38.28 1534 1649 41.34 40.76 20.95 17.92 20.00 46.49 4738 21.82 4595 41.50 46.67 31.74
MMVIT 1596 41.19 1435 16.08 42.14 39.63 17.34 1629 1694 4492 4522 19.08 44.07 42.56 43.86 30.64
IMSTrans  16.04 40.74 10.86 13.17 43.56 42.26 16.90 17.89 19.27 43.02 43.62 20.78 44.01 43.57 43.60 30.62
Ours 20.26 47.17 19.30 17.53 49.07 47.05 22.84 24.13 2255 5292 5322 2425 5127 50.01 51.72 36.89
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G.3 SENSITIVE ANALYSIS OF DIFFERENT ORDER

As shown in Table [8] both a fixed ordering and a purely random ordering without ensuring that
the first modality corresponds to a present modality lead to degraded segmentation performance.
These findings underscore the importance of the proposed reordering strategy, which ensures that
the sequential fusion process begins with a valid and informative modality, thereby enabling more
stable and effective feature integration.

G.4 SENSITIVE ANALYSIS OF DIFFERENT BOTTLENECK SIZE

To evaluate the sensitivity of SMSN to the bottleneck dimensionality and the sequential fusion order,
we conducted additional experiments using various combinations of bottleneck sizes (see Table [9).
Since the channel dimension of each modality is 128, we tested a range of bottleneck sizes around
this value. The results indicate that SMSN achieves the best performance when the two bottle-
neck dimensions are set to 128 and 256. This observation suggests that the chosen bottleneck sizes
are appropriate, as excessively deviating from the original modality channel dimension may hinder
effective feature transformation and cross-modal interaction.

G.5 SEGMENTATION RESULTS ON BRATS24

Missing modality segmentation results of different fusion-based models on the BRATS24 dataset
(200 samples) is illustrated in Table [T0] Our proposed approach consistently outperforms other
fusion-based methods across all missing modality configurations, demonstrating its superior gener-
alization performance.

G.6 MORPHOLOGICAL DIFFERENCE BETWEEN GLIOMAS AND METASTASES

As illustrated in Figure 5] gliomas typically originate within the brain parenchyma and present
as infiltrative lesions with indistinct margins, often demonstrating heterogeneous signal intensities
and irregular, infiltrative enhancement patterns. In contrast, metastases usually appear as well-
circumscribed, round or ovoid lesions with sharp boundaries, often accompanied by pronounced
peritumoral edema that exceeds the size of the enhancing lesion itself. These differences in margin
definition, enhancement pattern, and surrounding edema provide important radiological clues for
differential diagnosis.

Table 8: Missing modality segmentation results of SMSN on BRATS18 with fixed and random
fusion order. Fixed 1 means fixed order and started from a modality contains less information (T1).
The order is T1, T2, Flair and T1c. Fixed 2 means fixed order and started from a modality with more
information (T1c). The order is Tlc, T2, Flair and T1. ~ means without. From top to bottom, it
illustrates the results of WT, TC, and ET respectively.

Method T2 TIC TI F T2TIC TITIC FTI TIT2 FT2 FTIC ~T2 ~TIC ~Tl ~F - AVG.
Fixed 1 8349 71.72 73.72 86.21 85.13 77.12 86.94 84.88 87.70 88.01 87.52 87.88 88.24 8544 88.29 84.16
Fixed 2 83.00 71.79 7293 87.44 85.18 77.32 89.04 8537 89.42 89.56 89.14 89.10 90.09 8546 89.95 84.99
Random only 81.53 70.11 69.02 86.44 84.14 75.69 88.00 84.51 88.53 87.96 87.54 8849 88.15 85.12 88.34 83.69
Random and present first 85.49 76.33 76.26 84.38 86.45 79.62 87.82 86.61 88.51 88.71 89.09 89.98 86.93 89.39 88.71 85.62
Fixed 1 58.51 76.79 6239 6029 79.64 79.45 68.44 68.73 65.12 7931 80.89 69.38 7927 81.33 81.06 72.70
Fixed 2 6398 7726 59.98 62.89 76.67 79.90 69.03 69.01 6881 7880 8046 7041 79.58 80.48 80.54 73.19
Random only 5538 7630 63.09 64.04 77.98 77.90 69.81 6695 68.15 77.63 79.54 70.61 7873 7870 78.99 72.15
Random and present first 68.27 79.72 62.34 61.85 83.57 80.75 67.70 68.55 70.78 8235 83.17 70.77 82.81 8296 8235 7520
Fixed 1 41.56 67.62 33.80 33.53 73.79 72.06 39.26 45.16 41.44 7327 73.85 44.66 7288 7422 7371 57.39
Fixed 2 41.51 7346 34.65 32.12 72.66 74.91 38.13 4292 4270 7593 7752 4265 7620 75.84 75.61 58.45
Random only 31.29 63.77 33.55 33.36 65.90 64.68 39.02 39.87 40.52 66.80 6582 4253 69.51 66.34 67.40 52.58

Random and present first 44.51 78.87 36.55 39.31 79.70 79.37 4442 4625 46.09 7858 80.30 4571 7891 78.70 78.58 62.39

G.7 COMPARISON OF COMPUTATIONAL COSTS

Compared with pure parallel fusion frameworks such as mmFormer, SMSN does not require a sub-
stantial increase in the number of learnable parameters, as shown in Table[T1] Despite a relatively
longer training time, SMSN achieves superior segmentation accuracy while maintaining a compara-
ble inference time. This demonstrates that sequential fusion can provide performance gains without
incurring significant parameter overhead.
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Table 9: Missing modality segmentation results of SMSN on BRATS18 with (two) different bot-
tleneck size. ~ means without. From top to bottom, it illustrates the results of WT, TC, and ET
respectively.

Size T2 TIC TI F T2TIC TITIC FT1I TI1T2 FT2 FTIC ~T2 ~TIC ~Tl ~F - AVG.
64, 64 80.49 69.39 6627 83.77 8223 71.93 84.82 8190 86.02 84.86 84.92 86.63 86.44 8220 86.54 8123
64,128 82.64 69.30 7092 86.84 84.15 76.01 88.62 84.08 8842 88.14 8835 8891 89.02 8455 89.07 83.93
128,256 8549 7633 7626 84.38 86.45 79.62 87.82 86.61 8851 8871 89.09 89.98 8693 89.39 88.71 85.62
256,512 8238 71.40 73.46 8691 84.70 77.03 88.67 8494 88.60 87.89 8832 8891 89.05 8528 89.40 84.46
512,512 8240 7242 7022 8391 84.29 76.34 85.98 83.98 8791 86.51 86.25 87.17 87.14 8446 87.08 83.79
64, 64 59.64 76.34 5858 59.63 78.39 77.12 67.74 67.03 65.07 78.69 80.02 69.74 79.28 79.77 80.36 71.82
64,128 5555 7459 57.80 56.18 78.10 7754 6507 6295 6043 7859 78.64 6446 77.69 78.64 78.80 69.66
128,256 6827 79.72 62.34 6185 83.57 80.75 67.70 68.55 70.78 82.35 83.17 70.77 82.81 8296 8235 75.20
256,512 52.67 7537 61.57 63.30 77.04 78.39 69.28 65.77 66.15 77.15 7892 69.23 77.26 79.17 7872 71.33
512,512 57.87 7477 5490 58.13 76.57 75.10  66.05 63.24 63.87 7599 77.53 6792 76.81 77.51 78.12 69.33
64, 64 3455 6547 29.14 29.70 70.85 68.59 35.11 36.04 3548 71.93 7211 40.73 71.85 71.36 71.60 52.95
64,128 3597 63.77 29.56 27.60 69.45 65.99 3253 3940 37.03 68.82 69.10 3847 7152 69.68 73.31 53.64
128,256 44.51 78.87 36.55 39.31 79.70 79.37 4442 4625 46.09 7858 8030 4571 7891 7870 78.58 62.39
256,512 3947 7199 3551 3490 72.85 72.08 40.57 4447 43.62 73.89 7394 46.15 73.81 73.83 73.50 58.04
512,512 36.82 68.68 26.09 25.11 7235 71.82 34.03 41.37 3858 70.20 73.65 42.62 7241 7326 73.70 55.89

Table 10: Missing modality segmentation results of different fusion-based models trained on
BRATS24. ~ means without. From top to bottom, it illustrates the results of WT, TC, and ET
respectively.

Method T2 TIC TI F T2TIC TITIC FTI TIT2 FT2 FTIC ~T2 ~TIC ~Tl ~F - AVG.
mmFormer  71.42 63.06 66.39 7831 74.55 69.75 81.43 7490 8235 80.49 82.01 8297 8331 7590 8325 76.67
M?FTrans 7277 6349 6695 75.13 76.45 66.91 81.48 7431 8193 8197 8276 83.06 83.00 77.62 83.63 76.76
MMMViT 2741 2377 2403 30.59 2641 23.66 29.34 2691 30.78 2822 2795 29.57 28.89 26.06 3845 28.14
IMS2Trans  63.81 53.80 57.04 69.49 69.51 59.56 76.10 7024 76.56 74.74 75770 7740 7835 71.54 7847 70.15
SMSN (ours) 71.67 63.56 69.47 82.67 76.73 66.93 82.76 7238 83.26 83.50 84.07 84.88 84.85 7491 84.70 77.76
mmFormer 8.92 3527 1259 11.48 41.74 41.67 18.49 19.07 1345 4183 4154 17.65 2887 41.62 42.07 27.75
M?2FTrans 627 21.31 1022 895 22.63 23.08 1145 7.06 9.07 2418 2505 1032 2419 23.66 2459 16.80
MMMViT 1.73 427 239 148 425 4.16 282 223 214 429 443 265 439 423 451 333

IMS2Trans 508 28.67 1050 7.90 32.13 36.90 11.95 946 791 3313 36.65 13.65 3397 3896 3846 23.02
SMSN (ours) 9.14 3544 1743 1743 39.09 45.61 2737 9.80 2132 4457 4721 2255 4397 4536 4260 31.26
mmFormer  21.84 5229 28.83 20.99 51.90 59.30 2531 2786 2094 55.62 60.08 26.81 5521 5725 5725 4143
M?2FTrans 2238 49.21 2872 1746 52.74 57.10 25.05 26.10 28.14 49.97 5797 27.61 5530 5843 57.89 40.94
MMMViT 28.95 5558 27.38 3091 55.14 58.39 29.97 33.83 31.50 5827 6291 3357 5571 59.12 60.50 45.45
IMS2Trans  20.13 2841 9.87 922 37.16 38.94 14.08 17.26 2492 3556 4392 2202 42.64 44.17 4998 29.22
SMSN (ours) 22.07 51.00 32.77 25.54 53.82 60.84 2828 27.00 27.55 55.13 59.68 28.15 54.54 60.53 5827 43.01

In addition, SMSN delivers strong performance under incomplete-modality scenarios without in-
troducing notable computational overhead relative to attention-based fusion methods. In particular,
compared with the second-best approach, M?FTrans, the Two-Stage Information Bottleneck Fu-
sion Module in SMSN adds only a marginal number of trainable parameters and results in nearly
identical training time. These observations indicate that SMSN attains its improvements without
imposing a substantial trade-off in computational efficiency when compared with attention-based
fusion strategies.

Table 11: Comparison of the number of model parameters, Gflops, training time, inference time,
throughput, complexity, and average segmentation performance of different models on different
classes (WT/TC/ET). Assume there are n modalities and the feature dimension of each modality is
d.

Parameters (M) Gflops Training Time/Epoch (s) Inference Time/Epoch (s) Throughput Complexity DSC on BRATS18 DSC Generalization

mmPFormer 36.65 123.83 53.89 34.50 2.66 O(ndz) 84.88/73.25/54.34  28.43/8.69/5.78

M?FTrans 13.49 113.36 110.11 28.25 1.27 O(n2 d) 85.39/72.78/54.95 55.16/38.62/31.74
MMMVIT 16.98 107.51 48.80 12.26 2.87 O(n2 d) 78.54/71.39/55.21 49.96/36.50/30.64
IMS > Trans 4.49 101.18 42.27 44.53 3.31 O(n2 d) 83.37/68.76/54.56  54.98/39.04/30.64
SMSN (ours) 14.84 111.83 109.22 33.09 1.28 O(ndE) 85.62/75.20/62.39  57.03/45.70/36.89

H LLM USAGE STATEMENT

We employed ChatGPT 5 to help polish the language and improve the readability. No LLMs were
involved in designing experiments, analyzing data, or contributing to the scientific findings of this
work.
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Figure 5: Comparison between gliomas and metastases. Gliomas are typically infiltrative with
ill-defined margins and heterogeneous enhancement, whereas metastases usually appear as well-
circumscribed lesions with sharp boundaries and prominent peritumoral edema.
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