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Abstract

Responsible use of authorship verification (AV)
systems not only requires high accuracies but
also interpretable solutions. More importantly,
for systems to be used to make decisions
with real-world consequences requires faithful-
ness in a model’s prediction. Neural methods
achieve high accuracies, but their representa-
tions lack direct interpretability. Furthermore,
LLM predictions cannot be explained faithfully
— if there is an explanation given for a predic-
tion, it doesn’t represent the reasoning process
behind the model’s prediction. In this paper, we
introduce residualized similarity prediction
(RSP), a novel method of supplementing sys-
tems using interpretable features with a neural
network to improve their performance while
maintaining interpretability. The key idea is to
use the neural network to predict a similarity
residual, i.e. the error in the similarity pre-
dicted by the interpretable system. Our evalu-
ation across four datasets shows that not only
can we match the performance of state-of-the-
art authorship verification models, but we can
show how and to what degree the final predic-
tion is faithful and interpretable.

1 Introduction

Authorship verification (AV) is a task with many
critical applications such as plagiarism detection,
forensic linguistics, and literary analysis. In these
authorship verification applications, the value of a
model lies not only in its prediction accuracy but
also in its ability to explain the basis for its pre-
diction. It is in the nature of these applications
that the users require inferpretable solutions, ones
where the representations used by the system for
verification are simple aggregates of relevant in-
dicators that are used by practitioners and readily
understood by stakeholders. Furthermore, it is im-
portant that these representations can be verified
objectively against the texts that are being investi-
gated. For example, a forensic linguist may rely

on linguistic indicators to justify authorship veri-
fication. In these cases, it is understood that there
is a guaranteed assumption of faithfulness; these
linguistic indicators accurately explain the model’s
prediction (Lyu et al., 2024). Furthermore, the
forensic linguist needs to be able to explain how
their linguistic indicators were derived from the
texts, so that others can agree that they are in fact
present in the texts and can be used to argue for or
against common authorship.

As with many NLP tasks, representations de-
rived from neural language models often achieve
better verification performance than interpretable
representations do (Devlin, 2018; Vaswani, 2017).

However, neural representations have major lim-
itations in many critical domains because they are
not directly interpretable. When attempts are made
to interpret predictions such as in Alshomary et al.
(2024), the explanations for a model’s predictions
are not guaranteed to be faithful to how the predic-
tion was made. In this paper, we ask how one can
combine the relative strengths of the two methods:
the interpretability and faithfulness of linguistic
representations and the high performance of neural
models.

As the main contribution of the paper, we in-
troduce residualized similarity prediction (RSP),
which uses the idea of estimating the residual of
a predictor i.e., the error in a model’s prediction.
Suppose we start with an interpretable system as
the initial similarity estimator. We can then train
a neural model as a residual predictor, which pre-
dicts the error or correction to the interpretable
system’s similarity score. The final prediction is a
simple sum of the the interpretable model’s simi-
larity score and the predicted residual, i.e., a simi-
larity adjustment made by the neural model. This
combined system can achieve the trade-off we de-
sire: (i) when the interpretable model is likely to
be correct, the residual should be low, providing
interpretability and faithfulness while remaining



accurate, and (ii) when the interpretable model is
likely to be incorrect, the residual should provide
the necessary correction, improving accuracy but
reducing interpretability to a degree proportional to
the error. This approach is inspired by the residual-
ized control approach (Zamani et al., 2018), which
trains a residual model for a regression problem,
combining numerous linguistic features with a few
interpretable health-relevant attributes to predict
community health indicators. We describe our ap-
proach in detail in Section 3.

We use Gram2vec (Zeng et al., 2024) as our inter-
pretable feature system, which records normalized
frequencies of morphological and syntactic features
for input texts. We evaluate our RSP approach by
combining Gram2vec with a state-of-the-art AV
neural model, LUAR (Rivera-Soto et al., 2021),
finding that RSP can match the performance of us-
ing LUAR alone, while introducing interpretability
and faithfulness (Sections 5 and 6). We make a dis-
tinction between two aspects of faithfulness. First,
our system’s prediction can be explained directly
using the underlying features in Gram2vec. Sec-
ond, these features are directly measurable within
a text, i.e. we can explain exactly why a feature
in a given text has a certain value. We perform a
case study on how our system retains interpretabil-
ity, measured by an interpretability confidence (IC)
metric, which indicates the extent to which the in-
terpretable system is used for a given input. Details
of this are in Section 6.

2 Related Work

Authorship verification, authorship attribution, and
authorship profiling are all part of authorship anal-
ysis which has been explored through a wide range
of approaches (see surveys El and Kassou (2014);
Misini et al. (2022)).

Interpretable Methods Previous stylometric ap-
proaches (Stamatatos, 2016) often make use of
readily interpretable features to train classifiers.
Some examples include lexical features such as
vocabulary, lexical patterns (Mendenhall, 1887;
van Halteren, 2004), syntactic rules (Varela et al.,
2016), and others.

Neural Models Authorship verification has ben-
efited from models built upon RNNs Gupta et al.
(2019), CNNs (Hossain et al., 2021), BERT-like
architectures (Manolache et al., 2021), and Long-
formers (Ordofiez et al., 2020; Nguyen et al., 2023).
More recently, sentence-transformer based models

(Wegmann et al., 2022; Rivera-Soto et al., 2021)
have obtained state-of-the-art performance for AV
tasks. As we are interested in improving the per-
formance interpretable authorship verification, we
focus on these SOTA AV models. In particular, we
focus on LUAR (Rivera-Soto et al., 2021).

Our work uses residual error analysis to
combine interpretability and neural models’ high
performance for authorship verification. Similar
residual approaches have been used previously
for improving performance in health outcome
prediction, by combining lexical and health-
relevant attributes (Zamani et al., 2018), and in a
recent work that combines statistical and neural
methods for machine translation (Benko et al.,
2024). Other works have focused on generating
explanations, often layering other mechanisms on
top of interpretable input features (Boenninghoff
et al., 2019; Setzu et al., 2024; Theophilo et al.,
2022) or doing a post-hoc evaluation on a latent,
non-interpretable space (Alshomary et al., 2024).
Some recent work also explores prompting large
language models to derive interpretable stylometric
features for authorship analysis (Hung et al., 2023;
Patel et al., 2023). However, these features are
not measurable in a text as the approaches rely on
LLMs to generate the features, and the generations
do not represent the reasoning process behind
attributing a set of features to a text.

3 Residualized Similarity Prediction

The key idea in residualized similarity predic-
tion (RSP) is to train a neural model to predict the
residual similarity, i.e., the difference between the
cosine similarity obtained from the interpretable
system and the ground truth. Per each train/dev/test
set, we first generate interpretable feature vectors
for each document using Gram2vec. Next, to ac-
count for difference in variance, the feature vectors
are standardized (z-scored) per feature against their
respective dataset. Finally, the cosine similarity is
calculated between pairs of vectorized documents.
The ground truth label is 1 for a pair of documents
written by the same author and -1 otherwise. RSP
is trained to predict y — sim(f(d1), f(d2)), where
vy is the gold label, sim represents the cosine sim-
ilarity between the pair of vectorized documents,
dy and ds are the two documents, and f is the
Gram2vec vector function. We will call this the
ground truth residual.

Figure 1 illustrates the specifics of training the



RSP model. The process of training RSP begins
with pairs of documents. These are vectorized
both by the interpretable system and by the neural
model we are fine-tuning, giving us four embed-
dings. Next, an attention layer is placed over all
four embedding, in order for RSP to learn how
much to weigh the interpretable features and the
neural embeddings when making the residual pre-
diction. Note that this step is only for the train-
ing, and interpretability remains simple for the
Gram2vec features during inference.

We experimented with some alternatives: earlier
attempts included passing only the neural embed-
dings into the regression head as well as directly
appending the interpretable feature vectors to the
neural embeddings before passing into the regres-
sion head to predict the residual. The former was
done to try to capture the power of sequence classi-
fication using RoBERTa (Liu, 2019), and the latter
was the first attempt to incorporate signal directly
from the interpretable system into the training of
RSP. However, neither approach was able to match
the performance of the contrastive-loss fine-tuned
neural model, LUAR, detailed in section 3.1.

Our evaluation tests how the residualized sim-
ilarity prediction method fares against the per-
formance of the two methods it combines: a sys-
tem using only interpretable features, and a neu-
ral model fine-tuned on the target datasets. For
the neural model baseline, the neural model on
each dataset using a contrastive learning objective
(Khosla et al., 2020). We evaluate the systems’
performance based on the receiver-operating char-
acteristic area under curve (AUC), as it is a way to
measure performance of models that is threshold
independent.

3.1 Methods

Gram2vec System: We use Gram2vec to derive
interpretable feature vectors from texts. These vec-
tors comprise z-scored relative frequencies of vari-
ous grammatical features of documents. These vec-
tors are standardized against their respective corpus,
e.g., Reddit vectors get standardized against all the
other vectors in the Reddit dataset, Amazon vec-
tors get standardized against all the other vectors
in the Amazon dataset, and so on. Table 1 shows
each feature type and its respective count. The only
difference between the Russian and English ver-
sions are the types of syntactic constructions that
are being searched for. Note that Gram2vec does
not use open-class lexical features, and therefore
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Figure 1: Residualized Similarity Architecture. To
incorporate signal from the interpretable feature vectors,
we add an attention layer over both the interpretable
feature vectors as well as the neural embeddings from
the model we’re fine-tuning. Boxes colored in green
indicate that they’re updated during training.
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does not model content at all.

Feature type Count
Punctuation marks 19
Emojis 10
POS Unigrams 18
POS Bigrams 324
Morphology tags 46
Dependency labels 45
Syntactic Constructions | 10
Function words 145

Table 1: Counts of different Gram2vec feature cate-
gories.

We then compute cosine similarity between the
two vectors. If the cosine similarity exceeds a spe-
cific threshold (set to 0.5 for analysis in Section
7), we label the input pair as being from the “same
author”; otherwise, we label them as being “from
different authors”.

Contrastive-loss Fine-tuned Neural Model: We
focus on LUAR and LUAR-RU, used for English
and Russian text respectively. We choose LUAR
as it is state-of-the-art in the task of authorship
verification (Rivera-Soto et al., 2021), and we
also use the Russian version to demonstrate
effectiveness across multiple languages. We
fine-tune these models in a Siamese network using
a contrastive loss function as the training objective.



This approach is similar to SBERT (Reimers and
Gurevych, 2019), but we use the architecture to
learn document-level, as opposed to sentence-level,
semantic embeddings.

Residualized Similarity Prediction: We fine-tune
LUAR and LUAR-RU with an attention layer over
the interpretable as well as the neural embeddings,
with the labels being the ground truth residuals
from the training set using Gram2vec similarities.
The training process is as follows.
Definitions:
e Let d1, d2 = document 1, document 2
e Let y = gold label (1 if same author, -1 if
different author)
e Let f = Gram2vec vectorizer
* Let sim = cosine similarity function
o Lety —sim(f(dl), f(d2))
= the ground truth residual
e Let res_pred = predicted residual
* Then final_score
= (sim(f(d1), f(d2)) + res_pred)
* Let t = threshold for cosine similarity, set to
0.5
Training Process:
* For each document pair ¢ in the training batch:
— Obtain res_pred
— Calculate MSE Loss:
LS (res_pred; — res_actual;)?
— Update model parameters to minimize
MSE
Inference:
* For a new document pair:
— If final_score > t: Predict same author
— Otherwise: Predict different author
Training Details: All neural models and RSP
are trained using LoRA (Hu et al., 2021), which
reduces the number of trainable parameters and
memory requirements. We observe that using
LoRA also yields better performance overall
for all models as compared to a full fine-tuning.
For evaluation of system performance, we use
receiver-operating curve area under curve (AUC),
which doesn’t require tuning of a threshold.
Additional training details are in Appendix A.

4 Data

We train and evaluate our residualized similarity
prediction system on four datasets covering di-
verse genres. We choose the first three as they are
the datasets used by Rivera-Soto et al. (2021) from
the original training of LUAR, and we include the

Russian dataset Pikabu to evaluate our method on
another language as we had access to a Russian
version of LUAR.

In order to train both RSP and the contrastive-
loss fine-tuned baseline, we require the data to be
in a paired format: {Document 1, Document 2,
Same/Different label}. The full details of training
RSP are provided in section 3. For the contrastive-
loss fine-tuned baseline, the aim is to push pairs
of documents by the same author together, and to
push pairs of documents by different authors apart.
Reddit Comments We use a dataset of Reddit com-
ments from 100 active subreddits created by Con-
voKit (Chang et al., 2020). We use a version prepro-
cessed by (Wegmann et al., 2022), as it has invalid
comments, with invalid comments, comments con-
taining only some sort of white space or deleted
comments, removed and is split into train, develop-
ment, and test sets with non-overlapping authors.
We create pairs of comments, label them for author
verification, and use the same split of comments as
they do. Reddit comments can be naturally very
short, so we further filter the comment pairs and
keep only comments longer than 20 words.
Amazon Reviews From the Amazon review dataset
(Ni et al., 2019), we take reviews from three cate-
gories: Office Products; Patio, Lawn and Garden;
and Video games. We use a reduced dataset where
all items and users have at least 5 reviews, and
we keep authors with at least two reviews of 20
or more words. The validation set is split from
the training set by taking stories from 1/6 of the
authors. Then, we sample same author pairs by ran-
domly choosing an author and two texts written by
them. For different author pairs, two authors and
one text from each author are randomly chosen.
Fanfiction Stories The fanfiction dataset contains
75,806 stories from 52,601 authors in the training
set and 20,695 stories from 14,311 authors in the
evaluation set. We use the pre-processing script
from LUAR (Rivera-Soto et al., 2021) to split each
story into paragraphs since fanfictions can be very
long. The process of sampling pairs of reviews is
the same as in the Amazon dataset.

Pikabu comments We start with the Pikabu dataset
from Ilya Gusev (2024) available on HuggingFace.
We drop documents with fewer than 100 charac-
ters, and authors with fewer than two documents;
we then anonymize the data, redacting credit card
numbers, IP addresses, names, and phone numbers.

For all four datasets, we use 50K, 10K, and 10K

pairs for the training, validation, and test sets re-
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Figure 2: ROC AUC Curves for Gram2vec, LUAR, and RSP on the (a) Reddit, (b) Amazon, (c) Fanfiction, and (d)
Pikabu datasets. We observe performance increases comparing RSP to Gram2vec that range from 11 points on
Pikabu to 25 points on Amazon. Notably, RSP also sees a 2 point increase in performance from LUAR on Pikabu.

spectively. The ratio of same to different author
pairs is 1:1.

5 Results

Metrics: We evaluate RSP against both Gram2vec
and neural models on the receiver-operating
curve area-under-curve (AUC), which represents a
model’s performance across all thresholds. It is cal-
culated by calculating the true positive rate (TPR)
and false positive rate (FPR) at every threshold,
and graphing TPR over FPR. We use AUC as it is
threshold-independent and the data we use is bal-
anced, providing a direct comparison of the various
systems. RSP is able to match or just nearly match
the performance of LUAR and LUAR-RU on all
four datasets, with even a slight increase in the Pik-
abu dataset. However, we observe a big increase in
performance compared to using Gram2vec alone,
with the biggest improvement being an increase of

25 points on the Amazon dataset. We present the
AUC curves of the three methods we evaluate on
all four datasets in Figure 2.

Summary of Results: By using AUC as our met-
ric, we show that system performance for RSP and
LUAR are nearly identical for each dataset, with
a slight decrease for Reddit, and a slight increase
for Pikabu. Gram2vec alone performs consistently
lower than both systems, but still above the ran-
dom baseline. In this section, we show our first
claim that RSP is able to match the performance
of the state-of-the-art LUAR. In the next, we show
that RSP retains a portion of interpretability that
Gram2vec offers and quantify the interpretability.

6 Analysis of Interpretability

We have shown that residualized similarity pre-
diction is a hybrid system that uses a neural model
to correct the error in prediction made by an inter-



Example Pair 1: Different Author

Document 1:

Whirling like a scythe, the saber sliced her upper torso, putting an end to the vengeful Sith.
Dropping to her knees again, Jameh crawled to her fallen Master, cradling him in her arms. A new
darkness grew in her heart now, one like a cold, lonely mist. Her Master was dying. Just then,
footsteps came down the cave passage and Pilae, Obi-Wan, and Anakin entered the grotto just in
time to be too late. They stood nearby, dismayed at the sight that met their eyes: a dismembered
former Senator, a shorn and wounded Padawan, and a Jedi Master on the verge of death. " Master,
please, you can"t leave me. I need you; I"m not ready!"

Document 2:

As the Clan speculated why the rats weren"t attacking, Redfur walked through the camp entrance
tentatively, leaving Sootcloud and Brightnose at their original position at one side of the entrance.
He scanned the field beyond and was dumbfounded when he didn"t see any rats. As he walked
further out with more confidence, he tasted the air and searched for their distinctive scent. Suddenly,
with a loud squeak, several of the rats surged forward out of nowhere, or so Redfur thought, and
attacked him. He yowled in surprise as some of the rats managed to climb up his leg and cling to
his red brown fur, leaving scratches and bites along the way. He pelted back through the entrance
and into the clearing. The Clan had been alerted by Redfur"s yowl of surprise, so they had stopped
chatting and lowered their bodies into a crouch, getting ready for the rats. But when they saw the
four rats clinging to Redfur"s fur, they hissed in astonishment at the size of them.

Gram2vec Cosine Similarity: 0.09, RSP Predicted Residual: 0.29, Final Score: 0.38
Interpretability Confidence: 0.72 Flipped: False

Example Pair 2: Same Author

Document 1:

GET UP! School time!" Sora called from the door. " I"m up!" he hollered back before throwing
the cover"s off him. It"s been a week. A week since Roxas started hearing that voice. Throughout
that time he had figured out that it was connected to the mirror he had gotten at the same time. "

Document 2:

It was passed down through generations to keep him in the glass." At this he closed the book and
plopped on the bed. " What about the rhyme?" Demyx stroked his chin in a pondering position. "
It was created to scare children from letting him out. Though the ending part. "" A curse to never
be free of. Until this demon admits love" Is exactly what it says.

Gram2vec Cosine Similarity: 0.20, RSP Predicted Residual: 0.82, Final Score: 1.02
Interpretability Confidence: 0.18 Flipped: True

Figure 3: Example Pairs for Case Study. Pair 1 is by two different authors, and Pair 2 is by the same author.

pretable system. In doing so, we can match the
performance of a solely neural system, while re-
taining interpretability. In this section we discuss
how to quantify the amount of interpretability a
specific result retains. We introduce the notion of
“interpretability confidence”(INTCONF), which is a
way to measure how interpretable a particular pre-
diction of RSP is. We define INTCONF to have two

parts, a score, defined as 1 — |predicted residual|,
and an indicator of whether or not the label was
flipped by the predicted residual (1 if flipped, O if
not). The label is considered flipped if the cosine
similarity prediction using Gram?2vec is on one side
of the cosine similarity threshold (different author
if below, and same author if above), and adding the
predicted residual from RSP causes the final score



to be on the other side of the threshold. We provide
an example of this in Section 7.2. Note that we
can calculate the INTCONTF for any specific pair of
documents after running RSP.

We emphasize that even in cases where the pre-
diction is flipped after using RSP we can still make
use of the underlying interpretable system. We
show in section 7 that when the prediction was
changed, the underlying interpretable system can
help explain why a prediction was made.

7 Case Study of Two Pairs of Documents

We present two cases to illustrate how RSP can
give a user insight while performing a specific au-
thorship verification task. We present two pairs of
texts, one of which is indeed from the same author,
and one of which is not. We set a threshold of 0.5,
as a natural midpoint from O to 1, suggesting that
documents need to be more similar than dissimilar
to be considered by the same author. We show how
our approach can tell the user which Gram2vec fea-
tures were used in the determination, and to what
extent they determined the confidence of the predic-
tion. Since Gram2vec contains over 600 features,
we define a criterion to select features to present
to the user, depending on whether a pair of docu-
ments are predicted to be by the same or different
authors. When a pair of documents is predicted to
be written by the same author, we want to maximize
the absolute values of the feature values (features
that distinguish these documents from the large
set of background documents) while making sure
the values are similar for both documents. When
a pair of documents is predicted to be written by
different authors, we simply find the largest magni-
tudes of differences in the feature values. Thus, for
identifying features for same author pairs, we use
the following metrics for ordering features, where
val_1 represents the feature’s score for document
1, and val_2 represents the feature’s score for doc-
ument 2.: [val_1|+ |val_2| —|val_1 —val_2|. For
ordering features using different author pairs, we
use |val_1 — val_2|. We then choose the top n
features; in the examples below, we use n = 10.

7.1 Example 1: Different Author Pair

Looking at the first example in Figure 3, based on
a threshold of 0.5, we observe that both Gram2vec
and RSP predict that these two documents are writ-
ten by different authors: the gold label for different
authors is -1, and we see that in this case, both

Gram2vec at 0.09 and RSP at 0.38 agree, indicat-
ing that the label is not flipped. Below, in Table 2,
we show the top 10 features and their values that
were identified using the different author pair met-
ric: |val_1 — val_2|. We calculate this score for
every feature in document 1 and document 2, and
sort in descending order the top 10 features. These
represent the 10 most differing features in the pair
of documents. Looking at the features, we first
note several function words which can be found
in document 2 but not in document 1; for exam-
ple, document 2 uses when twice in a fairly short
text, while document 1 does not use it at all. In con-
trast, document 1 uses several part-of-speech (POS)
bigrams far more frequently than the background
corpus, while document 2’s distribution of POS
bigrams is more standard. A striking example is
the bigram adjective-proper noun, which is unusual
in general but very frequent in document 1 (venge-
ful Sith, fallen Master, former Senator, wounded
Padawan). Finally, we note the high frequency of
the indefinite article in document 1: a scythe, a
new darkness, a cold, lonely mist, a dismembered
former senator, a shorn and wounded Padawan,
a Jedi Master. These indefinite noun phrases pro-
vide a sense of change (indefinites introduce new
discourse objects); in the case of the last three, the
author takes on the perspective of three characters.
Document 2, in contrast, has few indefinites and the
narration centers on entities known to the readers
and the characters in the story.

Feature Score Doc 1 Doc 2
func_words:further 54 -0.1 53
pos_bigrams:ADJ PROPN 41 38 -03
pos_bigrams:PUNCT DET 3.8 34 -04
func_words:through 3.6 -03 33
pos_bigrams:PART ADJ 33 31 -02
func_words:they 29 -04 25
pos_bigrams:PROPN PUNCT 29 2.1 -0.8
morph_tags:Definite=Ind 28 24 -04
pos_bigrams:PUNCT NUM 26 25 -0.1
func_words:when 26 -04 22

Table 2: Feature scores comparison between Example 1
document pair by different authors.

7.2 Example 2: Same Author Pair

In this case, based on a threshold of 0.5, we ob-
serve that Gram2vec predicts that the two docu-
ments are written by different authors, and RSP
predict that these two documents are written by the
same author. The gold label for the same author
is 1, and we see that Gram2vec gets the predic-



tion wrong. However, RSP predicts the similarity
residual and the final score is right at the gold label
for the same author. Even though the label was
flipped from Gram2vec to RSP in this case, we
observe that there are still a good number of fea-
tures that are similar between the two documents
which we can use in explanation, since they in fact
contributed to the final prediction. When identi-
fying similar features in two documents, we use
the metric |val_1|+ |val_2| — |val_1 —val_2| and
take the top 10 features in descending order, shown
in Table 3. Thus, these are features which occur
in both documents either much more or much less
frequently than on average across a background
corpus. One example is the bigram preposition-
punctuation. In both texts, we find examples: UP/,
up! (in document 1), out., of. (in document 2). A
preposition at the end of a clause is often discour-
aged in formal written English. The two documents
also use passive voice clauses more frequently than
on average (passive voice is generally rare in writ-
ten English): if was connected (document 1), it
was passed down, it was created (document 2).
The two documents share a negative value for the
punctuation mark comma. Indeed, neither text con-
tains a comma, which in general is a very common
punctuation mark.

Feature Score Doc 1 Doc 2

pos_bigrams:PREP PUNCT 6.1 41 3.0

passive sentence 54 27 46
dep_labels:nsubjpass 44 22 38
pos_bigrams:PREP VERB 43 29 21
dep_labels:auxpass 37 1.8 33
func_words:from 35 23 1.8
punctuation:, 34 -1.7 -1.7
morph_tags:PunctType=Comm 3.3 -1.6 -1.6
pos_bigrams:DET NOUN 32 25 1.6
func_words:the 29 15 15

Table 3: Feature scores comparison between Example 2
document pair by the same author.

We note that this paper does not propose an end-
to-end explainable system. Instead, we have shown
how our RSP system can identify measurable fea-
tures which it actually used in determining its find-
ing (faithfulness), and it can quantify to what ex-
tent these features explain why the system came
to its result. An explainable system built on top
of our system would require in addition two types
of decisions: how do we choose how many and
which features to present to the user, and exactly
how should the interface look? These are, at base,
human-computer interface (HCI) issues: explana-

tions are always for a particular type of user, and
need to be tailored to that user. If, for example,
our target audience is forensic linguists, then we
can assume that they know the meaning of linguis-
tic features and are willing to get to know a more
complex interface (which, for example, may allow
them to drill down, or to include or exclude certain
types of linguistic features). If on the other hand
the target audience is crowdsourced workers (be-
cause we are doing an evaluation for a paper for
a submission to an NLP conference, for example),
then of course we cannot assume the users will
know the meaning of our features, nor that they
will take the time to get to know the capabilities of
a more complex interface. We leave this HCI work
to a future publication.

8 Conclusion

We introduce residualized similarity prediction,
a method of improving the performance of an inter-
pretable feature set by training a language model
to predict the residual, or difference, between the
similarity output from an interpretable system and
the ground truth. Using residualized similarity
prediction, we are able to achieve state-of-the-art
performance while maintaining a degree of inter-
pretability.

To measure interpretability, we introduce the in-
terpretability confidence, a measure of how inter-
pretable a prediction from our system is. We then
do a case study to observe how using RSP, we are
able to correct a prediction that was initially incor-
rect from an interpretable system. In both the case
where the prediction was corrected and the case
where the prediction from the interpretable system
and RSP agreed, we show that there is meaningful
interpretability in the features.

We believe this approach to be a promising di-
rection for developing more interpretable and effec-
tive NLP systems, bridging the gap between neural
methods and interpretable linguistic features while
allowing for faithfully explainable systems.

Limitations

We present preliminary results on residualized sim-
ilarity prediction (RSP), a novel method of sup-
plementing systems using interpretable linguistic
features with a neural network to improve their
performance while maintaining interpretability. In
order to get these results, we use a relatively small
subset of data from the original datasets we chose.



While we choose a variety of datasets, our experi-
ments are by no means conclusive.

The goal of this work is to improve performance
while maintaining interpretability. With this in
mind, we developed the interpretability confi-
dence, a way to quantify how interpretable pre-
dictions from RSP are. Thus, if we find that the
majority of residual predictions in fact flip the orig-
inal prediction or have high magnitudes, then RSP
will have less interpretability than desired.

Ethics Statement

The datasets we use are publicly available and are
anonymized. Our work improves the interpretabil-
ity of authorship verification models, allowing for
more transparency and easier detection of potential
biases and errors in the model.
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A Training Details

We experiment with a variety of strategies to de-
crease training times and GPU memory require-
ments. All our experiments take place on a server
with four 48GB A6000 GPUs. Using the following
strategies, our largest model, with approximately
360 million parameters, takes about 5 hours to train.
The fastest training time we observed was around
1 hour for our smaller models, which have approx-
imately 150 million parameters. We optimize the
model using AdamW (Loshchilov, 2017) with a
learning rate of 5e-5, a standard value for fine-
tuning pre-trained language models. We train for a
maximum of 10 epochs with early stopping based
on validation loss to avoid overfitting. With respect
to hyperparameters, we manually tune them during
the training of RSP. We use these hyperparameters
in the rest of our experiments.

We experiment with the use of LoRA (Hu et al.,

2021), reducing the number of trainable parameters
and lowering memory requirements. Somewhat
surprisingly, in our initial experiments fine-tuning
RoBERTa for binary classification and for our resid-
ual prediction model, performance without LoORA
was far lower than performance using LoRA. We
hypothesize that LoRA could be acting as a reg-
ularizer in this case. We use this to inform our
decision of using LoRA in all other experiments in
this paper.
Neural Model Contrastive Loss Fine-Tuned
Baseline We fine-tune the previously chosen neural
models in a Siamese network using a contrastive
loss function as our training objective. The ar-
chitecture for this was heavily inspired by SBERT
(Reimers and Gurevych, 2019). We replace SBERT
with LUAR or LUAR-RU, and use the pooler out-
put to obtain the embedding for the documents.
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Residualized Similarity Prediction Details As
RSP is a regression model, we use mean-squared
error loss as our training object, and train over 10
epochs. We utilize early stopping to avoid over-
fitting. We add a regression head with multiple
dense layers using ReL.U activations and dropout
for regularization. We then ensure the output is
between -1 and 1 by using a tanh activation.
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