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Abstract

Comprehensive and constructive evaluation protocols play an important role when
developing sophisticated text-to-video (T2V) generation models. Existing evalua-
tion protocols primarily focus on temporal consistency and content continuity, yet
largely ignore dynamics of video content. Such dynamics is an essential dimension
measuring the visual vividness and the honesty of video content to text prompts.
In this study, we propose an effective evaluation protocol, termed DEVIL, which
centers on the dynamics dimension to evaluate T2V generation models, as well as
improving existing evaluation metrics. In practice, we define a set of dynamics
scores corresponding to multiple temporal granularities, and a new benchmark of
text prompts under multiple dynamics grades. Upon the text prompt benchmark,
we assess the generation capacity of T2V models, characterized by metrics of
dynamics ranges and T2V alignment. Moreover, we analyze the relevance of
existing metrics to dynamics metrics, improving them from the perspective of
dynamics. Experiments show that DEVIL evaluation metrics enjoy up to about
90% consistency with human ratings, demonstrating the potential to advance T2V
generation models. Project page: t2veval.github.io/DEVIL/.

1 Introduction

With the rapid progress of video generation technology, the demand of comprehensively evaluating
model performance continues to grow. Recent benchmarks [27, 24] have included various metrics,
e.g., generation quality, video-text alignment degree, and video content continuity, to evaluate T2V
generation models. Despite of the great efforts made, an essential characteristic of video, i.e.,
dynamics, remains ignored.

Dynamics is a crucial dimension when evaluating video generation models for the following two
reasons: (i) In practical applications, it is expected that generated video content is honest to text
prompts, e.g., dramatic text prompts result in videos of high dynamics. (ii) In real-world scenarios,
dynamics are negatively relevant to commonly used evaluation metrics, as observed by recent
benchmark studies [24, 27]. This allows T2V models to ‘cheat’ by generating low-dynamic video
content in many cases to achieve high scores upon these metrics.

In this study, we introduce DEVIL, a comprehensive evaluation protocol, which assesses T2V
generation models from a perspective of dynamics. DEVIL treats dynamics as a primary dimension
for T2V model evaluation, as well as enhancing the completeness of existing metrics. To fulfill
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Figure 1: Evaluation of video dynamics. (a) Illustration of dynamics at multiple temporal granularities.
(b) Video quality distribution w.r.t. dynamic scores. (Best viewed in color)

this purpose, we first establish a benchmark incorporating text prompts under multiple dynamics
grades. The text prompts are collected from commonly used datasets [7, 6, 46, 41] and categorized
using a Large Language Model (LLM), GPT-4 [30], with further manual refinement. We then define
a set of dynamics scores, which are aggregated into two dynamics metrics to reveal the temporal
characteristics of generated videos. In addition, we conduct a user study to synthesize the proposed
metrics into an overall dynamics score, facilitating a comprehensive evaluation of dynamics capacity,
characterized by dynamics ranges and T2V alignment.

To enhance the completeness of existing evaluation metrics, we introduce a bi-variate analysis strategy.
Specifically, we use dynamics as an additional dimension to examine the distribution of existing
metrics, such as aesthetics, continuity, and consistency. Through bi-variate analysis, we identify
those metrics negatively related to dynamics, and update them by incorporating the dynamics factor.
We also introduce a metric to evaluate the naturalness based on a multimodal large language model
(MLLM), e.g., Gemini-1.5 Pro [1].

With the proposed DEVIL protocol, we evaluate state-of-the-art T2V models and commonly used
benchmarks and find the following problems. (i) Existing generation models typically generate
slow-motion videos, as most videos in existing benchmarks are of low dynamics. (ii)The text prompts
in commonly used T2V benchmarks can not reflect the degrees of video dynamics. If such prompts
are used to generate videos, they cause poor T2V alignment w.r.t. dynamics. (iii) By experiments,
we observe that the naturalness of generated video decreases with video dynamics, which implies
that the capability of simulating real-world scenarios remains to be elaborated.

The contributions of this study are summarized as follows,

• We propose a novel evaluation protocol, termed DEVIL, which benchmarks T2V generation
models by integrating dynamics metrics. Together with existing evaluation metrics, DEVIL
builds a more comprehensive evaluation protocol.

• We establish a text prompt benchmark w.r.t. dynamics grades and propose a set of metrics to
evaluate video dynamics across temporal granularities, facilitating the assessment of dynamics
range and T2V alignment.

• Extensive evaluation of existing T2V generation models allows us to thoroughly analyze the
capabilities of T2V models through the proposed protocol and benchmarks. The results would
inspire sophisticated T2V generation models.

2 Related Work

2.1 Text-to-Video Generation Model

As a recent breakthrough in artificial intelligence, diffusion models have pushed video generation
technology to a new height. Earlier studies [22, 21] explored the 3D U-Net and cascaded models for
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Figure 2: Flowchart to calculate dynamics metrics based on dynamics scores and text prompts.

diffusion within pixel space. Recent solutions [13, 33] employed latent diffusion models to efficiently
manage the diffusion process within a compressed latent space. Following these studies, a variety
of approaches [40, 10, 26, 43, 16, 42, 47, 29, 25] updated and improved this paradigm. Building on
these advancements, subsequent methods further explored generating videos of higher quality and
extended duration. The Videocrafter approach [14] pursued high-quality video generation through
disentangling spatial and temporal learning and tuning spatial modules using high-quality images.
In a similar way, commercial models such as Pika [4] and GEN-2 [2] demonstrated substantial
improvements, showcasing videos with exceptional visual clarity. For longer video generation,
Gen-L-Video [39] aggregated short clips generated by base T2V models using temporal co-denoising
to enhance continuity. Freenoise [31] extended pre-trained T2V models through rescheduling noise
for longer-duration video inference. StreamingT2V [19] enhanced long-term content consistency by
integrating short-term and long-term memory blocks.

The rapid development of T2V models poses a growing demand for quality evaluation protocols.
Unfortunately, existing protocols primarily focus on temporal consistency and content continuity, yet
largely ignore temporal dynamics. This hinders the exploitation of video content vividness and the
honesty of video content to text prompts.

2.2 Evaluation Protocol

Early evaluation protocols [35] primarily relied on class labels to T2V models. For example, they
commonly used video clips from the UCF-101 dataset and human-annotated video captions from the
MSR-VTT [46] dataset as the evaluation data. For a more specific assessment, FETV [28] assigned
fine-grained category labels to prompts and calculated the CLIP-SIM score for each category.

However, conventional quality assessment metrics such as Inception Score (IS) [34], Fréchet Inception
Distance (FID) [20], Frechet Video Distance (FVD) [37], and CLIP-SIM typically operate on a single
dimension while can not provide a comprehensive evaluation. When addressing the limitation,
EvalCrafter [32] expanded both the prompt scale and the number of evaluation metrics so that the
text-video alignment degree and the quality of generated videos can be better evaluated. Additionally,
VBench [24] proposed a multi-dimensional, multi-category evaluation suite that not only considered
the diversity of prompts but also encompassed a variety of assessment metrics.

Despite of the evolution of evaluation metrics, we argue an essential characteristic of video, i.e.,
dynamics, remains ignored. In this study, we introduce the dynamics dimension to evaluate T2V
generation models, as well as enhance the completeness of existing metrics.

3 Dynamics Evaluation Protocol

As shown in Fig. 2, we first establish a benchmark incorporating text prompts under multiple dynamics
grades. The text prompts are collected from commonly used datasets [7, 6, 46, 41] and categorized
to dynamics grades using GPT-4 [30] and human refinement. We then define a set of dynamics
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Table 1: Formulations of dynamics scores at different temporal granularities.
Granularity Dynamics scores Formulation

Inter-frame

Optical Flow Strength Dofs =
1

N−1

∑N−1
i=1 FLOW(fi)

Structural Dynamics Score Dsd = 1− 1
N−1

∑N−1
i=1 SSIM(fi, fi+1)

Perceptual Dynamics Score Dpd = 1
N−1

∑N−1
i=1 PHASHD(fi, fi+1)

Inter-segment
Patch-level Aperiodicity Dpa = 1− 1

HW

∑
h,w ACF({Fi,h,w}Ni=1)

Global Aperiodicity Dga = 1− 1
⌊rN⌋

∑⌊rN⌋
i=1

∑
j ̸=i SIM(F r

i , F
r
j )

Video
Temporal Entropy Dte = H(f1, f2, · · · , fN |f1)

Temporal Semantic Diversity Dtsd = 1
N

∑N
i=1 ∥Fi − F̄∥2

scores corresponding to multiple temporal granularities, to reveal the video characteristics at multiple
temporal levels. We finally conduct a user study to aggregate the proposed dynamics into overall
dynamics metrics about ranges of dynamics and T2V alignment.

3.1 Text Prompt Benchmark

Building the benchmark includes a coarse categorization step and a post-processing step. In the
coarse categorization step, the GPT-4 model is used to categorize approximately 50k text prompts
collected from existing benchmarks into five grades. These benchmarks include VidProm [41],
WebVid [8], MSR-VTT [46], Didemo [18], etc. The five dynamics grades are summarized as follows:

Figure 3: (a) Distribution of dynamics grades for
text prompts from DEVIL, Vbench [24], and Eval-
Crafter [27]. (b) Word cloud of the text prompt
benchmark of DEVIL.

Static video: Video content is nearly stationary.
Example: A man is laying on the ground.
Low dynamics: Video content has slow and
slight changes. Example: A male fencer adjusts
his epee mask and prepares to duel with his
sparring partner in slow motion.
Medium dynamics: Noticeable activity and
changes, but relatively smooth overall. Example:
Tilt up of shirtless sportsman doing pull-ups on
bars during cross-training workout at gym.
High dynamics: Fast actions and changes.
Example: A runner explodes out of the starting
blocks, racing down the track.
Very high dynamics: Extremely rapid and
frequent video content changes. Example: A
medieval siege with catapults launching, walls breaking, soldiers charging, and arrows raining down.

In the post-processing step, we recruit six human annotators to refine the dynamics grades following
same criterion. Finally, we sample 800 text prompts at different dynamics grades for a uniform
distribution along the grades.

Fig. 3 shows the statistics of the DEVIL benchmark, which contains approximately 800 text prompts,
and each dynamics grade includes 19 object categories and 4 scene categories. Unless otherwise
specified, all experiments in this paper are conducted on the DEVIL benchmark.

3.2 Dynamics Scores

As illustrated in Fig. 4, video dynamics can be classified into three categories based on their temporal
granularities: (i) Inter-frame dynamics, which describes the variations between successive frames.
The dynamics score at this level reflects rapid and prominent content variations. (ii) Inter-segment
dynamics, which refers to the changes between video segments which contains K video frames.
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Define on a middle-level, this score captures middle-speed transitions and motion patterns. (iii)
Video-level dynamics, which encompasses the overall content diversity and the frequency of changes
throughout the video.

(a) Inter-frame Dynamics

(b) Inter-segment Dynamics

…

…

(c) Video-level Dynamics

Figure 4: Video dynamics at different tempo-
ral granularities: (a) Inter-frame Dynamics,
(b) Inter-segment Dynamics, and (c) Video-
level Dynamics.

(i) Inter-frame Dynamics Score. This is further cat-
egorized to optical flow strength, structural dynamics
and perceptual dynamics.

Optical flow strength. We first employ RAFT [49] to
estimate the optical flow [9, 36] for each video frame.
The mean optical flow magnitudes of each frame are
averaged to calculate the optical flow strength of this
frame. Averaging the optical flow strength values of
all video frames, we have the optical flow strength
Dofs of the video, as

Dofs =
1

N − 1

N−1∑
i=1

FLOW(fi), (1)

where FLOW calculate the mean optical flow strength
values of frame fi.

Structural dynamics score. While optical flow ex-
cels in capturing motion, it is less effective when
detecting structural dynamics such as lighting condi-
tions. To capture such information, we calculate the
average structural similarity index (SSIM) between
consecutive frames from all frame pairs to quantify
inter-frame structural variations of the video, as

Dsd = 1− 1

N − 1

N−1∑
i=1

SSIM(fi, fi+1)}N−1
i=1 , (2)

Perceptual dynamics. The human visual system is sensitive to changes in low-frequency regions of
video frames. To reflect this characteristic, we introduce a perceptual dynamics metric that measures
the difference between the perceptual hashes [38] of consecutive frames. The perceptual distance
Dpa is defined as the mean of all frame pairs, as

Dpd =
1

N − 1

N−1∑
i=1

PHASHD(fi, fi+1)}N−1
i=1 , (3)

where PHASHD denotes the Hamming distance [17] between the perceptual hash of fi and fi+1.

(ii) Inter-segment Dynamics Score. This is further categorized into patch-level aperiodicity and
global aperiodicity, which measure the dynamics between video segments.

Patch-level aperiodicity. We first calculate inter-segment dynamics at the patch level using the auto-
correlation factor [11], to evaluate the scene and temporal pattern dynamics. The auto-correlation
factor measures the feature similarity of a time series, revealing periodicity and changing trends of
features. Given features at position (h,w) across N frames, {Fi,h,w}Ni=1, the auto-correlation factor
of the features is defined as

ACF({Fi,h,w}Ni=1) =
1

N −K0

N∑
k=K0

k∑
i=1

1

k
SIM(Fi,h,w, FN−k+i,h,w), (4)

where SIM represents the cosine similarity between two feature vectors. The minimal segment
length K0 is empirically set to ⌊N/8⌋, as most generated videos contain more than 8 frames. H and
W are the height and width of the feature map, respectively. With auto-correlation factors of all
patches, we define the patch-level aperiodicity of the video, as

Dpa = 1− 1

HW

∑
h,w

ACF({Fi,h,w}Ni=1}). (5)

5



Global aperiodicity. In addition to patch-level dynamics, we employ a global aperiodicity metric
to measure the diversity of patterns between video segments. Specifically, we divide the video into
segments. Each segment has a length rN , where r is a proportion factor, empirically set to 0.25.
We use ViCLIP [44] to extract the spatial-temporal features for each segment. The features are
denoted as {F r

i }
⌊rN⌋
i=1 . We then calculate the similarity of these features to assess the variation in

spatial-temporal patterns across segments, as

Dga = 1− 1

⌊rN⌋

⌊rN⌋∑
i=1

∑
j ̸=i

SIM(F r
i , F

r
j ). (6)

(iii) Video-level Dynamics. The dynamics of a whole video sequence is defined upon the temporal
entropy and temporal semantic dynamics.

Temporal entropy. To evaluate the dynamics at the video level, we first measure the temporal
information of each video. The temporal information is defined as the conditional entropy of the
entire video sequence given the first frame

Dte = H(f1, f2, · · · , fN |f1). (7)

To estimate the conditional entropy Dte, we employ the video encoding toolbox FFmpeg [15].

Temporal Semantic Dynamics. Beyond low-level dynamics, we further introduce a semantic diversity
score to assess high-level dynamics across the whole video. The semantic diversity score Dtsd is
computed to reflect semantic-level dynamics and is defined as the variance of DINO [12] features
{Fi}Ni=1 of each frame, as

Dtsd =
1

N

N∑
i=1

∥Fi − F̄∥2, (8)

where F̄ = 1
N

∑N
i=1 Fi denotes the mean feature vector of all frames.

3.3 Human Aligned Dynamics Scores

To establish a reliable and robust assessment, we introduce a human alignment module, Fig. 2, to
refine the empirically defined dynamcis scores. It utilizes human ratings to provide ground-truth,
based on which we fit a linear regression model at each temporal level, as

Df = Linearθf (Dofs,Dsd,Dpd), (9)

Ds = Linearθs(Dpa,Dga), (10)
Dv = Linearθv (Dte,Dtsd), (11)

where θf , θs, θv respectively denote the model parameters of linear regression at each scale. 2 The
overall dynamics score of the video is then defined as the average of aligned dynamics scores from
all three levels, as

D =
1

3
(Df +Ds +Dv). (12)

Through this learnable human alignment procedure, the empirically defined dynamics scores are
more consistent with human perception, as validated in Sec. 5.1.

3.4 Dynamics Metrics

After calculating the aligned dynamics scores of all generated videos at inter-frame, inter-segment,
and video levels, we combine these scores together to obtain the following two evaluation metrics.

(i) Dynamics Range. The metric evaluates model’s capability to generate videos with vivid dynamics.
A larger dynamics range implies higher dynamics capability. In detail, we determine the dynamics
range Mrange by identifying the extremes of the dynamic scores over the benchmark, while excluding
the top and bottom 1% scores to mitigate the influence of outliers. This is formulated as

Mrange = Q0.99 −Q0.01, (13)

2Appendix B presents the model weights and typical values for various dynamics scores.
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where Q0.99 and Q0.01 denote the 99th and 1st percentile values of the dynamics scores for videos
generated with the DEVIL benchmark, respectively. This metric reflects a realistic spread of dynamics,
excluding atypical extremes.

(i) Dynamics Controllability. Let P(i),P(j) ∈ [1, 5] respectively denote the ground-truth dynamics
grades of prompt i and j, and D(i),D(j) the predicted dynamics scores by prompt i and j. For
P(i) > P(j), we should have D(i) > D(j) so that the dynamics scores of the generated videos are
consistent with the dynamics grades of text prompts. Accordingly, we can calculate the dynamics
controllability metric by

Mcontrol =
1

|T |

|T |∑
i=1

1

|T | − Ti

∑
j:Pj ̸=Pi

I
(
(D(i) −D(j))(P(i) −P(j))

)
, (14)

where |T | is the total prompt number and Ti denotes the number of prompts at dynamics grade P(i).

4 Improving Existing Metrics with Dynamics

Table 2: Correlation between the dynamics
metric with the existing metrics including
Naturalness (Nat), Visual Quality [45] (VQ),
Motion Smoothness (MS) [24], Subject
Consistency(SC) [24] and Background
Consistency(BC) [24]. ’PC’ denotes Pearson’s
correlation, and ’KC’ denotes Kendall’s
correlation.

Evaluation Metrics PC KC

Naturalness (Nat) -51.8 -44.2
Visual Quality (VQ) -24.8 -18.6

Motion Smoothness (MS) -64.0 -54.6
Subject Consistency (SC) -88.9 -74.9

Background Consistency (BC) -79.4 -61.4

As observed by our experiments, existing metrics have
negative relevance to video dynamics. To identify these
metrics, we calculate the correlation, e.g., Pearson
and Kendal correlation coefficients, between dynamics
scores and existing metrics, Table 11. These metrics
include naturalness, motion smoothness, subject con-
sistency, and background consistency. Under these
metrics, models might ‘cheat’ for high-quality scores
by generating low-dynamic videos.

We improve the identified metrics by incorporating our
proposed human-aligned dynamics score D. In specific,
we propose to equally divide the human-aligned dynam-
ics score into L = 13 intervals. Within each interval,
we calculate the mean metric values. The mean values
of the L intervals are further averaged as the improved
metrics. Upon the improved metrics, to have a high
score, the generated videos should spread all dynamics intervals, which implies a large dynamics
range. 3

Naturalness. In addition to the improved metrics, we introduce the Naturalness metric, which reflects
how much the generated videos are like camera-captured ones. This is done by using the MLLM, i.e.,
Gemini-1.5 Pro [1], to calculate a naturalness score for each video. The scores are categorized into
five grades: “Almost Real" (100 points), “Slightly Unrealistic" (75 points), “Moderately Unrealistic"
(50 points), “Noticeably Unrealistic" (25 points), and “Completely Fictitious" (0 points). The overall
naturalness is then determined by averaging the scores of all videos. For evaluation, we invited five
users to rate the naturalness of the generated videos and then perform a correlation analysis between
human ratings and model scores. A high correlation (larger correlation coefficients) indicates the
plausibility of the naturalness metric.

5 Experiment

5.1 Human Alignment Assessment

To evaluate the plausibility of the proposed dynamics metrics and the naturalness metric, we conduct
the following human alignment experiments.

Ground-truth Annotation. We first generate videos using six state-of-the-art (SOTA) T2V mod-
els, including GEN-2 [2], Pika [4], VideoCrafter2 [14], Open-Sora [23], StreamingT2V [19] and
FreeNoise-Lavie [31] and DEVIL text prompts. For the generated videos, we collect human evaluated

3Please refer to Appendix D for the details of the improved metrics.
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Table 4: Evaluation of dynamics across text-to-video models at multiple temporal levels. Metrics
include inter-frame (Mf

range), inter-segment (Ms
range), and video-level (Mv

range) dynamics range
and overall dynamics range (Mrange) also shown. Dynamics ranges and dynamics controllability
(Mcontrol) are from 0 to 100, where higher scores indicate better performance.

T2V-Models
Dynamics Ranges Dynamics Control.

Mf
range Ms

range Mv
range Mrange Mcontrol

GEN-2 [2] 18.8 49.7 21.4 27.8 80.8
Pika [4] 36.2 56.3 29.1 36.8 72.2
VideoCrafter2 [14] 38.9 43.2 17.0 29.4 56.6
OpenSora [23] 65.2 80.1 36.4 55.3 61.7
StreamingT2V [19] 59.8 80.0 69.9 61.4 64.0
FreeNoise-Lavie [31] 67.6 71.7 66.3 63.4 58.2
VideoCrafter1 [13] 62.0 60.3 28.5 44.6 63.7
Hotshot-XL [3] 52.2 56.8 17.6 36.1 59.0
Show-1 [48] 55.5 62.4 37.0 45.0 74.2
ModelScope [40] 72.1 78.1 40.3 56.0 63.7
ZeroScope [5] 24.9 46.8 19.3 28.5 66.4

dynamics and naturalness as the ground-truth. Six persons are recruited to assess each video’s grade
of dynamics under three temporal levels (Frame, Segment, and Video). For each temporal level,
evaluators are required to rate the grade of dynamics from “static” to “very high dynamics”. To
guide the annotation process, we provide specific prompts for each temporal level. 4. We conduct
between-group correlation analyses using Pearson’s correlation, Kendall’s correlation, and the win
ratio to evaluate the consistency of dynamics scores with respect to human ratings.

Table 3: Human alignment by correlation
between dynamics scores and human rat-
ings on the proposed DEVIL benchmark.
Video generation is based on text prompts
in DEVIL. “PC” denotes Pearson’s correla-
tion, “KC” Kendall’s correlation, and “WR”
the win ratio.

Scores PC ↑ KC ↑ WR ↑

Inter-frame

Sofs 93.1 89.9 79.2
Ssd 91.7 88.0 78.1
Spd 96.4 93.2 86.1
Sf 96.5 93.5 86.5

Inter-segment
Spa 95.1 94.3 87.0
Sg 94.6 93.0 85.6
Ss 95.8 94.8 87.7

Video level
Ste 96.4 93.7 83.5
Stsd 97.7 96.4 90.5
Sv 98.0 97.2 91.4

Naturalness 79.0 75.5 52.4

The evaluation of the naturalness metric follows the
same process, where a higher human assigned grade
indicates a greater degree of naturalness.

Evalution. We calculate dynamics grades and natu-
ralness for generated videos on the proposed DEVIL
benchmark. For dynamics scores at multiple temporal
levels, we integrate them using the linear regression
model defined by Eq. 12. For each linear regres-
sion model, it takes the human evaluation results as
ground-truths, trained upon 75% of the randomly se-
lected videos and tests on the remaining 25% videos.
During testing, the human alignment performance is
reflected by the correlation e.g., Pearson and Kendall
correlation coefficients and win ratio, between pre-
dicted and human-evaluated dynamics grades. The
win ratio involves comparing each video against oth-
ers with different grades of dynamics. For instance, a
video rated as “high dynamics" by evaluators should
score lower in dynamics than any video rated as “Very
high dynamics" but higher than those rated as “static".

Table 3 shows the assessment results of the six T2V
models. It can be seen that the dynamics metrics and
the naturalness metric exhibit a strong alignment with
human evaluation. The improved metrics (Df , Ds, Dv defined in Sec. 3.3) further enhance the
alignment with human evaluations.

5.2 Influence of Frame Rate.

4Please refer to Appendix G for details
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Table 6: Evaluation of existing metrics and improved metrics. These metrics include Motion
Smoothness (MS), Background Consistency(BC), Subject Consistency(SC), and Naturalness (Nat).

Model Existing Metrics Improved Metrics

MS BC SC Nat MS BC SC Nat

GEN-2 [2] 99.4 97.2 95.6 81.6 57.9 55.6 53.3 38.0
Pika [4] 99.4 96.5 93.2 69.0 57.7 55.8 53.1 32.4
VideoCrafter2 [14] 97.7 97.4 95.5 70.8 48.1 47.7 46.5 33.1
OpenSora [23] 95.4 94.3 88.7 63.6 69.9 69.5 63.1 37.1
StreamingT2V [19] 94.9 91.0 85.2 55.2 70.7 68.0 61.2 33.2
FreeNoise-Lavie [31] 95.5 94.1 90.1 73.4 77.4 68.1 76.3 51.4
VideoCrafter1 [13] 95.8 95.3 92.8 75.4 61.3 60.7 57.9 39.7
Hotshot-XL [3] 97.0 95.5 93.4 85.6 55.7 54.7 52.1 45.1
Show-1 [48] 97.1 94.4 91.5 74.4 62.9 61.8 58.6 43.0
ModelScope [40] 95.8 93.5 89.3 71.6 70.5 68.2 62.6 44.9
ZeroScope [5] 98.2 94.8 89.3 74.6 49.1 46.8 45.6 34.2

Table 5: Influence of frame rate on the consis-
tency of dynamics scores with human evalua-
tion (measured by Pearson’s correlation).

Dynamics 4FPS 8FPS 16FPS Origin

Inter-frame 0.952 0.950 0.946 0.951
Inter-Segm 0.952 0.954 0.954 0.953

Video 0.967 0.967 0.967 0.967

Table 5 demonstrates how frame rate influences the
correlation between dynamics scores and human eval-
uations. Experiments indicate that our dynamics
scores maintain a high correlation (>0.9) with hu-
man ratings across various frame rates. To mitigate
the impact of frame rate variations on dynamics, we
standardized the frame rate of each video to 8 FPS.

5.3 Computation Efficiency

Our dynamics metrics offer high computational efficiency, achieving around 10 frames per second on
a single NVIDIA A100 GPU, and are scalable to multiple GPUs.

5.4 Evaluation of Video Dynamics
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Figure 5: Video quantity density w.r.t. dy-
namics score of the WebVid-2M dataset.

We evaluate the dynamics range Mrange, and dy-
namics controllability Mcontrol of T2V models on
the proposed DEVIL benchmark. We also evalu-
ate dynamics ranges at different temporal scales:
inter-segment dynamics rangeMf

range, inter-segment
dynamics range Ms

range, and video level dynam-
ics range Mv

range. The results are shown in Ta-
ble 4. The GEN-2 [2] and Pika [4] models score
high in dynamics controllability but low in range
due to their generation of low-dynamic videos. Con-
versely, the FreeNoise-Lavie method [31] attains high
range but low controllability, suggesting it produces
videos with dynamics that do not align well with text
prompts.

5.5 Improved Evaluation Metrics
As shown in Table 6, the existing metrics exhibit an obvious negative correlation when embedded
with dynamics, indicating that these models can achieve high scores on these metrics by generating
low-dynamic videos rather than high-quality content.

5.6 Insights from Video Dynamics Analysis
Biased Dynamics Distribution of Existing Dataset. The distribution of dynamics of the video
datasets (such as WebVid2M [8]) is biased. The statistical result is shown in Fig. 5. It can be seen
that most of the videos have a small dynamics score (≤ 20). The limited number of videos with high
dynamics scores restricts the model’s ability to generate dynamics-rich videos which are common in
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(b) Distribution of quality scores along dynamics score.
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Figure 6: Distributions of video quantity and quality scores along the dynamics score for various video
generation models including: GEN-2 [2], Pika [4], VideoCrafter2(VC-2) [14], Open-Sora(OS) [23],
StreamingT2V [19] and FreeNoise-Lavie(FN) [31]. Subplot (a) shows video quantity distribution.
Subplots (b) display the distribution of quality score of generated videos in terms of Background
Consistency, Motion Smoothness, and Naturalness, respectively. All videos are generated based on
our text prompt benchmark.

practical applications. Therefore, existing datasets should be expanded in terms of dynamics, and the
proposed metrics can provide guidance for this expansion.

Prompt-Video Bias of Existing Datasets. We used the dynamics controllability metric to evaluate
two popular datasets, WebVid2M [8] and MSR-VTT [46], by using the ground-truth text prompts
and videos. Unfortunately, they respectively achieve alignment scores of 36.31 and 52.98. The poor
performance indicates that the two datasets can not provide sufficient information/guidance while
training the video generation models. To train better video generation models, the text prompt of
these datasets requires to be elaborated on aspects of dynamics.

Limited Real-World Simulation Ability of Existing Methods. As shown in Fig. 6, we performed a
statistical analysis of frequency, visual quality, motion smoothness and naturalness metric scores for
SOTA methods based on the distribution of dynamics score. When the dynamics score is low, videos
generated by these SOTA models perform well across the four metrics mentioned. As the dynamics
score rises, these metrics, particularly naturalness, tend to decrease significantly. This decline may be
due to the models’ focus on optimizing the generation of simple, slow-motion content, with dynamics
not considered in the evaluation metrics.

6 Conclusion

We proposed DEVIL, a comprehensive and constructive evaluation protocol for T2V generation
models. In the protocol, we defined a set of dynamics metrics corresponding to multiple temporal
granularities, and a new benchmark of text prompts under multiple levels of dynamics. Based on
the distribution of dynamics scores over the benchmark, we assessed the generation capacity of T2V
models, characterized by dynamic ranges and degree of T2V alignment. Experiments show that
DEVIL enjoys 90% consistency with human evaluation results, demonstrating the potential to be a
powerful tool for advancing T2V generation models.

Limitations. At present, the grades of dynamics remain limited, which should be improved to more
fine-grained grades. Furthermore, only a limited number of T2V models are evaluated using the
proposed protocol. A more comprehensive evaluation of T2V models should be done in future work.
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Appendix
A Inter-segment Dynamics

Inter-segment dynamics quantifies the diversity of patterns between video segments by measuring the
similarity of features across different segments. In this section, we investigate the influence of various
factors on inter-segment dynamics, including the method for video segmentation, the proportion ratio
r, and the overall length of the video.

How to segment videos? In the computation of global aperiodicity within inter-segment dynamics,
video segmentation is essential. Table 7 compares the effects of proportional video segmentation
and keyframe-based segmentation on the performance of inter-segment dynamics. We observe that
both segmentation methods achieve comparable levels of correlation with human evaluations, with
Pearson’s correlation coefficients of 0.96 and 0.95, and Win Ratios of 0.85 and 0.87, respectively.
Given that proportional video segmentation facilitates the simultaneous comparison of videos of
varying lengths and the frequency of pattern changes, we have opted to utilize proportional video
segmentation in our implementation of global aperiodicity.

Table 7: Comparison of keyframe-based and proportional video segmentation methods
Video Segment Method Pearson’s Correlation Kendall’s Correlation Win Ratio

Key-frame-based 0.96 0.94 0.85
Proportional 0.95 0.93 0.87

Influence of proportional factor r. Table 8 illustrates the impact of the parameter r on the
performance of inter-segment dynamics. When r is set at 1/8, 1/4, and 1/2, the Pearson’s correlation
coefficients with human ratings are 0.92, 0.94, and 0.93 respectively. These results indicate that
inter-segment dynamics is robust to variations in r. Ultimately, we selected r = 1/4 as it achieved
the highest correlation with human evaluations.

Table 8: Influence of the proportion factor r on the performance of inter-segment dynamics
Proportion Factor r Pearson’s Correlation Kendall’s Correlation

1/8 0.92 0.90
1/4 0.94 0.91
1/2 0.93 0.90

Influence of Video Length. In Table 9 .We group videos based on the video length (max is 8s in
tested models) and study the relation between dynamics scores and human scores. Inter-segment
dynamics robustly achieves over 90% correlation whatever the video length is.

Table 9: Influence of video length the performance of inter-segment dynamics.
Video Length (s) Pearson’s Correlation Kendall’s Correlation

2 0.96 0.94
4 0.93 0.91
8 0.94 0.90

B Model Weight of Human Alignment Module

Table 10 shows the weights of each dynamics score in the human alignment module.
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Table 10: Weights of each dynamics score in the human alignment module.
Temporal Scale Dynamics Score Typical Value Weight

Inter-frame
Dofs 62.00 6.70E-04
Dsd 1.00 0.17
Dpd 33.00 0.03

Inter-segment Dpa 0.20 2.20
Dga 0.80 0.63

Video Dte 7.00E+04 1.00E-05
Dtsd 0.20 1.46

Table 11: Pearson correlation coefficient between the dynamics metrics and the existing metrics
including aesthetic score [45], technical score [45] visual quality [45], motion smoothness [24],
subject consistency [24] and background consistency [24] and our naturalness.

Aesthetic
Score

Technical
Score

Visual
Quality

Motion
Smoothness

Subject
Consistency

Background
Consistency Naturalness

GEN-2 [2] -0.19 -0.09 -0.12 -0.54 -0.88 -0.73 -0.50
Pika [4] -0.40 -0.20 -0.28 -0.65 -0.88 -0.78 -0.47
VideoCrafter2 [14] -0.25 -0.20 -0.24 -0.59 -0.87 -0.76 -0.36
OpenSora [23] -0.20 -0.27 -0.26 -0.70 -0.90 -0.83 -0.43
StreamingT2V [19] -0.15 -0.21 -0.23 -0.57 -0.89 -0.81 -0.36
FreeNoise-Lavie [31] -0.37 -0.31 -0.35 -0.75 -0.91 -0.86 -0.48

Average -0.26 -0.21 -0.25 -0.63 -0.81 -0.79 -0.43

C Correlation Between Existing Metrics and Dynamics

In Section 4, to identify the relevance between existing metrics with the dynamics metrics, we provide
a bi-variate analysis strategy. Based on bi-variate analysis, we provide detailed correlation results
for the models. In Table 11, the Pearson correlation coefficients between the dynamics scores and
existing metrics, including aesthetic score, technical score, visual quality, motion smoothness, subject
consistency, background consistency, and naturalness, are detailed.

The results indicate a clear trade-off between video dynamics and various existing metrics in T2V
models. As dynamic complexity increases, there tends to be a decline in motion smoothness, subject
consistency, background consistency, and naturalness. The aesthetic, technical, and visual quality
metrics show relatively low correlation, which can be attributed to the fact that these metrics evaluate
video frames independently, ignoring temporal relationships between frames.

D Comprehensive Evaluation Metrics

Let S(i) denote a score of generated video i. Existing metrics simply average the scores of all videos
to obtain the metric score S of the T2V model:

S =
1

|T |

|T |∑
i=1

S(i), (15)

where |T | is the total number of generated videos. Considering that some existing metrics show a
considerable negative correlation with the video’s dynamics score, they fail to prevent models from
generating low-dynamic videos.

To address this issue, we enhance existing metrics by integrating human-aligned dynamics scores,
preventing models from attaining high scores by producing low-dynamic videos. Specifically, we
first equally divide the human-aligned dynamics score into L = 13 intervals. We then calculate the
mean scores Sl at each interval l. The improved metric S∗ is defined as the average of Sl across all
intervals:

S∗ =
1

L

L∑
l=1

Sl. (16)
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E Assigning Dynamics Grades to Text Prompts

As described in Section 3.1, we collect approximately 50,000 text prompts from existing benchmarks,
including 19 object categories and 4 scene categories. Using GPT-4 coarse classification and human
refinement, we construct the DEVIL prompt benchmark. The process of categorizing dynamics
grades using GPT-4 is illustrated in Figure 7. In specific, we instruct GPT-4 to perform classification
on the rate of content change. To enhance GPT-4’s classification accuracy, we further provide detailed
criteria and examples for each dynamics grade. In the post-processing step, we recruit six human
annotators to refine the dynamics grades over three months. Finally, we sample about 800 text
prompts at different dynamics grades to ensure a uniform distribution across the grades.

F Details of Naturalness

We employed the advanced multi-modal large model, Gemini-1.5 Pro [1], equipped with video
understanding capabilities, to assess and classify the naturalness of video content. As shown in
Fig. 8, we demonstrate the process through which the model analyzes videos and assigns naturalness
ratings. The figure details the five different levels used to evaluate video naturalness, ranging from
“Completely Fantastical" to “Almost Realistic". Each level is defined based on how closely the
video content aligns with the real world. Additionally, the figure includes two examples of video
evaluations: the first video is rated as "Almost Realistic" due to its high conformity with reality, while
the second video, due to minor distortions—such as the unrealistic number of legs on a dog—is rated
as "Slightly Unrealistic". These examples validate the plausibility of the proposed naturalness metric.

G Human Annotation

To align human evaluations with automated metrics, we annotated a series of videos generated
by SOTA T2V models. We initiated the process by generating videos using prompts from the
DEVIL benchmark with six advanced T2V models including GEN-2, Pika, VideoCrafter2, OpenSora,
StreamingT2V, and FreeNoise-Lavie. Subsequently, we developed a video annotation toolbox for
evaluating the dynamics and naturalness of videos. As shown in Figure 9, the toolbox allows
annotators to assess the dynamics of the videos across five grades, from almost static to very high
dynamics, and the naturalness from almost real to completely unreal. To guarantee high-quality and
consistent evaluations, we recruit six annotators who have undergraduate degrees and provided them
with detailed training.

H Visual comparison

In Section 3, we use text prompts with different dynamics grades to generate videos with T2V models.
Here, we provide visual results of the generated videos.
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Given the provided text, classify each text segment according to the scene and 
background dynamics using the following criteria. For each text segment, inherit 
the serial number at the beginning of the text and a classification label from the 
list below. 
Classification Criteria:
        Almost Static: Minimal changes in scene or background, almost static.
        Example: "A room where only the fading light changes."
        Low Dynamics: Slow and slight changes in scene, usually slow motion.
        Example: "A balloon slowly rising, with a focus on its details."
        Medium Dynamics: Noticeable activity and changes, but relatively smooth 
overall.
        Example: "A child and dog moving from grass to sand."
        High Dynamics: Fast actions and changes.
        Example: "A chase scene with rapid transitions and complex maneuvers."
        Very High Dynamics: Extremely rapid and frequent video content changes.
        Example: "A battle scene with quick cuts and intense action."
Instructions:
        For each section of text, assign a dynamics grade classification based on the 
provided criteria. List the serial number inherit from the beginning of the text 
followed by the classification.

1. High Dynamics
2. Low Dynamics
3. Almost Static
…

User

AI

User

1. A car drifts sharply around a corner, almost hitting a bystander.
2. little girl putting down and picking up her bear plush.
3. the dead bird is on the ground.
…

Figure 7: Illustration of prompt coarse categorization using GPT-4 [30].
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Task: Analyze the video for anomalies and normal behaviors, then classify its 
realism based on the criteria below:

1. Completely Fantastical: Displays complete detachment from reality 
throughout, with elements of fantasy or surrealism.
2. Clearly Unrealistic: Contains significant distortions over extended periods or 
on a large scale, making the overall scene unrealistic or contrary to physical laws, 
such as unrealistic large objects or scenes.
3. Moderately Unrealistic: Exhibits noticeable distortions temporarily or on an 
intermediate scale, though the plot remains fairly coherent, e.g., medium-sized 
objects or scenes appear unrealistic.
4. Slightly Unrealistic: Distortions are brief or minute, hard to notice, such as 
unnatural facial expressions or unnatural scene textures.
5. Almost Realistic: No noticeable distortions; aligns completely with reality.

Instructions:
- List all the anomalies and normal aspects observed.
- Based on these observations, classify the video's realism using the above criteria.

Output Required:
- Only return the classification of the video's realism.

Almost Realistic

Clearly Unrealistic

User

User

User

AI

AI

Figure 8: Illustration of naturalness calculation for generated videos using Gemini-1.5 Pro [1].
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Figure 9: Toolbox for dynamics and naturalness annotation.
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"Text Prompt":   "Portrait of three business people looking at the camera."
"Dynamic grade":  "Static"
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"Text Prompt":

"Dynamic grade":  "Low"

"Tringa glareola. two wood sandpipers in the summer. standing on land near the lake in the
north of siberia."
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"Text Prompt":   "Yachting on wide city river. outdoor activities, summer vacation"
"Dynamic grade":  "Medium"
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"Text Prompt": "Commercial airplane dodging lightning during a turbulent storm, rain-drenched windows."
"Dynamic grade":  "High"

"Text Prompt":  

"Dynamic grade":  "Very High"
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"High-speed shots of a volcanic eruption engulfing a tropical island, with lava fountains
spewing molten rock and the environment transforming from idyllic paradise to hellish
landscape of ash and fire."

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made, including the
proposal of the DEVIL evaluation protocol for evaluating T2V models focusing on video
dynamics, the creation of a benchmark with dynamics scores, and the improvement of
existing evaluation metrics from a dynamics perspective.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a section discussing limitations, such as the limited number
of dynamics grades and the need for a more comprehensive evaluation of T2V models.
(Refer to the Limitations section).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results that require formal assumptions
or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: The paper provides sufficient details on the experimental setup, including data
construction, and evaluation metrics, to allow reproduction of the main results. (Refer to the
method and experiments section).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The paper does not provide open access to the data and code due to restrictions,
but detailed instructions for reproducing the results are included. (Refer to the Supplemental
Material for instructions).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all relevant training and test details. (Refer to the Experi-
ments section).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and confidence intervals for the main experimental
results, providing information about the statistical significance of the findings. (Refer to the
Results and Analysis section).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides details on the type of compute workers (GPUs), memory
requirements, and time of execution for each experiment, ensuring reproducibility. (Refer to
the Experiments section).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses potential positive impacts, such as promoting the develop-
ment of T2V models through improved evaluation methods, and negative impacts, including
the risk of misuse in creating realistic but misleading video content.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits the creators and original owners of the assets used,
and the licenses and terms of use are explicitly mentioned and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new assets, such as the DEVIL benchmark and associated
metrics, and provides thorough documentation to ensure reproducibility and proper usage.

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The paper includes detailed instructions provided to human subjects for the
user study, along with information about compensation. (Refer to the User Study section in
the Methods and Appendix).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper describes the potential risks to study participants, confirms that
these risks were disclosed, and states that IRB approval was obtained for the user study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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