
Anomaly Detection in Multi-Agent Trajectories for
Automated Driving

Julian Wiederer1,2 Arij Bouazizi1,2 Marco Troina1

Ulrich Kressel1 Vasileios Belagiannis2
1Mercedes-Benz AG 2 Ulm University

{julian.wiederer, arij.bouazizi, marco.troina, ulrich.kressel}@daimler.com
vasileios.belagiannis@uni-ulm.de

Abstract:
Human drivers can recognise fast abnormal driving situations to avoid accidents.
Similar to humans, automated vehicles are supposed to perform anomaly detec-
tion. In this work, we propose the spatio-temporal graph auto-encoder for learning
normal driving behaviours. Our innovation is the ability to jointly learn multiple
trajectories of a dynamic number of agents. To perform anomaly detection, we
first estimate a density function of the learned trajectory feature representation
and then detect anomalies in low-density regions. Due to the lack of multi-agent
trajectory datasets for anomaly detection in automated driving, we introduce our
dataset using a driving simulator for normal and abnormal manoeuvres. Our eval-
uations show that our approach learns the relation between different agents and
delivers promising results compared to the related works. The code, simulation
and the dataset are publicly available1.

Keywords: Anomaly Detection, Multi-Agent Trajectory, Graph Neural Net-
works, Automated Driving

1 Introduction

A tired and inattentive driver often breaks the driving regulations by entering, for example, the op-
posite lane. This abnormal driving behaviour is usually early detected by the participating human
drivers who react early enough to prevent harmful situations. Similar to humans, autonomous vehi-
cles should perform anomaly detection as part of the automated driving modules [1, 2, 3]. Learning,
thus, normal driving behaviour is necessary for detecting anomalies.

Anomaly detection is a long-developed approach in computer vision, for instance, to spot abnormal
human behaviour [4, 5] or vehicle motion in traffic [6]. In robotics, the approach detects hardware
failures of self-flying delivery drones [7] or helps a wheeled robot to navigate around unseen obsta-
cles [8]. Although these approaches can be transferred to automated driving, they only consider a
single agent in a static environment. That is barely the case for autonomous vehicles, where multiple
agents influence each other through constant interactions. In this work, we present an approach to
detect anomalies of multi-agents based on their trajectories.

We propose a spatio-temporal graph auto-encoder (STGAE) for trajectory embedding. Similar to
the standard auto-encoder, it learns a latent representation of multi-agent trajectories. The main in-
novation of STGAE is the ability to simultaneously learn multiple trajectories for a dynamic number
of agents. In a second step, we perform kernel density estimation (KDE) on the latent representation
of the STGAE. We empirically observe that KDE captures well the distribution of the normal trajec-
tory data. During the test phase, we detect anomalies in low-density regions of the estimated density.
To evaluate our approach, we introduce a new dataset for multi-agent trajectory anomaly detection
for automated driving. The current automotive datasets [9, 10] contain many hours of recordings,
but lack anomalies due to the rareness of abnormal driving situations, whereas anomaly detection

1Project page: https://github.com/againerju/maad_highway

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://github.com/againerju/maad_highway

datasets [11, 12] have the required anomaly labels but are not relevant to automotive and automated
driving problems. Finally, scenario staging is often applied in behaviour modelling [13], but its
prohibitive for driving anomalies since it will put the actors into life danger. For these reasons, we
develop a multi-agent simulation and create a dataset with normal and abnormal manoeuvres. Then,
we evaluate our method for single- and multi-agent configurations, including comparisons with deep
sequential auto-encoder and linear models. Moreover, we rely on the standard metrics for anomaly
detection to show that our approach delivers promising results compared to the related methods.

2 Related Work

Multi-Agent Trajectory Modelling. Trajectory prediction is essential for automated driving [14,
15]. Modelling the interaction with the environment and between the participants improves the pre-
diction quality [13, 16]. The idea of information exchange across agents is actively studied in the
literature [17, 18, 19]. For example, Alahi et al. introduced the social-pooling layer into LSTMs to
incorporate interaction features between agents [20]. Recently, graph neural networks (GNN) have
outperformed traditional sequential models on trajectory prediction benchmarks [21, 22]. GNNs
explicitly model the agents as nodes and their connection as edges to represent the social interac-
tion graph. Similarly, the social spatio-temporal graph convolution neural network (ST-GCNN) [5]
extracts spatial and temporal dependencies between agents. Also, we use a related architecture to
design our spatio-temporal graph auto-encoder for learning the normal data representation.

Anomaly Detection. On image and video data, anomaly detection is a long-standing topic. Hand-
crafted and motion features were traditionally employed for anomaly detection based on probabilis-
tic PCA [23] or one-class SVM [24]. At the moment, deep neural networks dominate within the
anomaly detection approaches [25, 26]. The usual approach is training an auto-encoder with normal
data and then measuring the deviation of the test samples from the learned representation. For in-
stance, Morais et al. [5] proposed a sequential auto-encoder to encode skeleton-based human motion
and considered the reconstruction error as a measure for the detection of irregular motion patterns.
Also, the variational auto-encoder (VAE) in [27] can learn the normal data distribution from a set
of raw sensor signals in combination with a long short-term memory (LSTM) network. Unlike our
work, these approaches assume a fixed number of input streams, i.e. sensor signals, instead of a
varying number of trajectories, i.e. agents. Here, we formulate the idea of learning the normal data
distribution with the spatio-temporal graph auto-encoder. Furthermore, we estimate the normal data
density function instead of relying on the reconstruction error.

Anomaly Detection in Trajectory Prediction and Control. Anomaly detection has been exten-
sively studied in robotics, e.g. model predictive control [28], collaborative robots [29], autonomous
drones [7], robot navigation in crowds [30] and uncertain environments [31, 8]. Nevertheless, the
prior work only address the problem of single agent anomaly detection. We tackle the problem of
detecting anomalies in multi-agent trajectories.

3 Anomaly Detection in Multi-Agent Trajectories

We study the problem of anomaly detection for multi-agent trajectories. The input to our approach
is a scene with N agent trajectories of length T , where N is dynamic over scenarios. We describe
the observed trajectory of the agent iwith the agent states si = {sit}Tt=1, where sit = (xit, y

i
t) denotes

the agent location in x- and y-coordinates. Our goal is to estimate the anomaly score αt = [0, 1],
i.e. normal or abnormal, for each time step of an unseen scene during testing, while only showing
normal scenes during training.

We present a two-stage approach, where first a spatio-temporal graph convolution network auto-
encoder is trained to represent normal trajectories in the feature space (Sec. 3.1). Second, we use
the latent representation to fit a probabilistic density to the normal trajectories with kernel density
estimation (Sec. 3.2). Finally, we present the anomaly detection score (Sec. 3.3) given the estimated
density. The supplementary material provides visualisation of the training and inference process.

2

3.1 Spatio-Temporal Graph Auto-Encoder

We define the spatio-temporal graph auto-encoder (STGAE) as composition of the multi-agent tra-
jectory encoder g(·) and the trajectory decoder f(·). The encoder maps a set of agent trajectories on
the latent representation. The decoder transforms the latent representation back to trajectories.

Trajectory Encoding. The encoder is designed as a spatio-temporal graph convolution neural net-
work (ST-GCNN) [32]. Given a set ofN agent trajectories of length T , we define the spatio-temporal
graph G = {Gt}Tt=1 as a set of directed spatial graphs Gt = (Vt, Et). The spatial graphs model
the multiple agents as nodes Vt and their connectivity as edges Et to compute pairwise influence.
The set of graph nodes Vt = {vi

t}Ni=1 represent the agent states in terms of the relative location
vi
t = (xit − xit−1, yit − yit−1). We define the edges Et = {eijt }Ni,j=1 to model how strong the node
i influences node j at time step t. To this end, a kernel function eijt = κedge(v

i
t,v

j
t) [33] measures

the similarity between two agents in the same time step defined as

eijt =

{
1/‖vi

t − vj
t‖2 , ‖vi

t − vj
t‖2 6= 0

0 , otherwise.
(1)

The influence is high for similar agent states and low otherwise. In the rare case of two agents
sharing the same location, we set eijt = 0.

We define the weighted adjacency matrix At ∈ RN×N based on the connectivity parameters eijt .
We follow the procedure of Kipf et al. [34] and compute the normalised graph Laplacian Ât =

D
− 1

2
t ÃtD

− 1
2

t with the graph Laplacian Ãt = At + I, where I denotes the identity matrix, and
the node degree matrix Dt with diagonal entries defined as Dii

t =
∑

j Ã
ij
t . As introduced by

Yan et al. [32], we aggregate over neighbouring agents using spatial graph convolutions gs(V, Â) =

σ(ÂVθs) with the activation function σ(·) and the network weights θs. We denote Â and V as the
concatenation of the weighted adjacency matrices {Ât}Tt=1 and the node features {Vt}Tt=1 over all
time steps, respectively.

In dynamical systems, spatial features are not expressive enough since they ignore important tempo-
ral relationships. To include the time dimension, we connect the same node over consecutive frames
using temporal convolutions gt(·) as introduced in [35]. We define the encoder g(·) as a composite
of spatial graph convolution and temporal convolution layers. As a result the encoder computes the
latent representation Z ∈ RT×N×Fg with the latent feature dimension Fg .

Trajectory Decoding. Given the encoded representation, we define a decoder to reconstruct the set
of input trajectories. The decoder applies multiple 2D convolution layers on the temporal dimension
of the latent features [33]. To include agent interactions, the convolutions aggregate features across
agents. We denote the decoder output as V̂ ∈ RT×N×Ff with output feature dimension Ff .

Training. For the training, we assume that the state of agent i in time step t comes from a bi-variate
distribution, given by sit ∼ N2

(
µi

t,σ
i
t,ρ

i
t

)
, where µi

t,σ
i
t ∈ R2 are the mean and the standard

deviation of the location, respectively, and ρi
t ∈ R2 is the correlation factor. We estimate the

parameters of the bi-variate distribution with the decoder output v̂i
t = {µ̂i

t, σ̂
i
t, ρ̂

i
t}. We denote

the estimated probability density function as q(sit|µ̂i
t, σ̂

i
t, ρ̂

i
t) and train the model to minimise the

negative log-likelihood

L = −
T∑

t=1

log
(
q
(
sit|µ̂i

t, σ̂
i
t, ρ̂

i
t

))
. (2)

Similar to other sequential models [5], our STGAE requires inputs of a fixed temporal length. There-
fore we clip each scene in the training set into smaller fixed-size segments of length T ′ using a sliding
window approach.

3

3.2 Kernel Density Estimation for Normal Trajectories

We rely on kernel density estimation (KDE) to approximate the probability density function of the
normal trajectories from the latent feature representation of the STGAE. The idea is based on the
assumption that normal trajectories fall in high density regions and anomalies occur in regions with
lower density.

Given the trained STGAE, we encode the training segments and combine all latent representations
in the set Zkde. The KDE assumes all samples to be i.i.d. random variables drawn from an unknown
true distribution p [36]. We can approximate the true density of a new feature vector z by p̂ defined
as

p̂(z) =
1

|Zkde|h

|Zkde|∑
i=1

κkde

(
z− zi
h

)
with the Gaussian Kernel [37] κkde(x) ∝ exp

(
−‖x‖

2

2h2

)
.

(3)

The kernel function κkde(x) weights the observations differently based on the similarity to its neigh-
bours. The parameter responsible for the weights of the points is the bandwidth h, which serves as
smoothing. To sum-up, Eq. 3 computes the probability density of the agent’s feature vector z.

3.3 Abnormal Trajectory Detection

During the inference, we use the same sliding window approach as in the training and get the set of
all test segments. For a test segment, the STGAE encoder computes the latent representation and the
KDE from Eq. 3 estimates the density for each agent and time step, given the latent feature vector.
We take the estimated density as a measure for anomalies. The feature decoder of the STGAE is not
required during testing.

Anomaly Score. We follow a similar approach as introduced in [5] for the anomaly scoring. First,
we computeN anomaly scores αi

t for all agents included in the same time step, and second compute
the anomaly score αt to measure if time step t is abnormal. To score for one agent, we average the
anomaly scores of all segments where the agent occurs by:

αi
t =

∑
o∈So

p(zit,o)

|So|
, (4)

where So are the overlapping sliding window segments in which the agent i is present and zit,o are
the resulting feature vectors from the STGAE encoder at time step t. This results in one anomaly
score for each agent in a specific time step. To identify if a time step is normal or abnormal, we
compute the anomaly score αt by taking the maximum over all agents:

αt = max(α(zit))i∈1,...,N . (5)

The max-operation avoids missing anomalies compared to the mean. We use αt for the calculation
of the metrics in our evaluations.

4 Experimental Results

We present the first dataset for anomaly detection in multi-agent trajectories and evaluate our method
in comparison to seven baselines. See supplementary material for more results.

4.1 Dataset Development

To evaluate our algorithm, we propose the MAAD dataset, a dataset for multi-agent anomaly de-
tection based on the OpenAI Gym MultiCarRacing-v0 environment [38]. Since it was originally
released as a multi-agent racing environment for learning visual control policies [39], we adapt it for
anomaly simulation. We design the scenario of a two-lane highway shared by two vehicles, which

4

Figure 1: Example sequences from the proposed MAAD dataset. We show the observed trajectory of
each agent. The first frame shows a save overtaking manoeuvre form the normal set. The other three
frames contain abnormal actions: the blue vehicle is pushing the red vehicle aside, an aggressive
reeving action of the red vehicle and a wrong-way driver who even collides with the upcoming
traffic.

naturally leads to interaction, e.g. speed adjustments, lane changes or overtaking actions. The vehi-
cles are controlled by human players to record multiple expert trajectories. For every sequence, we
choose random initialisation of the agent starting positions to increase trajectory diversity.

In total, we create a dataset with 113 normal and 33 abnormal scenes. Beforehand, 11 different types
of anomalies are defined in terms of breaking driving rules or careless behaviour2. Each abnormal
scenario is recorded three times to incorporate more variations (see Fig. 1). After all recordings,
the sequences are annotated with frame-wise labels by human experts with the ELAN annotation
software [40]. We use 80 randomly selected normal sequences for training and the remaining 66
sequences to test. The sequences are sub-sampled to 10 Hz with a segment length of T ′ = 15 time
steps, which corresponds to 1.5 seconds.

4.2 Baselines

Our baselines include multi-agent models as variants of our method, which explicitly model interac-
tion, as well as single-agent models, ignoring interaction. The baselines can be further categorised
as one-class and reconstruction methods.

Single-Agent. To examine the effect of interaction, we define four interaction-free models, two
parameter-free and two neural network approaches. As simple parameter-free reconstruction
method, we employ the constant velocity model (CVM) from [41]. Secondly, we approximate the
trajectory with interpolation between the first and the last time step of the observed trajectory, we
denote the model as linear temporal interpolation (LTI). The linear models succeed in the metrics,
if the velocity profile of abnormal trajectories highly deviates from the normal trajectories. As a
single-agent neural network, first we adapt the Seq2Seq model from [42]. It is composed of an
encoder LSTM and a decoder LSTM. The encoder computes a feature vector representing one tra-
jectory. After the last input is processed, the decoder tries to reconstruct the input trajectory from
the feature vector. Next, we implement an interaction-free variant of STGAE by setting At = I .
This reduces the model to a spatio-temporal auto-encoder, why we call it STAE.

Multi-Agent. Based on the proposed STGAE we evaluate three multi-agent baselines. For the first
two variants, we use STGAE as reconstruction method. We train one STGAE with a bi-variate loss
(STGAE-biv) and a second with classical MSE loss (STGAE-mse) on the trajectory reconstruction
task. Similar to our approach, the third variant is a one-class classification method. We replace the
KDE of our method with a one-class SVM (OC-SVM), which is an adaption of the traditional SVM
to one-class classification. It takes the encoder features as input and finds a hyperplane separating
the data points from the origin while ensuring that the hyperplane has maximum distance from the
origin [43]. The baseline is denoted as STGAE+OC-SVM.

4.3 Evaluation Metrics

We quantitatively evaluate our approach following the standard evaluation metrics used in the
anomaly detection literature [44, 45, 46], namely AUROC, AUPR-Success, AUPR-Error and FPR at
95% TPR. The AUROC metric integrates over the area under the Receiver Operating Characteristic

2We define the 11 anomaly sub-classes as leave road, left spreading, aggressive overtaking, pushing aside,
aggressive reeving, right spreading, skidding, staggering, tailating, thwarting and wrong-way-driving.

5

Table 1: Comparison of the proposed method with the baselines on the proposed MAAD dataset
using four metrics: AURC, AUPR-Abnormal, AUPR-Normal and FPR-95%-TPR. We differentiate
between single- and multi-agent and further categorise into reconstruction and one-class classifica-
tion methods. Highest scores are written in bold. For the trained models we provide the mean and
standard deviation of ten runs. Note, CVM and LTI are deterministic with zero standard deviation.

Method One-class vs.
Reconstruction AUROC ↑ AUPR-Abnormal ↑ AUPR-Normal ↑ FPR-95%-TPR ↓

Si
ng

le
-

A
ge

nt

CVM [41] reconstruction 83.11 (±0.00) 54.47 (±0.00) 95.99 (±0.00) 74.62 (±0.00)
LTI reconstruction 75.47 (±0.00) 48.89 (±0.00) 92.37 (±0.00) 95.03 (±0.00)
Seq2Seq [42] reconstruction 56.15 (±0.68) 16.92 (±1.01) 89.54 (±0.13) 84.62 (±0.26)
STAE-biv |At = I reconstruction 57.54 (±11.77) 21.77 (±8.48) 89.47 (±3.26) 84.42 (±2.50)

M
ul

ti-
A

ge
nt

STGAE-mse reconstruction 81.53 (±3.16) 50.76 (±4.47) 95.90 (±0.93) 67.36 (±9.30)
STGAE-biv reconstruction 74.82 (±5.10) 37.79 (±7.16) 94.10 (±1.31) 77.80 (±9.77)
STGAE-biv+OC-SVM one-class 85.97 (±2.40) 52.37 (±8.85) 97.11 (±0.59) 49.90 (±6.33)

Ours one-class 86.28 (±1.73) 55.20 (±7.74) 97.15 (±0.54) 50.02 (±7.97)

curve (ROC) and results in a threshold-independent evaluation. Note that a classifier with 50 %
AUROC is equal to a random classifier, while 100 % is the upper limit and denotes the best possible
classifier. We use the Area Under the Precision-Recall (AUPR) curve as our second metric. Other
than AUROC, it is able to adjust for class imbalances, which is always the case in anomaly detection,
i.e. the amount of abnormal samples is small compared to normal samples [45]. Here, we show both
AUPR metrics, the AUPR-Abnormal, where we treat the abnormal class as positive, and the AUPR-
Normal, where we treat the normal class as positive. Additionally we show FPR-95%-TPR, the
False Positive Rate (FPR) at 95% True Positive Rate (TPR). For the one-class methods we directly
apply the metrics on the output score and for the reconstruction methods we take the mean squared
error (MSE) between the given and the reconstructed trajectory as anomaly score, following [5].

4.4 Implementation Details

The CVM approximates the agent trajectories assuming the same velocity for all time steps. The
velocity is estimated given the first two time steps of a trajectory. For LTI the reconstruction error is
defined as the distance between the ground-truth trajectory and equidistantly sampled locations on a
straight line between the beginning and the end of the trajectory. Both, the encoder and decoder of
the Seq2Seq model, are implemented with 3 stacked LSTM layers and 15 hidden features. We train
the network for 1500 epochs using Adam optimiser with learning rate 0.01.

Our STGAE method is implemented as ST-GCNN encoder [33] and TCN decoder [35]. The encoder
is composed of one spatial graph convolution layer and one TCN layer, both with five latent features,
followed by the decoder consisting of five convolution layers for reconstruction. We train for 250
epochs using Stochastic Gradient Descent and learning rate 0.01, and decay the learning rate to
0.002 after 150 epochs. For evaluating STGAE-biv we sample 20 reconstructed trajectories from
the bi-variate Gaussian distribution. STGAE with MSE loss does not require sampling.

Both one-class classification methods (OC-SVM and KDE) are implemented using a Gaussian ker-
nel and the best hyperparameters are selected via grid search. Note, that OC-SVM has a minor
supervised advantage, since validation of the model takes place on a holdout test set, i.e. 20% ran-
domly selected from the test data. Hyperparameter tuning of γ and ν for OC-SVM is performed via
grid search with γ ∈ {2−10, 2−9, ..., 2−1} and ν ∈ {0.01, 0.1}. The bandwidth of KDE is selected
from h ∈ {2−4.5, 2−4, ..., 25} via 5-fold cross-validation with the log-likelihood score as in [47].

4.5 Results

We present our results in comparison to the baselines. Afterwards, we evaluate different anomaly
types and finally the performance stability over input sequence length and beyond pairs of agents.

Comparison with the Baselines. The comparison of our method with the baselines is presented
in Table 1. Additionally, we show the ROC curves of all approaches in Figure 2. Our STGAE-
biv+KDE outperforms both the linear and the deep methods in three out of four metrics, namely
AUROC, AUPR-Abnormal and AUPR-Normal, and is on par with STGAE-biv+OC-SVM for FPR-
95%-TPR. The second one-class classification approach STGAE-biv+OC-SVM reaches similar per-

6

0.0 0.2 0.4 0.6 0.8 1.0

False Postive Rate [-]

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Po
st

iv
e

R
at

e
[-

]

ROC curves

CVM
LTI
Seq2Seq
STAE-biv |At = I

STAGE-mse
STGAE-biv
STGAE-biv+OC-SVM
Ours

Figure 2: The ROC curves of the single-agent
models (dashed lines) and the multi-agent mod-
els (solid lines).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Segment Length [s]

50

60

70

80

90

A
U

R
O

C
[-

]

AUROC over Segment Length

Figure 3: AUROC metric over the segment
length. Our method is more stable for various
segment lengths.

Table 2: AUROC on different types of anomalies. We differentiate between non-interactive and
interactive anomalies. The multi-agent models reach high-scores in both interaction and non-
interaction anomalies. Highest scores are written in bold.

Abnormal class Non-interactive vs.
Interactive CVM LTI Seq2Seq STAE-biv

At = I
STGAE

-mse
STGAE

-biv
STGAE-biv

+SVM Ours

leave road non-interactive 88.66 32.30 91.06 92.95 99.24 94.32 99.57 98.22
left spreading interactive 90.88 96.90 47.06 55.06 91.92 52.76 94.16 96.56
aggressive overtaking interactive 91.78 78.30 59.09 50.30 92.52 59.92 91.80 93.24
pushing aside interactive 91.54 79.98 75.55 82.02 98.73 72.51 89.84 90.44
aggressive reeving interactive 96.67 61.15 79.00 81.97 96.33 86.37 92.31 94.57
right spreading interactive 87.66 89.83 45.22 61.75 96.33 53.57 95.55 96.24
skidding non-interactive 96.90 94.69 90.00 98.84 98.31 70.24 98.80 99.65
staggering non-interactive 86.87 85.30 57.83 72.64 90.58 66.53 94.91 96.01
tailgating interactive 77.18 70.20 35.88 74.11 88.71 86.42 83.55 84.87
thwarting interactive 98.08 90.75 88.34 92.56 92.68 96.58 81.95 81.59
wrong-way driving interactive 63.16 64.63 68.86 53.90 61.46 57.88 73.11 73.15
overall 83.11 75.47 58.06 70.01 87.70 72.67 87.38 88.34

formance and is the best for FPR-95%-TPR, but cannot reach the high-score in the remaining met-
rics. Considering the ROC curves, both one-class methods have a similar course with slight advan-
tages for our method using KDE for anomaly detection. In general, the one-class methods are more
stable over multiple runs. Our approach has practical advantage over the baselines as it remains
superior even in consideration of the standard deviation of all other models.

Overall, besides STGAE-biv, the multi-agent models show higher accuracy compared to methods
considering each agent individually. This indicates that some manoeuvres are only anomalous in
the context of other traffic participants and could be considered as normal if the agent is alone
on the street. This is also the reason for the performance drop for STGAE-biv, if the adjacency
matrix At is reduced to the identity matrix, i.e. no feature aggregation over neighbours. The linear
models perform competitively, which gives rise to the difference between normal and abnormal
lying in the degree of linearity of the trajectories. We empirically observe that Seq2Seq can not
differentiate between normal and abnormal trajectories for most experiments, because it fails to learn
the sequential dependencies. Overall, our approach can detect most of the anomalies compared to
the baselines. In practice, high detection rates directly support the decision making process. Once
an anomaly is detected the automated vehicle can react or pass the control to the human driver.

Detection Score on Anomaly Types. Table 2 shows the evaluation of the eleven anomaly types.
To compute the ROC curve for an anomaly type, we consider this anomaly as positive and ignore
all frames labelled with another anomaly category. Our method outperforms the others in four of
the eleven classes and is competitive for the remaining ones. In particular, we significantly out-
perform the single-agent baselines on the aggressive overtaking category. We argue that it requires
interaction modelling to distinguish the aggressive from a normal manoeuvre. Overall, the wrong-
way-driving category leaves space for improvement. Including absolute coordinates in addition to
velocity could help to learn more meaningful interaction features. Some abnormal trajectories can
be detected without caring about interaction. This is when the linear models show their benefits, see
left spreading or thwarting for LTI and CVM, respectively. The left spreading action is highly non-

7

Table 3: Comparison of STGAE-biv and our method on test sets with two, three, and four agents on
the highway. Other than the reconstruction method, our one-class approach remains more stable in
all metrics with increasing traffic density.

Test Agents Model AUROC ↑ AUPR-Abnormal ↑ AUPR-Normal ↑ FPR-95%-TPR ↓
N = 2 STGAE-biv 69.08 39.28 90.07 92.19
N = 2 Ours 92.34 66.75 98.48 35.20

N = 3 STGAE-biv 78.20 42.52 94.73 78.23
N = 3 Ours 91.26 63.57 98.36 35.38

N = 4 STGAE-biv 52.42 17.95 88.03 88.19
N = 4 Ours 89.41 60.52 97.87 42.55

linear, such that the LTI model fails to approximate correctly what results in high anomaly scores.
Similar, thwarting results through strong braking, which is not following the constant velocity as-
sumption of CVM. Again, STGAE-mse is the best reconstruction method and outperforms on three
sub-classes, however with the downside of a computational expensive trajectory decoder.

Ablation Study on Observed Sequence Length. Figure 3 shows the influence of different segment
length T ′ ∈ {4, 8, 10, 15, 20, 30, 40} on the recognition performance. For the comparison we re-
train all models on different segment length. Although we see a correlation between STGAE-biv
and our method, our results remain stable for a large interval. As reported before, we reach the
best performance for T ′ = 15. The performance of the linear models decreases for higher input
length, which means that linear models are good trajectory approximators only for short sequences.
In general, the reconstruction methods drop in performance for longer sequences. Both, CVM and
LTI have peaks at 0.8 seconds, however our method remains the best overall with 88.34 % AUROC.

Ablation Study on Scalability Beyond Pairs of Agents. The proposed MAAD dataset includes
diverse interactive anomalies between pairs of agents. However, the proposed model is flexible to
the number of agents in a scene and can process more than two agents without adaption. We evaluate
the recognition performance for a highway with higher traffic density on two models. In detail, we
compare Our approach with the performance of STGAE-biv. Both models are trained on the original
MAAD training set with two agents in each scene. For testing we create three ablation test sets with
N = 2, N = 3 and N = 4 agents, see details in the supplementary material. The results are shown
in Table 3. As before, our approach reaches higher scores compared to the reconstruction method.
Interestingly, the metrics of the reconstruction method vary intensively with the number of agents.
This indicates that once trained on two agents the reconstruction is confused by the features from
the additional agents. It looks different for our method. Even though we see a small performance
decrease with an increasing number of agents, our method is more stable and can reliably detect
anomalies even on highways with higher traffic density.

5 Conclusion

We presented the spatio-temporal graph auto-encoder for trajectory representation learning. Our
main contribution is the ability to simultaneously learn multiple trajectories for a dynamic number of
agents. Our model learns normal driving behaviour for performing afterwards anomaly detection. To
this end, we performed kernel density estimation on the latent representation of the model. During
testing, we detect anomalies in low-density regions of the estimated density. Due to the lack of
datasets for multi-agent trajectory anomaly detection for automated driving, we presented a synthetic
multi-agent dataset with normal and abnormal manoeuvres. In our evaluations, we compared our
approach with several baselines to show superior performance. Although our study is on driving
trajectories, our approach can learn joint feature spaces in other multi-agent domains like verbal
and non-verbal communication, sports or human-robot interaction. This would be a future work
direction.

8

Acknowledgments

The research leading to these results is funded by the German Federal Ministry for Economic Affairs
and Energy within the project “KI Delta Learning” (project number: 19A19013A). The authors
would like to thank the consortium for the successful cooperation.

References
[1] N. Engel, S. Hoermann, M. Horn, V. Belagiannis, and K. Dietmayer. Deeplocalization:

Landmark-based self-localization with deep neural networks. In 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC), pages 926–933. IEEE, 2019.

[2] J. Strohbeck, V. Belagiannis, J. Müller, M. Schreiber, M. Herrmann, D. Wolf, and M. Buchholz.
Multiple trajectory prediction with deep temporal and spatial convolutional neural networks.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1992–1998. IEEE, 2020.

[3] J. Wiederer, A. Bouazizi, U. Kressel, and V. Belagiannis. Traffic control gesture recognition
for autonomous vehicles. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 10676–10683, 2020. doi:10.1109/IROS45743.2020.9341214.

[4] Y. Lu, F. Yu, M. K. K. Reddy, and Y. Wang. Few-shot scene-adaptive anomaly detection. In
European Conference on Computer Vision, pages 125–141. Springer, 2020.

[5] R. Morais, V. Le, T. Tran, B. Saha, M. Mansour, and S. Venkatesh. Learning regularity in skele-
ton trajectories for anomaly detection in videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11996–12004, 2019.

[6] J. Chen, G. Ding, Y. Yang, W. Han, K. Xu, T. Gao, Z. Zhang, W. Ouyang, H. Cai, and Z. Chen.
Dual-modality vehicle anomaly detection via bilateral trajectory tracing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4016–4025, 2021.

[7] V. Sindhwani, H. Sidahmed, K. Choromanski, and B. Jones. Unsupervised anomaly detec-
tion for self-flying delivery drones. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 186–192. IEEE, 2020.

[8] R. McAllister, G. Kahn, J. Clune, and S. Levine. Robustness to out-of-distribution inputs via
task-aware generative uncertainty. In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 2083–2089. IEEE, 2019.

[9] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 11621–11631,
2020.

[10] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila. Eurocity persons: A novel benchmark
for person detection in traffic scenes. IEEE transactions on pattern analysis and machine
intelligence, 41(8):1844–1861, 2019.

[11] W. Liu, D. L. W. Luo, and S. Gao. Future frame prediction for anomaly detection – a new
baseline. In 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[12] C. Lu, J. Shi, and J. Jia. Abnormal event detection at 150 fps in matlab. In Proceedings of the
IEEE international conference on computer vision, pages 2720–2727, 2013.

[13] J. F. P. Kooij, N. Schneider, F. Flohr, and D. M. Gavrila. Context-based pedestrian path predic-
tion. In European Conference on Computer Vision, pages 618–633. Springer, 2014.

[14] A. Elnagar. Prediction of moving objects in dynamic environments using kalman filters. In
Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics
and Automation (Cat. No.01EX515), pages 414–419, 2001. doi:10.1109/CIRA.2001.1013236.

9

http://dx.doi.org/10.1109/IROS45743.2020.9341214
http://dx.doi.org/10.1109/CIRA.2001.1013236

[15] S. Zernetsch, S. Kohnen, M. Goldhammer, K. Doll, and B. Sick. Trajectory prediction of
cyclists using a physical model and an artificial neural network. In 2016 IEEE Intelligent
Vehicles Symposium (IV), pages 833–838, 2016. doi:10.1109/IVS.2016.7535484.

[16] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. Activity forecasting. In European
Conference on Computer Vision, pages 201–214. Springer, 2012.

[17] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi. Social gan: Socially acceptable
trajectories with generative adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2255–2264, 2018.

[18] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and S. Savarese. So-
phie: An attentive gan for predicting paths compliant to social and physical constraints. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1349–1358, 2019.

[19] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker. Desire: Distant future
prediction in dynamic scenes with interacting agents. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 336–345, 2017.

[20] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social lstm:
Human trajectory prediction in crowded spaces. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 961–971, 2016.

[21] Y. C. Tang and R. Salakhutdinov. Multiple futures prediction. arXiv preprint
arXiv:1911.00997, 2019.

[22] B. Ivanovic and M. Pavone. The trajectron: Probabilistic multi-agent trajectory modeling with
dynamic spatiotemporal graphs. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2375–2384, 2019.

[23] J. Kim and K. Grauman. Observe locally, infer globally: a space-time mrf for detecting ab-
normal activities with incremental updates. In 2009 IEEE conference on computer vision and
pattern recognition, pages 2921–2928. IEEE, 2009.

[24] D. H. Hu, X.-X. Zhang, J. Yin, V. W. Zheng, and Q. Yang. Abnormal activity recognition
based on hdp-hmm models. In IJCAI, pages 1715–1720, 2009.

[25] D. Xu, Y. Yan, E. Ricci, and N. Sebe. Detecting anomalous events in videos by learning deep
representations of appearance and motion. Computer Vision and Image Understanding, 156:
117–127, 2017.

[26] S. Kim, Y. Choi, and M. Lee. Deep learning with support vector data description. Neurocom-
puting, 165:111–117, 2015.

[27] D. Park, Y. Hoshi, and C. C. Kemp. A multimodal anomaly detector for robot-assisted feeding
using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters, 3(3):
1544–1551, 2018.

[28] K. Lee, G. N. An, V. Zakharov, and E. A. Theodorou. Perceptual attention-based predictive
control. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, Proceedings of the Conference
on Robot Learning, volume 100 of Proceedings of Machine Learning Research, pages 220–
232. PMLR, 30 Oct–01 Nov 2020. URL http://proceedings.mlr.press/v100/lee20b.
html.

[29] B. Hayes and J. A. Shah. Interpretable models for fast activity recognition and anomaly expla-
nation during collaborative robotics tasks. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 6586–6593. IEEE, 2017.

[30] A. Bera, S. Kim, and D. Manocha. Realtime anomaly detection using trajectory-level crowd
behavior learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 50–57, 2016.

10

http://dx.doi.org/10.1109/IVS.2016.7535484
http://proceedings.mlr.press/v100/lee20b.html
http://proceedings.mlr.press/v100/lee20b.html

[31] T. Ji, S. T. Vuppala, G. Chowdhary, and K. Driggs-Campbell. Multi-modal anomaly detection
for unstructured and uncertain environments. arXiv preprint arXiv:2012.08637, 2020.

[32] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional networks for skeleton-
based action recognition. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[33] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14424–14432,
2020.

[34] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[35] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager. Temporal convolutional networks
for action segmentation and detection. In proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 156–165, 2017.

[36] E. Parzen. On estimation of a probability density function and mode. The annals of mathemat-
ical statistics, 33(3):1065–1076, 1962.

[37] M. Nicolau, J. McDermott, et al. One-class classification for anomaly detection with kernel
density estimation and genetic programming. In European Conference on Genetic Program-
ming, pages 3–18. Springer, 2016.

[38] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[39] W. Schwarting, T. Seyde, I. Gilitschenski, L. Liebenwein, R. Sander, S. Karaman, and D. Rus.
Deep latent competition: Learning to race using visual control policies in latent space. arXiv
preprint arXiv:2102.09812, 2021.

[40] H. Sloetjes and P. Wittenburg. Annotation by category-elan and iso dcr. In 6th international
Conference on Language Resources and Evaluation (LREC 2008), 2008.

[41] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll. What the constant velocity model can teach
us about pedestrian motion prediction. IEEE Robotics and Automation Letters, 5(2):1696–
1703, 2020.

[42] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi. Sequence-to-sequence prediction
of vehicle trajectory via lstm encoder-decoder architecture, 2018.

[43] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt, et al. Support vector
method for novelty detection. In NIPS, volume 12, pages 582–588. Citeseer, 1999.

[44] C. Corbière, N. THOME, A. Bar-Hen, M. Cord, and P. Pérez. Addressing failure prediction
by learning model confidence. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/757f843a169cc678064d9530d12a1881-Paper.pdf.

[45] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. CoRR, abs/1610.02136, 2016. URL http://arxiv.org/abs/
1610.02136.

[46] M. Z. Zaheer, J.-h. Lee, M. Astrid, and S.-I. Lee. Old is gold: Redefining the adversarially
learned one-class classifier training paradigm. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14183–14193, 2020.

[47] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller, and
M. Kloft. Deep one-class classification. In International conference on machine learning,
pages 4393–4402. PMLR, 2018.

11

https://proceedings.neurips.cc/paper/2019/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/757f843a169cc678064d9530d12a1881-Paper.pdf
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1610.02136

	Introduction
	Related Work
	Anomaly Detection in Multi-Agent Trajectories
	Spatio-Temporal Graph Auto-Encoder
	Kernel Density Estimation for Normal Trajectories
	Abnormal Trajectory Detection

	Experimental Results
	Dataset Development
	Baselines
	Evaluation Metrics
	Implementation Details
	Results

	Conclusion

