
Sampling 3D Molecular Conformers with
Diffusion Transformers

J. Thorben Frank1,2∗ Winfried Ripken1,2∗ Gregor Lied1∗

Klaus-Robert Müller1,2,3,4,5 Oliver T. Unke3 Stefan Chmiela1,2

1Technical University Berlin 2BIFOLD Berlin 3Google DeepMind
4MPI for Informatics, Saarbrücken 5Department of Artificial Intelligence, Korea University

thorbenjan.frank@gmail.com, oliverunke@google.com, stefan@chmiela.com

Abstract

Diffusion Transformers (DiTs) have demonstrated strong performance in generative
modeling, particularly in image synthesis, making them a compelling choice for
molecular conformer generation. However, applying DiTs to molecules introduces
novel challenges, such as integrating discrete molecular graph information with
continuous 3D geometry, handling Euclidean symmetries, and designing condition-
ing mechanisms that generalize across molecules of varying sizes and structures.
We propose DiTMC, a framework that adapts DiTs to address these challenges
through a modular architecture that separates the processing of 3D coordinates
from conditioning on atomic connectivity. To this end, we introduce two com-
plementary graph-based conditioning strategies that integrate seamlessly with the
DiT architecture. These are combined with different attention mechanisms, includ-
ing both standard non-equivariant and SO(3)-equivariant formulations, enabling
flexible control over the trade-off between between accuracy and computational
efficiency. Experiments on standard conformer generation benchmarks (GEOM-
QM9, -DRUGS, -XL) demonstrate that DiTMC achieves state-of-the-art precision
and physical validity. Our results highlight how architectural choices and sym-
metry priors affect sample quality and efficiency, suggesting promising directions
for large-scale generative modeling of molecular structures. Code is available at
https://github.com/ML4MolSim/dit_mc.

1 Introduction

The three-dimensional arrangement of atoms in a molecule, known as conformation, determines its
biological activity and physical properties, making it fundamental to applications such as computa-
tional drug discovery and material design. Accurately predicting the most energetically favorable
conformers (i.e., stable conformations) for large molecular systems is a highly non-trivial task. Tradi-
tional techniques, such as Molecular Dynamics and Markov Chain Monte Carlo, attempt to explore
the conformational space by simulating physical movement or probabilistic sampling. However,
these methods often require many simulation steps to move from one conformer to another, making
them computationally expensive. Generative machine learning (ML) models offer a more targeted
approach by allowing to directly sample from the space of promising conformations.

Recent years have seen significant progress, enabled by the development of specialized architectures
for the generation of molecules [1–9] and materials [10–12]. This is in contrast to image and
video synthesis, where the more generalized diffusion transformer (DiT) architecture [13] has
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Figure 1: (A) Diffusion transformer for molecular conformer generation (DiTMC), with interchange-
able self-attention blocks and positional embeddings (PEs); we evaluate various combinations as
detailed in the main text. (B) DiTMC predicts a velocity per atom, used to model a probability flow
ODE, which samples from the probability distribution p(x|G), where G is a molecular graph.

become a leading model, consistently delivering strong performance and efficiency across diverse
applications [14–17]. Adapting DiTs, which were originally developed for grid-structured image data,
to continuous, irregular molecular geometries poses unique challenges, which need to be addressed
to unlock the potential of this powerful architecture for molecular conformer generation. Key design
questions include how to encode molecular connectivity and incorporate Euclidean symmetries, such
as translational and rotational invariance/equivariance.

In this work, we address these conceptual challenges and propose DiTMC, a new DiT-style archi-
tecture for molecular conformer generation. We introduce novel conditioning strategies based on
molecular graphs, enabling the generation of 3D structures. Our modular architectural design allows
us to systematically investigate the impact of different self-attention mechanisms within the DiT ar-
chitecture on conformer generation quality and efficiency. We conduct a comparative study including
standard (non-equivariant) self-attention with both absolute and relative positional embeddings and
an explicitly SO(3)-equivariant variant. While exact equivariance can positively impact performance,
it also incurs significant computational costs. We find that simpler attention mechanisms are highly
scalable and still perform competitively. Multiple of the tested DiTMC variants achieve state-of-the-
art precision on established conformer generation benchmarks. Moreover, the molecular structure
ensembles generated by our models align more closely with physical reality, as evidenced by the high
accuracy of physical properties extracted from them. To summarize, our work contains the following
main contributions:

• We propose two complementary conditioning strategies based on trainable conditioning
tokens for (pairs of) atoms extracted from molecular graphs, which are designed to align
with the architectural principles of DiTs. We propose to condition our self-attention formu-
lation on geodesic graph distances extracted from molecular graphs and demonstrate that it
significantly increases performance of our model.

• We investigate the impact of different self-attention mechanisms, including standard (non-
equivariant) and SO(3)-equivariant formulations, on model accuracy and performance. We
find that including symmetries can improve the fidelity of generated samples at the price of
increased computational cost during training and inference.

• Based on our insights, we present a simple, non-equivariant, yet expressive DiT architecture
that achieves state-of-the-art precision and physical validity on established benchmarks. Its
performance improves with model scaling, making it a promising candidate for large-scale
molecular conformer generation.

2 Related Work

Generative Modeling Generative models create diverse, high-quality samples from an unknown data
distribution. They are widely used in image generation [18, 19], text synthesis [20] and the natural
sciences [21–23]. Most recent approaches learn a probabilistic path from a simple prior to the data

2



distribution, enabling both efficient sampling and likelihood estimation [24–28]. This is achieved by
different modeling paradigms, including flow matching [26] or denoising diffusion [24].

(Diffusion) Transformers Originally introduced for natural language processing [29], transformer
architectures have become state-of-the-art in computer vision [18], and recently also found widespread
adoption in quantum chemistry, e.g., for protein prediction [30, 31], 3D molecular generation [32,
33] or molecular dynamics simulations [34–36]. In the context of generative modeling, diffusion
transformers [13] (DiTs) have emerged as powerful tools incorporating conditioning tokens, e.g., to
prompt image generation [13] or to design molecules and materials with desirable properties [37].
This work applies prototypical DiTs to molecular conformer generation.

Molecular Conformer Generation Molecular conformer generation aims to find atomic arrange-
ments (Cartesian coordinates) consistent with a given molecular graph. Numerous ML approaches
have been proposed for sampling conformers, all aiming to improve upon conventional methods.

While early approaches were based on RDKit [38] or variational auto encoders [39–41], more
recent advances employ diffusion and flow-based models [42, 43], including E-NFs [9], CGCF [44],
GeoDiff [45], TorsionDiff [46], MCF [47], ET-Flow [32], and DMT [48].

De-Novo Molecular Generation Instead of conditioning on a given molecular graph, several
existing approaches tackle the problem of finding novel and stable molecules given only a set of
atoms [8, 49, 50]. Bridging the gap between unconditional and conformer generation, universal
models have been proposed that can solve a multitude of tasks. In particular, models within the
Uni-Mol model family [51, 52], make use of graph geodesic distances. However, their design requires
tracking high-dimensional pair-representations throughout the architecture, which makes it less
efficient.

3 Preliminaries

3.1 Molecular Conformers

A molecule can be represented as a molecular graph G = (V, E), where the nodes V correspond
to atoms and the edges E represent chemical bonds between them. The nodes and edges contain
information about their types, bond orders, and additional structural features such as branches, rings,
and stereochemistry. The missing component is the exact spatial arrangement of the N = |V| atoms,
represented as a 3D point cloud x ∈ RN×3 in Euclidean space. Only the relative distances between
atoms are relevant, as translating or rotating the entire point cloud x does not change the identity of
the conformer. We frame conformer prediction as sampling from the SE(3)-invariant conditional
probability distribution p(x | G), which will guide the design of our model architectures in Sec. 4.

3.2 Conditional Flow Matching

Starting from an easy-to-sample base distribution q0 : Rd 7→ R≥0, a generative process creates
samples from a target distribution q1 : Rd 7→ R≥0 [27]. Here, q1 models the molecular conformer
data with d = N × 3. We aim to learn a time-dependent vector field ut(x) : [0, 1]×RN×3 7→ RN×3,
which defines an ordinary differential equation (ODE) whose solution pushes samples x0 ∈ RN×3

from the prior to samples x1 ∈ RN×3 from the data distribution. We describe this transformation in
terms of a stochastic interpolant xt [26, 53, 54]. A noisy sample at time t ∈ [0, 1] is defined as

xt = (1− t) · x0 + t · x1 + σ · ϵ, (1)

where ϵ ∈ RN×3 is drawn from the standard normal distribution N (0, I) and scaled by a constant
σ ∈ R≥0. We remark that t represents progress along this interpolation path, not physical time.
Notably, stochastic interpolants enable transformations between arbitrary distributions and allow us to
assess the performance of the generative process under varying prior distributions q0. This contrasts
with, e.g., score based diffusion methods [24, 55], which typically assume an isotropic Gaussian
prior.

The stochastic interpolant induces a deterministic trajectory of densities pt(x), governed by an ODE
known as the probability flow:

dx = ut(x) dt. (2)
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If the vector field ut(x) was tractable to sample, the weights of a neural network (NN) vθ(x, t) :
[0, 1]× Rd 7→ Rd could be optimized directly by minimizing

LFM(θ) = Et∼U(0,1),x∼pt(x)

∣∣∣∣∣∣ut(x)− vθ(x, t)
∣∣∣∣∣∣. (3)

The learned vector field vθ could then be used to generate new samples from the target distribution
by starting from x0 ∼ q0 and integrating the probability flow ODE (Eq. 2), for example, using a
numerical scheme such as Euler’s method, i.e., xt+∆t = xt + vθ(xt, t)∆t for time step ∆t.

However, for arbitrary distributions q0 and q1, the objective in Eq. 3 is computationally intractable [56].
Instead, we consider the expectation over interpolated point pairs from the two distributions. Eq. 1
defines a conditional probability distribution pt(x|x0,x1) = N (x|(1− t) · x0 + t · x1, σ

2), with
conditional vector field ut(x|x0,x1) = x1 − x0 [27]. The ability to directly sample from the
conditional probability via Eq. 1 allows formulating the conditional flow matching (CFM) objective

LCFM(θ) = Et∼U(0,1),x0∼q0,x1∼q1,x∼pt(x|x0,x1)

∣∣∣∣∣∣ut(x|x0,x1)− vθ(x, t)
∣∣∣∣∣∣2. (4)

As shown in Ref. [26], the gradients of the two losses coincide, ∇θLFM = ∇θLCFM, thereby
recovering the vector field that defines the probability flow ODE in Eq. 2. Following prior work [37,
57], we reparametrize the training objective to predict noise-free data xθ

0 directly. During inference,
we invert the reparametrization to obtain vθ for sampling (see Appendix C for details).

4 A New Diffusion Transformer for Molecular Conformer Sampling

We now describe the methodological advances of our work. We propose DiTMC, a new DiT-style
architecture for conformer generation by learning a vector field using the loss in Eq. 4. As outlined in
Sec. 3.1, this involves sampling from a conditional probability p(x | G), where G is the molecular
graph representing atomic connectivity. Therefore, we choose our model to be a function vθ(x, t,G),
where the final output is a 3D velocity vector per atom, which is extracted from a readout layer.

Next, we outline the key components of the DiTMC architecture, with an overview shown in Fig. 1A.
Training and architectural details are provided in Appendix B and Appendix D, respectively.

4.1 Conditioning Tokens

We begin by defining the conditioning tokens in DiTMC. Each DiTMC block receives a time
conditioning token ct ∈ RH , as well as atom-wise conditioning tokens CGatom = {cGi ∈ RH | i ∈ [N ]},
and pair-wise conditioning tokens CGpair = {c

G
ij ∈ RH | i, j ∈ [N ]} derived from G = (V, E).

Time conditioning The current time t of the latent state xt is encoded via a two-layer MLP as

ct = MLP(t) . (5)

Atom-wise conditioning Atom-wise graph conditioning tokens are obtained from a GNN inspired
by the processor module of the MeshGraphNet (MGN) framework [58] as

cGi = GNNnode(V, E) , (6)

where cGi denotes the final node representation for atom i. See Appendix D.3 for details on the GNN.

Pair-wise conditioning We define pair-wise graph conditioning tokens inspired by the Graphormer
architecture [59] as

cGij = MLP (s(i, j)) , (7)

where s(i, j) denotes the graph geodesic, i.e., the shortest path between atoms i and j in G. This
formulation allows conditioning on all atom pairs, including those not directly connected by a bond.

4.2 Positional Embeddings

To encode the atomic positionsR = {r⃗1, . . . , r⃗N | r⃗i ∈ R3} of the latent state xt, we use positional
embeddings (PEs). We examine a representative range of positional embeddings that vary in the
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number of Euclidean symmetries they respect by construction, which affects how the latent represen-
tations transform under translations and rotations. We denote the set of positional embeddings by P ,
where P = {pi | i ∈ [N ]} for the atom-wise (aPE) embeddings, and P = {pij | i, j ∈ [N ], i ̸= j}
for pair-wise (rPE or PE(3)) embeddings. Without loss of generality, we assume that the positions are
centered such that the center of mass vanishes (see Appendix A).

Absolute Positional Embeddings Following Refs. [31, 37], atom-wise absolute Positional Embed-
dings (aPE) are calculated as

paPE
i = MLP(r⃗i) , (8)

such that paPE
i ∈ RH . This kind of positional embedding does not preserve rotationalal nor transla-

tionalal invariance, and serves as a baseline without any symmetry constraints.

Relative Positional Embeddings We use displacements vectors r⃗ij = r⃗i − r⃗j to build pairwise
relative Positional Embeddings (rPE) as

prPE
ij = MLP(r⃗ij) , (9)

such that prPE
ij ∈ RH . This formulation ensures translational invariance but not rotational invariance.

Euclidean Positional Embeddings Adapting ideas from equivariant message passing neural networks
like PaiNN [60] or NequIP [61], we construct SO(3)-equivariant pairwise Euclidean Positional
Embeddings (PE(3)) as a concatenation of L+ 1 components

pPE(3)
ij =

L⊕
ℓ=0

ϕℓ(rij) ⊙ Y ℓ(r̂ij) , (10)

where ϕℓ : R 7→ R1×H is a radial filter function, r̂ = r⃗/r, and Y ℓ ∈ R(2ℓ+1)×1 are spherical
harmonics of degree ℓ = 0, . . . , L. The element-wise multiplication ‘⊙’ between radial filters
and spherical harmonics is understood to be “broadcasting” along axes with size 1, such that
(ϕℓ ⊙ Y ℓ) ∈ R(2ℓ+1)×H and (after concatenation) pPE(3)

ij ∈ R(L+1)2×H . Under rotation of the
input positions, these positional embeddings transform equivariantly (see Appendix E). Moreover,
because displacement vectors are used as inputs, the embeddings are also invariant to translations. As
a result, they respect the full set of Euclidean symmetries relevant to molecular geometry.

4.3 DiTMC Block

Based on the positional embedding strategies introduced in Sec. 4.2, we can define different DiTMC
blocks that preserve the extent of Euclidean symmetries encoded in the embeddings throughout the
model.

Each DiTMC block transforms a set of input tokensH into a set of output tokensH′, which serve as
input for the next block. For aPE and rPE, we have H = {h1, . . . ,hN |hi ∈ RH}, and for PE(3),
we haveH = {h1, . . . ,hN |hi ∈ R(L+1)2×H}.
In each DiTMC block, we inject time-based, as well as graph-based atom-wise and pair-wise
conditioning information via the conditioning tokens introduced in Sec. 4.1. We use the pair-wise
graph conditioning tokens CGPair during the self-attention update,

hi = hi + ATT(H,P, CGPair)i , (11)

where we employ a standard self-attention mechanism for aPE and rPE and an SO(3)-equivariant
self-attention mechanism for PE(3). Additionally, we use the time conditioning token ct and the
atom-wise graph conditioning tokens CGatom = {cGi ∈ RH | i ∈ [N ]} to obtain per-atom bias and
scaling parameters,

α1i, β1i, γ1i, α2i, β2i, γ2i = MLP(ct + cGi ) , (12)

and apply adaptive layer norm (AdaLN) and adaptive scale (AdaScale) [13] for conditioning (see
Fig. 1A) similar to applications of DiTs in image synthesis.

We provide details on the non-equivariant DiTMC blocks based on aPE and rPE in Appendix D.1,
and on the SO(3)-equivariant DiTMC block based on PE(3) in Appendix D.2.
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Table 1: Results on GEOM-QM9 for different generative models (parameter counts in parentheses).
-R indicates Recall, -P indicates Precision. Best results in bold, second best underlined; our models
are marked with an asterisk (∗). Our results are averaged over three random seeds. See Appendix
Tab. A9 for results including standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

GeoMol (0.3M) 91.5 100.0 0.225 0.193 86.7 100.0 0.270 0.241
GeoDiff (1.6M) 76.5 100.0 0.297 0.229 50.0 33.5 0.524 0.510
Tors. Diff. (1.6M) 92.8 100.0 0.178 0.147 92.7 100.0 0.221 0.195
MCF-B (64M) 95.0 100.0 0.103 0.044 93.7 100.0 0.119 0.055
DMT-B (55M) 95.2 100.0 0.090 0.036 93.8 100.0 0.108 0.049
ET-Flow (8.3M) 96.5 100.0 0.073 0.030 94.1 100.0 0.098 0.039

∗DiTMC+aPE-B (9.5M) 96.1 100.0 0.073 0.030 95.4 100.0 0.085 0.037
∗DiTMC+rPE-B (9.6M) 96.3 100.0 0.070 0.027 95.7 100.0 0.080 0.035
∗DiTMC+PE(3)-B (8.6M) 95.7 100.0 0.068 0.021 93.4 100.0 0.089 0.032

Figure 2: Analysis of SO(3)-equivariant (PE(3)) and non-equivariant (aPE, rPE) model formulations
on GEOM-QM9. (A) Mean Coverage Recall (COV-R) versus root mean square deviation (RMSD)
threshold δ to any reference conformer. (B) Histogram of the minimal RMSD per generated sample.
(C) Loss as a function of latent time t relative to PE(3) loss (see Appendix J for details).

5 Experiments

Datasets and Metrics We conduct our experiments on the GEOM dataset [62], comprising QM9
(133,258 small molecules) and AICures (304,466 drug-like molecules). Reference conformers are
generated using CREST [63]. Drug-like molecules exhibit greater structural diversity, including more
rotatable bonds and multiple stereocenters. The data splits are taken from Ref. [64].

We evaluate our models’ ability to generate accurate and diverse conformers using average minimum
RMSD (AMR) and coverage (COV), measuring recall (ground-truth coverage) and precision (genera-
tion accuracy). A generated conformer is considered valid if it falls within a specified RMSD threshold
of any reference conformer (δ = 0.5Å for GEOM-QM9 and δ = 0.75Å for GEOM-DRUGS). Follow-
ing prior work, we generate 2K conformers per test molecule with K reference structures. Appendix
G.3 provides further details on the calculation of metrics. Following ET-Flow [32] and GeomMol [64]
we also apply chirality correction (see Appendix G.4).

Ablating Self-Attention and Positional Embedding Strategies The modular structure of DiTMC al-
lows efficient exploration of the design space through variations in the positional embeddings and
associated attention blocks (see Sec. 4). We define three model variants, DiTMC+aPE, DiTMC+rPE,
and DiTMC+PE(3), which differ only in the choice of positional embedding and self-attention for-
mulation. Architectural details can be found in Appendix D. On GEOM-QM9, our models produce
diverse, high quality samples, outperforming the current state-of-the-art across all AMR-R, AMR-P,
and COV-P metrics, demonstrating the broad applicability of our modular design and conditioning
(see Tab. 1). We use the harmonic prior introduced in Ref. [65] throughout, which yields improved
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Table 2: Ablation of conditioning strategies using DiTMC+aPE-B on GEOM-DRUGS. -R indicates
Recall, -P indicates Precision. Best results in bold. Our results are averaged over three random seeds.
See Appendix Tab. A14 for results on GEOM-QM9.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

No conditioning 16.6 4.7 1.132 1.110 5.15 1.2 1.849 1.845
Atom-wise 72.8 77.5 0.555 0.565 55.6 53.3 0.762 0.716
Atom-wise & Pair-wise 79.9 85.4 0.434 0.389 76.5 83.6 0.500 0.423

results compared to the Gaussian prior (see Appendix Tab. A13), and therefore adopt it in all sub-
sequent experiments. Notably, our models maintain competitive performance even when using the
Gaussian prior, contrary to the findings in Ref. [32].

Probing the effect of Euclidean symmetries Our PEs form a hierarchy based on the extent of
Euclidean symmetry incorporated by construction. This enables a systematic evaluation of how
incorporating symmetry affects model behavior. We summarize our findings on GEOM-QM9 below.

Equivariance improves the fidelity of samples. We analyze COV-R Mean as a function of RMSD
threshold δ for all DiTMC variants (see Fig. 2A). The SO(3)-equivariant DiTMC+PE(3) outperforms
the non-equivariant DiTMC+aPE and DiTMC+rPE at low δ, indicating that many of the generated
conformers closely match the ground-truth structures. This appears as a leftward shift in the distribu-
tion of the minimal RMSD found per generated structure (as shown in Fig. 2B) and aligns with the
observation that DiTMC+PE(3) achieves better AMR-R and AMR-P values (as reported in Tab. 1).
To better understand this behavior, we examine the loss over time t and find that the non-equivariant
models exhibit higher error near the data distribution (t = 1) (see Fig. 2C). The increase in error
towards the end of the generation trajectory results in noisier structures and reduced fidelity.

Equivariance increases the computational cost for models of similar size. The benefit of higher
fidelity comes at increased computational cost. During training, the equivariant DiTMC+PE(3) is
approximately 3.5 times slower than the non-equivariant DiTMC+aPE and DiTMC+rPE, and about 3
times slower at inference (see Fig. 3B). All models use the same number of layers and differ only in
the number of heads per layer in order to match the total parameter count, as discussed in Appendix D.

Conditioning Strategies To assess the impact of graph conditioning, we compare different condition-
ing strategies. As further discussed in Appendix I.2, we compare conditioning solely on atom-wise
information (Eq. 6) with an extended scheme that also incorporates pair-wise geodesic graph dis-
tances (Eq. 7). In Tab. 2, we show ablation results on GEOM-DRUGS. We also ablate conditioning
on pairwise information extracted from our conditioning GNN for each edge corresponding to a
chemical bond (see Appendix I.2). We find all variants to be effective, but our proposed combination
of geodesic distances and atom-wise information to perform best. This experiment underlines the
importance of deriving conditioning tokens for all atom pairs, not just those connected by edges in the
molecular graph (i.e. by chemical bonds), which lack global information about the graph structure.

Model Scaling To investigate model scaling, we define a small (“S”), base (“B”), and large (“L”)
DiTMC+aPE model variant (see Appendix D). Each model is trained with identical training hyperpa-
rameters on the GEOM-DRUGS dataset. We find strong relative improvements for all metrics (up
to 54.1% for COV-P Mean) when scaling DiTMC+aPE-S to DiTMC+aPE-B (see Fig. 3A). Scaling
DiTMC+aPE-B to DiTMC+aPE-L yields relative improvements, which however might be smaller
than expected given the strong increase in performance from the small to the base model. Prior work
has shown that to avoid diminishing returns, dataset and model sizes must be scaled together [66, 67].
Scaling only the model yields limited benefits as soon as model size saturates given the amount of
data. Strong improvements of DiTMC+aPE-L over DiTMC+aPE-B are observed in terms of sampling
fidelity (as indicated by higher COV-R and COV-P Mean values at small thresholds δ) but differences
start to vanish at δ = 0.75Å (see Fig. 4A). Moreover, we obtain relative improvement in terms of
generalization to larger and previously unseen molecules from the GEOM-XL dataset [46] between
3.1% (for AMR-P Mean) and 7.3% (for AMR-P Median), i.e., DiTMC+aPE-L exhibits significantly
stronger out-of-distribution performance compared to the smaller DiTMC+aPE-B (see Tab. 5).
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Figure 3: (A) Coverage (COV) mean and Absolute Minimum RMSD (AMR) mean for DiTMC+aPE
models of increasing model capacity on GEOM-DRUGS. (B) Training and inference time for different
positional embedding (PE) and associated self-attention strategies. (C) Recall and precision AMR
mean for the different DiTMC models on GEOM-DRUGS. For panels (B) and (C) we use results
from the base (“B”) variant of each model.

Table 3: Results on GEOM-DRUGS for different generative models (parameter counts in parentheses).
-R indicates Recall, -P indicates Precision. Best results in bold, second best underlined; our models
are marked with an asterisk (∗). Our results are averaged over three random seeds. See Appendix
Tab. A10 for results including standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

GeoMol (0.3M) 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff (1.6M) 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
Tors. Diff. (1.6M) 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
MCF-L (242M) 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
DMT-L (150M) 85.8 92.3 0.375 0.346 67.9 72.5 0.598 0.527
ET-Flow - SS (8.3M) 79.6 84.6 0.439 0.406 75.2 81.7 0.517 0.442

∗DiTMC+aPE-B (9.5M) 79.9 85.4 0.434 0.389 76.5 83.6 0.500 0.423
∗DiTMC+rPE-B (9.6M) 79.3 84.6 0.444 0.400 77.2 84.6 0.492 0.414
∗DiTMC+PE(3)-B (8.6M) 80.8 85.6 0.427 0.396 75.3 82.0 0.515 0.437
∗DiTMC+aPE-L (28.2M) 79.2 84.4 0.432 0.386 77.8 85.7 0.470 0.387
∗DiTMC+rPE-L (28.3M) 78.7 84.1 0.438 0.388 78.1 86.4 0.466 0.381
∗DiTMC+PE(3)-L (31.1M) 80.8 85.6 0.415 0.376 76.4 82.6 0.491 0.414

Drug-like Molecules For the following experiments, we restrict our analysis to the base (“B”)
and large (“L”) DiTMC variants. In contrast to the smaller GEOM-QM9 dataset, the size of
GEOM-DRUGS allows us to explore the design space of DiTMC under a more realistic setting,
where training is contstrained by a fixed compute budget [67]. Our budget of 9 GPU days allows
training DiTMC+aPE-L and DiTMC+rPE-L for 50 epochs, and DiTMC+PE(3)-L for 10 epochs. For
consistency, we train the base models for the same number of epochs as their large counterparts. All
DiTMC variants achieve state-of-the-art performance on GEOM-DRUGS for COV-P and AMR-P
(see Tab. 3). Importantly, even the smaller DiTMC+aPE-B and DiTMC+PE(3)-B models outperform
ET-Flow-SS of similar model size across all metrics, underlining the effectiveness of our approach.

Coverage vs. RMSD Threshold. We further analyse the COV-R Mean and COV-P Mean as a function
of RMSD threshold δ for DiTMC+aPE-B and DiTMC+aPE-L (see Fig. 4A). For small thresholds
(δ < 0.4Å) both DiTMC+aPE models outperform all other methods for coverage recall and precision.
For larger thresholds (ρ ≥ 0.4Å) MCF-L starts to outperform aPE models in terms of COV-R Mean.
For COV-P Mean, DiTMC+aPE-B and DiTMC+aPE-L perform better than all other methods for all
reasonably small thresholds (δ < 1.2Å). In particular for the most relevant regime where thresholds
are small, we see a strong benefit due to model scaling. We find similar results for DiTMC+rPE and
DiTMC+PE(3) (see Appendix Fig. A9 and Fig. A10).
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Figure 4: (A) Coverage (COV) mean as function of Root Mean Square Deviation (RMSD) threshold
δ and (B) average minimum RMSD (AMR) mean vs. time per conformer for DiTMC+aPE and
other state-of-the-art models. Per model markers from left to right correspond to 5, 10, 20, and 50
sampler steps following Refs. [32, 47]. Note, that the original MCF paper reports results with two
different samplers. Benchmark results (Tab. 3) are obtained with DDPM sampler (1000 steps) and
AMR vs. time results are reported for DDIM sampler (5–50 steps). (C) Comparison of conformers
generated by MCF, ET-Flow, and DiTMC against ground-truth reference conformers from GEOM-XL.
Generated conformers are rotationally aligned with their corresponding reference conformer.

Pareto Front. Additionally, we investigate the Pareto front of accuracy and computational efficiency,
by plotting model accuracy as a function of wall clock time per generated conformer, following
Refs. [32, 47] (see Appendix G.5 for details). As measure for accuracy we consider the average
minimum RMSD (AMR), since it is independent of the RMSD threshold. We report results of
DiTMC+aPE-B and DiTMC+aPE-L for AMR-R Mean and AMR-P Mean in Fig. 4B. For AMR-P
Mean, both DiTMC+aPE models shift the whole Pareto front, yielding higher accuracy at lower
computational cost. Even higher accuracies (at the cost of compute time) can be obtained by scaling
DiTMC+aPE-B to DiTMC+aPE-L. For recall, both DiTMC+aPE models shift the Pareto front for
little compute times, but most accurate results at increased cost are obtained by MCF-L. Similar
results are obtained for DiTMC+rPE (see Appendix Fig. A12), but benefits for DiTMC+PE(3) are
limited due to high computational cost of equivariant operations (see Appendix Fig. A13).

Ensemble Properties. To complement the RMSD-based geometric evaluation, we report the median
absolute error (MAE) of ensemble properties between generated and reference conformers, following
the protocol of MCF [47] and ET-Flow [32] (see Appendix G.6 for details). Our models predict
ensemble properties more accurately than all baselines, highlighting the physical validity of our gen-
erated structures (see Tab. 4). In particular, MCF, which shows better performance for recall metrics,
is outperformed by a large margin (up to a factor of four for energy). The strong performance of the
aPE-B and aPE-L models underlines the potential of achieving high physical validity without any
geometric priors, which have been hypothesized to be one of the reasons for ET-Flow outperforming
MCF in the ensemble property task [32].

Generalization Performance Finally, we assess how well our models, trained on GEOM-DRUGS,
generalize to larger and previously unseen molecules using the GEOM-XL dataset [46]. It comprises
102 molecules with more than 100 atoms, whereas the molecules in the training set contain only
44 atoms on average. Following MCF [47] we report results for all 102 molecules and a subset of
77 molecules. ET-Flow uses a slightly different subset of 75 molecules. Our aPE models perform
on par with or better than the previously best-performing method MCF-L (see Tab. 5), while using
approximately 8 times and 25 times fewer parameters for aPE-L and aPE-B, respectively. The other
baselines, such as ET-Flow, are outperformed by a larger margin (see Appendix Tab. A12).
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Table 4: Median absolute error of ensemble properties between generated and reference conformers
for GEOM-DRUGS. Best results in bold, second best underlined; our models are marked with an
asterisk (∗). Results for MCF, ET-Flow, and ours are averaged over three random seeds. See Appendix
Tab. A11 for additional results including standard deviations.

Method E [kcal/mol] ↓ µ [D] ↓ ∆ϵ [kcal/mol] ↓ Emin [kcal/mol] ↓
MCF-L (242M) 0.68 0.28 0.63 0.04
ET-Flow (8.3M) 0.18 0.18 0.35 0.02

∗DiTMC+aPE-B (9.5M) 0.17 0.16 0.27 0.01
∗DiTMC+aPE-L (28.2M) 0.16 0.14 0.27 0.01

Table 5: Out-of-distribution generalization results on GEOM-XL for models trained on GEOM-
DRUGS. -R indicates Recall, -P indicates Precision. Best results in bold, second best underlined;
our models are marked with an asterisk (∗). Our results are averaged over three random seeds. See
Appendix Tab. A12 for additional results including standard deviations.

Method 75 / 77 mols 102 mols

AMR-R [Å] ↓ AMR-P [Å] ↓ AMR-R [Å] ↓ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

MCF-L (242M) 1.64 1.51 2.57 2.26 1.97 1.60 2.94 2.43
ET-Flow (8.3M) 2.00 1.80 2.96 2.63 2.31 1.93 3.31 2.84

∗DiTMC+aPE-B (9.5M) 1.68 1.47 2.59 2.24 1.96 1.60 2.90 2.48
∗DiTMC+aPE-L (28.2M) 1.56 1.28 2.47 2.14 1.88 1.51 2.81 2.30

6 Summary and Limitations

We propose a framework for molecular conformer generation that incorporates conditioning strategies
tailored to the architectural design principles of DiTs. This modular framework enables a rigorous
exploration of different positional embedding and self-attention strategies, allowing us to identify
scalable generative architectures that perform competitively with prior methods on standard bench-
marks. Our models achieve state-of-the-art results on GEOM-QM9 and GEOM-DRUGS, excelling
in both precision and physical validity, and show strong generalization to larger, previously unseen
molecules from the GEOM-XL dataset. Exemplary generations for GEOM-XL are shown in Fig. 4C,
with additional samples provided in Appendix M.

Through ablation studies, we assess the impact of incorporating Euclidean symmetries into DiTMC.
While such symmetries improve performance, they also increase computational cost. Notably, simpler
non-equivariant variants remain highly effective. These findings allow us to develop an efficient,
accurate, and scalable architecture suitable for large-scale conformer generation.

Nonetheless, some limitations persist. Our evaluation is currently restricted to small and medium-
sized molecules, with larger, more flexible compounds left for future work. Moreover, the training
process depends on high-quality ground-truth conformers, which may be unavailable in some cases.
An interesting direction for future work, is extending the scope of our model beyond conformer
generation, for example to de-novo molecular generation [8, 22, 50]. However, this would require
a re-design of our proposed conditioning strategies, as those are specifically tailored to molecular
graphs as inputs. In terms of computational cost, DiTMC scales quadratic in the number of atoms,
resulting in large computational cost for bigger systems. Therefore, integrating recently developed
Euclidean fast attention mechanisms [68], poses an interesting direction for further research. Finally,
while our analysis advances understanding of equivariance within DiT-based generative models,
drawing broader conclusions would require further study.
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Answer: [NA]
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A From SE(3) to SO(3) Invariance

The target data distribution of molecular conformers p1(x) is SE(3)-invariant, i.e. it does not change
under translations and rotations of the input. Following Ref. [69], one can define an SE(3)-invariant
measure on SE(3)N by keeping the center of mass fixed at zero, which can be achieved via the
centering operation from Eq. A15. This defines a subgroup SE(3)N0 , called centered SE(3). It
can then be shown, that one can define an SE(3)-invariant measure on SE(3)N0 by constructing an
SO(3)-invariant (rotationally invariant) measure on SE(3)N0 .

As a consequence, it is then sufficient to learn an SO(3)-equivariant vector field on the space of
centered input positions (see also Ref. [70]). This is achieved by centering x0, x1 and z for the
calculation of the interpolant. Moreover, the neural network output (predicted velocities) and the
clean target x1 must be centered to have zero center of mass.

We discuss the implications for training in Section B and for sampling in Section C.

B Training

Algorithm 1 describes the computation of the training loss for our flow matching objective. We
start by sampling from the prior x0 ∼ p0(x), the data distribution x1 ∼ p1(x), and a Gaussian
distribution ϵ ∼ N(x; 0, I). The interpolant is then defined as

xt = (1− t) · x0 + t · x1 + σ · ϵ , (A13)

where σ ∈ R>0 is a non-zero noise scaling parameter.

Rather than directly predicting the conditional vector field ut(x|x0,x1), we choose to reparametrize
the network such that it predicts the clean sample x1. Similar to Ref. [57], we add a weighting term
1/(1 − t)2 to encourage the model to accurately capture fine details close to the data distribution.
This gives rise to the following loss function

L =
1

(1− t)2
∥xθ

1(xt, t,G)− x1∥2 , (A14)

where t ∈ (0, 1) denotes the timestep in the interpolant xt ∈ RN×3, x1 ∈ RN×3 is the clean
geometry, and G = (V, E) denotes the molecular graph. The full algorithm is summarized in
Algorithm 1.

Geometry Alignment Given a set of vectors U = {u⃗1, . . . , u⃗N | u⃗i ∈ R3} associated with a point
cloud x ∈ RN×3, we define a centering operation for the i-th row

Center(x)i = u⃗i −
1

N

N∑
j=1

u⃗j , (A15)

which removes global drift in x. Given two point clouds xA ∈ RN×3 and xB ∈ RN×3 with positions
RA = {r⃗1A . . . , r⃗NA} andRB = {r⃗1B . . . , r⃗NB}, we define a rotational alignment operation

RotationAlign(xA,xB)i = RoptxiA, (A16)

where Ropt ∈ R3×3 is the optimal rotation matrix, minimizing the root mean square deviation
(RMSD) between the positions of point clouds A and B, which can be obtained via the Kabsch
algorithm [71]. The full geometry alignment operation “GeometryAlign(xA,xB)”, is given by

xA ← Center(xA) (A17)
xB ← Center(xB) (A18)

xA ← RotationAlign(xA,xB) (A19)

In words, both point clouds are first centered at the origin and then optimally aligned by rotation.
This procedure minimizes the path length of a linear interpolation between the point clouds A and B.
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Algorithm 1 Conditional Flow Matching Training Loss
Require: Graph G, target x1, noise level σ, Model xθ

1

1: x0 ∼ p0, ϵ ∼ N (0, I), t ∼ U(0, 1), R ∼ SO(3)
2: x0,x1 ← GeometryAlign(x0,x1) ▷ This centers x0 and x1 and rotation-aligns x0 to x1.
3: ϵ← Center(ϵ)
4: xt ← (1− t)x0 + tx1 + σϵ
5: xt ← ApplyRotation(R,xt)
6: x1 ← ApplyRotation(R,x1)
7: x̂1 ← xθ

1(xt, t,G)
8: x̂1 ← Center(x̂1)

9: return 1
(1−t)2 ∥x̂1 − x1∥2

Data Augmentation The target data distribution of molecular conformers p1(x) is SE(3)-invariant,
i.e. it does not change under translations and rotations of the input. One can construct an SE(3)-
invariant density by learning an SO(3)-equivariant vector field on centered SE(3) (see Section
A). However, only DiTMC+PE(3) is SO(3)-equivariant, whereas aPE and rPE violate SO(3)-
equivariance. Therefore, we learn equivariance approximately during training, using data augmenta-
tion. Specifically, we randomly sample rotation matrices R (orthogonal matrices with determinant
+1) and apply them as

ApplyRotation(R,x)i = Rr⃗i, (A20)

where r⃗i denotes the positions of the i-th atom, i.e., the i-th row in the point cloud x ∈ RN×3.

Noise Scaling Parameter We ablated the noise scaling parameter σ on GEOM-QM9 and GEOM-
DRUGS, comparing a larger value of 0.5 and a smaller value of 0.05. We set σ to the value that
empirically worked best for each dataset: 0.05 for GEOM-QM9 and 0.5 for GEOM-DRUGS.

Optimizer and Hyperparameters We use the AdamW optimizer (weight decay 0.01) with batch
size of 128 and learning rate of µmax = 3 × 10−4 for GEOM-QM9 and µmax = 1 × 10−4 for
GEOM-DRUGS. First, we increase the initial learning rate of µ0 = 10−5 up to µmax via a linear
learning rate warmup over the first 1% of training steps. Afterwards, the learning rate is decreased
via a cosine decay schedule to µmin = 0 for GEOM-QM9 and µmin = 1× 10−5 for GEOM-DRUGS.

Compute Budget and Training Times All models on GEOM-QM9 are trained for 250 epochs,
which requires 2 days of training on Nvidia H100 GPU for aPE and rPE models and almost 4 days
for PE(3). For GEOM-DRUGS, we fix the total compute budget per model to nine days on a single
NVIDIA H100 GPU, due to computational constraints. Within this budget, we can train aPE-L and
rPE-L for 50 epochs and PE(3)-L for 10 epochs. To ensure consistency within each PE strategy, the
base (“B”) model are trained for the same number of epochs as the corresponding large (“L”) model.

C Sampling

For sampling, we use a simple Euler scheme with 50 steps to sample from the associated ordinary
differential equation (ODE) as described in Algorithm 2. Since during training we predict the clean
sample x1, we re-parametrize the velocity required for the integration as

vθ
t (xt, t,G) =

xθ
1(xt, t,G)− xt

1− t
, (A21)

where xθ
1(xt, t,G) is the original output of DiTMC.

To ensure SE(3) invariance of the probability path from an (approximately) SO(3)-equivariant
velocity predictor, we center the prior x0 ∼ p0(x) and the prediction of DiTMC in each ODE step.
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Algorithm 2 ODE Sampling
Require: Model xθ

1, Graph G, steps N > 0

1: tn ← n/N for n ∈ {0, . . . , N}
2: x0 ∼ pprior(x) ▷ Sample prior.
3: x0 ← Center(x0)
4: for n← 0 to N − 1 do
5: ∆t← tn+1 − tn ▷ Compute step size.
6: x̂1 ← xθ

1(xtn , tn,G)
7: x̂1 ← Center(x̂1)
8: v ← (x̂1 − xtn)/(1− tn)
9: xtn+1

← xtn +∆t · v ▷ Euler step.
10: end for

11: return x1

Table A6: Architectural details for MLPs used in the model. The feature dimension is given as
H = nheads · dhead where nhead is the number of heads and dhead is the number of features per head.

Name Layers Hidden Dim Out Dim Activation Input
DiTMC Block 2 4H H GELU Tokens

SO(3) DiTMC Block 2 4H H
gated

GELU Tokens

Time and Atom Cond. 1 – 6H SiLU ct + cGi
Bond pair 2 H H SiLU cGij

Time embedding 2 H H SiLU t ∈ [0, 1]
Shortest-hop embedding 2 H H SiLU Hop distance
aPE embedding 2 H H SiLU Abs. positions r⃗i
rPE embedding 2 H H SiLU Rel. positions r⃗ij
GNN embedding 2 H H SiLU Node/edge features

D Architectural Details

In this section, we describe the architecture of DiTMC and the conditioning GNN in more detail.

All DiTMC models rely on conditioning tokens C, for the time ct ∈ RH , per-atom cGi ∈ RH , and
per atom-pair cGij ∈ RH . See main text Section 4.1 for more details. Following Ref. [13], we use
adaptive layer norm (AdaLN) and adaptive scale (AdaScale) to include per-atom conditioning tokens
based on time t and molecular graph information. To that end, we construct conditioning tokens

ci = ct + cGi . (A22)

Tab. A6 contains details on the MLPs used throughout our architecture, while Tab. A7 summarizes
architectural details, as well as training and inference times for all DiTMC variants. Note that the
number of attention heads in DiTMC+PE(3) is adjusted to match the total parameter count of the
corresponding DiTMC+aPE and DiTMC+rPE variants, while all other hyperparameters are identical.

D.1 Non-Equivariant DiTMC

In the non-equivariant DiTMC formulations based on aPE and rPE, we have the following set of tokens
H = {h1, . . . ,hN |hi ∈ RH}. Initial token representations are obtained via hi = e(zi) + paPE

i for
aPE and hi = e(zi) for rPE, where e(zi) ∈ RH denotes a learnable embedding based on the atomic
number zi ∈ N+ of atom i [35].
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Table A7: Architectural details as well as training and inference time (in ms) for different PE
strategies on GEOM-QM9 and GEOM-DRUGS. Times are measured with batch size 128 on a single
Nvidia H100 GPU. T means number of transformer layers, nheads number of heads, dhead number of
features per head in the attention update, and TMGN number of layers for the conditioning mesh
graph net. Thus, total feature dimension is given as H = nheads · dhead.

Model T nheads dhead TMGN H Train [ms] Infer [ms]

DiTMC+aPE-S (1M) 2 4 32 1 128 5.8 2.0

DiTMC+aPE-B (9.5M) 6 8 32 2 256 19.2 8.1
DiTMC+rPE-B (9.6M) 6 8 32 2 256 19.7 8.3
DiTMC+PE(3)-B (8.6M) 6 6 32 2 192 70.0 25.9

DiTMC+aPE-L (28.2M) 8 12 32 3 384 32.7 9.5
DiTMC+rPE-L (28.3M) 8 12 32 3 384 33.5 10.1
DiTMC+PE(3)-L (31.1M) 8 10 32 3 320 151.6 41.8

D.1.1 Self-Attention Operation

For ease of notation, we only describe self-attention with a single head, but employ multi-head
attention [29] with nheads heads in our experiments. All self-attention blocks rely on query, key and
value vectors, which are obtained from the input tokensH = {h1, . . . ,hN | hi ∈ RH} as

q = W qh , k = W kh , v = W vh , (A23)

where W q,W k,W v ∈ RH×H are trainable weight matrices. We define a slightly modified similar-
ity kernel

sim(q,k,u) = exp

(
q⊺ · (k ⊙ u)√

H

)
, (A24)

where u ∈ RH is used to inject additional information, e.g., conditioning signals and/or positional
embeddings, and ‘⊙’ denotes element-wise multiplication.

For absolute and relative PEs, we slightly modify standard self-attention to allow injecting pair-wise
information into the values in addition to using our modified similarity kernel

ATT(H,P, CGPair)i =

∑N
j=1 sim(qi,kj ,uij) · (vj ⊙ uij)∑N

j=1 sim(qi,kj ,uij)
, (A25)

where queries, keys, and values are obtained with Eq. A23 and the injected pair-wise information uij

depends on the positional embedding strategy with

uij =

{
cGij for absolute PEs ,
cGij + prPE

ij for relative PEs .
(A26)

Here cGij ∈ RH are pair-wise graph conditioning tokens (see Eq. 7) and paPE
i ∈ RH and prPE

ij ∈ RH

are the absolute and relative PEs described above (see Eqs. 8 and 9).

D.1.2 Adaptive Layer Normalization and Adaptive Scale

In the standard, non-equivariant setting, we can follow the standard approach of other DiT architec-
tures. We define adaptive layer norm as

AdaLN(h,α,β) = LN(h)⊙ (1 +α) + β, (A27)

where LN is a standard layer normalization without trainable scale and bias, and “⊙” denotes
entry-wise product.

Adaptive Scale is defined as
AdaScale(h,γ) = h⊙ γ. (A28)
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In each DiTMC block, we calculate

α1i,β1i,γ1i,α2i,β2i,γ2i = W
(
SiLU(ci)

)
, (A29)

where W ∈ R6H×H and the output is split into six equally sized vectors
α1i,β1i,γ1i,α2i,β2i,γ2i ∈ RH . The weight matrix W is initialized to all zeros, such
that “AdaLN” behaves like identity at initialization. “AdaScale” damps all input tokens to zero at
initialization such that the whole DiTMC block behaves like the identity function at initialization.

D.1.3 Readout

Given final tokens h after performing updates via T DiTMC blocks, we use a readout layer to predict
the atomic positions of the clean data sample x1. As in the DiTMC blocks, we employ adaptive LN
and therefore calculate

αi,βi = W
(
SiLU(ci)

)
, (A30)

with weight matrix W ∈ R2H×H initialized to all zeros and αi,βi ∈ RH and do

hi ← AdaLN(hi,αi,βi) ,

x̂i ←W readouthi ,

where W readout ∈ R3×H is a trainable weight matrix. Thus, we predict a three-dimensional vector
per-atom.

D.2 SO(3) Equivariant DiTMC

Following the notation in Ref. [72], we denote SO(3)-equivariant tokens asH = {h1, . . . ,hN |hi ∈
R(L+1)2×H}, where L denotes the maximal degree of the spherical harmonics. We denote the features
corresponding to the ℓ-th degree as h(ℓ)

i ∈ R(2ℓ+1)×H , where the (2ℓ+ 1) entries corresponds to the
orders m = −ℓ, . . . ,+ℓ per degree ℓ. We refer the reader to Ref. [72] for an in-depth introduction
into equivariant features. For the initial token representation hi ∈ R(L+1)2×H we set h(0)

i = e(zi),
where e(zi) ∈ R1×H denotes a learnable embedding based on the atomic number zi ∈ N+ for
atom i [35]. All higher order features h(ℓ)

i with degree ℓ > 0 are initialized with zero. For all our
experiments we use maximal degree of L = 1.

D.2.1 Self-Attention Operation

Our equivariant version of self-attention uses the same transformations for queries, keys and values
like the non-equivariant counterpart, as well as the modified similarity kernel (see Appendix sub-
subsection D.2.1). However, to preserve all Euclidean symmetries throughout the network, every
token must transform equivariantly. One way to achieve this is by separating out the rotational
degrees of freedom, encoding them with irreducible representations of the rotation group SO(3).
This introduces a “degree-axis” of size (L+ 1)2, which encodes angular components of increasing
order. The maximum degree L is chosen to ensure high fidelity at a reasonable computational cost.
For example, setting L = 1 restricts the representation to scalars and vectors, as used in models like
PaiNN [60] or TorchMDNet [34]. An SO(3)-equivariant formulation of self-attention is then given as

ATTSO(3)(H)i =
∑N

j=1 sim(qi,kj ,uij) · (ûij ⊗ vj)∑N
j=1 sim(qi,kj ,uij)

, (A31)

where equivariant queries, keys and values can be calculated similarly to Eq. A23 and ‘⊗’ denotes a
Clebsch-Gordan (CG) tensor product contraction [72]. The dot-product in the similarity measure is
taken along both feature and degree axes, such that the overall update preserves equivariance (see
Appendix Appendix F for details). Tokens and scaling vectors are calculated as

uij = ϕ(rij)⊙ cGij , ûij = pPE(3)
ij ⊙ cGij , (A32)

where ϕ(rij) ∈ R(L+1)2×H is a radial filter, and the element-wise products with the pair-wise
conditioning tokens cGij ∈ R1×H are broadcast along the degree axis. Importantly, the 2ℓ + 1
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subcomponents of the radial filter for degree ℓ are obtained by repeating per-degree filter functions
ϕℓ(rij) ∈ R1×H along the degree axis to preserve equivariance (see also Eq. 10).

Since, standard MLPs do not preserve SO(3)-equivariance, we use equivariant MLPs for the node-
wise refinement after the self-attention calculation via an equivariant formulation for dense layers
and so-called gated non-linearities (see e.g. Ref. [72] for more details).

D.2.2 Adaptive Layer Normalization and Adaptive Scale

In the SO(3)-equivariant case, we define an adapted version of AdaLN and AdaScale, preserving
equivariance. Our equivariant formulation of AdaLN is given as

EquivAdaLN(h,α,β) =

{
LN(h(ℓ))⊙ (1 +α(0)) + β for ℓ = 0,

EquivLN(h(ℓ))⊙ (1 +α(ℓ)) for ℓ > 0,

(A33)
where EquivLN is the equivariant formulation of layer normalization following Ref. [36] without
trainable per-degree scales and LN is standard layer normalization without trainable scale and bias.
Scaling vectors α(ℓ) ∈ R1×H are defined per degree ℓ, such that input scaling vectors are tensors
α ∈ R(L+1)×H . Bias vectors are only defined for the invariant (ℓ = 0) component of the tokens, since
adding a non-zero bias to components with ℓ > 0 would lead to a non-equivariant operation (the bias
does not transform under rotations). The element wise multiplication between (1 +α(ℓ)) ∈ R1×H

and tokens h(ℓ) ∈ R(2ℓ+1)×H is “broadcasted” along the degree-axis. For L = 0, Eq. A33 reduces to
the standard adaptive layer normalization.

Equivariant adaptive scale is defined as

EquivAdaScale(h,γ) = h(ℓ) ⊙ γ(ℓ). (A34)

As for “EquivAdaLN”, we define a separate γ(ℓ) ∈ R1×H per degree ℓ, such that γ ∈ R(L+1)×H .
Again, the element wise product is “broadcasted” along the degree-axis. Since no bias is involved,
the invariant and equivariant parts in h can be treated equally.

Within each SO(3)-equivariant DiTMC block, we calculate

α1i,β1i,γ1i,α2i,β2i,γ2i = W
(
SiLU(ci)

)
, (A35)

where α1i,α2i,γ1i,γ2i ∈ R(L+1)×H and β1i,β2i ∈ RH . Thus, the weight matrix is given as
W ∈ R(4(L+1)+2)×H and initialized to all zeros, such that “EquivAdaLN” behaves like identity at
initialization and “EquivAdaScale” returns zeros. Thus, also the SO(3)-equivariant DiTMC block
behaves like the identity function at initialization.

D.2.3 Readout

Given final equivariant features hi ∈ R(L+1)2×H we use a readout layer to predict the atomic
positions of the clean data sample x1. We employ our equivariant formulation of adaptive layer
normalization and calculate

αi,βi = W
(
SiLU(ci)

)
, (A36)

with weight matrix W ∈ R2H(L+1)×H initialized to all zeros and αi,βi ∈ RH(L+1). We then do,

hi ← EquivAdaLN(hi,αi,βi) ,

yi ←W readouth
(ℓ=1)
i ,

where W readout ∈ R1×H is a trainable weight vector that is applied along the feature axis in h. Since
h
(ℓ=1)
i ∈ R3×H this produces per-atom vectors ŷi ∈ R3. As hi are rotationally equivariant so is

ŷi ∈ R3.

D.3 Conditioning GNN

Our conditioning GNN directly operates on the molecular graph G = (V, E) to obtain graph-based
information for atom-wise conditioning. First, we processes the molecular graph G to derive node

29



and edge input features, initially represented as one-hot vectors (a full list of features is provided
in Tab. A8). These features then are projected into a shared latent space using two-layer multilayer
perceptrons (MLPs). Finally, we employ a GNN architecture inspired by the processor described in
the MeshGraphNet (MGN) framework [58], which refines the features via message passing.

The conditioning GNN maintains and updates both node and edge representations across multiple
layers. Each message passing block consists of two main steps: first, the edge representations are
updated based on the current edge representations and the representations of the connected nodes:

e′ij ← fe(eij ,vi,vj) (A37)

where eij and vi denote the input edge and node representations, and e′ij are the updated edge repre-
sentations. The learnable function fe is implemented as a two-layer MLP. Next, node representations
vi are updated to v′

i using aggregated messages from neighboring edges:

v′
i ← fv

vi,
∑
j

e′ij

 (A38)

where fv is also a two-layer MLP, and the summation is over all edges ending at node i.

The final output of the described conditioning GNN is a set of node embeddings per atom, and a set
of edge embeddings per bond. We use the final node embeddings as atom-wise graph conditioning
tokens in DiTMC as detailed in Sec. 4.1. We want to highlight that one can also use the final edge
embedding as pair-wise graph conditioning tokens in DiTMC. We discuss this further in Appendix I.2.

E Equivariance Proof for Euclidean Positional Embeddings

Given a set of transformations that act on a vector space A as Sg : A 7→ A to which we associate an
abstract group G, a function f : A 7→ B is said to be equivariant w.r.t. G if

f(Sgx) = Tgf(x) , (A39)

where Tg : B 7→ B is an equivalent transformation on the output space. Thus, in order to say that f is
equivariant, it must hold that under transformation of the input, the output transforms “in the same
way”.

Let us now recall our definition for the equivariant positional embeddings for a single degree ℓ

p
PE(3),(ℓ)
ij (r⃗ij) = ϕℓ(||r⃗ij ||) ⊙ Y ℓ(r̂ij) , (A40)

where ϕℓ : R 7→ R1×H is a radial filter function, r̂ = r⃗/r, and Y ℓ ∈ R(2ℓ+1)×1 are spherical
harmonics of degree ℓ = 0 . . . L. The element-wise multiplication ‘⊙’ between radial filters and
spherical harmonics is understood to be “broadcasting” along axes with size 1, such that (ϕℓ ⊙Y ℓ) ∈
R(2ℓ+1)×H . We have also made the dependence of PE(3) on the pairwise displacement vector
r⃗ij = r⃗i − r⃗j explicit.

Lets not consider a single feature channel c in PE(3), which is given as

p
PE(3),(ℓ)
ijc (r⃗ij) = ϕℓc(||r⃗ij ||) ⊙ Y ℓ(r̂ij) . (A41)

Rotating the input positions in Eq. A41 leads to

p
PE(3),(ℓ)
ijc (Rr⃗ij) = ϕℓc(||Rr⃗ij ||) ⊙ Y ℓ(Rr̂ij) (A42)

= ϕℓc(||r⃗ij ||) ⊙D(ℓ)(R)Y ℓ(r̂ij), (A43)

= D(ℓ)(R)p
PE(3),(ℓ)
ijc (r⃗ij) (A44)

where D(ℓ) ∈ R(2ℓ+1)×(2ℓ+1) are the Wigner-D matrices for degree ℓ and R ∈ R3×3 is a rotation ma-
trix. According to Eq. A39 and Eq. A44, each channel transforms equivariant and thus pPE(3),(ℓ)

ij (r⃗ij)
is also equivariant.
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The concatenation of different degrees ℓ up to some maximal degree L as given in the main body of
the text

pPE(3)
ij (r⃗ij) =

L⊕
ℓ=0

ϕℓ(rij) ⊙ Y ℓ(r̂ij) , (A45)

transforms under rotation as

pPE(3)
ij (Rr⃗ij) = D(R)pPE(3)

ij (r⃗ij) (A46)

with D(R) =
⊕L

ℓ=0 D
(ℓ)(R) ∈ R(L+1)2×(L+1)2 being a block-diagonal matrix with the Wigner-D

matrices of degree D(ℓ)(R) ∈ R(2ℓ+1)×(2ℓ+1) along the diagonal. Therefore, according to Eq. A39
the proposed positional embeddings pPE(3)

ij are SO(3)-equivariant.

F Invariance Proof for the Dot-Product

In the self-attention update, the dot-product between query and key is computed as along the degree
and the feature axis. Under rotation, the equivariant features behave as

h(Rr⃗) = D(R)h(r⃗), (A47)

where D(R) is the concatenation of Wigner-D matrices from above. The inner product along the
degree axis for two features h and g behaves under rotation as

g(Rr⃗)T · h(Rr⃗) = g(r⃗)T D(R)TD(R)︸ ︷︷ ︸
=Id

h(r⃗) = g(r⃗)T · h(r⃗), (A48)

where we made use of the fact that the Wigner-D matrices are orthogonal matrices. Thus, the
dot-product along the degree-axis is invariant and therefore taking the dot-product along the degree
and then along the feature axis is also invariant.

G Implementation details

G.1 Data Preprocessing

For both GEOM-QM9 and GEOM-DRUGS, we use the first 30 conformers for each molecule with
the lowest energies, i.e., highest Boltzmann weights. We use the train/test/val split from Geomol [64],
using the same 1000 molecules for testing.

G.2 Input Featurization

Tab. A8 defines the features we use for each atom or bond. Each feature is computed using RDKit [73]
and one-hot encoded before being passed to the network.

G.3 Evaluation Metrics

During evaluation, we follow the same procedure as described in Refs. [32, 46, 47, 64]. The root-
mean-square deviation (RMSD) metric measures the average distance between atoms of a generated
conformer with respect to its reference, while taking into account all possible symmetries. For
L = 2K let {Ĉl}l∈{1,...,L} and {Ck}k∈{1,...,K} be the sets of generated conformers and reference
conformers respectively. The average minimum RMSD (AMR) and coverage (COV) metrics for both
recall (R) and precision (P) are defined as follows, where δ > 0 is the coverage threshold:
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Table A8: Atomic and bond features included in DiT-MC. All features are one-hot encoded.

Atom features Options
Chirality TETRAHEDRAL_CW, TETRAHEDRAL_CCW, UNSPECIFIED, OTHER
Number of hydrogens 0, 1, 2, 3, 4
Number of radical electrons 0, 1, 2, 3, 4
Atom type (QM9) H, C, N, O, F
Atom type (DRUGS) H, Li, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, V, Cr, Mn, Cu,

Zn, Ga, Ge, As, Se, Br, Ag, In, Sb, I, Gd, Pt, Au, Hg, Bi
Aromaticity true, false
Degree 0, 1, 2, 3, 4, other
Hybridization sp, sp2, sp3, sp3d, sp3d2, other
Implicit valence 0, 1, 2, 3, 4, other
Formal charge -5, -4, ..., 5, other
Presence in ring of size x x = 3, 4, 5, 6, 7, 8, other
Number of rings atom is in 0, 1, 2, 3, other

Bond features Options
Bond type single, double, triple, aromatic

COV-R(C, Ĉ, δ) :=
1

K

∣∣∣{k ∈ {1, . . . ,K} | ∃l∈{1,...,L}RMSD(Ĉl, Ck) < δ
}∣∣∣ (A49)

COV-P(C, Ĉ, δ) :=
1

L

∣∣∣{l ∈ {1, . . . , L} | ∃k∈{1,...,K}RMSD(Ĉl, Ck) < δ
}∣∣∣ (A50)

AMR-R(C, Ĉ) :=
1

K

∑
k∈{1,...,K}

min
l∈{1,...,L}

RMSD(Ĉl, Ck) (A51)

AMR-P(C, Ĉ) :=
1

L

∑
l∈{1,...,L}

min
k∈{1,...,K}

RMSD(Ĉl, Ck) (A52)

G.4 Chirality Correction

Given the four 3D coordinates around a chirality center denoted as p1,p2,p3,p4 ∈ R3 with
pi = (xi, yi, zi) for i = 1, 2, 3, 4, we can compute the oriented volume OV of the tetrahedron via

OV (p1,p2,p3,p4) =
1

6
· det


 1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4




=
1

6
· (p1 − p4) · ((p2 − p4)× (p3 − p4)) .

(A53)

Following GeomMol [64] and ET-Flow [32], we can then compare the orientation of the volume
given by sign(OV ) with the local chirality label produced by RDKit, which corresponds to a certain
orientation as well (CW = +1 and CCW = -1) [74]. If the orientation of the volume differs from the
RDKit label, we correct the chirality of the conformer by reflecting its positions against the z-axis.

G.5 Pareto Front

For all models, we generate conformers using 5, 10, 20 and 50 sampling steps on a single A100
GPU with a batch size of 128, following Refs. [32, 47]. The wall-clock time per generated sample
is obtained by measuring the average time per batch and dividing by the batch size. As done in the
original paper, we adopt DDIM sampling for MCF-S, MCF-B and MCF-L.
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Table A9: Results on GEOM-QM9 for different generative models (number of parameters in paren-
theses). -R indicates Recall, -P indicates Precision. Best results in bold, second best underlined;
our models are marked with an asterisk “∗”. Our results are averaged over three random seeds with
standard deviation reported below. Other works do not report standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

GeoMol (0.3M) 91.5 100.0 0.225 0.193 86.7 100.0 0.270 0.241
GeoDiff (1.6M) 76.5 100.0 0.297 0.229 50.0 33.5 0.524 0.510
Tors. Diff. (1.6M) 92.8 100.0 0.178 0.147 92.7 100.0 0.221 0.195
MCF-B (64M) 95.0 100.0 0.103 0.044 93.7 100.0 0.119 0.055
DMT-B (55M) 95.2 100.0 0.090 0.036 93.8 100.0 0.108 0.049
ET-Flow (8.3M) 96.5 100.0 0.073 0.030 94.1 100.0 0.098 0.039

∗DiTMC+aPE-B (9.5M) 96.1
±0.3

100.0
±0.0

0.074
±0.001

0.030
±0.001

95.4
±0.1

100.0
±0.0

0.085
±0.001

0.037
±0.000

∗DiTMC+rPE-B (9.6M)
96.3
±0.0

100.0
±0.0

0.070
±0.001

0.027
±0.000

95.7
±0.1

100.0
±0.0

0.080
±0.000

0.035
±0.000

∗DiTMC+PE(3)-B (8.6M) 95.7
±0.3

100.0
±0.0

0.068
±0.002

0.021
±0.001

93.4
±0.2

100.0
±0.0

0.089
±0.002

0.032
±0.001

G.6 Ensemble Properties

We adopt the property prediction task setup from MCF [47] and ET-Flow [32], where we draw
a subset of 100 randomly sampled molecules from the test set of GEOM-DRUGS and generate
min(2K, 32) conformers for a molecule with K ground truth conformers. Afterwards we relax the
conformers using GFN2-xTB [75] and compare the Boltzmann-weighted properties of the generated
and ground truth ensembles. More specifically, we employ xTB [75] to calculate the energy E,
the dipole moment µ, the HOMO–LUMO gap ∆ϵ and the minimum energy Emin. We repeat this
procedure for three subsets each sampled with a different random seed and report the averaged median
absolute error and standard deviation of the different ensemble properties.

H Additional Experimental Results

H.1 Results on GEOM-QM9

We report the results on GEOM-QM9 including standard deviations for all DiTMC models in Tab. A9.

H.2 Results on GEOM-DRUGS

We report the results on GEOM-DRUGS including standard deviations for all DiTMC models in
Tab. A10. The median absolute error of ensemble properties on GEOM-DRUGS is shown in Tab. A11.

Additional results for the coverage vs. RMSD threshold analysis, including results for DiTMC+rPE
and DiTMC+PE(3), are provided in Fig. A8, Fig. A9, and Fig. A10.

Additional results for the Pareto front analysis, including results for DiTMC+rPE and DiTMC+PE(3),
are provided in Fig. A11, Fig. A12, and Fig. A13.

H.3 Results on GEOM-XL

We report the results on GEOM-XL including standard deviations for all DiTMC models in Tab. A12.
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Table A10: Results on GEOM-DRUGS for different generative models (number of parameters in
parentheses). -R indicates Recall, -P indicates Precision. Best results in bold, second best underlined;
our models are marked with an asterisk “∗”. Our results are averaged over three random seeds with
standard deviation reported below. Other works do not report standard deviations.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

GeoMol (0.3M) 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff (1.6M) 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
Tors. Diff. (1.6M) 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
MCF-S (13M) 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF-B (64M) 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
MCF-L (242M) 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
DMT-L (150M) 85.8 92.3 0.375 0.346 67.9 72.5 0.598 0.527
ET-Flow - SS (8.3M) 79.6 84.6 0.439 0.406 75.2 81.7 0.517 0.442

∗DiTMC+aPE-B (9.5M) 79.9
±0.1

85.4
±0.3

0.434
±0.002

0.389
±0.002

76.5
±0.1

83.6
±0.3

0.500
±0.002

0.423
±0.004

∗DiTMC+rPE-B (9.6M) 79.3
±0.1

84.6
±0.2

0.444
±0.002

0.400
±0.002

77.2
±0.1

84.6
±0.2

0.492
±0.001

0.414
±0.002

∗DiTMC+PE(3)-B (8.6M) 80.8
±0.1

85.6
±0.5

0.427
±0.001

0.396
±0.001

75.3
±0.1

82.0
±0.2

0.515
±0.000

0.437
±0.003

∗DiTMC+aPE-L (28.2M) 79.2
±0.1

84.4
±0.2

0.432
±0.003

0.386
±0.003

77.8
±0.1

85.7
±0.5

0.470
±0.001

0.387
±0.003

∗DiTMC+rPE-L (28.3M) 78.7
±0.1

84.1
±0.4

0.438
±0.002

0.388
±0.005

78.1
±0.1

86.4
±0.3

0.466
±0.001

0.381
±0.003

∗DiTMC+PE(3)-L (31.1M) 80.8
±0.3

85.6
±0.1

0.415
±0.003

0.376
±0.001

76.4
±0.2

82.6
±0.3

0.491
±0.002

0.414
±0.004

I Additional Ablations

I.1 Gaussian vs. Harmonic Prior

As shown in Tab. A13, using the harmonic prior improves all metrics slightly for our models on
GEOM-QM9. Using the harmonic prior however doesn’t seem to be a crucial ingredient for the
success of our method, as differences between Gaussian and Harmonic prior appear diminishing. As
the results in Tab. A13 verify, our method can also be used with a simple Gaussian prior effectively.
For larger molecular graphs the expensive eigendecomposition of the graph Laplacian required for
the Harmonic prior could therefore be avoided, which helps scaling our approach more easily.

I.2 Conditioning Strategies on GEOM-QM9

To evaluate the effectiveness of various graph conditioning strategies in DiTMC , we compare the
performance of different conditioning methods against a baseline model without any conditioning. In
addition to conditioning strategies discussed in Sec. 4.1, we note that our conditioning GNN also
produces edge-level representations, which can be used to define pair-wise graph conditioning tokens
as

bond-pair: cGij =

{
GNNedge(V, E) ∀(i, j) ∈ E
c̄G ∀(i, j) ̸∈ E . (A54)

These tokens only capture interactions between bonded atoms, i.e., when (i, j) ∈ E . Conditioning
tokens for non-bonded pairs are set to a learnable vector c̄G . Self-attention still operates on all atom
pairs (i, j), even if they are not connected by a chemical bond.

Specifically, we ablate the following conditioning strategies:
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Table A11: Median absolute error of ensemble properties between generated and reference conformers.
Best results in bold, second best underlined; our models are marked with an asterisk “∗”. Results
for MCF, ET-Flow, and ours are averaged over three random seeds with standard deviation reported
below. Other works do not report standard deviations.

Method E [kcal/mol] ↓ µ [D] ↓ ∆ϵ [kcal/mol] ↓ Emin [kcal/mol] ↓
GeoDiff (1.6M) 0.31 0.35 0.89 0.39
GeoMol (0.3M) 0.42 0.34 0.59 0.40
Torsional Diff. (1.6M) 0.22 0.35 0.54 0.13

MCF-L (242M) 0.68
±0.06

0.28
±0.05

0.63
±0.05

0.04
±0.00

ET-Flow (8.3M) 0.18
±0.01

0.18
±0.01

0.35
±0.06

0.02
±0.00

∗DiTMC+aPE-B (9.5M)
0.17
±0.00

0.16
±0.01

0.27
±0.01

0.01
±0.00

∗DiTMC+aPE-L (28.2M) 0.16
±0.02

0.14
±0.03

0.27
±0.01

0.01
±0.00

∗DiTMC+rPE-B (9.6M) 0.16
±0.03

0.16
±0.03

0.29
±0.02

0.02
±0.00

∗DiTMC+rPE-L (28.3M) 0.16
±0.01

0.15
±0.02

0.28
±0.06

0.01
±0.00

∗DiTMC+PE(3)-B (8.6M) 0.18
±0.01

0.18
±0.01

0.27
±0.03

0.02
±0.00

∗DiTMC+PE(3)-L (31.1M)
0.17
±0.01

0.14
±0.01

0.25
±0.01

0.01
±0.00

• node only conditioning using only atom-wise graph conditioning tokens cGi (Eq. 6).

• node & bond-pair conditioning using both atom-wise graph conditioning tokens cGi (Eq. 6)
and pair-wise graph conditioning tokens cGij derived from edge-level representations of the
conditioning GNN as discussed above (Eq. A54).

• node & all-pair conditioning using both atom-wise graph conditioning tokens cGi (Eq. 6)
and pair-wise graph conditioning tokens cGij based on geodesic graph distances (Eq. 7).

As reported in Tab. A14, all our proposed conditioning strategies significantly reduce the average
minimum RMSD (AMR) for both recall (AMR-R) and precision (AMR-P) using DiTMC+aPE-B,
compared to the unconditioned baseline.

Notably, the “node & all-pair” strategy achieves the best overall performance, with the lowest AMR
values. These results highlight the strength of the all-pair conditioning strategy, which leverages
graph geodesics to incorporate information from all atom pairs, rather than restricting conditioning
to directly connected nodes or bonded pairs. This comprehensive approach captures more global
structural information, thereby improving both precision and recall. See Appendix L for a more
in-depth analysis.

I.3 Index Positional Encoding (iPE)

Tab. A15 compares a variant including index positional encoding (iPE) from classic transformer
architectures with DiTMC+aPE-B on GEOM-QM9. Specifically, we use the node index and encode
it via sinusoidal encodings into the tokens H before the first DiTMC block, similar to embedding
the absolute positions via aPE. Since the molecular graphs are generated from SMILES strings via
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Table A12: Out-of-distribution generalization results on GEOM-XL for models trained on GEOM-
DRUGS. -R indicates Recall, -P indicates Precision. Best results in bold, second best underlined;
our models are marked with an asterisk “∗”. Our results are averaged over three random seeds with
standard deviation reported below. Other works do not report standard deviations.

Method 75 / 77 mols 102 mols

AMR-R [Å] ↓ AMR-P [Å] ↓ AMR-R [Å] ↓ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

Tor. Diff. (1.6M) 1.93 1.86 2.84 2.71 2.05 1.86 2.94 2.78
MCF-S (13M) 2.02 1.87 2.90 2.69 2.22 1.97 3.17 2.81
MCF-B (64M) 1.71 1.61 2.69 2.44 2.01 1.70 3.03 2.64
MCF-L (242M) 1.64 1.51 2.57 2.26 1.97 1.60 2.94 2.43
ET-Flow (8.3M) 2.00 1.80 2.96 2.63 2.31 1.93 3.31 2.84

∗DiTMC+aPE-B (9.5M) 1.68
±0.00

1.47
±0.02

2.59
±0.00

2.24
±0.01

1.96
±0.00

1.60
±0.03

2.90
±0.00

2.48
±0.03

∗DiTMC+aPE-L (28.2M) 1.56
±0.01

1.28
±0.01

2.47
±0.00

2.14
±0.01

1.88
±0.01

1.51
±0.02

2.81
±0.00

2.30
±0.02

∗DiTMC+rPE-B (9.6M) 1.69
±0.01

1.41
±0.03

2.52
±0.00

2.11
±0.00

1.97
±0.01

1.61
±0.01

2.86
±0.00

2.33
±0.01

∗DiTMC+rPE-L (28.3M) 1.66
±0.03

1.37
±0.01

2.47
±0.00

2.18
±0.02

1.96
±0.02

1.61
±0.02

2.82
±0.00

2.42
±0.02

∗DiTMC+PE(3)-B (8.6M) 1.73
±0.01

1.55
±0.01

2.71
±0.00

2.35
±0.01

1.98
±0.01

1.67
±0.02

3.03
±0.00

2.60
±0.01

∗DiTMC+PE(3)-L (31.1M)
1.57
±0.01

1.46
±0.01

2.60
±0.00

2.27
±0.02

1.85
±0.02

1.58
±0.03

2.93
±0.00

2.53
±0.03

Table A13: Ablation of PE strategies and Gaussian (G) and Harmonic (H) prior on GEOM-QM9.
We report mean coverage (COV) at a threshold of 0.5Å, and mean average minimum RMSD (AMR)
for Recall -R and Precision -P. Best results in bold. All results are averaged over three random seeds.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
G H G H G H G H

DiTMC+aPE-B 96.2 96.1 0.074 0.073 95.2 95.4 0.087 0.085
DiTMC+rPE-B 96.0 96.3 0.073 0.070 95.2 95.7 0.084 0.080
DiTMC+PE(3)-B 95.7 95.7 0.069 0.068 93.5 93.4 0.090 0.089

RDKit and RDKit has to some extend a canonical ordering, this information can be used by the
transformer architecture. However, index positional encoding breaks permutation equivariance (as we
show in Tab. A15). This might be undesirable as permutation equivariance is one of the fundamental
symmetries when learning on graphs. Since the ordering of atoms in a SMILES string is not uniquely
defined, the trained network depends on the used framework for parsing the SMILES string or even a
particular software version. We use RDKit (version 2024.9.5) for parsing SMILES strings to graphs.

Nevertheless, our DiTMC+aPE-B using iPE can effectively exploit the information contained in
atom indices assigned by RDKit. A version of DiTMC+aPE-B without atom-pair conditioning but
iPE achieves comparable performance to DiTMC+aPE-B using geodesic distances as atom-pair
conditioning (pairwise conditioning). As our pairwise conditioning strategy is similarly or more
effective than iPE but additionally preserves permutation equivariance, it should be preferred over
iPE and we don’t use iPE in any of our other experiments.

36



Table A14: Ablation of conditioning strategies using DiTMC+aPE-B on GEOM-QM9. -R indicates
Recall, -P indicates Precision. Best results in bold. Our results are averaged over three random seeds
with standard deviation reported below.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

DiTMC+aPE-B
(no conditioning)

68.6
±1.0

91.7
±2.1

0.405
±0.005

0.325
±0.004

36.8
±0.5

36.4
±2.2

0.729
±0.006

0.703
±0.007

DiTMC+aPE-B
(node only)

96.3
±0.0

100.0
±0.0

0.079
±0.000

0.037
±0.000

93.2
±0.2

100.0
±0.0

0.112
±0.001

0.051
±0.000

DiTMC+aPE-B
(node & bond-pair)

96.5
±0.1

100.0
±0.0

0.077
±0.001

0.035
±0.001

95.3
±0.2

100.0
±0.0

0.092
±0.001

0.046
±0.002

DiTMC+aPE-B
(node & all-pair)

96.1
±0.3

100.0
±0.0

0.074
±0.001

0.030
±0.001

95.4
±0.1

100.0
±0.0

0.085
±0.001

0.037
±0.000

Table A15: Ablating index positional encoding (iPE) on GEOM-QM9 for different conditioning
strategies (in brackets). To show the effect of atom permutations, we include results with randomly
permuted atom indices (perm.). -R indicates Recall, -P indicates Precision. Best results in bold. Our
results are averaged over three random seeds with standard deviation reported below.

Method COV-R [%] ↑ AMR-R [Å] ↓ COV-P [%] ↑ AMR-P [Å] ↓
Mean Median Mean Median Mean Median Mean Median

DiTMC+aPE-B
(node only)

96.3
±0.0

100.0
±0.0

0.079
±0.000

0.037
±0.000

93.2
±0.2

100.0
±0.0

0.112
±0.001

0.051
±0.000

DiTMC+aPE-B
(node only), perm.

96.3
±0.0

100.0
±0.0

0.079
±0.000

0.037
±0.000

93.2
±0.2

100.0
±0.0

0.112
±0.001

0.051
±0.000

DiTMC+aPE+iPE-B
(node only)

96.6
±0.4

100.0
±0.0

0.079
±0.002

0.037
±0.001

95.5
±0.1

100.0
±0.0

0.093
±0.001

0.046
±0.001

DiTMC+aPE+iPE-B
(node only), perm.

82.3
±1.1

100.0
±0.0

0.229
±0.008

0.108
±0.005

60.0
±0.9

61.8
±1.4

0.493
±0.008

0.416
±0.011

DiTMC+aPE-B
(node & pairwise)

96.1
±0.3

100.0
±0.0

0.074
±0.001

0.030
±0.001

95.4
±0.1

100.0
±0.0

0.085
±0.001

0.037
±0.000

DiTMC+aPE-B
(node & pairwise), perm.

96.1
±0.3

100.0
±0.0

0.074
±0.001

0.030
±0.001

95.4
±0.1

100.0
±0.0

0.085
±0.001

0.037
±0.000

J Analysis of training loss as a function of latent time

In this section, we provide details for the analysis in Fig. 2C in the main part of the paper. We
investigate the effect of the positional embeddings and self-attention formulations on the accuracy
of the model. We therefore take pre-trained models on GEOM-QM9 and compute the training loss
(as detailed in Algorithm 1) averaged over 1000 samples drawn randomly from the GEOM-QM9
validation set. We compute the loss for 30 logarithmically spaced values of ti = 1 − 10xi , where
xi ∈ [−1.8, 0] with uniform spacing. We skip the stochastic term in the loss as is done while sampling
from the ODE.

As detailed in Fig. A5, we observe empirically that equivariance leads to a decreased loss close to
the data distribution after training. This explains why our equivariant model more often succeeds to
produce samples with increased fidelity, as depicted in figure Fig. 2B.
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Figure A5: Loss as a function of time comparing different PE strategies. Results averaged over
1000 samples randomly drawn from the GEOM-QM9 validation set. Left: loss relative to PE(3) as
a baseline. In the important regime close to the data distribution, the model PE(3) has lower loss,
yielding higher sample fidelity. Right: absolute loss values for all PEs. The loss decreases close to
the data distribution for all models.

We further note, that absolute loss values for models trained with all our PE strategies decrease as
latent time increases (see Fig. A5). This is expected, as conditional vector fields for each data sample
will start to interact more strongly moving away from the data distribution. Our weighted loss (see
Appendix B) effectively penalizes errors close to the data distribution during training and helps with
keeping the error low in this important regime.

K SMILES Classification Experiment via Conditioning GNN

The molecular graphs in our dataset are represented as SMILES strings. A critical requirement of
DiTMC is the ability to distinguish distinct molecular graphs or SMILES representations through
conditioning. In this section, we investigate whether our conditioning GNN is capable of learning
the necessary information to distinguish between different SMILES strings for the generation of
matching molecular conformers.

As a proxy evaluation task, we assess whether the conditioning network alone can function as a
classifier of SMILES strings. To this end, we construct two training datasets: a toy dataset comprising
three specific SMILES strings of a hydroxyl group moving along a carbon chain (C(O)CCCCCCCC,
CC(O)CCCCCCC, CCC(O)CCCCCC), and a larger set consisting of 1000 randomly sampled SMILES
strings drawn from the GEOM-QM9 validation set. Each SMILES string becomes a seperate class,
so for each class there is exactly one example in the training data. The classification task is performed
on the graph representations of the molecules, employing the same feature set and GNN architecture
utilized in our conditioning GNN (see Appendix D.3 and Appendix G.2) followed by a simple
classification head.

We train different models with a batch size of 3 for 5000 epochs on the curated toy dataset and
batch size of 64 over 250 epochs on the GEOM-QM9 subset. We report classification accuracy on
the training sets directly to evaluate the model’s discriminative capacity. Furthermore, we explore
whether conditioning weights obtained from an end-to-end trained model retain discriminatory power
by freezing them and attaching a linear classification head.

Our results, as shown in Tab. A16, reveal that a simple linear classifier lacking message-passing
capabilities fails to distinguish certain SMILES strings. Overall, our results indicate that a simple
two-layer GNN effectively captures the necessary conditioning information through end-to-end
training. Fig. A6 shows that without GNN layers, isomers will be misclassified.
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Table A16: We measure the discriminative power of our conditioning graph network on a training set
of 1000 randomly sampled SMILES strings from the GEOM-QM9 validation set, as well as a toy
dataset of 3 different SMILES strings. We investigate the required number of message passing layers,
as well as using pre-trained weights from an end-to-end trained model.

GNN layers Weight init Trainable Accuracy (GEOM-QM9) Accuracy (Toy Data)

0 random trainable 0.887 0.333
1 random trainable 0.999 0.666
2 random trainable 1.000 1.000
2 random frozen 0.980 1.000
2 pre-trained frozen 1.000 1.000

Figure A6: Misclassified exampled for SMILES classification experiment. We randomly pick 3
examples, which are misclassified by a classification head without any GNN layers. We show that
GNN layers are essential for correct classification of isomers.

L Analysis of Sampling Trajectories

Fig. A7 compares the generative performance of DiTMC models trained on the GEOM-QM9 dataset
under two different conditioning strategies: (1) node-only conditioning and (2) node plus pairwise
conditioning, where we use the all-pair conditioning based on geodesic graph distances. Each row in
the figure corresponds to one example molecule selected from the test set. The molecules are chosen
to maximize the root mean squared deviation (RMSD) between the final generated structures of the
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Figure A7: Comparison of molecular generation with node-only versus node- and pair-wise (all-pair)
conditioning on GEOM-QM9. Each row shows a prior sample, sampling trajectories, and final
generated structure for both models; pairwise conditioning preserves bonds from the conditioning
graph G.

two models. This selection highlights cases where the differences between the conditioning schemes
are most pronounced.

Within each row, we display a sequence of images: the initial prior sample, followed by the interme-
diate trajectory of the ODE sampling process over 50 sampling steps for the node-only conditioned
model, and the resulting final structure (with predicted bonds rendered in yellow). This sequence is
repeated for the node- and pair-wise conditioned model, allowing a side-by-side visual comparison of
the generation dynamics and final outputs.
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The results reveal a consistent pattern: models trained with node-only conditioning fail to preserve
bonding patterns from the conditioning graph G. This manifests as bond stretching or atom permuta-
tion in the final structure. In contrast, the model, that is conditioned on pairwise geodesic distances,
produces geometries that adhere more closely to expected chemical structure and the given bonds.
We note that if atoms are simply permuted by the model using only node conditioning, the generated
structure might still be valid in terms of the combination of generated 3D positions and atom types.
The degraded performance of node conditioning versus node and pair-conditioning can therefore in
part be explained by the used RMSD and Coverage metrics, which are not invariant to permutations
of atoms.

Our findings still underscore the importance of incorporating both node-level and pairwise features in
molecular generative models, in particular when agreement with the given conditioning on a bond
graph is essential.

M Visualization

Fig. A14, Fig. A15, and Fig. A16 provide a visual comparison of conformers generated by MCF, ET-
Flow, and DiTMC against the corresponding ground-truth reference conformers for the GEOM-QM9,
GEOM-DRUGS and GEOM-XL datasets, respectively. For each dataset, we randomly select six
reference conformers from the test split and generate conformers using each method. Finally, we
apply rotation alignment of the generated conformers with their corresponding reference conformer.

N Code and Data Availability

The code and data to reproduce the main results of this paper, can be downloaded from here: https://
doi.org/10.5281/zenodo.15489212, or via github: https://github.com/ML4MolSim/dit_
mc.
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Figure A8: Coverage (COV) for precision (“-P”) and recall (“-R”) as a function of RMSD threshold
δ for DiTMC+aPE and other state-of-the-art methods on GEOM-DRUGS. The vertical dashed line
denotes the RMSD threshold δ = 0.75 commonly used for evaluation on the GEOM-DRUGS dataset.
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Figure A9: Coverage (COV) for precision (“-P”) and recall (“-R”) as a function of RMSD threshold
δ for DiTMC+rPE and other state-of-the-art methods on GEOM-DRUGS. The vertical dashed line
denotes the RMSD threshold δ = 0.75 commonly used for evaluation on the GEOM-DRUGS dataset.
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Figure A10: Coverage (COV) for precision (“-P”) and recall (“-R”) as a function of RMSD threshold
δ for DiTMC+PE(3) and other state-of-the-art methods on GEOM-DRUGS. The vertical dashed line
denotes the RMSD threshold δ = 0.75 commonly used for evaluation on the GEOM-DRUGS dataset.

44



Figure A11: Average minimum RMSD (AMR) for precision (“-P”) and recall (“-R”) as a function of
wall clock time per generated conformer. For each model, markers from left to right correspond to an
increasing number of sampling steps during generation. Here, we follow Refs. [32, 47] and use 5, 10,
20, and 50 sampler steps.
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Figure A12: Average minimum RMSD (AMR) for precision (“-P”) and recall (“-R”) as a function of
wall clock time per generated conformer. For each model, markers from left to right correspond to an
increasing number of sampling steps during generation. Here, we follow Refs. [32, 47] and use 5, 10,
20, and 50 sampler steps.
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Figure A13: Average minimum RMSD (AMR) for precision (“-P”) and recall (“-R”) as a function of
wall clock time per generated conformer. For each model, markers from left to right correspond to an
increasing number of sampling steps during generation. Here, we follow Refs. [32, 47] and use 5, 10,
20, and 50 sampler steps.
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MCF ET-Flow ReferenceDiTMC (ours)

Figure A14: Comparison of conformers generated by MCF, ET-Flow, and DiTMC against ground-
truth reference conformers from GEOM-QM9. The generated conformers are rotationally aligned
with their corresponding reference conformer to facilitate comparison. From left to right: generated
conformers from MCF, ET-Flow, DiTMC, and the corresponding ground-truth reference conformers.
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MCF ET-Flow ReferenceDiTMC (ours)

Figure A15: Comparison of conformers generated by MCF, ET-Flow, and DiTMC against ground-
truth reference conformers from GEOM-DRUGS. The generated conformers are rotationally aligned
with their corresponding reference conformer to facilitate comparison. From left to right: generated
conformers from MCF, ET-Flow, DiTMC, and the corresponding ground-truth reference conformers.
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MCF ET-Flow ReferenceDiTMC (ours)

Figure A16: Comparison of conformers generated by MCF, ET-Flow, and DiTMC against ground-
truth reference conformers from GEOM-XL. The generated conformers are rotationally aligned with
their corresponding reference conformer to facilitate comparison. From left to right: generated
conformers from MCF, ET-Flow, DiTMC, and the corresponding ground-truth reference conformers.
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