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Abstract

The success of deep learning in analyzing bioimages comes at the expense of1

biologically meaningful interpretations. We review the state of the art of explainable2

artificial intelligence (XAI) in bioimaging and discuss its potential in hypothesis3

generation and data-driven discovery.4

What is interpretable machine learning?5

Deep learning (DL) has become the workhorse underlying the vast majority of bioimage analysis6

applications. Open source code and new platforms that support usability make DL a practical tool7

that is accessible to the broad cell biology community. Whereas traditional machine learning depends8

on experts defining predetermined features to optimize a specific task, the DL data-driven approach9

benefits from simultaneously optimizing feature extraction and the model to solve the downstream10

task. Given sufficient data, DL excels at nonlinear integration of image regions, enabling it to11

identify complex spatial patterns in the raw bioimage data. As a result, DL models surpass traditional12

bioimage analysis methods and in some cases even exceed the human gold standard. However, the13

success of DL comes with the discomfort of relying on ‘black box’ models with huge parametric14

spaces comprising millions of parameters that introduce major challenges in human understanding15

of the models’ inner workings and in following the models’ decision process. In the broader field16

of machine learning, these challenges triggered the initiation of the vibrant nascent community of17

explainable artificial intelligence (abbreviated XAI).18

The terms ‘interpretability’ and ‘explainability’ are used interchangeably in most of the XAI literature.19

We would like to highlight our perception of the nuances of difference between these terms. Both20

terms involve the active participation of a human expert in resolving the model’s decision process by21

examining the XAI outputs. Explainability is the explicit description of the cause for a decision in a22

manner that a human can understand. Interpretability is turning an explanation to domain- and context-23

specific insight. In the context of bioimaging, this means ‘translating’ an image-pattern explanation24

to a biologically meaningful interpretation. For example, realizing that a model pays attention25

to a specific image region in a cell (that is, an explanation) is not necessarily sufficient to derive26

specific hypotheses regarding which organelles play a role in this decision (that is, an interpretation).27

As another example, one explanation of a model that was trained to predict melanoma metastatic28

efficiency from label-free cell imaging was increased light scattering within single melanoma cells29

(Zaritsky et al., 2021). Although we do not know what causes this change in light scattering, we30

can turn this explanation into a specific hypothesis via interpretation as a potential change in altered31

intracellular organelle organization, such as phase-separated droplets or lysosomes, thus setting the32

stage for follow-up studies to test these possibilities.33

Under these definitions, interpretation is always explainable, but the converse is not necessarily true.34

Interpretability is especially important in sciences and medicine, where ‘black box’ predictions are35

not sufficient to decipher the fundamental ‘mechanisms’ underlying them. In this Comment, we36
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discuss the motivation, current state and future potential of XAI and especially visual interpretability37

in the realm of bioimaging, and reflect on our experiences in this domain (Fig. 1).38

Figure 1: The visual interpretability process. New biological insights and/or specific hypotheses are
derived from interpreting DL models explanations.

Why do we need visual interpretations of deep learning models?39

Not every application of DL requires visual interpretability. For example, it is perhaps acceptable40

to trust the ‘black box’ for image analysis tasks such as nucleus segmentation. In many other cases,41

however, there are convincing motivations for aiming to interpret the machine’s predictions. The42

first motivation is trust. Lack of trust is one of the major obstacles to deploying (high-performing)43

DL models in biomedical applications. Understanding how a model reaches its decisions provides44

transparency that can help avoid spurious biases in the image data and in the model’s decision process,45

and can provide clues in cases of erroneous predictions.46

Example of such erroneous interpretations include classifying an image as ‘wolf’ rather than ‘husky’47

due to snow in the image, biased classification of dermatology images due to background skin texture48

and color balance (DeGrave et al., 2023) and technical staining artifacts in parasite-infected red blood49

cells guiding the model’s decision Lamiable et al. (2023). In these instances, the model is biased50

toward ‘easy’ explanations that correlated with the true label, but this ‘laziness’ (or overfitting),51

termed ‘shortcut learning’, causes the model to miss more complex, biologically relevant discriminate52

content encapsulated in the images. Such understanding can be used to improve the trustworthiness53

and usability of a model by understanding when models make mistakes and developing methods to54

mitigate these situations.55

The second motivation for applying XAI in bioimaging is the possibility of using the XAI output to56

measure phenotypes that have been reported based on subjective observations, but that are difficult to57

measure without the explanation. Examples include using the XAI outcome to define a quantitative58

measure for a morphological component of in vitro fertilization (IVF) embryos called the blastocoel59

Rotem et al. (2023) and associating protein localization patterns Kobayashi et al. (2022) or their60

perturbations Razdaibiedina et al. (2024) with specific organelles. The third motivation, and in our61

opinion the most exciting, is the potential to extract subtle phenotypes that are invisible to the human62

eye and that cannot be reliably measured with standard image analysis. For example, interpreting63

live label-free imaged melanoma cells’ enhanced protrusive activity as metastasis-driving features64

Zaritsky et al. (2021) or identifying loss of hemoglobin and crenated shapes of blood cells under65

parasite infection Lamiable et al. (2023).66

This discovery-driven interpretability is especially exciting in the biomedical domains, where a new67

explanation for a machine prediction can lead to a specific hypothesis that can be tested experimentally,68

closing the loop to establish a causal link. Is it realistic to derive new mechanistic hypotheses and69

draw biological conclusions from visual interpretation of DL models? These are the early days of70

XAI in bioimaging, and only time will tell. Developing methods for robust and user-friendly visual71

interpretability will enable effective exploration of potential biologically meaningful explanations72

and is a necessary step toward answering this fundamental question.73

How do we visually interpret deep learning models?74

Interpreting image-based DL models is much more difficult than interpreting tabular-based models75

because of the challenge of moving from pixels to semantic entities. In the field of computer vision,76

most XAI papers stop at the point of identifying trivial explanations such as open mouths or pointed77

ears for discriminating between dogs versus cats. In bioimaging, it is harder to interpret the semantic78

image properties that drive models’ decisions because of difficulties in deciphering the less intuitive79

biological meanings. The latter requires extensive and systematic confirmation of these non-trivial80

interpretations. We believe that computational biologists developing XAI methods have competitive81
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advantage because of the inherent expectation in the field of uncovering the ‘black box’ and provide a82

plausible biological interpretation, which is a critical step toward generating new, specific hypotheses83

and designing experiments to test them.84

Model interpretation can be in the context of a (local) instance—and/or of a (global) model. Local85

interpretability characterizes the key decisions for individual predictions, and global interpretability86

provides a holistic understanding of a model’s reasoning processes. Global interpretability is useful87

toward understanding general rules at the cost of averaging out the full spectrum of heterogeneity of88

the local instance interpretations. For example, when analyzing a model for IVF embryo morphology89

quality prediction, global interpretation identified the embryo size, the trophectoderm (a ring of90

cells surrounding the embryo) and the blastocoel (a fluid-filled cavity inside the embryo) as the top91

classification-driving morphological features Rotem et al. (2023). Local interpretability categorized92

each embryo according to the different morphological features that dominated the specific classifier’s93

decision.94

Some interpretability methods can provide both local and global interpretability. For example, the95

popular tabular-based SHapley Additive exPlanations (SHAP) Lundberg and Lee (2017) calculates96

the contribution of each (interpretable) feature to an individual prediction. These local interpretations97

can be aggregated across all individual predictions according to specific criteria (for example, a98

classification label) to provide a global interpretation of the model. A straightforward example of99

global interpretability is the exclusion (‘ablation’) of a feature or a group of features and the ranking100

of these features according to the corresponding degradation in the model’s performance. Such101

ablation has been applied to bioimaging data to quantify the influence of the local cell density on the102

prediction of cell fate (apoptosis or mitosis) Soelistyo et al. (2022) and the influence of neighboring103

cell fates (delamination, division or no behavior) on the prediction of cell behavior Yamamoto et al.104

(2022). A related approach involves systematic assessment of model performance for varying sizes of105

the classified image crops to probe the biologically relevant spatial scales necessary for a prediction106

Schmitt et al. (2024).107

The most common methods for visual interpretability can be broadly classified as saliency map108

based or counterfactual based (Fig. 2). Saliency-based (also called ‘feature attribution’) explanations109

generate ‘attention maps’ of the image regions that contribute the most to an individual prediction110

by assigning to each pixel the aggregated network’s inner layers’ activations or gradients. Saliency111

methods are suited for local (instance) interpretation when the visual explanations are localized112

in the image and do not require further training: for example, in correlating attention maps with113

their corresponding subcellular structures Doron et al. (2023) or using attention maps derived from114

cell trajectory data to interpret the relative influence of neighboring cells on the motion of a given115

cell LaChance et al. (2022). Counterfactual-based explanations use generative models to artificially116

change the image in ways that maintain a realistic image and alter the model’s prediction, and they117

excel at understanding subtle image differences in domains that are less intuitive to humans, such as118

bioimaging; these will therefore will be our focus for the rest of this Comment.119

Counterfactual explanations require training of generative model to optimize a lower-dimensional120

latent representation space that can be used to generate images of the entity of interest. These121

latent representations can be traversed to generate visual counterfactual explanations along specific122

directions in the latent space that translate to phenotypic alterations in the image space. Such123

latent space traversals can exaggerate classification-driving phenotypes beyond the observed data124

distribution while keeping the rest of the image fixed, together enabling the interpretation of subtle125

phenotypes. Counterfactual-based explanations are also more suited than saliency-based methods to126

identifying non-localized visual explanations such as shape or color. In bioimaging, this counterfactual127

approach has shown promise for interpreting subtle cellular phenotypes by synthetically generating128

image sequences that follow cell-state transitions Yang et al. (2020), disease progression (Zaritsky129

et al., 2021), cell fate decisions Soelistyo et al. (2022) and perturbations Lamiable et al. (2023). The130

approach was also able to provide distinct interpretations for different models that were trained for131

the same medical task of classifying melanoma from dermoscopic images of the skin DeGrave et al.132

(2023).133

One approach to interpreting latent representations without or with minimal human intervention134

is correlating the latent representations with phenotypes directly measurable from the images: for135

example, correlating latent representations of proteins to their organelles’ localization Kobayashi et al.136

(2022), correlating latent representations of cells to their local density Soelistyo et al. (2022) and137
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Figure 2: Saliency map-based (bottom right) versus counterfactual-based (top) explanations. Saliency
methods highlight regions of more importance to the DL model’s decision. Counterfactual methods
generate artificial realistic images with exaggerated classification-driving phenotypes thus altering
the model’s prediction. Exaggerated phenotypes in this example are color, size and number of dark
spots.

correlating latent representations of IVF embryos to their size Rotem et al. (2023). Of course, this138

interpretability approach relies on existing measurements and cannot be used to discover explanations139

that could not be measured in advance. We recently proposed a two-step interpretability method that140

used counterfactual explanations to assign semantic image properties to latent features, followed by141

SHAP ranking of these interpreted features to interpret individual predictions Rotem et al. (2023).142

This approach combined global and local interpretability to determine the cause of classification (and143

misclassification) of the morphological quality of IVF embryo instances. Another recent and creative144

approach used counterfactual explanations to generate attention maps of the most discriminative145

features and measured their contribution to the prediction Eckstein et al. (2024). This was applied to146

reveal morphological differences between different Drosophila melanogaster synapses in electron147

microscopy images.148

Outlook149

The ever-increasing volume and complexity of bioimage data is making DL a crucial component of150

modern cell biology. We strongly believe that advancing XAI for bioimaging will propel cell biology151

forward by improving the trustworthiness of DL models and enabling the design of interpretability152

‘discovery machines’ that can reveal new mechanistic understanding exceeding human intuition. We153

identify the following themes as having high potential to advance us in this promising direction of154

XAI visual-driven hypothesis generation.155

Visual interpretability of image-to-image transformations156

The current focus of visual interpretability is in the realm of classification models, neglecting157

the interpretability of DL-based image-to-image transformations that are the backbone of many158

bioimaging applications, ranging from image restoration to denoising, segmentation and cross-159

modality transformations. Current methods for the explainability of biomedical image-to-image160

transformations mostly rely on pixel-based uncertainty estimations and can be applied to learn what161

information in the input image was used for the output prediction. Interpretability of image-to-image162

transformations could have practical implications in identifying when a model does not perform well.163

For example, technical (for example, batch effects, uneven illumination) or biological (for example,164

rare cell states, perturbations) out-of-distribution data can lead to errors and hallucinations and should165

be considered during downstream analysis. We call for the development of methods for the visual166
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interpretation of bioimage image-to-image transformations that go beyond the pixel scale to the scale167

of semantic objects to enable biologically meaningful interpretation.168

Validating and measuring visual interpretability169

Confirming visual interpretations of a non-trivial phenotype is hard because measuring the confidence170

in an interpretation and assessing whether one visual interpretation is better than another constitute171

an ill-defined problem. In practice, interpretability is usually subjectively validated in the final figure172

of a DL bioimaging paper, reporting the researchers’ intuitions based on several ‘representative’173

examples. More systematic validation mechanisms include assessing the robustness of the explanation174

by demonstrating that different models for the same task have similar interpretations and assessing175

sensitivity by showing that slight changes in the image space or the latent space (‘adversarial attacks’)176

that do not change the prediction also do not change the interpretation. If the interpreted phenotype can177

be explicitly measured, then it can be quantified by carefully (that is, avoiding confounders) correlating178

latent representations with phenotypes. In more complicated situations in which the interpreted179

phenotypes cannot be empirically measured, solutions include performing expert validation and180

evaluations DeGrave et al. (2023); Rotem et al. (2023) or altering the image (directly, not through the181

latent representation) according to the interpretation and then evaluating whether the model prediction182

was changed accordingly DeGrave et al. (2023); Eckstein et al. (2024), . When live imaging is183

possible, one can examine spontaneous transitions between classification states that reduce most of184

the variability confounding the human ability to interpret the subtle phenotypes in snapshot images185

Zaritsky et al. (2021). With the understanding that complex models are less interpretable, a possible186

approach to promote interpretability is reducing the model’s complexity under the assumption that187

this will increase its ‘interpretability potential’. For example, it is possible to constrain the training of188

the DL toward sparse representations and demonstrate that these representations perform well enough189

and are more interpretable Soelistyo and Lowe (2024). Devising more objective and systematic190

metrics for visual interpretability remains an open challenge that we believe is critical for advancing191

the field.192

More challenges and opportunities193

Other promising future directions include developing better visualization approaches to ease the194

translation from explanation to interpretation, developing interpretability methods for more complex195

problems such as multi-class classification, effectively incorporating of 3D and/or temporal informa-196

tion in the interpretability method, and improving interpretability of high-dimensional image data (for197

example, single-cell spatial omics). Another opportunity lies in designing latent representations that198

can encourage better interpretability-driven discovery, such as disentangled representations in which199

each latent feature encodes a single semantic image property. Additional open questions that warrant200

systematic future investigations include “How much is the interpretability capacity conditioned on201

the accuracy of the model being interpreted?” and “Can we benefit from automated analysis of visual202

explanations, such as providing objective readouts indicating that a certain prediction cannot be203

trusted?” Advancing in these directions will promote effective data-driven discovery by relying on204

DL’s remarkable capacity to detect complex bioimage patterns to visually guide human interpretation205

and hypothesis generation206
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