
Under review as submission to TMLR

Reasoning Under 1 Billion: Memory-Augmented Reinforce-
ment Learning for Large Language Models

Anonymous authors
Paper under double-blind review

Abstract

Recent advances in fine-tuning large language models (LLMs) with reinforcement learning
(RL) have shown promising improvements in complex reasoning tasks, particularly when
paired with chain-of-thought (CoT) prompting. However, these successes have been largely
demonstrated on large-scale models with billions of parameters, where a strong pretraining
foundation ensures effective initial exploration. In contrast, RL remains challenging for
tiny LLMs with 1 billion parameters or fewer because they lack the necessary pretraining
strength to explore effectively, often leading to suboptimal reasoning patterns. This work
introduces a novel intrinsic motivation approach that leverages episodic memory to address
this challenge, improving tiny LLMs in CoT reasoning tasks. Inspired by human memory-
driven learning, our method leverages successful reasoning patterns stored in memory while
allowing controlled exploration to generate novel responses. Intrinsic rewards are computed
efficiently using a kNN-based episodic memory, allowing the model to discover new reasoning
strategies while quickly adapting to effective past solutions. Experiments on three reasoning
datasets demonstrate that our approach significantly enhances smaller LLMs’ reasoning
performance and generalization capability, making RL-based reasoning improvements more
accessible in low-resource settings.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable advancements in reasoning and problem-
solving, driven by innovations in scaling strategies and training techniques (Google, 2024; OpenAI, 2024a).
Despite its foundational role in defining LLM capability, scaling pre-training is prohibitively expensive and
tends to plateau (Xia et al., 2023; Hong et al., 2023). As a result, post-training has become increasingly
important, offering improvements in alignment, reasoning depth, and downstream task efficiency (Kumar
et al., 2025). Among post-training approaches, reinforcement learning (RL) fine-tuning is a promising
alternative to expensive LLM’s test-time search methods, such as MCTS or Beam Search (Yao et al., 2023;
Feng et al., 2023; Snell et al., 2024). RL directly instills chain-of-thought (CoT) reasoning strategies into the
model, enabling efficient deployment. Recent works like DeepSeek-R1 (Guo et al., 2025) show that RL with
simple outcome rewards can enhance reasoning without relying on heavy inference-time compute methods
(OpenAI, 2024a;b) and complicated process-based rewards (Lightman et al., 2023; Zhang et al.).

However, these benefits have been observed mainly in large models (8B–670B) (Guo et al., 2025; Arora &
Zanette, 2025; Yeo et al., 2025). In contrast, RL remains challenging for tiny LLMs, which we consider as
having ≤ 1B parameters. These weak models frequently produce incorrect outputs during training, failing
to receive any outcome reward. For example, a 0.5B model may repeatedly generate improperly formatted
answers to math questions, failing to produce any valid outputs that qualify for a reward. As a result,
reward signals are extremely sparse. A common mitigation approach is using heuristic format-based rewards
(Guo et al., 2025). However, we will indicate that relying on format-based rewards can cause training
collapse in tiny LLMs, as they may overfit to simple format patterns while neglecting the main task. Worse,
exploration is ineffective—not only because small models choose poor actions but also because they lack an
explicit exploration mechanism. Unlike RL agents, LLMs do not actively explore or exploit; they passively
sample from learned distributions. As noted in Krishnamurthy et al. (2024), even large models struggle with
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exploration and exploitation; this issue becomes acute for small models. Finally, the lack of quality data in
downstream tasks poses an additional challenge for training tiny LLMs with RL.

Drawing inspiration from the human brain’s episodic memory, which stores and retrieves experiences to
guide learning (McClelland et al., 1995), we introduce Memory-R+, a memory-augmented reinforcement
learning framework designed to enhance CoT reasoning in tiny LLMs. To address the challenges of reward
sparsity and insufficient exploration, we implement an intrinsic motivation mechanism that emulates the
brain’s drive to seek successful outcomes (exploit) and avoid repeated errors (explore). This mechanism
guides reasoning trajectories by leveraging two distinct episodic memory modules: one dedicated to storing
successful reasoning traces and the other to capturing failed attempts. By employing nearest-neighbor
estimation within a shared representation space, Memory-R+ derives performance-driven intrinsic rewards
from the memory. This process mirrors how humans learn from near-correct attempts, allowing LLMs to
refine their reasoning by aligning with successful patterns while avoiding detrimental exploration paths. This
intrinsic motivation effectively addresses the limitations of sparse external rewards, providing a continuous
learning signal based on past experiences.

Unlike traditional episodic control methods that rely on state-action-return associations for discrete action
spaces (Pritzel et al., 2017; Le et al., 2021; 2022; Do et al., 2024), Memory-R+ simplifies memory storage
to input-output pairs, making it more suitable for LLMs’ textual reasoning. Upon receiving a new query,
the framework retrieves outputs from similar past instances by first encoding the query and searching for
the top-k most similar queries in memory using cosine similarity. The corresponding response sets from
the success and failure memories are then retrieved. The exploitation reward is computed by measuring
the Euclidean distance between the generated response and the centroid of the successful response set,
encouraging the model to align with generalizable successful patterns rather than memorizing specific past
responses. In contrast, the exploration reward is derived from the maximum cosine similarity between the
generated response and the stored failure responses, ensuring that the model discovers novel outputs differing
from incorrect reasoning. To maintain stability in training, both rewards are normalized within a sliding
window, adapting to the model’s recent performance trends.

To evaluate our approach, we conduct extensive experiments on mathematical problem-solving across several
tiny LLMs. Our results demonstrate that Memory-R+ significantly improves reasoning accuracy and robust-
ness compared to baseline RL and other handcrafted rewards. Moreover, analytic studies provide insights
into training collapses and the impact of different memory configurations, highlighting the role of episodic
memory in enhancing reasoning performance. In summary, our key contributions are as follows: (1) We pi-
oneer an RL fine-tuning approach for tiny LLMs by leveraging a memory-based intrinsic reward mechanism
to teach LLMs to explore and exploit. (2) We empirically identify and analyze training collapse issues when
fine-tuning tiny LLMs with RL. (3) Extensive experiments on CoT reasoning tasks show that Memory-R+

outperforms other RL methods, enhancing reasoning in small models significantly. (4) We conduct extensive
analyses of our method, including hyperparameter selection, intrinsic rewards, exploration behaviors, and
the emergence of self-reflection.

The significance of our approach is that our method enables effective RL fine-tuning for models as small
as 500M parameters—orders of magnitude smaller than current state-of-the-art LLMs used in RL-based
reasoning research (Guo et al., 2025). This dramatically lowers the barrier to entry for small research labs,
academic groups, and companies with limited computing resources, making advanced reasoning capabilities
more accessible.

2 Method

2.1 Intrinsic Reward Formulation for CoT Reasoning

When the LLM generates a response to a given query, it receives two forms of feedback: an outcome reward
R from an Answer Verifier that judges the correctness of the final answer extracted from the response, and
an intrinsic reward Rmem from memory that reflects how the response aligns with past successes and failures.
We note that the Answer Verifier can only assess the final answer and cannot evaluate the quality of the
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Figure 1: Memory-R+ Architecture. Left: The LLM receives a query q from training dataset D, and
generates multiple responses. For each response a, in addition to outcome reward R from an Answer Verifier,
Memory-R+ introduces intrinsic reward Rmem based on episodic memory. Right: The query q is used to
query the failure memory Mf and success memory Ms using kNN (red arrows), resulting in corresponding
retrieved responses. The intrinsic reward Rmem is computed by comparing the current response a to retrieved
ones—encouraging novelty against failed responses (e.g., a1,1, a3,1, a3,2) and rewarding similarity to successful
ones (e.g., a5,1, a5,2, a6,1, a6,2).

reasoning chains in the response. Therefore, the intrinsic reward is expected to complement the Answer
Verifier in providing useful training signals.

Our intrinsic reward balances exploration and exploitation by rewarding responses that resemble past suc-
cessful reasoning trajectories while penalizing those similar to previously failed responses. This is achieved
through a kNN-based memory system that quantifies the novelty and similarity of generated responses. Fig.
1 illustrates the overall design of Memory-R+.

2.2 Episodic Memory

Memory Formulation We construct an episodic memory moduleM to store past reasoning trajectories,
facilitating efficient retrieval of relevant experiences. To ensure efficient reasoning retrieval, both queries and
responses are encoded into a shared high-dimensional vector space using Enc, implemented as a pre-trained
Sentence Transformer (Reimers & Gurevych, 2019):

qi = Enc(qi) ∈ Rd, ai,j = Enc(ai,j) ∈ Rd (1)

Here, each entry in the memory consists of embeddings of a query qi and a set of associated responses {ai,j}:
M = {(qi, {ai,j}L

j=1)}N
i=1 where N is the maximum number of stored queries, and each query qi maintains

at most L associated responses. Memory retrieval is denoted as: M[qi] = {ai,j}L
j=1.

Memory Writing During training, we sample G responses from the LLM for a given query. New query-
response pairs are incorporated into memory following an update rule: (1) If q is a novel query (i.e., not
present in M) and |M| ≥ N , the oldest stored query-response pair is evicted to maintain a fixed memory
capacity. The new query and its corresponding responses are then inserted. (2) If q already exists in M,
the new response set {aj} is merged with the existing responses. If the total number of responses exceeds
L, the oldest responses are discarded to preserve memory constraints.

For guiding reinforcement learning, we maintain two episodic memory modules: one for storing successful
responses, Ms, and another for failed responses, Mf . Given a query q and a set of generated responses
{aj}m

j=1, we update the memories as follows:
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Ms[q]←Ms[q] ∪ {aj | R(q, aj) > τs}, Mf [q]←Mf [q] ∪ {aj | R(q, aj) ≤ τf} (2)

where τs and τf are reward thresholds for classifying successful and failed responses, respectively. For
instance, in mathematical problem-solving, where the outcome reward is defined as R(q, a) = 1 for a correct
final answer and 0 otherwise, we can set the thresholds as τs = τf = 0.5.

2.3 Memory-based Intrinsic Reward

Memory Read Given a new query q and a response a, we compute their embeddings q = Enc(q),
a = Enc(a) and retrieve the top-k nearest queries from a memory M based on cosine similarity (CS):
{q′

k}K
k=1 = top-k (arg maxq′∈M CS(q, q′)). Then, the set of relevant responses from the memory is computed

as:

B (M, q) =
K⋃

k=1
M[q′

k] (3)

where K is the number of nearest neighbors considered in the memory retrieval. For simplicity, the same K
is used for both Ms and Mf .

Exploitation Reward Rexploit To reinforce successful reasoning patterns, we compute the exploitation
reward using responses stored in the success memory Ms. The model is rewarded for generating responses
similar to those that previously led to correct final answers. We first compute the centroid of retrieved re-
sponse embeddings from the success memory: c(Ms, q) = 1

|B(Ms,q)|
∑

aj∈B(Ms,q) aj . The Euclidean distance
between the response a and this centroid determines the exploit reward as:

Rexploit(q, a) = −∥a − c(Ms, q)∥ (4)

By measuring the distance to the centroid, we encourage the model to align with the general distribution
of successful reasoning patterns rather than overfitting specific past answers. This provides a smoother
optimization signal, overcoming the reward sparsity problem and capturing structural commonalities in
effective reasoning paths.

Exploration Reward Rexplore To encourage novel reasoning paths, we compute the exploration reward
using responses stored in the failure memory Mf , ensuring that the model avoids repeating past mistakes.
Specifically, novelty is measured as the minus of the cosine similarity between the generated response em-
bedding a and its closest retrieved embedding from the failure memory:

Rexplore(q, a) = 1− max
aj∈B(Mf ,q)

CS(a, aj) (5)

This formulation penalizes responses that closely resemble previously failed attempts while rewarding novel
outputs that deviate from incorrect reasoning. Importantly, the design of this intrinsic reward creates a
natural curriculum: early in training, when most outputs are wrong, this encourages broad exploration,
generating anything unlike previous attempts. As correct responses accumulate in the success memoryMs,
the failure memory becomes more selective, guiding the model to avoid bad patterns without discouraging
similarity to correct ones. As the model improves, this creates a natural progression from broad to focused
exploration. In practice, we can set a warm-up period (e.g., 50 training steps) to collect the initial data
before applying the exploration reward.

Reward Normalization The intrinsic rewards are normalized using a running min-max scaling to ensure
they are evaluated relative to recent performance trends. For example, given a sliding window of past
intrinsic rewards {Rexplore,i}t

t−w, where w is the window size, the normalized intrinsic reward is computed
as:
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R̂exploit/explore(q, a) =
Rexploit/explore(q, a)−mint−w≤i≤t Rexploit/explore,i

maxt−w≤i≤t Rexploit/explore,i −mint−w≤i≤t Rexploit/explore,i + ϵ
(6)

where ϵ is a small constant to prevent division by zero. Here, the rewards are interpreted relative to recent
performance, allowing the model to adapt dynamically. We argue that since this is an intrinsic reward,
its value should be assessed relative to the model’s past performance rather than on an absolute scale. A
response is considered more rewarding if it demonstrates improvement over its recent historical performance,
ensuring that the model continuously refines its reasoning rather than converging prematurely.

Final Reward Signal The final memory-based intrinsic reward Rmem is computed as a weighted sum of
the normalized components:

Rmem = βsR̂exploit + βeR̂explore, (7)

where R̂exploit and R̂explore are the normalized rewards, ensuring that the model evaluates improvements
relative to its recent history. The weighting factors βs and βe determine the balance between reinforcing
past successes and encouraging novel reasoning, providing explicit control over-exploitation and exploration
trade-offs. With Rmem, dense performance-driven signals are incorporated into the training rewards. We
hypothesize that this facilitates learning performance-based rewards, narrows the difficulty gap between
performance-based and format-based learning, and mitigates training collapse issues (see more in Sec. 4.4).

Training with RL We train the model using a reinforcement learning objective, where the task outcome
reward R and the intrinsic reward Rmem are used to update the policy πθ(a | q). Specifically, we adopt
the Group Relative Policy Optimization (GRPO (Shao et al., 2024)), a variant of policy gradient methods
designed for improved stability and efficiency in language model RL fine-tuning. The training objective
maximizes the expected total reward:

max
θ

Eq∼D,a∼πθ
[R + Rmem] (8)

where D is the training dataset, and πθ is the LLM with its trainable parameters θ.

3 Experimental Setup

Training and Datasets We use three tiny LLMs with at most 1 billion parameters: Qwen2.5-0.5B-
Instruct, Falcon3-1B-Instruct, and Llama3.2-1B-Instruct and fine-tune them using a single NVIDIA H100
GPU. Training is conducted on two math datasets: (1) the "easy-math" GSM8K dataset (Cobbe et al., 2021),
using the training set of 7,473 samples, and (2) the "hard-math" AI-MO dataset (Jia LI & Polu, 2024),
where we randomly select only 2,000 samples to reflect real-world high-quality data scarcity. In addition,
we employ a logical reasoning dataset: Knights and Knaves (K&K) (Xie et al., 2024), to examine our
method on non-math scenarios. The K&K dataset targets logical inference and truth evaluation through
procedurally generated puzzles with controllable difficulty and rule-based verification. Despite its simple
setup, it has proven challenging for both enterprise and open-source LLMs (Xie et al., 2025). We run each
training with three seeds to account for the inherent randomness in RL training, ensuring that our results
are stable and not dependent on a specific initialization. Unless stated otherwise, we implement and execute
the training using the Open-R1 codebase (HuggingFace, 2025) (see more details in Appendix A).

Evaluation We evaluate our approach on three representative mathematical reasoning bench-
marks—GSM8K, MATH-500, and AIME24 (Cobbe et al., 2021; Lightman et al., 2023)—which increase
in difficulty in that order; and the logical reasoning K&K test set with novel difficulty levels unseen in the
training set. If not stated otherwise, we follow the zero-shot setting for all evaluations. For math datasets,
our evaluation framework is based on Lighteval (Fourrier et al., 2023), and we employ its extractive match
metric, which rigorously applies regex-based conditions to precisely extract and parse generated answers.
For logical datasets, we follow the evaluation protocols established by the dataset authors. In any case,
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LLM Baseline GSM8K MATH 500 AIME24

Last Best Last Best Last Best

Qwen2.5-0.5B-Instruct

Base 27.8 20.0 0.0
R1 27.5±6.3 28.8±7.5 18.7±3.6 18.9±3.8 0.0±0.0 1.1±1.9
Cosine 29.4±1.4 31.2±0.7 22.7±1.0 22.7±1.0 0.0±0.0 0.0±0.0
Memory-R 33.0±1.1 36.0±2.6 21.4±1.9 23.7±1.3 0.0±0.0 0.0±0.0
Memory-R+ 33.7±2.5 34.0±2.3 22.3±0.6 24.4±0.6 0.0±0.0 1.1±1.9

Falcon3-1B-Instruct

Base 32.9 12.2 0.0
R1 10.9±4.6 16.3±1.7 6.5±1.7 10.8±0.4 0.0±0.0 0.0±0.0
Cosine 35.3±0.2 37.4±1.3 16.2±1.4 17.0±0.9 0.0±0.0 0.0±0.0
Memory-R 34.6±1.7 36.3±0.6 12.9±0.3 14.1±0.9 0.0±0.0 2.2±1.9
Memory-R+ 34.0±0.6 34.8±0.5 14.0±2.8 16.9±1.3 0.0±0.0 2.2±1.9

Llama3.2-1B-Instruct

Base 26.3 17.4 0.0
R1 36.2±0.3 37.2±1.3 15.2±1.0 19.0±0.5 3.3±0.0 2.2±1.9
Cosine 37.6±1.3 38.1±1.8 18.5±0.3 21.2±0.3 0.0±0.0 3.3±3.3
Memory-R 38.7±0.8 39.9±1.2 20.3±1.4 21.1±0.7 3.3±0.0 4.4±1.9
Memory-R+ 40.5±1.1 40.7±1.1 20.0±1.2 20.6±1.4 0.0±0.0 2.2±1.9

Table 1: Results over different LLMs and datasets. Extractive match (mean ± std.) at the last and best
training checkpoints, averaged over 3 seeds (for Base, only one seed is enough). The average best results
are highlighted in bold, and the second-best results are underlined; if two or more statistically identical
best results occur (Cohen effect size < 0.5), all are bold without underlining, and settings with full zero
performance are left unformatted.

answers must adhere to a strict, predefined format to be successfully extracted for evaluation; if the model
fails to generate an answer that follows the specified format, the answer will not be extracted and will be
counted as incorrect.

Baselines We focus on RL fine-tuning approaches. We define R1 as the RL baseline trained using the
standard GRPO algorithm (no SFT cold-start), following the DeepSeekR1 paper (Guo et al., 2025), with
correctness outcome and format-based rewards. Cosine incorporates the response length’s property as a
reward signal (Yeo et al., 2025). Our proposed method, Memory-R+, introduce 2 performance-driven
reward strategies: R̂exploit and R̂explore. If not stated otherwise, our method uses βs = βe = 1 throughout
experiments.

4 Experimental Results

4.1 Results with GSM8K Training

For GSM8K training, we use a zero-shot setting for all base LLMs except Llama3.2-1B-Instruct, which
requires a single in-context example per training sample. Without this, it fails to produce any valid correct-
ness rewards, preventing learning across all models. All baselines share the outcome correctness rewards and
format-based rewards, including the integer reward (rewarding responses that contain integers, tailored for
GSM8K task) and the XML reward (ensuring responses match a specific XML structure, e.g., <answer>
</answer>).

We tune GRPO’s hyperparameters using baseline R1 and find that in tiny LLMs and low-resource settings,
the optimal response length is consistently below 200. There is no significant difference in performance when
we increase the training’s max sequence length to higher values, up to 2048. Thus, we set the maximum length
to 200 for all baselines to reduce memory consumption and enable faster training. Regarding hyperparameter
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G, a higher number of generations per step helps stabilize the training, yet demands more memory resources.
To balance resource constraints, we set this value to G = 16. Other hyperparameter values are provided
in the Appendix A. For our method, we set the episodic memory capacity equal to the dataset size, i.e.,
N = |D|, ensuring no memory overflow. This design choice is suitable for our setting, where the training
dataset is relatively small, aligning with real-world conditions. The maximum number of stored responses per
query is fixed at L = 100, and the reward normalization window size is set to w = 100 across all experiments.
A key hyperparameter that may require tuning is K, the number of neighbors used for memory retrieval. For
simplicity, we set K = 1 in this section as a proof of concept, without further hyperparameter optimization.

After one training epoch, we evaluate the baselines on mathematical reasoning benchmarks of varying diffi-
culty. To analyze the contributions of exploitation and exploration rewards in our method, we also report
results for Memory-R, which utilizes only R̂exploit as the intrinsic reward for RL training. In contrast,
Memory-R+ incorporates both R̂exploit and R̂explore, providing a more comprehensive reward structure.

Main Results: Table 1 presents test accuracy across multiple training checkpoints, reporting the best
and last checkpoint’s results. Memory-R+ emerges as the strongest performer, ranking highest in 10 cases,
followed by Memory-R with 8. Cosine and R1 achieve top rankings 7 and 2 times, respectively. Compared to
the Base model, our Memory-R variants yield performance improvements ranging from 2% to 14%, depending
on the setting. Notably, some RL methods, such as R1, occasionally underperform the Base model due to
training collapse. Across all runs, seeds, and settings, we observe that training collapse does not occur with
Memory-R+, whereas it does affect the other methods. We provide a detailed analysis of this phenomenon
in Sec. 4.4.

Analysis on Intrinsic Reward: We also visualize the learning curves of R̂exploit and R̂explore over training
steps in Appendix Fig. 6. Both rewards generally show an upward trend, suggesting that the RL algorithm
effectively optimizes them. It is important to note that these rewards are normalized to reflect relative
improvements. For exploration reward, there is a warm-up period during which R̂explore remains zero while
initial data is collected to estimate novelty. After this phase, a spike in exploration occurs when R̂explore is
first applied, followed by stabilization and a gradual increase. The rise in R̂explore indicates that the LLM’s
outputs become more diverse as training progresses.

4.2 Results with AI-MO Training

In this task, we focus on Qwen2.5-0.5B-Instruct, the smallest LLM in our study. The format-based rewards
include the XML reward and a heuristic reward that assesses the clarity of reasoning, dubbed "reasoning
step" reward (HuggingFace, 2025). We exclude the integer reward because the answer in this task is not
limited to integers. We keep the training hyperparameters similar to Sec. 4.1 except for K, which we vary
to study the impact of memory retrieval on the performance of our method. Also, as the data is limited
(only 2,000 samples), we fine-tune the LLMs for 4 epochs to ensure convergence.

Main Results: Fig. 2 reports the test accuracy of 3 RL methods: R1, Cosine, and Memory-R+ (K = 20)
on 3 test datasets. The results consistently show that Memory-R+ surpasses all baselines by notable margins
of approximately 5% on GSM8K, 4% on MATH-500, and 1% on AIME24. In this task, Cosine performs
poorly due to response length collapse (see Sec. 4.4.2), whereas Memory-R+ and R1 remain unaffected.
However, R1 exhibits significantly slower learning (see Appendix’s Fig. 5b) and achieves lower test accuracy
compared to Memory-R+.

Hyperparameter Selection: Table 2 presents Memory-R+’s performance with different values of K,
showing how varying K influences the model’s test accuracy across multiple datasets. As observed, increasing
K generally leads to an improvement in performance. This trend holds for all three datasets, where the
highest accuracy is achieved with K > 1. However, the improvement varies depending on the dataset,
indicating that the model’s behavior may differ based on task complexity or data characteristics. These
findings suggest that tuning K can be crucial and further improve Memory-R+’s performance in downstream
tasks. Out of all settings tested, K = 20 demonstrates the highest performance for this task, consistently
ranking at the top.
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Figure 2: Performance of fine-tuning Qwen2.5-0.5B-Instruct on AI-MO data. The test accuracy is evaluated
at multiple checkpoints during training (mean±std. over 3 runs). The Base model’s performance corresponds
to step 0.

Dataset Model K = 1 K = 10 K = 20 K = 30

GSM8K Best 37.6±0.8 38.7±1.2 38.2±0.9 38.4±0.6
Last 36.5±0.2 37.8±1.4 37.5±0.3 36.8±0.4

MATH-500 Best 25.5±0.1 25.9±0.3 25.8±0.5 25.8±0.3
Last 22.7±0.1 23.7±0.5 25.3±0.6 25.0±0.4

AIME24 Best 0.0±0.0 0.7±1.0 2.2±1.9 0.0±0.0
Last 0.0±0.0 0.3±0.8 2.2±1.9 0.0±0.0

Table 2: Memory-R+ test accuracy with different k = 1, 10, 20 and 30 (mean±std. over 3 runs). The best
results are highlighted in bold; if two or more statistically identical best results occur (Cohen effect size
< 0.5), all are bold.

Exploration Analysis: Furthermore, we evaluate the response diversity after fine-tuning LLMs with our
method and other approaches, selecting a seed that ensures no training collapse occurs in the other methods.
We compute diversity scores on 3 randomly sampled responses from the LLMs, given the input from a subset
of 100 geometry questions Hendrycks et al. (2021). We utilize the Language Model Evaluation Harness library
(Gao et al., 2024) to generate model responses using the "hendrycks_math_geometry" task. The results in
Appendix’s Table 7 demonstrate that Memory-R+ enhances the diversity of the base model, significantly
surpassing R1 in terms of diversity. Further details and examples are provided in Appendix B.3.

Emergence of Self-reflection: Finally, we investigate the outputs of LLMs trained with our method
to analyze the self-verification behavior discussed in Guo et al. (2025). To this end, we read through the
responses of the LLMs on the geometry task mentioned above. Interestingly, the tiny LLMs trained with
Memory-R+ also exhibit self-verification behaviors, as indicated by phrases like "let’s re-evaluate" and "let’s
consider an alternative approach". Among 100 observed cases, 26 instances demonstrated such behavior,
compared to only 6 in the Base model. This highlights the emerging capability of smaller models to perform
self-verification, a form of reasoning previously thought to be exclusive to larger, more complex models.
These instances suggest that, with the right training and mechanisms, small models can not only generate
outputs but also evaluate and refine them. More examples are given in Appendix B.3.
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#People (Difficulty) Avg.

Model 2 3 4 5 6 7 8

Base 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
R1 28.0 ± 4.9 20.0 ± 2.2 13.0 ± 6.5 6.3 ± 1.2 4.7 ± 2.5 1.0 ± 0.0 1.7 ± 1.2 10.7 ± 2.6
Cosine 28.6 ± 5.0 10.0 ± 1.7 6.6 ± 2.8 3.3 ± 2.3 1.3 ± 1.5 0.3 ± 0.5 1.3 ± 1.5 7.3 ± 2.5
Memory-R+ 36.0 ± 1.0 25.0 ± 1.0 22.3 ± 1.1 9.3 ± 2.5 2.3 ± 2.1 2.0 ± 1.0 2.0 ± 1.0 14.3 ± 1.6

Table 3: Accuracy (%) by number of people in K&K puzzles (higher difficulty as number increases), with
results reported as mean ± standard deviation over 3 runs. Bold denotes the best mean performance.

4.3 Results with K&K Training

In this task, the difficulty of a question is specified by the number of people in the question. We use Qwen2.5-
0.5B-Instruct as the Base LLM. We adhere closely to the training and evaluation protocols outlined in the
code repository1 of previous studies (Xie et al., 2025). Specifically, we exclusively use correctness and XML
rewards. The training dataset includes questions from difficulty levels 3 to 7, and we evaluate Base, R1,
Cosine, and Memory-R+ across seven difficulty levels (with the number of people ranging from 2 to 8). In
this experiment, our method employs K = 1 as a proof of concept. Unlike in other experiments, we pick a
very small value of βs = βe = 0.0001, which yields the best results.

As shown in Table 3, the task is challenging as indicated by zero accuracy of the Base model. Among
RL baselines, Memory-R+ consistently outperforms both R1 and Cosine across nearly all difficulty levels,
especially on complex cases involving 2 to 5 people. Notably, Memory-R+ achieves the highest overall
average accuracy (14.3), surpassing other baselines by a significant margin, with a relative improvement gain
of approximately 28.5% over R1 and 95.9% over Cosine. While R1 demonstrates stronger performance at
one level of difficulty (6 people), its performance exhibits high instability and the largest variance, resulting
in subpar overall performance. Cosine performs reasonably only at the simplest level but struggles with
all other settings, showing limited capacity for handling increased complexity. These results emphasize the
critical role of our memory-based reasoning in addressing structured logical puzzles.

4.4 Training Collpase in Tiny LLMs

When training tiny LLMs for reasoning, we observe that incorporating multiple reward signals (e.g., format,
accuracy, etc.) can enhance performance, particularly in boosting specific aspects like accuracy with precise
format requirements. However, tiny LLMs can easily converge to local optima (training collapses) when
exposed to multiple reward signals, resulting in suboptimal performance. In this section, we discuss these
collapse cases, highlighting the nuances of reward design and exploring how these challenges can be addressed
with our method.

4.4.1 Reward Mode Collapse

In this section, we investigate the reward mode collapse phenomenon, where (1) LLMs prioritize learning
a simpler, typically format-based, reward, or (2) LLMs become confused by multiple rewards, struggling to
learn any effectively. We observe and report this issue using Falcon3-1B-Instruct, though it is not exclusive
to this model.

The values of the main reward (correctness reward) and easier format-based rewards (e.g., integer reward
and XML reward) are shown in Fig. 3. Here, Memory-R and Memory-R+ enhance both accuracy and
integer rewards while trading off the XML reward. We hypothesize that incorporating intrinsic content and
performance-based rewards, such as R̂exploit and R̂explore, facilitates correctness optimization and prevents the
model from overfitting to easy format-based rewards. In contrast, using R1, without intrinsic rewards, makes
the model immediately focus on easier format-based rewards without any improvement in the correctness
reward. Additionally, Cosine, which uses length-based intrinsic rewards, fails to learn any reward, resulting

1https://github.com/Unakar/Logic-RL
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Figure 3: Reward Mode Collapse in Falcon3-1B-Instruct.
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Figure 4: Response Length Collapse in Qwen2.5-0.5B-Instruct.

in mediocre performance across all criteria. This suggests that relying on naive intrinsic rewards may hinder
learning. Among Memory-R and Memory-R+, the latter shows better performance, likely due to its more
diverse intrinsic reward structure, which supports both format-based and correctness-based rewards.

4.4.2 Response Length Collapse

We observed two distinct types of collapse in response length. In one scenario, depending on the setup, the
LLM struggles to generate meaningful tokens, resulting in unusually brief responses—sometimes as short as
just 10 tokens. On the other hand, another form of collapse occurs when the LLM fails to halt its generation
process (overthinking problem), leading to output sequences that continually expand until they reach the
maximum allowed length. We use Qwen2.5-0.5B-Instruct trained on GSM8K to illustrate both collapse
cases mentioned above. We also note that response length collapse also occurs in other settings (see more
in Appendix 4.4.2).

We present an example of response length collapse in Fig. 4. In this case, Memory-R and Memory-R+

successfully avoid this collapse, achieving high correctness rewards while maintaining reasonable completion
lengths and balanced metrics. Interestingly, Cosine, despite focusing on optimizing lengths, leads the model
to generate the maximum number of tokens early in training, yet none of its corresponding rewards increase.
This suggests that the model fails to optimize for any meaningful objective despite the excessive token
generation (in some other cases, Memory-R can also suffer similar issues). On the other hand, R1 drastically
shortens responses. This results in the integer reward spiking as the response length drops significantly,
indicating that the model is being guided to generate only a minimal number of tokens containing only
digits. While this satisfies the integer reward, it is detrimental to correctness, which should be the primary
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optimization objective. Additionally, the XML reward for R1 remains unchanged, indicating a complicated
relationship between the response length collapse and the reward mode collapse mentioned above.

5 Related Works

Enhancing LLM Reasoning Recent advancements in LLM reasoning have focused on scaling test-time
computation to improve accuracy in complex tasks. Test-time search strategies, such as beam search (Gao
et al., 2023) and majority vote (Wang et al., 2022), aggregate predictions from multiple inference traces to
refine accuracy. While these methods are effective, they come with the drawback of significantly increasing
computational costs. More sophisticated techniques, using Monte Carlo Tree Search (Feng et al., 2023) and
Tree-of-Thoughts (Yao et al., 2023), adopt structured search approaches to explore possible reasoning paths
more systematically. However, these methods often require bespoke implementations tailored to specific
tasks, and they still lead to high inference costs, making them unsuitable for low-resource devices. In
addition, alternative approaches, such as process reward models (PRM) (Lightman et al., 2023), aim to
address particular aspects of reasoning by modeling rewards during inference. While these methods can
improve performance in specific domains, they face several limitations. For instance, Guo et al. (2025)
highlights that process-reward models are costly and not universally applicable. These issues underscore the
trade-offs between reasoning accuracy and computational efficiency. Automated annotation often fails to
provide satisfactory results, and manual annotation is not scalable. Additionally, introducing a model-based
PRM leads to reward hacking (Gao et al., 2023) and requires extra resources for retraining, complicating
the training pipeline.

Reinforcement Learning for Reasoning Enhancement Recent research, starting with DeepSeek-R1
(Guo et al., 2025), has shown the effectiveness of pure RL training with outcome-based rewards in significantly
improving reasoning performance, eliminating the need for costly inference-time searches. However, these
methods often depend on verifiable ground truth or domain-specific heuristics, such as using response length
as rewards (Yeo et al., 2025). For instance, Kimi k1.5 (Team et al., 2025) introduces a method to shorten
chain-of-thought using a length penalty in the reward function during online RL, while Luo et al. (2025);
Arora & Zanette (2025) propose an RL objective aimed at minimizing tokens while maintaining accuracy.
Other works, such as Chen et al. (2024), explore the overthinking phenomenon and suggest generating data
for offline policy optimization using first-correct solutions and diversity criteria. We argue that relying on
heuristic reward functions restricts the generalization of LLM reasoning across a wide range of datasets.
Additionally, small LLMs face challenges in generating long sentences, so emphasizing sentence length may
not be beneficial for these models. In contrast, our approach leverages episodic memory to derive intrinsic
rewards, making it more adaptable and widely applicable. Furthermore, while most existing methods target
large LLMs, our work is the first to improve this approach for smaller models (≤1B parameters).

Episodic Memory For LLMs Several works have explored episodic memory to enhance LLMs’ outputs,
but they primarily focus on improving retrieval-based prompting rather than upgrading the model’s inherent
reasoning capabilities. Experiential learning methods like REMEMBERER (Zhang et al., 2024) store past
observation-action pairs and retrieve high-value trajectories to guide LLMs’ actions during inference. Simi-
larly, Reflexion (Shinn et al., 2024) and ExpeL (Zhang et al., 2024) use memory to extract insights from past
successes and failures, integrating them into prompts to improve decision-making. However, these methods
rely on strong LLMs like GPT-4 (OpenAI, 2024a) without altering their internal reasoning process, using
memory solely for explicit retrieval during inference. They still treat memory as an external knowledge base
rather than an intrinsic driver of learning. In contrast, our method embeds memory-driven intrinsic moti-
vation directly into the learning process. Rather than relying on explicit retrieval for in-context learning,
our approach finetunes the model by leveraging intrinsic rewards derived from past successes and failures,
enabling adaptive and self-improving reasoning.
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6 Conclusion

We present Memory-R+, a novel memory-augmented reinforcement learning framework that equips tiny
LLMs with intrinsic motivation for effective chain-of-thought reasoning. By leveraging episodic memory
to compute exploration and exploitation rewards from past successes and failures, our method mitigates
problems such as reward sparsity and poor exploration. Experimental results on math and logical reasoning
tasks demonstrate that Memory-R+ significantly boosts reasoning performance in small models, making RL
fine-tuning more accessible and effective in low-resource settings. Our method is a first step toward equipping
tiny language models with intrinsic motivation for reasoning, but balancing diverse exploration with efficient
exploitation of past successes remains an open direction. Future work will enhance memory-driven rewards
to better guide this trade-off across increasingly complex reasoning tasks.
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Appendix

A Experiment Details

A.1 System Prompt

Following Guo et al. (2025); HuggingFace (2025), the system prompt is designed as CoT prompting with a
clear requirement for reasoning and answer format, as shown in Table 4.

SYSTEM PROMPT:
A conversation between User and Assistant. The user asks a question, and the
Assistant solves it. The Assistant first thinks about the reasoning process in the
mind and then provides the user with the answer. The reasoning process and answer
are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think><answer> answer here </answer>

Table 4: System prompt used in our experiments.

The use of <think> and <answer> tags ensures a clear distinction between the internal reasoning process
and the final output.

A.2 Training Hyperparameters

The model is trained using the GRPO optimization framework with carefully selected hyperparameters to
ensure stable convergence while being suitable for our computing resources. The key hyperparameters for
GSM8K and AI-MO are listed in Table 5. There is a slight difference in making the training suitable for each
dataset while ensuring efficient training. The hyperparameters for K&K are the same as in the dataset’s
code repository.

Hyperparameter GSM8K AI-MO
Learning Rate 5× 10−6 5× 10−6

Adam β1 0.9 0.9
Adam β2 0.99 0.99
Weight Decay 0.1 0.1
Warmup Ratio 0.1 0.1
Learning Rate Scheduler Cosine Cosine
Batch Size 2 4
Gradient Accumulation Steps 8 16
Number of GRPO Generations 16 16
Maximum Prompt Length 256 512
Maximum Completion Length 200 300
Training Epochs 1 4
Maximum Gradient Norm 0.1 0.1
Mixed Precision BF16 BF16

Table 5: Key training hyperparameters for GSM8K and AI-MO.

We list the links to the LLM models and datasets in Table 6.
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Models/Datasets URL

Qwen2.5-0.5B-Instruct https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct

Llama3-1B-Instruct https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

Falcon3-1B-Instruct https://huggingface.co/tiiuae/Falcon3-1B-Instruct

Sentence Transformer https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

GSM8K https://huggingface.co/datasets/openai/gsm8k

MATH-500 https://huggingface.co/datasets/HuggingFaceH4/MATH-500

AIME24 https://huggingface.co/datasets/math-ai/aime24

AI-MO https://huggingface.co/datasets/AI-MO/NuminaMath-TIR

K&K https://github.com/Unakar/Logic-RL

Table 6: Models and Datasets Details.

B Training Collapse Examples

B.1 Reward Mode Collapse

We present the reward mode collapse phenomenon in Figure 3. Here, we show the values of the correctness
reward, integer reward (ensuring the output is an integer), and XML reward (ensuring the output contains
correctly formatted XML tags for parsing) when optimized simultaneously using different reward schemes
with 1 same seed. It is evident that while Memory-R and Memory-R+ accuracy rewards increase steadily,
those of R1 and cosine do not. Instead, these rewards lead the tiny LLMs to learn reward patterns more
easily.

B.2 Collapse in Response Length

In Fig. 4, we present different rewards and corresponding completion lengths when training Qwen2.5-0.5B-
Instruct with the same random seed. These figures reveal two distinct types of response length collapse.
Memory-R and Memory-R+ shows robust behaviors with good correctness rewards. Cosine causes the
model to generate excessively, reaching the maximum token limit early in training. In contrast, rewards such
as integer and XML remain close to zero. R1 shortens responses while optimizing for the integer reward.
Both approaches result in low correctness rewards, highlighting their suboptimal behavior.

Fig. 5 presents additional examples of response length collapse observed during the training of Qwen-
2.5-0.5B-Instruct on the GSM8K and AI-MO datasets. The Cosine method exhibits severe lengthening
collapse on GSM8K while experiencing shortening collapse on AI-MO. R1 suffers from shortening collapse
on GSM8K. Although it does not exhibit collapse on AI-MO, it converges more slowly and underperforms
Memory-R+, the only method capable of overcoming training collapse.

B.3 Details on Model Outputs

Memory-based Intrinsic Rewards In Fig. 6, we report the memory-based intrinsic rewards (Rexploit

and Rexplore) over training steps while fine-tuning Qwen2.5-0.5B-Instruct with Memory-R+ on GSM8K.

Diversity Evaluation To assess the diversity of responses generated by Qwen2.5-0.5B-Instruct fine-tuned
with our method, we employ a pairwise similarity analysis. Specifically, for each question, we sample three
responses from the model using a temperature of 0.1, and compute the pairwise cosine similarity between
them. This process is repeated for a set of 100 questions to obtain a comprehensive measure of response
diversity.
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(a) GSM8K (b) AI-MO

Figure 5: More Training Collapses in Qwen2.5-0.5B-Instruct during fine-tuning GSM8K (a) and AI-MO
datasets (b). The results have been smoothed to improve clarity and visual appeal.

Figure 6: Memory-based Intrinsic Reward on GSM8K and Qwen2.5-0.5B-Instruct. The results have been
smoothed to improve clarity and visual appeal.

To capture both lexical and semantic similarities, we utilize two different embedding models: TF-IDF (Man-
ning et al., 2008) and Sentence Transformer (Reimers & Gurevych, 2019). The TF-IDF model provides a
measure of lexical overlap, while the Sentence Transformer captures deeper semantic relationships between
responses.

For each question, we compute the average pairwise cosine similarity for the three sampled responses using
both embedding models. The final results, reported in Table 7, reflect the overall diversity of the model’s
responses across the dataset. We report 1 - similarity as the diversity score, where a higher value indicates
greater diversity, suggesting more variation in the generated outputs.

The results confirm that our method effectively encourages the LLM to explore more. Compared to R1, the
final model trained with our approach demonstrates a clear improvement in diversity. We present several
sampled responses of the Base, R1, and Memory-R+ in Table 8, 9, and 10, respectively. The question for
these responses is listed below:

Problem: In right triangle ABC, shown below, cos B = 6
10 . What is tan C?

draw((0,0)–(10,0)–(3.6,4.8)–cycle,black+linewidth(1));
draw(rightanglemark((0,0),(3.6,4.8),(10,0),20),black+linewidth(1)); label("C",(10,0),E);

label("A",(3.6,4.8),N); label("B",(0,0),W); label("10",(0,0)–(10,0),S);
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Method Lexical Diversity Semantic Diversity
Base 27.3 9.0
R1 24.2 8.6
Memory-R+ 27.6 9.3

Table 7: Diversity scores (×100) for different baselines. Bold denotes best results.

Self-Verification Behaviors Examples of our method’s output, showcasing self-verification behaviors
(highlighted in red), can be found at the end of the paper.

Response 1 Response 2 Response 3
−3
Given a right triangle ABC with
cos B = 6

10 , we need to find
tan C.
Using the Pythagorean theorem:

BC =
√

AB2 −AC2

We express cosine as:

cos B = adjacent
hypotenuse

Since cos B = 3
5 :

cos B = AC

c

...

1
9
To solve for tan C, we use:

cos B = 6
10

Since

cos B = adjacent
hypotenuse = x

c

we find x = 6, hypotenuse c =
10.
Verifying:

x

10 = 6
10

By cross-multiplication:

x = 6

Next, using sine:

sin B = ...

To find tan C given cos B = 6
10 :

Step-by-step:

cos B = 6
10

Adjacent side: a, hypotenuse: c.
Using the ratio:

cos B = adjacent
hypotenuse

...

Table 8: Qwen2.5-0.5B-Instruct’s responses.
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Response 1 Response 2 Response 3
To solve for tan C, given cos B =
6

10 in △ABC:
Identify sides: - AB = hy-
potenuse - BC = one leg - AC
= other leg
Step 1: Find sin B:

cos B = adjacent
hypotenuse

For cos B = 6
10 :

BC

AB
= 6

10

Let BC = x:

x

AB
= 6

10

Since AB is the hypotenuse:

AB = 10x

6 = 5x

3

Next, we find sin B...

To determine tan C given
cos B = 6

10 in △ABC:
Trigonometric definitions:
- cos B = adjacent

hypotenuse -
tan B = opposite

adjacent
Step 1: Find the hypotenuse us-
ing cos B:

cos B = adjacent
hypotenuse

Given:

cos B = 6
10

Let b be the adjacent side and h
be...

To solve for tan C, analyze
△ABC:
Given:

cos B = 6
10

Step 1: Find sin B:

cos B = adjacent
hypotenuse

Since cos B = 6
10 :

adjacent
hypotenuse = 6

10

Let hypotenuse = h:

adjacent = 6k

where k is a positive number.
Next, find:

sin B = opposite
hypotenuse

...

Table 9: Qwen2.5-0.5B-Instruct fine-tuned with R1’s responses.

Response 1 Response 2 Response 3
To solve for tan C, given cos B =
6

10 :
Step 1: Recall trigonometric def-
initions - cos B = adjacent

hypotenuse -
sin B = opposite

hypotenuse
Step 2: Use Pythagorean iden-
tity

sin2 B + cos2 B = 1

Substituting cos B = 6
10 :

sin2 B +
(

6
10

)2
= 1

Calculate sin B...

To determine tan C, first find
sin B and cos B for △ABC.
Given:

cos B = 6
10

Use the Pythagorean theorem to
find the hypotenuse:

AB2 + BC2 = AC2

Substituting known values:

102 + 62 = AC2

100 + 36 = AC2

AC =
√

136 = 2
√

34

Next, calculate sin B using:

sin B = opposite
hypotenuse

...

To find tan C in △ABC:
Given:

cos B = 6
10 = 3

5

Trigonometric definition:

cos B = adjacent
hypotenuse

Denote sides: - AB = c - BC = b
- AC = a
Given:

b

a
= 3

5 ⇒ b = 3
5a

Using Pythagorean theorem:

c2 + b2 = a2

Solve for remaining sides...

Table 10: Qwen2.5-0.5B-Instruct fine-tuned with Memory-R+’s responses.
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Memory-R+’s Output Example 1

Question: Coplanar squares ABGH and BCDF are adjacent, with CD=10 units and AH=5 units.
Point E is on segments AD and GB. What is the area of triangle ABE, in square units? Express
your answer as a common fraction.

Response: To find the area of triangle △ABE where ABGH and BCDF are coplanar squares
with CD = 10 units and AH = 5 units, we need to determine the coordinates of points E and B.
First, let’s place the squares on the coordinate plane for easier calculation:
Square ABCD has vertices at A(0, 0), B(5, 0), C(5, 5), and D(0, 5). Square BCDF has vertices at
B(5, 0), C(15, 0), D(15, 10), and F (5, 10).
Next, we need to find the coordinates of point E. Since E lies on segment AD and GB, we can
use the fact that AD and GB are parallel lines (both have a slope of 1). Step 1: Determine the
coordinates of E
Since E lies on AD:

E divides AD into two equal parts.

The equation of line AD can be found using the points A(0, 0) and D(0, 5):

y = −x + 5.

To find the intersection with AD, set x = 0:

y = −0 + 5 = 5.

Thus, E is at (0, 5).
Step 2: Determine the coordinates of B
Since B lies on BC and DF :

B divides BC into two equal parts.

...
The distance from A to BE is simply the absolute value of the y-coordinate of A:

Height = |0− 0| = 0.

However, this interpretation seems incorrect because A should be above BE. Let’s re-evaluate:
Correctly, the correct height should be the vertical distance from A to the line BE.
...
Now, calculate the area of △ABE:

Area = 1
2 × 5× 5 = 25

2 = 12.5.

Thus, the area of triangle △ABE is:
25
2

20



Under review as submission to TMLR

Memory-R+’s Output Example 2

Question: In the diagram, points X, Y and Z are on the sides of △UV W , as shown. Line segments
UY , V Z and WX intersect at P . Point Y is on V W such that V Y : Y W = 4 : 3. If △PY W has an
area of 30 and △PZW has an area of 35, determine the area of △UXP .
Model Response:

8

To solve for the area of △UXP , we need to use the given information about the areas of other
triangles in the diagram.
First, let’s find the ratio of the lengths V Y to Y W . We know: - The ratio V Y : Y W = 4 : 3.
...
Given that △PZW has an area of 35, we can find the area of △UXP by subtracting the areas of
△PY W and △PZW from the area of △UXW .
First, we find the area of △UXW :

Area of △UXW = Area of △UY W + Area of △UXW

...
Finally, we find the area of △UXP :

Area of △UXP = Area of △UXW − (Area of △PY W + Area of △PZW )

Area of △UXP = 30− (15 + 35) = 30− 50 = −20

However, this result seems incorrect because the area cannot be negative. Let’s re-evaluate the
problem using the correct approach.
Given: - Area of △PY W = 30 - Area of △PZW = 35
The correct calculation should be:

Area of △UXP = Area of △UXW − (Area of △PY W + Area of △PZW )

Area of △UXP = 30− (15 + 35) = 30− 50 = −20

This indicates a mistake in the interpretation or calculation. Revisiting the problem, we realize
the correct approach involves recognizing the geometric properties and relationships between the
triangles.
Given the correct geometric properties and solving step-by-step correctly, we find:

8
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