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Abstract

Safety is an essential requirement for reinforcement learning systems. The newly emerging framework
of robust constrained Markov decision processes allows learning policies that satisfy long-term
constraints while providing guarantees under epistemic uncertainty. This paper presents mirror
descent policy optimisation for robust constrained Markov decision processes (RCMDPs), making
use of policy gradient techniques to optimise both the policy (as a maximiser) and the transition
kernel (as an adversarial minimiser) on the Lagrangian representing a constrained MDP. In the
oracle-based RCMDP setting, we obtain an O

(
1
T

)
convergence rate for the squared distance as

a Bregman divergence, and an O
(
e−T

)
convergence rate for entropy-regularised objectives. In

the sample-based RCMDP setting, we obtain an Õ
(

1
T 1/3

)
convergence rate. Experiments confirm

the benefits of mirror descent policy optimisation in constrained and unconstrained optimisation,
and significant improvements are observed in robustness tests when compared to baseline policy
optimisation algorithms.

1 Introduction

Reinforcement learning (RL) traditionally forms policies that maximise the total reward, within the Markov
decision process (MDP) framework. Two important aspects, often overlooked by RL algorithms, are the safety
of the policy, in terms of satisfying behavioral constraints, or the robustness of the policy to environment
mismatches. In continuous control applications, for instance, there are often constraints on the spaces the
agent may go and on the objects it may not touch, and there is the presence of the simulation-reality gap.

Safe RL techniques have been primarily proposed within the constrained Markov decision process (CMDP)
formalism (Altman, 1999). In infinite MDPs, which are characterised by large or continuous state and
action spaces, traditional solution techniques include linear programming and dynamic programming with
Lagrangian relaxation. Following their empirical performance in high-dimensional control tasks (Lillicrap
et al., 2015; Mnih et al., 2016), policy gradient algorithms have become a particularly popular option for safe
RL in control applications (Achiam et al., 2017; Yang et al., 2020; Ding et al., 2020; Liu et al., 2021; Xu
et al., 2021; Paternain et al., 2023; Ying et al., 2023; Wu et al., 2024). As summarised in Table 1, constrained
policy gradient techniques often come with provable guarantees regarding global optimum convergence and
constraint-satisfaction.

The robustness of mismatches in training and test transition dynamics has been the main subject of interest
in the robust MDP (RMDP) framework (Iyengar, 2005; Nilim & Ghaoui, 2005), which formulates robust
policies by training them on the worst-case dynamics model within a plausible set called the uncertainty set.
The framework has led to a variety of theoretically sound policy gradient approaches (Ho et al., 2021; Zhang
et al., 2021; Kumar et al., 2023; Kuang et al., 2022; Wang & Petrik, 2024; Li et al., 2023; Zhou et al., 2023;
Wang et al., 2023). Recently, the approach has also branched out into the robust constrained MDP (RCMDP)
framework (Russel et al., 2020; 2023; Wang et al., 2022; Bossens, 2024; Zhang et al., 2024; Sun et al., 2024),
which provides the same robustness notion to CMDPs, where they provide worst-case guarantees on the
performance, the constraints, or a combination thereof.

Recent work has shown the benefit of mirror descent policy optimisation techniques in theoretical guarantees.
In robust MDPs, state-of-the-art results are obtained for mirror descent based policy gradient (Wang et al.,
2023), showing an O(1/T ) convergence rate in an oracle-based setting. In constrained MDPs, an O(log(T )/T )
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Table 1: Overview of related work.

(a) Related CMDP policy optimisation algorithms

Algorithm Description Results
CPO (Achiam et al.,
2017)

FIM-approximated trust
region solved with convex
dual program, line search

Monotonically non-decreasing value and
constraint-satisfaction throughout the
algorithm

RCPO (Tessler
et al., 2019)

primal-dual with pro-
jection onto convex
set (box constraints),
three time-scale (ac-
tor,critic,multiplier)

convergence to feasible local optimum

PCPO (Yang et al.,
2020)

FIM-approximated trust
region with projection to
feasible set

cf. CPO, and convergence to feasible
local optimum

NPG-PD (Ding
et al., 2020)

primal-dual, natural policy
gradient ascent with pro-
jected subgradient descent
on constraint-violation

global convergence with O(1/T 1/2)
for value and constraint-satisfaction
(softmax); global convergence rate
O(1/T 1/2) for value and O(1/T 1/4) for
constraint-satisfaction (general)

CRPO (Xu et al.,
2021)

value update in interior,
constraint reduction in ex-
terior

global convergence with O(1/T 1/2) for
value and constraint-satisfaction (soft-
max)

PMD-PD (Liu et al.,
2021)

primal-dual, mirror de-
scent, two time-scales (pol-
icy, multiplier)

global convergence rate O(log(T )/T ) for
value and constraint-satisfaction (soft-
max)

Sample-based PMD-
PD (Liu et al.,
2021)

same as above in the
sample-based setting

global convergence rate Õ(T−1/3) for
value and constraint-satisfaction (soft-
max)

(b) Related RMDP and RCMDP policy optimisation
algorithms.

Algorithm Description Results
Lyapunov-based
RCPG (Russel
et al., 2023)

primal-dual, linear pro-
gramming for inner prob-
lem

convergence to local optimum Lyapunov
stable policy, Lyapunov RCMDPs

RPD (Wang et al.,
2022)

primal-dual, projected de-
scent with robust TD for
inner problem

local convergence rate O(1/T 1/4), δ-
contamination RCMDPs

RC-PO (Sun et al.,
2024)

PCPO, projected gradient
descent on parametrised
dynamics for separate
worst-case value and
constraint inner problems

cf. CPO, (s, a)-rectangular RCMDPs

RMCPMD (Wang
& Petrik, 2024)

primal-dual mirror descent
approach for policy and
transition dynamics

global convergence rate O(e−T ) to ro-
bust value (direct parametrisation);
global convergence rate O( 1

T ) to ro-
bust value (softmax), s- and (s, a)-
rectangular RMDPs

Robust PMD-PD
(ours)

PMD-PD with Lagrangian
transition mirror ascent

global convergence rate O( 1
T ) to ro-

bust Lagrangian (softmax, squared dis-
tance as a Bregman divergence) and
O(e−T ) to entropy-regularised robust
Lagrangian (softmax), s- and (s, a)-
rectangular RCMDPs

Robust Sample-
based PMD-PD
(ours)

same as above in the
sample-based setting

global convergence rate Õ( 1
T 1/3 ) for ro-

bust Lagrangian, value, and constraint-
satisfaction (softmax, KL divergence
as Bregman divergence), s- and (s, a)-
rectangular RCMDPs)

convergence rate is obtained in the oracle-based setting and an Õ(T 1/3) convergence rate in the sample-based
setting.

In terms of coping with continuous state and action spaces, recent approaches include double sampling
uncertainty sets, integral probability metrics uncertainty sets, and Wasserstein uncertainty sets (Zhou et al.,
2023; Abdullah et al., 2019; Hou et al., 2020).

In this paper, we formulate a policy gradient algorithm for a robust constrained MDP setting, with the
aim of providing formal guarantees on the convergence rate. We formulate policy gradient techniques to
optimise both the policy (as a maximiser) and the transition kernel (as an adversarial minimiser) on the
Lagrangian representing a constrained MDP. For a theoretical analysis, we contribute Robust (Sample-based)
PMD, which extends the theory of Liu et al. (2021) and Wang et al. (2023) to the RCMDP setting. We
primarily focus on the softmax parametrisation in the theoretical analysis. In the oracle-based RCMDP
setting, we obtain an O( 1

T ) convergence rate for the squared distance as a Bregman divergence, and O(e−T )
for entropy-regularised objectives. In the sample-based RCMDP setting, we obtain an O( 1

T 1/3 ) convergence
rate. For a practical implementation, we formulate MDPO-Robust-Lagrangian (MDPO-Robust-Lag for
short), which introduces a robust Lagrangian to Mirror Descent Policy Optimisation (MDPO) (Tomar et al.,
2022). We evaluate MDPO-Robust-Lagrangian empirically by comparing it to robust-constrained variants of
PPO-Lagrangian (Ray et al., 2019) and RMCPMD (Wang et al., 2023), and find significant improvements in
the penalised return in worst-case and average-case test performance on dynamics in the uncertainty set.

2 Preliminaries

The setting of the paper is based on robust constrained Markov Decision Processes (RCMDPs). Formally, an
RCMDP is given by a tuple (S,A, ρ, c0, c1:m,P, γ), where S is the state space, A is the action space, ρ ∈ ∆(S)
is the starting distribution, c0 : S ×A → R is the cost function, ci : S ×A → R , i ∈ [m] are constraint-cost
functions, P is the uncertainty set, and γ ∈ [0, 1) is a discount factor. In RCMDPs, at any time step
l = 0, . . . ,∞, an agent observes a state sl ∈ S, takes an action al ∈ A based on its policy π ∈ Π = (∆(A))S ,
and receives cost c0(sl, al) and constraint-cost signals cj(sl, al) for all j ∈ [m] = {1, . . . ,m}. Following the
action, the next state is sampled from a transition dynamics model p ∈ P according to sl+1 ∼ p(·|sl, al). The
transition dynamics model p is chosen from the uncertainty set P to solve a minimax problem. In particular,
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denoting

V j
π,p(ρ) := Es0∼ρ

[ ∞∑
l=0

γtcj(sl, al)|π, p
]

(1)

and

Vπ,p(ρ) := Es0∼ρ

[ ∞∑
l=0

γtc0(sl, al)|π, p
]
, (2)

the goal of the agent is to optimise a minimax objective of the form

min
π

{
Φ(π) := sup

p∈P
Vπ,p(ρ) s.t. V j

π,p(ρ) ≤ 0, ∀j ∈ [m]
}
. (3)

The objective has an equivalent unconstrained formulation according to the Lagrangian

min
π

Φ(π) := sup
p∈P

max
λ≥0

Vπ,p(ρ) +
m∑

j=1
λjV

j
π,p(ρ)

 . (4)

If the inner optimisation problem is solved as pk at iteration k, this in turn corresponds to an equivalent value
function over a traditional MDP (Mei et al., 2020; Bossens, 2024) according to the Lagrangian value function,

Vπ,pk
(s) = E

 ∞∑
l=0

γl

c0(sl, al) +
m∑

j=1
λk,jcj(sl, al)

∣∣∣s0 = s, π, pk,

 , (5)

which has a single cost function defined by ck(s, a) = c0(s, a) +
∑m

j=1 λk,jcj(s, a) and no constraint-costs. The
multiplier λk denotes the vector of dual variables at iteration k and λk,j denotes the multiplier for constraint
j ∈ [m] at iteration k. Occasionally, in proofs where the iteration is not needed, the iteration index will be
omitted.

A convenient definition used in the following is the discounted state visitation distribution

dπk,pk
ρ (s) = (1− γ)Es0∼ρ

[ ∞∑
l=0

γlP(sl = s|s0, πk, pk)
]
, (6)

and the discounted state-action visitation distribution

dπk,pk
ρ (s, a) = (1− γ)Es0∼ρ

[ ∞∑
l=0

γlP(sl = s, al = a|s0, πk, pk)
]
. (7)

To denote the cardinality of sets S and A, we use the convention S := |S| and A := |A|.

3 PMD-PD for Constrained MDPs

We briefly review the Policy Mirror Descent-Primal Dual (PMD-PD) algorithm (Liu et al., 2021) for constrained
MDPs. PMD-PD uses natural policy gradient with parametrised softmax policies, which is equivalent to the
mirror descent.

At iteration k ∈ [K] and policy update t ∈ [tk] within the iteration, PMD-PD defines the regularised state
value function,

Ṽα
πt

k
,p(s) = E

[ ∞∑
l=0

γl

(
c̃k(sl, al) + α log

(
πt

k(al|sl)
πk(al|sl)

) ) ∣∣∣s0 = s, πt
k, p

]
, (8)
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where p is a fixed transition kernel, c̃k(sl, al) = c0(sl, al) +
∑m

j=1
(
λk,j + ηλV

j
πk,pk

)
cj(sl, al) and α ≥ 0 is the

regularisation coeffient. The regularisation implements a weighted Bregman divergence which is similar to the
KL-divergence. The augmented Lagrangian multiplier λ̃k,j = λk,j + ηλV

j
πk,pk

is used to improve convergence
results by providing a more smooth Lagrangian compared to techniques that clip the Lagrangian multiplier.
At the end of each iteration λk,j is updated according to λk,j = max

{
λk,j + ηλV

j
πk+1,pk+1

,−ηλV
j

πk+1,pk+1

}
.

Analogous to 8, the regularised state-action value function is given by

Q̃α
πt

k
,p(s, a) = c̃k(s, a) + α log

(
1

πk(a|s)

)
+ γEs′∼p(·|s,a)

[
Vα

πt
k

,p(s′)
]
. (9)

While the bold indicates the summation over 1 +m terms (i.e. the costs and constraint-costs) as in Eq. 5, the
tilde notations will be used throughout the text to indicate the use of the augmented Lagrangian multipliers
λ̃k. However, in Section 4.2 and 4.3, where we do not exploit the augmented property, we state the results
generically so they can be applied to both traditional and augmented Lagrangians. Note that since all the
costs and constraint-costs range in [−1, 1],

|c̃k(s, a)| ≤ 1 +
m∑

j=1
λk,j + mηλ

1− γ . (10)

Consequently, for any set of multipliers λ ∈ Rm, the Lagrangian is bounded by [−Fλ/(1 − γ), Fλ/(1 − γ)
based on the constant

Fλ := 1 +
m∑

j=1
λj + ηλm

(1− γ) , (11)

for the augmented Lagrangian, and according to

Fλ := 1 +
m∑

j=1
λj , . (12)

for the traditional Lagrangian.

Note that this can be equivalently written based on the weighted Bregman divergence (equivalent to a pseudo
KL-divergence over occupancy distributions),

B
d

πt
k

,p

ρ

(πt
k, πk) =

∑
s∈S

d
πt

k,p
ρ (s)

∑
a∈A

πt
k(a|s) log(πt

k(a|s))
log(πk(a|s)) , (13)

according to

Q̃α
πt

k
,p(s, a) = Qπt

k
(s, a) + α

1− γBd
πt

k
ρ

(πt
k, πk) . (14)

This way, PMD-PD applies entropy regularisation with respect to the previous policy as opposed to the
uniformly randomized policy used in Cen et al. (2022), allowing PMD-PD to converge to the optimal
unregularised policy as opposed to the optimal regularised (and sub-optimal unregularised) policy.

With softmax parametrisation, the policy is defined as

πθ(a|s) = eθs,a∑
a′ eθs,a′

. (15)
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Under this parametrisation, the mirror descent update over the unregularised augmented Lagrangian with
the KL-divergence as the Bregman divergence can be formulated for each state independently according to

πt+1
k (a|s) = arg min

π

{〈
∂Ṽπt

k
,p(ρ)

∂θ(s, ·) , π(·|s)
〉

+ 1
η′DKL(π(·|s), πt

k(·|s))
}

= arg min
π

{
1

1− γ d
πt

k,p
ρ (s)

〈
Q̃πt

k
,p(s, ·), π(·|s)

〉
+ 1
η′DKL(π(·|s), πt

k(·|s))
}

= arg min
π

{〈
Q̃πt

k
,p(s, ·), π(·|s)

〉
+ 1
η
DKL(π(·|s), πk(·|s))

}
, (16)

where the last step defines η = η′(1− γ)/dπk,p
ρ (s) and subsequently removes the constant 1

1−γ d
πt

k,p
ρ (s) from

the minimisation problem. Treating Q̃πt
k

,p as any other value function, Eq. 16 is shown to be equivalent to
the natural policy gradient update, as discussed by works in traditional MDPs (Zhan et al., 2023; Cen et al.,
2022). In particular, based on Lemma 6 in Cen et al. (2022), the update rule derives from the properties of
the softmax parametrisation in Eq. 15,

πt+1
k (a|s) = 1

Zt
k(s) (πt

k(a|s))1− ηα
1−γ e

−ηQ̃α

πt
k

,p
(s,a)

1−γ , (17)

where πt+1
k is the t+ 1’th policy at the k’th iteration of the algorithm and Zt

k(s) is the normalisation constant.

Denoting T =
∑K

k=1 tk, the oracle version (with perfect gradient info) converges at rate O(log(T )/T ) in
value and constraint violation. PMP-PD Zero (oracle version aiming for zero constraint violation) achieves 0
violation with the same convergence rate for the value. Finally, a version with imperfect gradient information,
the so-called sample-based version, was shown to converge at a rate Õ(1/T 1/3), where T denotes the total
number of samples, thereby improving on model-free results which have a convergence rate O(1/T 1/4).

4 Robust Sample-based PMD-PD for Robust Constrained MDPs

Having reviewed the performance guarantees of PMD-PD, we now derive the Robust Sample-based PMD-PD
algorithm for robust constrained MDPs. The algorithm performs robust training based on Transition Mirror
Ascent (TMA) (Wang & Petrik, 2024) over the robust Lagrangian objective (Bossens, 2024). Using TMA
provides a principled way to compute adversarial dynamics while maintaining the transition dynamics within
the bounds of the uncertainty sets. Such uncertainty sets allow for rich parametrisation such as Gaussian
mixtures, which can estimate rich probability distributions, and entropy-based parametrisations, which are
motivated by the optimal form of KL-divergence based uncertainty sets (see Table 7 for these examples). The
algorithm takes place in the sample-based setting, where the state(-action) values are approximated from a
limited number of finite trajectories. With a regret bound Õ( 1

T 1/3 ) results are in line with the Sample-based
PMD-PD algorithm. The resulting algorithm is given in Algorithm 1. While the first subsections develop
theory for the oracle setting, where exact values and policy gradients are given, the subsequent subsection
(Section 4.4) derives convergence results for the sample-based setting, where values and policy gradients are
estimates. The last subsection then proposes a practical implementation.

4.1 General assumptions

Before listing the general assumptions in the theoretical analysis, we require the definition of rectangular
uncertainty sets.
Definition 1 (Rectangularity). An uncertainty set is (s, a)-rectangular if it can be decomposed as P =
×(s,a)∈S×A Ps,a where Ps,a ⊆ ∆(S). Similarly, it is s-rectangular if it can be decomposed as P =×s∈S Ps

where Ps ⊆ ∆(S).

As shown below, the assumptions of our analysis are common and straightforward.
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Algorithm 1 Robust Sample-based PMD-PD (discrete setting)
Inputs: Discount factor γ ∈ [0, 1), error tolerance ϵ > 0, error tolerance for LTMA ϵ′0 > 0, failure probability
δ ∈ [0, 1), learning rate η = 1−γ

α , dual learning rate ηλ = 1.0, and penalty coefficients α = 2γ2mηλ

(1−γ)3 and
αp > 0.
Initialise: π0 as uniform random policy, λ0,j = max

{
0,−ηλV̂π0,p0(ρ)

}
, p0 as the nominal transition kernel

p̄.
for k ∈ {0, . . . ,K − 1} do

for t ∈ {0, . . . , tk − 1} do
for (s, a) ∈ S ×A do

Generate MQ,k samples of length NQ,k based on πt
k and pk (following Lemma 9).

Estimate the value: e.g. for softmax parametrisation,

Q̂α
πt

k
,pk

(s, a) = c̃k(s, a)+α log( 1
πk(a|s) )+ 1

MQ,k

∑MQ,k

j=1
∑NV,k−1

l=1 γl
[
c̃k(sj

l , a
j
l ) + α

∑
a′ πt

k(a′|sj
l ) log( πt

k(a′|sj
l
)

πk(a′|sj
l
) )
]
.

end for
▷ Policy mirror descent
if Using Softmax parametrisation then

πt+1
k (a|s)← (πt

k(a|s))1− ηα
1−γ exp

(
−η

Q̂α

πt
k

,pk
(s,a)

1−γ

)
∀(s, a) ∈ S ×A.

else
▷ Use general Bregman divergence
θt+1

k ← arg minθ∈Θ η
〈
∇θQ̃πθ,pk

, θ
〉

+ αBd
πθ,pk
ρ

(θ, θk) ▷ separate value and divergence
estimates

Define πt+1
k := πθt+1

k
.

end if
end for
Define πk+1 := πtk

k

▷ Update transition matrix via Lagrangian TMA (error tolerance fixed to ϵ′0 or ϵ′k+1 = γϵ′k)
for t′ ∈ {0, . . . , t′k − 1} do

ξt′+1
k ← arg maxξ∈U ηp

〈
∇ξṼπk,pt′

k
(ρ), ξ

〉
− αpB

d
π,pt′

k
ρ

(ξ, ξt′

k ) ▷ Monte Carlo or other techniques

Define pt′+1
k := p

ξt′+1
k

end for
Define pk+1 := p

t′
k

k

▷ Augmented update of Lagrangian multipliers
Generate MV,k+1 samples of length NV,k+1 based on πk+1 and pk+1 starting from s0 ∼ ρ (following

Lemma 9).
Estimate V̂ i

πk+1,pk+1
(ρ) = 1

MV,k+1

∑MQ,k+1
j=1

∑NV,k+1
l=1 γlci(sj

l , a
j
l ) for all i ∈ [m].

λk+1,i ← max
{
−ηλV̂πk+1,pk+1(ρ), λk,i + ηλV̂

i
πk+1,pk+1

(ρ)
}
∀i ∈ [m]

end for
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Assumption 1 (Bounded costs and constraint-costs). Costs and constraint-costs are bounded in [−1, 1].

This assumption implies that the Lagrangian at any time introduces a factor O(m) compared to a traditional
value function.
Assumption 2 (Sufficient exploration). The initial state distribution satisfies µ(s) > 0 for all s ∈ S.

This assumption ensures that when sampling from some µ instead of the initial state distribution ρ, any
importance sampling corrections with µ and dπ

µ are finite. In particular, it ensures that for any transition
kernel p and any policy π that the mismatch coefficient Mp(π) :=

∥∥∥dπ,p
µ

µ

∥∥∥
∞

is finite. This is also useful for
robust MDPs since M := supp∈P,π∈Π Mp(π) is also finite.
Assumption 3 (Slater’s condition). There exists a slack variable ζ > 0 such that for any p ∈ P, there exists
a policy π̄ with V j

π̄,p(ρ) ≤ −ζ for all j ∈ [m].

Slater’s condition implies strict feasibility of the constraints, zero duality gap, and complementary slackness.
However, we do not require knowledge of ζ in our analysis. The condition is slightly more restrictive than in
traditional CMDPs due to the requirement of the condition to hold for all p ∈ P . However, it is a reasonable
assumption since it should typically be assumed for primal-dual algorithms on the transition kernel of interest;
the worst-case dynamic p∗ would typically have a smaller slack anyway.
Assumption 4 (Convex and rectangular uncertainty set). The uncertainty set is s-rectangular or (s, a)-
rectangular (Def. 1) and is convex, such that for any pair of transition kernel parameters ξ, ξ′, and any
α ∈ [0, 1], if pξ, pξ′ ∈ P then also pαξ+(1−α)ξ′ ∈ P.

The convex set assumption ensures updates to the transition kernel will remain in the interior so long as
it is on a line between two interior points, a common assumption for mirror descent which is also needed
for TMA. This is satisifed for most common uncertainty sets, e.g. ℓ1 and ℓ2 sets centred around a nominal
value. The use of rectangularity assumptions allows us to efficiently use performance difference lemmas for
transition kernels as well as make use of results for the optimality of TMA.

Note that when using such parametrised transition kernels, it is convenient to formulate an uncertainty set in
the parameter space, which we denote as Uξ. A few examples of parametrised transition kernels (PTKs) and
their associated parametrised uncertainty sets can be found in Table 7, including the Entropy PTK (Wang &
Petrik, 2024), which presents a parametrisation related to the optimal parametrisation for KL divergence
uncertainty sets of the form Ps,a = {p : DKL(p, p̄(·|s, a)) ≤ κ} (Nilim & Ghaoui, 2005), and the Gaussian
mixture PTK (Wang & Petrik, 2024), which is able to capture a rich set of distributions for each state-action
pair.

4.2 Global optimality of Lagrangian TMA

As shown below, Lagrangian TMA demonstrably solves the maximisation problem in the robust objective
(see Eq. 4) by performing mirror ascent on a suitable PTK. Note that the analysis follows closely that of
Wang & Petrik (2024), where the Lagrangian and the weighted Bregman divergence are explicitly separated
in this subsection.

The first step of our analysis of Lagrangian TMA (LTMA) is to derive the gradient of the transition dynamics.
Lemma 1 (Lagrangian transition gradient theorem). The transition kernel has the gradient

∇ξVπ,p(ρ) = 1
1− γEs∼dπ,p

ρ
[∇ξ log p(s′|s, a)(c(s, a) + γVπ,p(s′))|π, p] . (18)

Proof. The result follows from Theorem 5.7 in Wang & Petrik (2024) by considering the Lagrangian as a
value function (see Eq. 5).

Note that the Lagrangian adversarial policy gradient in Bossens (2024) follows similar reasoning but there
are two differences in the setting. First, due to the formulation of costs as c0(s, a, s′) rather than c0(s, a),
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the state-action value of every time step appears rather than the value of every next time step. Second, we
show the proof for a discounted Lagrangian of a potentially infinite trajectory rather than an undiscounted
T -step trajectory. Third, in the following, we apply it not only to the traditional Lagrangian but also to the
augmented Lagrangian and the augmented regularised Lagrangian.

The second step of our analysis of LTMA to show that optimising the transition dynamics pξ while fixing the
policy π and the Lagrangian multipliers yields a bounded regret w.r.t. the global optimum.
Lemma 2 (Regret of LTMA). Let ϵ′ > 0, let π be a fixed policy, let λ ∈ Rm be a fixed vector of multipliers
for each constraint, let pt be the transition kernel at iteration t, and let p0 be the transition kernel at the
start of LTMA. Moreover, let p∗ = arg minp∈P Vπ,p(ρ), let M := supp∈P,π∈Π Mp(π) be an upper bound on
the mismatch coefficient, and let ηp > 0 be the learning rate and αp > 0 be the penalty parameter for LTMA.
Then for any starting distribution ρ ∈ ∆(S) and any s ∈ S, the regret of LTMA is given by

Vπ,p∗(ρ)−Vπ,pt(ρ) ≤ 2Fλ

t

(
M

(1− γ)2 + 1
ηp(1− γ)Bdπ,p∗

ρ
(p∗, p0)

)
, (19)

where Fλ is defined according to Eq. 12 for the traditional Lagrangian and on Eq. 11 for the augmented
Lagrangian. Moreover, if ηp/αp ≥ (1−γ)

2Fλ
B

dπ,p∗
ρ

(p∗, p0) and t ≥ 2Fλ
M+1

ϵ′(1−γ)2 , an ϵ′-precise transition kernel is
found such that

Vπ,p∗(ρ)−Vπ,pt(ρ) ≤ ϵ′ .

Proof. Following Theorem 5.5 in Wang & Petrik (2024), it follows for any value function with cost in [0, 1]
that

Vπ,p∗(ρ)− Vπ,pt(ρ) ≤ 1
t

(
M

(1− γ)2 + αp

ηp(1− γ)Bdπ,p∗
ρ

(p∗, p0)
)
. (20)

Reformulating the Lagrangian as a value function (see Eq. 5), considering the bounds on the absolute value of
the constraint-cost Eq. 10, and observing that the bounds on the (un-)augmented Lagrangian lie in [−Fλ, Fλ]
(see Eq. 11 and 12), the result can be scaled to obtain

Vπ,p∗(ρ)−Vπ,pt
(ρ) ≤ 2Fλ

(
M

(1− γ)2 + αp

ηp(1− γ)Bdπ,p∗
ρ

(p∗, p0)
)
.

From the settings of ηp/αp ≥ (1−γ)
2Fλ

B
dπ,p∗

ρ
(p∗, p0) and t ≥ 2Fλ

M+1
ϵ′(1−γ)2 , we obtain

Vπ,p∗(ρ)−Vπ,pt(ρ) ≤ 2Fλ

t

(
M + 1

(1− γ)2

)
≤ ϵ′ .

4.3 Global optimality of the Lagrangian policy update in RCMDPs

Since at each loop of TMA, it is possible to obtain arbitrary precision, we now turn to proving the robust
objective regret upper bound for the policy πθ in the softmax parametrisation. Our technique for RCMDPs
is similar to the results for RMDPs (Wang & Petrik, 2024), as our proof is based on finding a correspondence
between the robust objective and the nominal objective and then making use of traditional MDP results by
Mei et al. (2020).

4.3.1 Lagrangian policy gradient

To extend the analysis of RMDPs and traditional MDPs to the constrained setting, we first develop a few key
lemmas for Lagrangian-based policy gradient. These results will then be used for analysing the convergence
of RCMDPs under squared error and KL-divergence based Bregman divergences.
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Lemma 3 (Policy gradient for softmax parametrisation ). Let π be a policy parametrised according to

πθ(a|s) = exp(θs,a)∑
a′∈A θs,a′

and let Aπθ
(s, a) = Qπθ

(s, a)−Vπθ
(s) be the advantage function. Then the Lagrangian policy gradient is

given by
∂Vπθ

(ρ)
∂θs,a

= 1
1− γ d

π,p
ρ (s)πθ(a|s)Aπθ

(s, a) . (21)

Proof. The proof follows from Eq. 10 in Agarwal et al. (2021) and by considering the Lagrangian as a value
function.

4.3.2 Regret of mirror descent policy optimisation with robust Lagrangian

When using the squared error as a distance-generating function, the mirror descent update is equivalent to
traditional gradient descent (see Table 5). This can be exploited to derive results for RCMDPs. In particular,
using smoothness and continuity properties, an equivalent gradient descent sequence can be derived to provide
guarantees based on traditional gradient descent over a traditional MDP.

We first restate the supporting lemma from Wang & Petrik (2024).
Lemma 4 (Existence of equivalent gradient descent sequence, Lemma B.5 in Wang & Petrik (2024)). For
any t′ ≥ 0, any θ ∈ Rd, and any optimisation problem minθ∈R f(θ) in which f : Rd → R is Lθ-Lipschitz and
lθ-smooth, there exists a sequence {θt}t≥0, generated by the gradient descent update with constant learning
rate η > 0

θt+1 = θt − η∇f(θt) , (22)
such that θt′ = θ.

Without entropy regularisation Using Lemma 4, we derive an RCMDP analogue to Theorem 5.5 in
Wang & Petrik (2024). It can be applied directly to softmax parametrisations with squared error Bregman
divergence and indirectly to the KL-divergence Bregman divergence as shown later in Section 4.4. We first
state three important properties that are essential to the proof of the convergence rate.

First, the Lagrangian function has essential smoothness and continuity properties.
Lemma 5 (Smooth and continuous Lagrangian). Under the softmax parametrisation, the Lagrangian V(θ)
with multipliers λ ∈ Rm is lθ-smooth and Lθ-Lipschitz continuous with

lθ(λ) = 16Fλ

(1− γ)3 (23)

and

Lθ(λ) = 2
√

2Fλ

(1− γ)2 . (24)

Proof. From Lemma 4.4 in Wang & Petrik (2024), the value function based on costs in [0, 1] has Lθ =
√

2
(1−γ)2

and lθ = 8
(1−γ)3 . Since the Lagrangian is based on costs and constraint-costs in [−1, 1], the result follows

after using the normalisation by 2Fλ (see Eq. 11 and 12.

Second, we note that under a fixed set of Lagrangian multipliers, standard convergence rate results for
softmax policies can be used.
Lemma 6 (Convergence rate for softmax policies for Lagrangian gradient descent). For Lagrangian gradient
descent over logits, and Lemma 5, with settings of M = infp∈P,π∈Π Mp(π), U = infp∈P Up, fixed λk = λk−1 = λ
for all j ∈ [m], and η = 1

lθ((λ) according to Theorem 5 that for a fixed transition kernel p ∈ P,

Vπθt ,p(ρ)−Vπθ∗ ,p(ρ) ≤
∥∥∥∥ 1
µ

∥∥∥∥
∞

32SM2Fλ

Up(1− γ)6t
. (25)

9



Under review as submission to TMLR

As a third and last auxiliary result, we note that the RCMDP objective in Eq. 3 can be expressed in terms of
the optimal (adversarial) transition dynamics at macro-iteration k can be expressed in terms of the transition
dynamics found by LTMA and its error tolerance.
Lemma 7. Let Φ be the objective in Eq. 3 and π∗ its optimal solution. Then for any macro-step k ≥ 0,

Φ(πk)− Φ(π∗) ≤ Vπk,pk
(ρ) + ϵ′k −Vπ∗,pk

(ρ) , (26)

where ϵ′k > 0 is the error tolerance for LTMA at iteration k.

Proof. The proof follows from the definition

Φ(πk)− Φ(π∗) = sup
p∈P

Vπk,p(ρ)− sup
p′∈P

Vπ∗,p′(ρ)

≤ Vπk,pk
(ρ) + ϵ′k − sup

p∈P
Vπ∗,p(ρ) (error tolerance of LTMA)

≤ Vπk,pk
(ρ) + ϵ′k −Vπ∗,pk

(ρ) .

We now turn to the theorem, which matches Wang & Petrik (2024) up to a constant related to the range of the
Lagrangian. The additional factor 1

1−γ

∥∥∥ 1
µ

∥∥∥
∞

is consistent with the analysis of Mei et al. (2020), accounting
for the possible mismatch between the initial sampling distribution µ and the true initial distribution ρ of
the MDP.
Theorem 1 (Regret of mirror descent policy optimisation with robust Lagrangian). Using constant step size
η = 1/lθ, Lagrangian gradient descent over logits yields at any macro-step k ≥ 0

Φ(πk)− Φ(π∗) ≤
∥∥∥∥ 1
µ

∥∥∥∥
∞

32SM2Fλk

U(1− γ)6k
+ ϵ′k , (27)

where ϵ′k > 0 is the tolerance of LTMA at macro-step k.

Proof. Since for the softmax parametrisation, mirror descent is equivalent to traditional gradient descent (see
Table 5), the robust Lagrangian policy updates will produce a sequence of parameters {θk}n

k=1 obtained from
the process

θk+1 = θk − η∇Vπθk
,pk

(ρ) . (28)

Due to the smoothness and continuity of the Lagrangian value in Lemma 5 and Lemma 4, it follows that for

any k′ ≥ 1, there exists a parameter sequence
{
θ̂k

}k′

k=1
obtained from non-robust policy gradient descent

with nominal dynamics p̂ = pk′ and Lagrangian multiplier λ̂ = λk′ such that θ̂k′ = θk′ , which is the following
process with constant transition kernel:

θ̂k+1 = θ̂k − η∇Vπθ̂k
,p̂(ρ; λ̂) . (29)

Applying Theorem 6 and accounting for the worst-case dynamics by letting U = infp∈P Up and M = supp∈P ,
we obtain

Vπk′ ,pk′ (ρ)−Vπ∗,pk′ (ρ) ≤
∥∥∥∥ 1
µ

∥∥∥∥
∞

32SM2Fλk′

U(1− γ)6k′ . (30)

Combining with Eq. 26 from Lemma 7, we obtain

Φ(πk′)− Φ(π∗) ≤
∥∥∥∥ 1
µ

∥∥∥∥
∞

32SM2Fλk′

U(1− γ)6k′ + ϵ′k′ . (31)

Theorem 1 implies an O(T−1) convergence rate to the optimal robust Lagrangian.
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With entropy regularisation We now analyse the case where an additional negative entropy term is
added to the Lagrangian. The result is useful to consider an additional term to the objective but also to
consider the performance of mirror descent with KL-divergence based Bregman divergence. In the former
case, the objective is formulated in terms of the entropy-regularised value function Vα

π,p(ρ) − τH(ρ, π, p)
based on the discounted entropy

H(ρ, π, p) = −E
[ ∞∑

l=0
γl log(π(al|sl))|π, p

]
, (32)

such that deterministic policies are penalised more strongly. In the latter case, the objective is based on
Vπ,p(ρ)−τH(ρ, π, p) but it is useful to note the interpretation of PMD-PD as the entropy-regularised objective
with costs based on c̃k(s, a)− τ log(πk(a|s)),

Vτ
π,p(ρ) = E

 ∞∑
l=0

γl

ck(sl, al) + τ log
(

1
πk(al|sl)

)
︸ ︷︷ ︸

cost

+ τ log(π(al|sl))︸ ︷︷ ︸
entropy regularisation

 |π, p
 .

The aforementioned properties of smoothness and continuity can be easily extended to the entropy-regularised
Lagrangian.
Lemma 8 (Smooth and continuous entropy-regularised Lagrangian). Let τ > 0, τ = Θ( 1

log(A) ) and let
Fλ be chosen according to Eq. 11 or Eq. 12 (depending on the use of augmentation). Then under the
softmax parametrisation, the entropy-regularised Lagrangian V(θ) + τH(ρ, πθ) is lθ-smooth and Lθ-Lipschitz
continuous with

lθ = O( Fλ

(1− γ)2 ) (33)

and

Lθ = O( Fλ

(1− γ)3 ) . (34)

Proof. Let k ≥ 1. From Lemma 5,

|V(θ′)−V(θ)− ⟨∇V(θ), θ′ − θ⟩ | ≤ 16Fλ

(1− γ)3 ∀θ, θ′ ∈ Θ .

From Lemma 14 in Mei et al. (2020), it follows that

|H(θ′)−H(θ)− ⟨∇H(θ), θ′ − θ⟩ | ≤ 4 + 8 log(A)
(1− γ)3 ∀θ, θ′ ∈ Θ .

Combining both, via triangle inequality we obtain

|V(θ′) +H(θ′)− (V(θ′) +H(θ))− ⟨∇(V +H)(θ), θ′ − θ⟩ | ≤ 16Fλ + τ (4 + 8 log(A))
(1− γ)3 ∀θ, θ′ ∈ Θ .

It follows that V(θ) +H(θ) is lθ-smooth with lθ = O( Fλ

(1−γ)3 ).

For Lipschitz continuity, a similar argument can be made. Note that since the entropy ranges in [0, log(A)],
the Lipschitz bound on the discounted entropy is given by

|H(θ′)−H(θ)| ≤ log(A)
1− γ .

From derivations in Lemma 4.4 in Wang et al. (2023),

∥∇ log(π(a|s))∥ ≤
√

2 .

11
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Denoting Vτ as the regularised objective, we have

max
θ,θ′

∥∥∥∥Vτ (θ)−Vτ (θ′)
θ − θ′

∥∥∥∥ = max
θ

∥∥∥∥∂Vτ (θ)
∂θ(s, ·)

∥∥∥∥
≤ 1

(1− γ) ∥∇ log(π(a|s))∥ ∥Vτ (θ)∥

≤ 2
√

2(Fλ + log(A))
(1− γ)2

= O
(

Fλ

(1− γ)2

)
.

The following theorem follows directly from Theorem 6 of Mei et al. (2020), allowing an exponential convergence
rate under gradient descent with entropy regularisation.
Theorem 2 (Convergence rate for softmax policies for Lagrangian gradient descent with entropy regularisa-
tion). Let Π be the softmax parametrisation. For Lagrangian gradient descent over logits and the conditions
of Lemma 8, with settings of M = infp∈P,π∈Π Mp(π), U = infp∈P Up, and η = 1

lθ
according to Theorem 5, it

follows that for any t ≥ 0, for a fixed transition kernel p ∈ P, and fixed λk = λk−1,

Vτ
πt,p(ρ)−Vτ

π∗
τ ,p(ρ) = O

(∥∥∥∥ 1
µ

∥∥∥∥
∞

Fλ

(1− γ)e
−C (t−1)

)
, (35)

where C = η
S mins µ(s)U2M−1 and π∗

τ ∈ arg maxπ∈Π Vτ
π,p(ρ).

Finally, we apply Theorem 2 to the robust Lagrangian problem 4, or more specifically, to the robust
entropy-regularised Lagrangian problem

min
π

{
Φτ (π) := sup

p∈P
max
λ≥0

Vτ
π,p(ρ)

}
. (36)

Theorem 3 (Regret of mirror descent policy optimisation with robust Lagrangian with entropy regularisation).
Using constant step size η = 1/lθ, Lagrangian gradient descent over softmax logits with entropy regularisation
yields at any macro-step k ≥ 0

Φτ (πk)− Φτ (π∗
τ ) = O

(∥∥∥∥ 1
µ

∥∥∥∥
∞

Fλ

(1− γ)2 e
−C (k−1) + ϵ′k

)
, (37)

where Fλ is set according to Eq. 11 or Eq. 12 depending on the use of (un-)augmented Lagrangian,
π∗

τ ∈ arg minπ∈Π supp∈P Vτ
π,p(ρ), and ϵ′k > 0 is the tolerance of LTMA at macro-step k with respect to

supp∈P Vτ
π,p(ρ).

Proof. Analogous to the proof of Theorem 1, we bound the regret by

Φτ (πk)− Φτ (π∗
τ ) ≤ Vτ

πθk
,pk

(ρ) + ϵk −Vτ
π∗

τ ,pk
(ρ) ,

and formulate an equivalent gradient descent process

θ̂k+1 = θ̂k − η∇Vτ
πθ̂k

,p̂(ρ; λ̂) . (38)

Applying Theorem 2, we obtain for any k′ ≥ 1 that

Φτ (πk′)− Φτ (π∗
τ ) = O

(∥∥∥∥ 1
µ

∥∥∥∥
∞

Fλ

(1− γ)e
−C (k′−1) + ϵ′k′

)
. (39)

Theorem 2 implies an O(e−T ) convergence rate to the optimal regularised robust Lagrangian, which is not
necessarily optimal on the original robust Lagrangian problem.
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4.4 Sample-based analysis

Having shown results for the oracle-based setting where values and policy gradients are given, we now turn to
the sample-based analysis, where values and policy gradients need to be estimated from finite-sample data are
accounted for in the convergence rate computations. The analysis modifies the techniques from Sample-based
PMD-PD (Liu et al., 2021) by accounting for the mismatch between the nominal transition kernel and the
optimal transition kernel in the min-max problem in Eq. 3. Their analysis makes use of a weighted Bregman
divergence term formulated in Eq. 13. While the weighted Bregman divergence is not a proper Bregman
divergence over policies, it is over the occupancy distribution, i.e. Bdπ,p

ρ
(π, π′) = B(dπ,p

ρ , dπ′,p
ρ ), as shown

in Lemma 10 of Liu et al. (2021). The complexity analysis below is slightly simplified by dropping purely
problem-dependent constants γ, η, ζ from the big-O statements.

As sample-based algorithms work with approximate value functions, Lemma 9 describes the conditions under
which one can obtain an ϵ-approximation of the cost functions and the regularised augmented Lagrangian.
The same settings as sample-based PMD in Lemma 15 of Liu et al. (2021) transfer to the robust sample-based
PMD algorithm. We rephrase the lemma to include updated transition dynamics.
Lemma 9 (Value function approximation, Lemma 15 of Liu et al. (2021) rephrased). Let k ≥ 0 be the
macro-step of the PMD-PD algorithm. With parameter settings

K = Θ
(

1
ϵ

)
, tk = Θ (log(max {1, ∥λk∥1}) , δk = Θ

(
δ

Ktk

)
,

MV,k = Θ
(

log(1/δk)
ϵ2

)
, NV,k = Θ

(
log1/γ

(
1
ϵ

))
,

MQ,k = Θ
(

(max {1, ∥λk∥1}+ ϵtk)2 log(1/δk)
ϵ2

)
, NQ,k = Θ

(
log1/γ

(
(max {1, ∥λk∥1}

ϵ

))
,

the approximation is ϵ-optimal, i.e.

a) |V̂ i
πt

k
,pk

(ρ)− V i
πt

k
,pk

(ρ)| ≤ ϵ ∀i = 1 ∈ [k]

b) |Q̂α
πt

k
,pk

(s, a)− Q̃α
πt

k
,pk

(s, a)| ≤ ϵ ∀(s, a) ∈ S ×A ,

with probability 1− δ.

Proof. The full proof can be found in Appendix C.5.

Denoting Ṽ as the unregularised augmented Lagrangian, we can show a relation between two otherwise
unrelated policies based on their divergence to two consecutive policy iterates.
Lemma 10 (Bound on regularised augmented Lagrangian under approximate entropy-regularised NPG,
Lemma 18 in Liu et al. (2021)). Assume the same settings as in Lemma 9. Then the regularised augmented
Lagrangian is bounded by

Ṽπk+1,pk
(s) + α

1− γBd
πk+1,pk
ρ

(πk+1, πk) ≤ Ṽπ,pk
(s) + α

1− γ

(
Bd

π,pk
ρ

(π, πk)−Bd
π,pk
ρ

(π, πk+1)
)

+ Θ(ϵ)

Proof. The proof makes use of Lemma 18. In particular, it notes that K = Θ(1/ϵ) and the value difference
to π∗

k is bounded by 1/K after tk steps. After applying the pushback property (Lemma 15) to π, πk,
and π∗

k, and derives an upper bound on the Bregman divergence w.r.t. π∗
k based on Bd

π,pk
ρ

(π, πk+1) +∥∥log(π∗
k)− log(πt+1

k )
∥∥

∞, where the second term is Θ(1/K). We refer to Lemma 18 of Liu et al. (2021) for
the detailed proof.

Below we prove the sample complexity of robust sample-based PMD-PD. For policy updates, we use estimates
of the Q-values and show the overall sample complexity for obtaining an average regret in the value, constraint-
cost, and Lagrangian bounded by O(ϵ). Since the theory on TMA is not yet well developed, the analysis
will assume the oracle setting for transition kernel updates, in which case we simply count the number of

13
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iterations. However, more generally, the analysis below holds whenever the number of samples within the
LTMA loops does not exceed that of the rest of the algorithm (i.e. Õ(ϵ−3) as will be shown below).
Theorem 4 (Sample complexity of Robust Sample-based PMD-PD). Choose parameter settings according to
Lemma 9, and let α = 2γ2mηλ

(1−γ)3 , ηλ = 1, and η = 1−γ
α . Moreover, let ϵ′k > 0 be the upper bound on the LTMA

error tolerance at macro-iteration k such that ϵ′k = Θ(ϵ), and let P be an uncertainty set contained in an ℓ1
(s, a)-rectangular uncertainty set around the nominal distribution p̄ = p0 such that

Ps,a ⊆ {p ∈ ∆(S) : ∥p(·|s, a)− p̄(·|s, a)∥1 ≤ ψs,a} ∀(s, a) ∈ S ×A , (40)

and let ∆p = maxs,a ψs,a = Θ
(

(1−γ)
α log(A)

)
. Then within a total number of queries to the generative model equal

to T =
∑K

k=1

(
MV,kNV,k +

∑tk−1
t=0 MQ,kNQ,k + t′k

)
= Õ(ϵ−3), Robust Sample-based PMD-PD provides three

guarantees.
(a) regret upper bound:

1
K

K∑
k=1

(Vπk,pk
(ρ)− Vπ∗,pk

(ρ)) = O(ϵ) . (41)

(b) constraint-cost upper bound:

max
j∈[m]

1
K

K∑
k=1

V j
πk,pk

(ρ) ≤ O(ϵ) . (42)

c) robust Lagrangian regret upper bound: under the conditions of Lemma 2, and with a number of
LTMA iterations t′k = Θ

(
Fλk

M

ϵ′
k

(1−γ

)
, we have

1
K

K∑
k=1

Φ(πk)− Φ(π∗) = O(ϵ) .

Proof. (a) The proof uses similar derivations as in Theorem 3 of Liu et al. (2021) and then accounts for the
performance difference due to transition kernels.

Note that

Ṽα
πk+1,pk+1

(ρ)

= Vπk+1,pk+1(ρ) +
〈
λk + ηλV̂

1:m
πk,pk

(ρ), V 1:m
πk+1,pk+1

(ρ)
〉

+ α

1− γBd
πk+1,pk+1
ρ

(πk+1, πk)

≤ Vπ∗,pk+1(ρ) +
(

α

1− γ

(
B

d
π∗,pk+1
ρ

(π∗, πk)−B
d

π∗,pk+1
ρ

(π∗, πk+1)
)

+ Θ(ϵ)
)
,

where the last step follows from setting π = π∗ in Lemma 10 and noting that, since λk,j + ηλV̂
j

πk,pk
(ρ) ≥ 0 by

property 2 of Lemma 12 and V j
π∗,p(ρ) ≤ 0 for any j ∈ [m], their inner product will be negative.

It then follows that

Vπk+1,pk+1(ρ)− Vπ∗,pk
(ρ) ≤ α

1− γ

(
B

d
π∗,pk+1
ρ

(π∗, πk+1)−B
d

π∗,pk+1
ρ

(π∗, πk+1)
)

+ Θ(ϵ)

−
〈
λk + ηλV̂

1:m
πk,pk

(ρ), V 1:m
πk+1,pk+1

(ρ)
〉
− α

1− γBd
πk+1,pk+1
ρ

(πk+1, πk) .

Filling in the lower bound on the inner product from Eq. 41 from Liu et al. (2021) (see also Lemma 13),〈
λk + ηλV̂

1:m
πk,pk

(ρ), V 1:m
πk+1,pk+1

(ρ)
〉
≥ 1

2ηλ

(
∥λk+1∥2 − ∥λk∥2

)
+ η

2

(∥∥V 1:m
πk,pk

(ρ)
∥∥2 −

∥∥∥V 1:m
πk+1,pk+1

(ρ)
∥∥∥2
)

− 2ηλ

〈
V 1:m

πk+1,pk+1
(ρ), ϵk+1

〉
− γ2ηλ

(1− γ)4Bd
πk+1,pk+1
ρ

(πk+1, πk) ,
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we get

Vπk+1,pk+1(ρ)− Vπ∗,pk+1(ρ) ≤ (1 + ∆p)
(

α

1− γ

(
B

d
π∗,pk
ρ

(π∗, πk)−B
d

π∗,pk
ρ

(π∗, πk+1)
)

+ Θ(ϵ)
)

+ 1
2ηλ

(
∥λk∥2 − ∥λk+1∥2

)
+ η

2

(∥∥∥V 1:m
πk+1,pk+1

(ρ)
∥∥∥2
−
∥∥V 1:m

πk,pk
(ρ)
∥∥2
)

+ 2ηλ

〈
V i:m

πk+1,pk+1
(ρ), ϵk+1

〉
− α(1− γ)3 − γ2ηλ

(1− γ)4 B
d

πk+1,pk+1
ρ

(πk+1, πk)

≤ α

1− γ

(
B

d
π∗,pk
ρ

(π∗, πk)−B
d

π∗,pk
ρ

(π∗, πk+1)
)

+ Θ(ϵ)

+ 1
2ηλ

(
∥λk∥2 − ∥λk+1∥2

)
+ η

2

(∥∥∥V 1:m
πk+1,pk+1

(ρ)
∥∥∥2
−
∥∥V 1:m

πk,pk
(ρ)
∥∥2
)

+ 2ηλ

〈
V i:m

πk+1,pk+1
(ρ), ϵk+1

〉
Note that the upper bound on ηλ/2

∥∥∥V 1:m
πk,pk

(ρ)− V 1:m
πk+1,pk+1

(ρ)
∥∥∥2
≤ B

d
πk+1,pk+1
ρ

(πk+1, πk) is analogous to
Eq.16 of Liu et al. (2021) but with a divergence term depending on pk+1 rather than pk. Note that the term
α(1−γ)3−γ2ηλ

(1−γ)4 B
d

πk+1,pk+1
ρ

(πk+1, πk) ≥ 0, so it drops from the upper bound in the subsequent analysis.

Due to the approximations and Lemma 13, the regret introduces a term

∆k = Θ(ϵ) + ⟨λk−1, ϵk⟩ − ηλ

〈
ϵk−1, V

1:m
πk,pk

(ρ)
〉

+ ηλ

〈
ϵk + 2V 1:m

πk,pk
(ρ), ϵk

〉
.

Using Lemma 21 and telescoping, it follows that

K∑
k=1

(Vπk,pk
(ρ)− Vπ∗,pk

(ρ)) (43)

≤
K∑

k=1

α

1− γ

(
B

d
π∗,pk
ρ

(π∗, πk)−B
d

π∗,pk
ρ

(π∗, πk+1)
)

+ ∆k

+ ηλ

2

(∥∥V 1:m
πk,pk

(ρ)
∥∥2 −

∥∥∥V 1:m
πk−1,pk−1

(ρ)
∥∥∥2
)

+ 1
2ηλ

(
∥λk−1∥2 − ∥λk∥2

)
≤

K∑
k=1

α

1− γ

(
B

d
π∗,pk
ρ

(π∗, πk−1)−B
d

π∗,pk
ρ

(π∗, πk) + (pk − pk−1) log(A)
)

+ ∆k

+ ηλ

2

(∥∥V 1:m
πk,pk

(ρ)
∥∥2 −

∥∥∥V 1:m
πk−1,pk−1

(ρ)
∥∥∥2
)

+ 1
2ηλ

(
∥λk−1∥2 − ∥λk∥2

)
(using Lemma 21 and Lemma 16 )

≤ α

1− γ

(
B

d
π∗,p0
ρ

(π∗, π0)−B
d

π∗,pK
ρ

(π∗, πK)
)

+ ηλ

2

(∥∥V 1:m
πK ,pK

(ρ)
∥∥2 −

∥∥V 1:m
π0,p0

(ρ)
∥∥2
)

+ 1
2ηλ

(
∥λ0∥2 − ∥λK∥2

)
+ α ∥pK − p0∥1O

(
log(A)
1− γ

)
+

K∑
k=1

∆k

≤ α

1− γ

(
B

d
π∗,p0
ρ

(π∗, π0)−B
d

π∗,pK
ρ

(π∗, πK)
)

+ ηλm

(1− γ)2 + α∆pO
(

log(A)
1− γ

)
+

K∑
k=1

∆k , (44)

where the last step follows from ∥λ0∥ ≤ mη2
λ

(1−γ)2 and ∥VπK ,pK
(ρ)∥2 ≤ m

(1−γ)2 . Since α = 1−γ
η , ηλ = α

(1−γ)3 2γ2,
α

1−γ log(A) + ηλm
(1−γ)2 = O(1). Moreover, since ∆k = O(max {1, ∥λk∥1} ϵ) and Lemma 22 shows that with

probability 1− δ, ∥λk∥ ≤ ∥λk∥1 = O(1), we have ∆k = O(1) with probability 1− δ. Finally, α∆pO
(

log(A)
1−γ

)
is also O(1) since ∆p = Θ

(
(1−γ)

α log(A)

)
. All terms then reduce to O(ϵ) after division by K = Θ( 1

ϵ ).
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(b) Denoting the approximation error at iteration k ∈ [K] and constraint j as ϵk,j , and observing that for
any j ∈ [m]

λk,j = max
{
−ηλV̂

j
πk,pk

(ρ), λk−1,j + ηλV̂
j

πk,pk
(ρ)
}

≥ λk−1,j + ηλV̂
j

πθk
,pk

(ρ) , (45)

it follows that

1
K

K∑
k=1

V j
πk,pk

(ρ) = 1
K

K∑
k=1

(
V̂ j

πk,pk
(ρ)− ϵk,j

)
≤ 1
K

K∑
k=1

(
λk,j − λk−1,j

ηλ
− ϵk,j

)
(from Eq. 45)

≤ λK,j

ηλK
− 1
K

K∑
k=1

ϵk,j (telescoping and non-negativity condition in Lemma 12

≤
∥λ∗∥ + ∥λ∗ − λK∥

ηλK
− 1
K

K∑
k=1

ϵk,j (since λK,j ≤ ∥λK∥ ≤ ∥λ∗∥+ ∥λ
∗ − λK∥)

≤
∥λ∗∥+ ∥λ∗ − λK∥

ηλK
+O(ϵ) (since by Lemma 9, K = Θ

(
1
ϵ

)
and ϵk,j = O(ϵ))

= O(1/K) +O(ϵ) (by Lemma 22)

= O(ϵ) ( since K = Θ
(

1
ϵ

)
) .

c) For any k ∈ [K], it follows from Lemma 2 that

t′k = Θ
(

Fλk
M

ϵ′k(1− γ)

)
is sufficient to obtain an ϵ′k-optimal transition kernel from LTMA. Using Lemma 7, combining the errors
from a) and b) for the cost and constraint-costs, and noting that ϵ′k = Θ(ϵ), it follows that

1
K

K∑
k=1

(Φ(πk)− Φ(π∗)) ≤ 1
K

K∑
k=1

(Vπk,pk
(ρ) + ϵ′k −Vπ∗,pk

(ρ))

= O(Fλϵ+ ϵ)
= O(Fλϵ) ,

where Fλ = maxk∈[K] Fλk
. Due to the results in Lemma 22, λk = O(1) and Fλ = O(1). Moreover

ηλV
j

πk,pk
≤ 1

1−γ = O(1) for all j ∈ [m] and all k ∈ [K], which concludes the proof for both the augmented
and unaugmented case.
Sample complexity: Following the loop in Algorithm 1, plugging in the settings from Lemma 9), and
omitting logarithmic factors, the total number of calls to the generative model is given by

T =
K∑

k=1

(
MV,kNV,k +

tk−1∑
t=0

MQ,kNQ,k + t′k

)

= O(ϵ−1)
(
ϵ−2 ˜O(1) + Õ(1)ϵ−2Õ(1)

)
+

K∑
k=1

t′k

= Õ(ϵ−3 + ϵ−1 Fλk
M

ϵ′(1− γ) )

= Õ(ϵ−3) ,

where the last step follows from ϵ′−1 = O(ϵ−1), Fλ = O(1), and M is a problem-specific constant that depends
on the space of policies and the uncertainty set.
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4.5 KL-based Mirror Descent in continuous state-action spaces

To apply the above analysis in continuous state-action spaces, we follow a similar algorithm but replace the
tabular approximation with function approximation (see Algorithm 2). A further change is that we still
seek to maintain similar theoretical results, so we motivate the extension to continuous state-action spaces
using a continuous pseudo-KL divergence of occupancy. Lemma 10 in Liu et al. (2021) defines a pseudo-KL
divergence of occupancy within a discrete state-action space, which is shown to be a Bregman divergence
of occupancy distributions. To demonstrate the wider applicability of the theory, we extend this definition
straightforwardly to continuous state-action spaces below.
Definition 2. Continuous pseudo-KL divergence of occupancy. Define the generating function
h : ∆A → R according to

h(dπ,p
ρ ) =

∫
S×A

dπ,p
ρ (s, a) log(dπ,p

ρ (s, a))dsda−
∫

S
dπ,p

ρ (s) log(dπ,p
ρ (s))ds .

Then its Bregman divergence is given by the continuous pseudo KL-divergence, defined as

B(dπ,p
ρ , dπ′,p

ρ ;h) :=
∫

S×A
dπ,p

ρ (s, a) log
(
dπ,p

ρ (s, a)/dπ,p
ρ (s)

dπ′,p
ρ (s, a)/dπ′,p

ρ (s)

)
ds . (46)

Moreover, it is equivalent to a weighted Bregman divergence over policies Bdπ,p
ρ

(π, π′) over continuous
state-action spaces.

Proof. From the definition in Eq.46 and ∇h(dπ,p
ρ )|s,a = log(dπ,p

ρ (s, a))− log(dπ,p
ρ (s)) it follows that

B(dπ,p
ρ , dπ′,p

ρ ;h) = h(dπ,p
ρ )− h(dπ′

ρ )−
〈
∇h(dπ′,p

ρ ), dπ,p
ρ − dπ′,p

ρ

〉
=
∫

S×A
dπ,p

ρ (s, a) log(dπ,p
ρ (s, a))dsda−

∫
S
dπ,p

ρ (s) log(dπ,p
ρ (s))ds

−
∫

S×A
dπ′

ρ (s, a) log(dπ′,p
ρ (s, a))dsda+

∫
S
dπ′,p

ρ (s) log(dπ′,p
ρ (s))ds

−
∫ (

dπ,p
ρ (s, a)− dπ′

ρ (s, a)
)(

log(dπ′,p
ρ (s, a))− log(dπ′,p

ρ (s))
)

dsda

=
∫

S×A
dπ,p

ρ (s, a) log(dπ,p
ρ (s, a)/dπ′,p

ρ (s, a))dsda−
∫

S
dπ,p

ρ (s) log(dπ,p
ρ (s)/dπ′,p

ρ (s))ds

=
∫

S×A
dπ,p

ρ (s, a) log
(
dπ,p

ρ (s, a)/dπ,p
ρ (s)

dπ′,p
ρ (s, a)/dπ′,p

ρ (s)

)
dsda

The equivalence to the weighted Bregman divergence over policies is shown by extending Eq. 13 to continuous
state-action spaces and noting that dπ,p

ρ (s, a) = dπ,p
ρ (s)π(a|s).

4.6 MDPO-Robust-Lag: a practical implementation

To implement the algorithm in practice, we use Mirror Descent Policy Optimisation (MDPO) (Tomar et al.,
2022). On-policy MDPO optimises the objective

πk+1 ← arg max
θ

JMDPO := Es∼d
πk,pk
ρ (s)

[
Ea∼πθ

[Âπk,pk
(s, a)]− αDKL(πθ(·|s), πk(·|s))

]
(47)

based on tk steps of SGD steps per batch k, which corresponds to the macro-iteration. For macro-iteration k,
it defines the policy gradient for θ = θt

k at any iteration t ∈ [tk] as

∇JMDPO(θ, θk) = E
s∼d

πθk
,pk

ρ (s)

[
Ea∼πθk

[
πθ(a|s)
πθk

(a|s)∇θ log(πθ(a|s))Âπθk
,pk

(s, a)
]
− α∇θDKL(πθ(·|s), πθk

(·|s))
]
,

(48)
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Algorithm 2 Robust Sample-based PMD-PD (continuous setting)
Inputs: Discount factor γ ∈ [0, 1), sample sizes MQ,k,MV,k and episode lengths NQ,k, NV,k for all k ∈ [K],
learning rate η, dual learning rate ηλ, error tolerance for LTMA ϵ′0 > 0, and penalty coefficients α > 0 and
αp > 0.
Initialise: π0 as uniform random policy, λ0,j = max

{
0,−ηλV̂π0,p0(ρ)

}
, p0 as the nominal transition kernel

p̄.
for k ∈ {1, . . . ,K} do

for t ∈ {0, . . . , tk − 1} do
Generate MQ,k samples of length NQ,k based on πt

k and pk.

Update Q̂πt
k

,k ← arg minQ∈FQ

1
MQ,k

∑MQ,k

j=1

(
Q(sj

0, a
j
0)−

∑NV,k−1
l=0 γl

[
c̃k(sj

l , a
j
l )
])2

.
▷ Policy mirror descent
θt+1

k ← arg minθ∈Θ η
〈
∇θQ̂πt

k
,pk
, θ
〉

+ αBd
πθ,pk
ρ

(θ, θk). ▷ separate value and divergence estimates
Define πt+1

k := πθt+1
k

end for
Define πk+1 := πtk

k

▷ Update transition kernel with LTMA (error tolerance fixed to ϵ′0 or ϵ′k+1 = γϵ′k)
for t′ ∈ {0, . . . , t′k − 1} do

ξt′+1
k ← arg maxξ∈U ηp

〈
∇ξV̂πt

k
,pt′

k
(ρ), ξ

〉
− αpB

d
πk+1,pt′

k
ρ

(ξ, ξt′

k ). ▷ Monte Carlo or other

techniques
Define pt′+1

k := p
ξt′+1

k

.
end for
Define pk+1 := p

t′
k

k .
▷ Dual update of augmented Lagrangian multipliers
Generate MV,k+1 samples of length NV,k+1 based on πk+1 and pk+1.

Estimate V̂i
πk+1

(ρ)← arg minV ∈FV

1
MV,k+1

∑MV,k+1
j=1

(
V (sj

0)−
∑NV,k+1

l=1 γlci(sj
l , a

j
l )
)2

for all i ∈ [m].

λk+1,i ← max
{
−ηλV̂

i
πk+1

(ρ), λk,i + ηλV̂
i

πk+1
(ρ)
}

for all i ∈ [m].
end for
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where in our case the advantage Âπθk
,pk

(s, a) is implemented based on the Lagrangian. The use of the
importance weight πθ

πθk

corrects for the deviation from the theory, where it is assumed that the data at
each epoch is generated from πθ rather than πθk

. However, there still remains some gap of the practical
implementation to our theoretical algorithm in that the state occupancy of MDPO is given by the old policy
whereas in theory it is based on the current. The implementation of advantage values is based on generalised
advantage estimation (Schulman et al., 2018) and the critic estimates the value and the constraint-costs
based on an MLP architecture with 1 +m heads. The update of the multipliers is based on the observed
constraint-costs in separate samples.

To form a robust-constrained variant of MDPO, we use Lagrangian relaxation similar to the above (i.e.
Algorithm 1), which differs from Adversarial RCPG (Bossens, 2024) in that multiple constraints are considered
and that we preserve the structure of the PMD-PD algorithm (Liu et al., 2021) and the use of LTMA
similar follows the TMA implementation from Wang & Petrik (2024), which applies a projected gradient
descent based on clipping to the uncertainty set bounds. Due to its similarity to PPO-Lagrangian (or
PPO-Lag for short) (Ray et al., 2019) and the use of updates in the robust Lagrangian, we name the
algorithm MDPO-Robust-Lag. While the MDPO-Robust-Lag is based on traditionally clipping the
multiplier, we also implement a version with the augmented Lagrangian as suggested by the theory and
shown in Algorithm 1 and 2, called MDPO-Robust-Augmented-Lag. The practical implementation
of the KL estimate follows the standard implementation in StableBaselines3, i.e. DKL(π(·|s), π′(·|s)) ≈
E
[
elog(π(a|s))−log(π′(a|s)) − 1− (log(π(a|s))− log(π′(a|s)))

]
.

5 Experiments

To demonstrate the use of MDPO for RCMDPs, we assess MDPO-Robust-Lag on three RCMDP domains. We
compare MDPO-Robust-Lag to robust-constrained algorithms from related algorithm families, namely Monte
Carlo based optimisation (RMCPMD (Wang & Petrik, 2024) in particular) and proximal policy optimisation
with function approximiation (PPO-Lag (Achiam et al., 2017) in particular). All the involved algorithm
families (MDPO, MC, and PPO) are included with four variants, namely with and without Lagrangian
(indicated by the -Lag suffix) and with and without robustness training (indicated by the R- prefix or the
-Robust- infix). Additionally, the MDPO-Lag implementations also have Augmented-Lag variants which
use the augmented Lagrangian as proposed in the theory section. Further implementation details of the
algorithms included to the study can be found in Appendix D.

After training with the above-mentioned algorithms, the agents are subjected to a test which presents
transition dynamics based on the distortion levels setup in Wang & Petrik (2024). The test procedure
follows the same general procedure for all domains. For distortion level x ∈ [0, 1], the agent is subjected to a
perturbation such that if the nominal model is ξc and the uncertainty set varies the parameter in [ξ, ξ], the
transition dynamics kernel parameter of the test with distortion level x is given for each dimension by either
ξi = ξc + x2(ξ − ξc) or ξi = ξc + x2(ξ − ξc). We slightly improve the test evaluation by considering all the
± directions rather than just a single one, amounting to a total number of test evaluations N = ntest × 2n,
where n is the dimensionality of the uncertainty set parametrisation and ntest is the number of episodes per
perturbation.

To summarise the results, we use the penalised return, a popular summary statistic for robust constrained
RL (Mankowitz et al., 2020; Bossens, 2024). The statistic is defined for a maximisation problem as
Rpen = V (ρ)−λmax

∑m
j=1 max(0, Cj(ρ)) where V (ρ) denotes the value (negative of the cost) from the starting

distribution and Cj(ρ) denotes the j’th constraint-cost from the starting distribution. In addition, we also
formulate the signed penalised return R±

pen = V (ρ)−
∑m

j=1 λmaxCj(ρ). We note that the penalised return
matches the objective of the constrained methods and the return matches the objective of the unconstrained
methods. The signed penalised return might be especially useful for robust problems; as even our extensive
testing procedure may not find the worst case in the uncertainty set, and it is also of interest to generalise
even beyond the uncertainty set, a solution that has negative cost can be evaluated more positively since it is
more likely not to have a positive cost in the worst-case transition kernel. The summary statistics reported
included both the mean and the minimum since the minimum indicates the effectiveness in dealing with the
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minimax problem (the worst-case robustness). However, as a note of caution, the minimum is challenging to
establish accurately because even though we test many environments it may still not contain the worst-case
environment.

We report the results based on two distinct sample budgets, one with a limited number of time steps (200–500
times the maximal number of time steps in the episode) and one with a large number of time steps (2000–5000
times the maximal number of time steps in the episode). This setup allows to assess the sample-efficiency
and convergence properties more clearly.

An additional set of experiments is to establish which kind of schedule for αk works best for MDPO algorithms,
and the robust-(constrained) variants in particular (see Apppendix G). From this set of experiments, it is
confirmed that a fixed setting works reasonably well across problems. For simplicity, this setting will be used
for all MDPO based algorithms throughout the remaining experiments.

5.1 Cartpole

To assess our algorithm on an RCMDP, we introduce the robust constrained variant of the well-known
Cartpole problem (Barto et al., 1983; Brockman et al., 2016) by modifying the RMDP from Wang & Petrik
(2024). The problem involves a mechanical simulation of a frictionless cart moving back and forth to maintain
a pole, which is attached to the cart as an un-actuated joint, in the upright position. The agent observes
x, ẋ, θ, θ̇ and takes actions in {left, right}, which apply a small force moving either left or right. The agent
receives a reward of +1 until either the cart goes out of the [−2.4, 2.4]m bounds or the pole has an angle
outside the range [−12◦, 12◦]. In contrast to the traditional problem, the mechanics are not deterministic,
and following Wang & Petrik (2024), transitions dynamics models are multi-variate Gaussians of the form

p(s′|s, a) = 1
(2π)2|Σ|1/2 e

− 1
2 (s′−µc(s,a))⊺Σ−1(s′−µc(s,a)) , (49)

where µc(s, a) is the deterministic next state given (s, a) ∈ S × A based on the mechanics of the original
Cartpole problem. We first train and evaluate algorithms in a CMDP problem for their ability to adhere
to safety constraints. We then also show the benefits of robustness training and evaluate algorithms in an
RCMDP problem.

To formulate safety constraints into the above cartpole problem, we define the instantanous constraint-cost
as ct = |ẋt| − d, where d is a constant, set to d = 0.15 in the experiments, and ẋ is the velocity of the cart.
The safety constraint of the agent is to maintain constraint C = E[

∑
t γ

tct] ≤ 0.

To incorporate robustness into our setting, we introduce delta-perturbations as in Wang & Petrik (2024),
using an uncertainty set with parametrisation

p(s′|s, a) = 1
(2π)n/2|Σ|1/2 e

− 1
2 (s′−(1+δ)µc(s,a))⊺Σ−1(s′−(1+δ)µc(s,a)) , (50)

where δ ∈ [−κi, κi]ni=1. Our parameter settings differ in that we use a larger uncertainty set, with κi being
increased fivefold (making the problem more challenging) while the number of time steps is reduced to make
the constraint satisfiable. The robust algorithms are trained on this uncertainty set, where the transition
dynamics are adjusted based on the transition mirror ascent algorithm of Wang & Petrik (2024), i.e. by using
Monte Carlo and mirror ascent. In the experiment, this amounts to a projected update, where the projection
restricts the update to lie within the uncertainty set.

Training performance The training performance of non-robust algorithms can be found in Appendix E.1
(Figure 7). The training performance of robust methods, which use LTMA, can be found in Figure 8. A
trade-off in reward vs constraint-cost can be observed; that is, the constrained algorithms put emphasis on
reducing the constraint-cost while the unconstrained only maximise the reward. The plots demonstrate the
rapid convergence of the MDPO-based algorithms.

Test performance Figure 1 and 2 show the test performance after 20,000 time steps depending on the
distortion level. MDPO-Robust and PPO achieve the highest performance on the reward. However, since they
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Figure 1: Test performance of MDP and CMDP algorithms obtained by applying the learned determinstic
policy from the Cartpole domain after 20,000 time steps of training. The line and shaded area represent the
mean and standard error across the perturbations for the particular distortion level.
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Figure 2: Test performance of RMDP and RCMDP algorithms obtained by applying the learned determinstic
policy from the Cartpole domain after 20,000 time steps of training. The line and shaded area represent the
mean and standard error across the perturbations for the particular distortion level.
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do not optimise the Lagrangian, they perform poorly on the constraint-cost. MDPO-Robust-Augmented-Lag
achieves the best overall performance by providing the lowest constraint-cost by far across all distortion levels.
In the test performance after 200,000 time steps (see Figure 13 and 14 of Appendix F.1), the MCPMD
algorithms are able to get to similar performance levels, and all three baselearners are competitive.

To summarise the overall performance quantitatively, Table 2a shows that MDPO-Robust is the top performer
on the return after 20,000 time steps. MDPO-Robust-Lag and MDPO-Lag algorithms obtain similar levels
of performance on the mean penalised return statistics, although the former obtain an improved minimum
score, and both are far ahead of PPO-Lag and MCPMD-Lag algorithms. In Table 2b, the performance
after 200,000 time steps can be observed. MDPO-Robust-Lag, with or without augmentation, is the top
performer on the mean penalised return metrics, followed by non-robust MDPO-Lag. MCPMD-Lag and
RMCPMD-Lag perform highest on the minimum performance, and are followed by MDPO-Robust-Lag
algorithms. In summary, the solutions converge to relatively similar test performance levels but MDPO-based
algorithms are superior in terms of sample efficiency.

Table 2: Test performance on the return and penalised return statistics in the Cartpole domain based on
11 distortion levels, 16 perturbations per level, 10 seeds, and 100 evaluations per test. The mean score is
the grand average over distortion levels, perturbations, seeds, and evaluations. The standard error and
minimum are computed across the different environments (i.e. distortion levels and perturbations), indicating
the robustness of the solution to changes in the environment. Bold indicates the top performance and any
additional algorithms that are within one pooled standard error.

(a) After 20,000 time steps of training
Return R±

pen (signed) Rpen (positive)

Mean ± SE Min Mean ± SE Min Mean ± SE Min
MCPMD 26.7 ± 0.1 23.3 -196.6 ± 22.3 -523.9 -209.6 ± 20.9 -525.9
PPO 58.1 ± 0.1 51.3 -262.1 ± 76.8 -1121.3 -290.4 ± 72.7 -1122.3
MDPO 62.9 ± 0.1 52.4 -210.6 ± 152.3 -2015.7 -270.1 ± 144.3 -2016.0
RMCPMD 25.4 ± 0.1 22.3 -216.8 ± 22.0 -538.5 -228.2 ± 20.4 -539.0
PPO-Robust 57.1 ± 0.2 50.3 -225.3 ± 70.5 -985.3 -250.8 ± 66.9 -987.0
MDPO-Robust 63.1 ± 0.1 56.4 -229.7 ± 179.6 -2610.6 -294.1 ± 171.4 -2610.8
MCPMD-Lag 16.6 ± 0.1 14.0 -247.3 ± 11.2 -383.7 -259.3 ± 10.9 -392.5
PPO-Lag 39.1 ± 0.1 33.9 2.4 ± 17.2 -217.4 -23.6 ± 15.1 -229.3
MDPO-Lag 37.0 ± 0.2 28.0 106.1 ± 6.9 23.2 35.7 ± 1.6 11.9
MDPO-Augmented-Lag 37.5 ± 0.2 28.3 105.6 ± 7.2 18.4 35.9 ± 1.7 7.2
RMCPMD-Lag 14.2 ± 0.1 12.0 -276.7 ± 10.8 -408.6 -287.7 ± 10.9 -419.5
PPO-Robust-Lag 35.5 ± 0.2 28.8 -12.2 ± 22.0 -376.9 -39.4 ± 19.8 -387.5
MDPO-Robust-Lag 34.4 ± 0.3 24.9 108.4 ± 4.4 65.9 34.2 ± 1.2 24.9
MDPO-Robust-Augmented-Lag 34.6 ± 0.3 24.7 110.8 ± 4.9 61.6 34.6 ± 1.2 24.7

(b) After 200,000 time steps of training
Return R±

pen (signed) Rpen (positive)

Mean ± SE Min Mean ± SE Min Mean ± SE Min
MCPMD 63.0 ± 0.1 54.1 -316.3 ± 167.8 -2372.3 -364.0 ± 161.2 -2372.5
PPO 63.1 ± 0.1 56.4 -252.2 ± 178.6 -2474.0 -307.2 ± 171.1 -2474.2
MDPO 62.7 ± 0.2 46.3 -96.2 ± 120.7 -1594.5 -159.5 ± 112.4 -1594.5
RMCPMD 63.1 ± 0.1 56.5 -175.2 ± 181.9 -2672.5 -241.0 ± 173.6 -2672.9
PPO-Robust 62.8 ± 0.1 55.2 -191.0 ± 148.9 -2036.3 -251.0 ± 140.9 -2037.4
MDPO-Robust 63.2 ± 0.1 56.1 -109.7 ± 176.0 -2647.1 -185.5 ± 167.1 -2648.3
MCPMD-Lag 29.7 ± 0.3 21.6 97.4 ± 3.9 72.0 29.7 ± 1.2 21.6
PPO-Lag 41.0 ± 0.2 33.8 78.4 ± 10.3 -55.5 32.0 ± 5.8 -58.2
MDPO-Lag 44.5 ± 0.2 37.8 90.9 ± 11.7 -38.9 36.0 ± 5.5 -42.4
MDPO-Augmented-Lag 45.2 ± 0.2 38.4 86.0 ± 12.5 -54.4 35.1 ± 6.6 -56.3
RMCPMD-Lag 29.4 ± 0.3 22.0 89.4 ± 3.7 70.8 29.1 ± 1.1 21.9
PPO-Robust-Lag 39.4 ± 0.2 32.1 84.2 ± 9.0 -28.9 32.1 ± 4.5 -35.6
MDPO-Robust-Lag 41.6 ± 0.2 32.1 105.1 ± 9.5 9.6 38.6 ± 2.5 2.6
MDPO-Robust-Augmented-Lag 41.2 ± 0.2 31.4 106.2 ± 9.1 13.7 38.6 ± 2.2 5.0

5.2 Inventory Management

A second domain is the Inventory Management domain from Wang & Petrik (2024), which involves maintaining
an inventory of resources. The resources induce a period-wise cost and the goal is to purchase and sell
resources such that minimal cost is incurred over time. To form a constrained variant of this benchmark,
we introduce the constraint that the discounted sum of actions should not average to higher than zero (i.e.
the rate of selling should not exceed that of purchasing). We use the same radial features and clipped
uncertainty set as in the implementation on github https://github.com/JerrisonWang/JMLR-DRPMD. The
implementation uses Gaussian parametric transition dynamics

p(s′|s, a) = 1
(2π)1/2σ

e− 1
2σ (s′−η(s,a)⊺ζ(s,a))2

, (51)

with σ = 1, and the feature vector for i = 1, 2 is given by

ζi(s, a) = e
−
∥s−µζi,s∥2

+∥a−µζi,a∥2

2σ2
ζi , (52)

where µζ1 = (−4, 5), µζ2 = (−2, 8). The uncertainty set is given by {η : ∥η − ηc∥∞ ≤ κ} where ηc = (−2, 3.5).
With the exception of the constraint, and the number of steps per episode for the adversary, the setting
matches Wang & Petrik (2024). The constraint at time t is given by

c(st, at) = Ks,a(a2
t − st)− d , (53)
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with constants set as Ks,a = 0.01 and d = 0.0 in the experiments. The constraint indicates a preference for
actions with modest squared transaction magnitudes and a preference for having a positive inventory.

Training performance The training performance can be found in Figure 9 of Appendix E.2 for non-robust
algorithms and in Figure 10 of Appendix E.2 for robust algorithms. The plots confirm the effectiveness of
the constrained optimisation algorithms and the robust algorithms can also find a good solution despite the
environment being adversarial. It is also clear that the MDPO based algorithms converge more rapidly to
solutions of the highest quality in constrained and robust-constrained optimisation, although there appears
to be a small benefit of PPO in non-robust unconstrained optimisation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distortion level

400

300

200

100

0

100

Di
sc

ou
nt

ed
 R

ew
ar

d

Episode Reward (Discounted)

MCPMD
PPO
MDPO
MCPMD-Lag
PPO-Lag
MDPO-Lag
MDPO-Augmented-Lag

(a) Reward

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distortion level

0

1

2

3

4

5

6

7

Di
sc

ou
nt

ed
 C

on
st

ra
in

t-c
os

t 

Episode Constraint-cost (Discounted)

MCPMD
PPO
MDPO
MCPMD-Lag
PPO-Lag
MDPO-Lag
MDPO-Augmented-Lag

(b) Constraint-cost

Figure 3: Test performance of MDP and CMDP algorithms in the Inventory Management domain using the
deterministic policy on the test distortions.
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Figure 4: Test performance of RMDP and RCMDP algorithms in the Inventory Management domain using
the deterministic policy on the test distortions.

Test performance Figure 5 and Figure 6 visualise the results for the test performance after 16,000 time
steps. MDPO-Robust obtains the highest performance on the test reward, followed closely by MDPO and
PPO. The constraint is challenging to satisfy for all algorithms, but MDPO-Lag based algorithms obtain
the best solutions with cost between 2 and 3 across the distortion levels. Algorithms based on PPO-Lag
and MCPMD-Lag perform poorly with worst starting points and stronger performance degrading across
distortion levels. After 400,000 time steps, the differences between the algorithms is relatively small in the
test cases (see Figure 15 and 16 of Appendix F.2)

As can be observed in Table 3a, MDPO-Robust is the top performer on the return after 16,000 time steps. All
other statistics, including the mean and minimum of the signed and positive penalised return are maximised by
MDPO-Lag based algorithms. In Table 3b, the performance after the full 400,000 time steps can be observed.
With the exception of PPO-Robust-Lag, all constrained algorithms converge to a similar optimum, indicating
that the nominal environment and the other environments in the uncertainty set have large overlap. Similarly,
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the unconstrained algorithms reach a similar optimum. In summary, the solutions converge to relatively
similar test performance levels but MDPO-based algorithms are superior in terms of sample efficiency.

Table 3: Test performance on the return and penalised return statistics in the Inventory Management domain
based on 11 distortion levels, 4 perturbations per level, 10 seeds, and 50 evaluations per test. The mean score
is the grand average over distortion levels, perturbations, seeds, and evaluations. The standard error and
minimum are computed across the different environments (i.e. distortion levels and perturbations), indicating
the robustness of the solution to changes in the environment. Bold indicates the top performance and any
additional algorithms that are within one pooled standard error.

(a) After 16,000 time steps of training
Return R±

pen (signed) Rpen (positive)

Mean ± SE Min Mean ± SE Min Mean ± SE Min
MCPMD 103.6 ± 4.0 -7.5 -2838.3 ± 12.7 -2946.2 -2838.4 ± 12.6 -2946.2
PPO 114.7 ± 2.3 50.7 -3166.9 ± 6.5 -3208.0 -3166.9 ± 6.5 -3208.0
MDPO 102.6 ± 8.0 -97.4 -3430.3 ± 21.9 -3557.6 -3430.3 ± 21.9 -3557.6
RMCPMD 63.6 ± 23.1 -328.0 -2646.9 ± 124.6 -3548.1 -2648.0 ± 123.9 -3548.1
PPO-Robust 100.7 ± 9.9 -113.0 -2673.0 ± 74.2 -3397.5 -2674.4 ± 73.4 -3397.5
MDPO-Robust 118.0 ± 1.8 72.3 -3306.4 ± 9.7 -3350.0 -3306.4 ± 9.7 -3350.0
MCPMD-Lag 50.1 ± 20.2 -392.3 -1684.0 ± 35.8 -2003.1 -1686.4 ± 36.0 -2003.1
PPO-Lag 64.7 ± 13.9 -240.1 -1593.3 ± 43.0 -1878.9 -1597.2 ± 39.5 -1878.9
MDPO-Lag 66.8 ± 7.1 -167.2 -837.3 ± 21.4 -939.0 -837.9 ± 20.4 -939.0
MDPO-Augmented-Lag 66.9 ± 7.0 -159.4 -837.5 ± 21.1 -938.9 -838.0 ± 20.4 -938.9
RMCPMD-Lag 50.3 ± 27.4 -417.4 -2635.6 ± 113.0 -3159.5 -2638.3 ± 111.1 -3159.5
PPO-Robust-Lag 63.2 ± 17.1 -277.0 -1655.0 ± 67.5 -2190.2 -1660.0 ± 65.2 -2190.2
MDPO-Robust-Lag 60.7 ± 10.7 -228.5 -930.9 ± 32.3 -1118.2 -932.2 ± 30.8 -1118.2
MDPO-Robust-Augmented-Lag 60.9 ± 10.6 -221.4 -938.6 ± 34.4 -1172.2 -940.1 ± 32.9 -1172.2

(b) After 400,000 time steps of training
Return R±

pen (signed) Rpen (positive)

Mean ± SE Min Mean ± SE Min Mean ± SE Min
MCPMD 119.9 ± 1.8 72.8 -3425.3 ± 5.5 -3460.1 -3425.3 ± 5.5 -3460.1
PPO 120.0 ± 1.8 73.6 -3425.4 ± 5.4 -3459.7 -3425.4 ± 5.4 -3459.7
MDPO 118.8 ± 2.5 32.2 -3417.0 ± 8.8 -3459.7 -3417.0 ± 8.8 -3459.7
RMCPMD 109.3 ± 2.8 26.0 -2907.7 ± 8.5 -2956.1 -2907.9 ± 8.3 -2956.1
PPO-Robust 119.9 ± 1.8 73.2 -3425.3 ± 5.4 -3460.3 -3425.3 ± 5.4 -3460.3
MDPO-Robust 119.7 ± 1.8 72.4 -3416.7 ± 4.1 -3429.7 -3416.7 ± 4.1 -3429.7
MCPMD-Lag 67.1 ± 7.0 -156.5 -837.7 ± 20.9 -939.0 -838.2 ± 20.2 -939.0
PPO-Lag 66.7 ± 7.1 -166.7 -837.2 ± 21.4 -939.0 -837.8 ± 20.5 -939.0
MDPO-Lag 66.8 ± 7.2 -168.5 -837.3 ± 21.5 -939.3 -838.0 ± 20.4 -939.3
MDPO-Augmented-Lag 66.9 ± 7.1 -162.5 -837.5 ± 21.2 -939.2 -838.0 ± 20.4 -939.2
RMCPMD-Lag 66.8 ± 7.1 -165.8 -837.4 ± 21.4 -939.0 -838.1 ± 20.3 -939.0
PPO-Robust-Lag 60.8 ± 10.8 -234.0 -931.0 ± 32.5 -1118.3 -932.4 ± 30.9 -1118.3
MDPO-Robust-Lag 66.9 ± 7.1 -166.5 -837.4 ± 21.4 -939.3 -838.0 ± 20.4 -939.3
MDPO-Robust-Augmented-Lag 66.8 ± 7.1 -167.7 -837.2 ± 21.5 -939.1 -837.9 ± 20.5 -939.1

5.3 3-D Inventory Management

The third (and last) domain in the experiments introduces a multi-dimensional variant of the above Inventory
Management problem, with dynamics

p(s′|s, a) = 1
(2π)n/2σ

e− 1
2σ (s′−η(s,a)⊺ζ(s,a))2

, (54)

where the feature vectors of Eq. 52 are now given by µζ1 = (−3,−2.5,−3.5, 5.0, 2.0, 4.5), µζ2 =
(−6.0,−2.8,−4.0, 8.0, 2.0, 2.5), σζ = (4, 4.5), and the uncertainty set is given by {η : ∥η − ηc∥∞ ≤ κ}
where ηc = [[−2, 2.5], [−1.8, 1.5], [−1.5, 2.0]] and κ = 0.5. The constraint j ∈ [m] at time t is given by

cj(st, at) = at,j −Ksst,j − d , (55)

where at,j and st,j denote the j’th dimension of the state and action, respectively, at time t, and constants
are set as Ks = 0.5 and d = 0.0 in the experiments. The constraint indicates that the agent should not get a
negative inventory and if the inventory is positive, it should not sell more than 50% of the current inventory.

Training performance The training performance can be found in Figure 11 and Figure 12 of Appendix E.3.
It is clear that the MDPO-based algorithm have improved sample-efficiency and converge to the highest
unconstrained and constrained performances.
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Figure 5: Test performance of MDP and CMDP algorithms in the 3-D Inventory Management domain using
the deterministic policy on the test distortions.
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Figure 6: Test performance of RMDP and RCMDP algorithms in the 3-D Inventory Management domain
using the deterministic policy on the test distortions.

Test performance Figure 5 and Figure 6 visualise the results for the test performance after 40,000 time
steps. While all algorithms are sensitive to the distortion level, it can be seen that the robust algorithms have
are generally shifted up for the rewards, and robust-constrained algorithms have been shifted down for the
constraint-costs, indicating the effectiveness of robustness training. The MDPO-Robust algorithm is superior
in the return and the the MDPO-Robust-Lag algorithms are found to be superior in the constraint-cost.
While it is challenging to satisfy the constraint with limited training, after 400,000 time all algorithms have
further improved, but remarkably MDPO-Robust-Augmented-Lag can satisfy all the constraints for all but
the highest distortion levels (see Figure 17 and Figure 18 of Appendix F.3).

Table 4: Test performance on the return and penalised return statistics in the 3-D Inventory Management
domain based on 11 distortion levels, 64 perturbations per level, 10 seeds, and 10 evaluations per test. The
standard error and minimum are computed across the different environments (i.e. distortion levels and
perturbations), indicating the robustness of the solution to changes in the environment. Bold indicates the
top performance and any additional algorithms that are within one pooled standard error.

(a) After 40,000 time steps
Return R±

pen (signed) Rpen (positive)

Mean ± SE Min Mean ± SE Min Mean ± SE Min
MCPMD 46.2 ± 0.5 -19.7 -3810.9 ± 448.7 -10322.4 -7143.7 ± 250.0 -11158.3
PPO 50.6 ± 0.4 -17.8 -5909.8 ± 458.0 -12737.1 -7957.4 ± 286.0 -12855.0
MDPO 51.6 ± 0.4 -12.5 -6415.1 ± 463.7 -13210.2 -8389.6 ± 300.0 -13384.9
RMCPMD 46.3 ± 0.5 -20.8 -3817.4 ± 449.2 -10449.0 -7146.4 ± 253.1 -11228.8
PPO-Robust 53.2 ± 0.4 -10.7 -7164.3 ± 453.6 -13926.4 -8652.0 ± 316.2 -14027.1
MDPO-Robust 54.9 ± 0.4 -9.6 -7956.9 ± 457.5 -14747.8 -9376.8 ± 330.2 -14836.3
MCPMD-Lag 46.3 ± 0.5 -19.6 -3822.8 ± 452.0 -10390.2 -7149.5 ± 253.6 -11185.8
PPO-Lag 44.7 ± 0.5 -22.8 -3038.1 ± 448.7 -9467.8 -6515.6 ± 238.5 -10277.8
MDPO-Lag 43.4 ± 0.5 -24.6 -2391.4 ± 447.4 -8762.9 -5530.5 ± 237.8 -9481.2
MDPO-Augmented-Lag 42.8 ± 0.5 -23.5 -2126.5 ± 446.1 -8385.7 -5460.9 ± 229.5 -9142.2
RMCPMD-Lag 46.2 ± 0.5 -18.2 -3811.7 ± 451.5 -10399.7 -7144.5 ± 253.5 -11239.9
PPO-Robust-Lag 44.7 ± 0.5 -21.5 -3014.6 ± 445.4 -9428.9 -6494.1 ± 238.7 -10268.1
MDPO-Robust-Lag 41.4 ± 0.5 -24.6 -1416.9 ± 446.1 -7726.9 -5088.9 ± 221.7 -8560.6
MDPO-Robust-Augmented-Lag 39.5 ± 0.5 -29.6 -525.0 ± 441.2 -6861.9 -4957.0 ± 211.2 -8289.3

(b) After 400,000 time steps
Return R±

pen (signed) Rpen (positive)

Mean ± SE Min Mean ± SE Min Mean ± SE Min
MCPMD 46.2 ± 0.5 -21.3 -3810.9 ± 448.9 -10358.5 -7147.0 ± 251.9 -11105.7
PPO 59.5 ± 0.4 -5.9 -10122.1 ± 462.4 -16777.6 -10886.2 ± 370.4 -16823.6
MDPO 81.2 ± 0.4 18.6 -20577.2 ± 535.4 -28669.4 -20769.1 ± 504.0 -28670.9
RMCPMD 46.3 ± 0.5 -18.9 -3817.2 ± 450.6 -10514.2 -7148.9 ± 252.9 -11353.5
PPO-Robust 60.9 ± 0.4 -2.4 -10802.7 ± 443.3 -17484.1 -11429.2 ± 367.4 -17506.1
MDPO-Robust 87.0 ± 0.4 24.4 -23312.6 ± 525.6 -31314.1 -23459.7 ± 499.3 -31314.1
MCPMD-Lag 46.2 ± 0.5 -22.0 -3813.8 ± 453.1 -10509.0 -7147.1 ± 254.3 -11366.5
PPO-Lag 34.2 ± 0.5 -36.5 1965.9 ± 416.5 -3963.9 -3126.5 ± 214.3 -7007.9
MDPO-Lag 34.9 ± 0.5 -32.5 1566.5 ± 420.9 -4406.7 -1180.5 ± 229.6 -5420.4
MDPO-Augmented-Lag 24.6 ± 0.5 -44.1 6421.1 ± 369.2 1517.0 -1139.5 ± 175.7 -4564.8
RMCPMD-Lag 46.2 ± 0.5 -20.8 -3813.1 ± 451.5 -10594.7 -7146.9 ± 252.7 -11310.6
PPO-Robust-Lag 31.0 ± 0.5 -34.8 3460.0 ± 419.6 -2398.7 -2285.9 ± 167.0 -5397.1
MDPO-Robust-Lag 32.8 ± 0.5 -32.4 2617.9 ± 378.6 -2601.7 -1011.4 ± 169.9 -3767.4
MDPO-Robust-Augmented-Lag 26.8 ± 0.4 -38.6 5312.6 ± 340.2 758.7 -1219.2 ± 150.4 -3867.7

The return and penalised return statistics after 40,000 time steps can be observed in Table 4a. MDPO-
Robust has the highest score on the mean and minimum of the test return, which indicates the robustness
training was succesful in guaranteeing high levels of performance across the uncertainty set. MDPO-Robust-
Augmented-Lag outperforms all other algorithms on the signed and positive penalised return statistics.
MDPO-Robust-Lag follows closely in mean and minimum performance on the positive penalised return. After
400,000 time steps, MDPO-Robust-Lag algorithms have by far the highest minimum penalised return while
MDPO algorithms with augmented Lagrangian score remarkably well on the signed penalised return (see
Table 4b). Overall, the data indicate the effectiveness for MDPO-based algorithms, and particularly the
effectiveness of MDPO-Robust-Lag algorithms for robust constrained optimisation.

6 Conclusion

This paper presents mirror descent policy optimisation for robust constrained MDPs (RCMDPs), making
use of policy gradient techniques to optimise both the policy and the transition kernel (as an adversary)
on the Lagrangian representing a constrained MDP. In the oracle-based RCMDP setting, we confirm it is
indeed possible to obtain guarantees similar to those of traditional MDPs, with an O

( 1
T

)
convergence rate
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for the squared distance as a Bregman divergence, and an O
(
e−T

)
convergence rate for entropy-regularised

objectives. In the sample-based setting, we require Õ(ϵ−3) samples for an average regret of at most ϵ,
confirming an Õ

( 1
T 1/3

)
convergence rate. Experiments confirm the performance benefits of mirror descent

policy optimisation in practice, obtaining significant improvements in test performance.
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A Bregman divergence and associated policy definitions

Definition 3. Bregman divergence. Let h : ∆(A)→ R be a convex and differentiable function. We define

B(x, y;h) := h(x)− h(y)− ⟨∇h(y), x− y⟩ (56)

as the Bregman divergence with distance-generating function h.

The Bregman divergence represents the distance between the first-order Taylor expansion and the actual
function value, intuitively representing the strength of the convexity. A list of common distance-generating
functions and their associated Bregman divergences is given in Table 5.

Table 5: Bregman divergence for common distance-generating functions.

Distance-generating function (h) Bregman divergence (B(·, ·;h))
ℓ1-norm ∥p∥1 0 for x, y ∈ Rd

+.

Squared ℓ2-norm 1
2 ∥x∥

2
2 Squared Euclidian distance DSE(x, y) = 1

2 ∥x− y∥
2
2 for x, y ∈ Rd

Negative entropy
∑

i p(i) log(p(i)) Kullbach-Leibler divergence DKL(p, q) =
∑

i p(i) log(p(i)/q(i)) for p, q ∈ ∆

Table 6 and Table 7 show the update rules for different policy and transition kernel parametrisations. They
hold true for any value function as well as Lagrangian value functions, so the tables omit the bold for
generality purposes.

Table 6: Update rules for different policy parametrisations and Bregman divergences.

Parametrisation Bregman divergence Update rule
Direct: π = θ DSE(θ, θt) θt+1 ← proj∆(A)(θt − ηt∇θVπ,p(d0))
Softmax: π(a|s) = exp(θs,a)∑

a′ exp(θs,a′ )
DSE(θ, θt) θt+1 ← θt − ηt∇θVπ,p(d0)

Softmax: π(a|s) = exp(θs,a)∑
a′ exp(θs,a′ )

Occupancy-weighted KL-divergence (Eq. 13) πt+1
k (a|s) = 1

Zt
k

(s) (πt
k(a|s))1− ηα

1−γ e

−ηQα

πt
k

,p
(s,a)

1−γ

Table 7: Update rules and uncertainty sets for different parametric transition kernels (PTKs). The notation
D(·, ·) indicates a particular distance function such as ℓ1 or ℓ∞-norm and the x̄ notation indicates the nominal
model for any parameter x (typically obtained from parameter estimates).

Parametrisation Update rule Uncertainty sets
Entropy PTK:

p(s′|s, a) =
p̄(s′|s,a) exp

(
ζ⊺ϕ(s′)

λ′⊺φ(s,a)

)∑
s′′ p̄(s′′|s,a) exp

(
ζ⊺ϕ(s′′)

λ′⊺φ(s,a)

) ξt+1 ← arg maxξ{⟨ηt∇ξVπ,p(d0), ξ⟩ −D(ξ, ξt)} Uξ = {ξ : D(ξ, ξ̄) ≤ κξ}.

Gaussian mixture PTK:
p(s′|s, a) =

∑M
m=1 ωmN (η⊺ζ(s, a)) ξt+1 ← arg maxξ{⟨ηt∇ξVπ,p(d0), ξ⟩ −D(ξ, ξt)} Uη = {η : ∀m ∈ [M ]D(η, η̄m) ≤ κη}

Uω = {ω ∈ ∆M : ∀m ∈ [M ]ωm ∈ [F−1
ωm

(δ/2), F−1
ωm

(1− δ/2)]}

B Supporting lemmas for traditional MDPs

The proof relies on the following continuity and smoothness conditions.
Definition 4 (Continuity and smoothness). A function f : Θ → R is Lθ-Lipschitz continu-
ous if ∥f(θ)− f(θ′)∥ ≤ Lθ ∥θ − θ′∥. f is lθ-smooth if its gradients are lθ-Lipschitz continuous, i.e.
∥∇f(θ)−∇f(θ′)∥ ≤ lθ ∥θ − θ′∥ or, equivalently,

|f(θ′)− f(θ)− ⟨∇f(θ), θ′ − θ⟩ | ≤ lθ
2 ∥θ − θ

′∥2
2 .
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B.1 Softmax policy gradient with unregularised objective

Mei et al. (2020) previously used above smoothness and continuity to prove the convergence rate for softmax
policies on the unregularised objective. In particular, Theorem 4 in Mei et al. (2020) provides convergence
rate results for softmax policies. We rephrase the theorem in a slightly more general manner based on the
relation between the learning rate η and the smoothness coefficient lθ, allowing easy reuse for our setting.
Theorem 5 (Convergence rate for softmax policies, Theorem 4 in Mei et al. (2020) rephrased). Let p be
the transition dynamics, let costs range in [0, 1], let {θt}t≥1 be a sequence generated by the gradient descent
update over logits according to

θt+1 = θt − η∇Vπθt ,p(ρ) , (57)

with η = 1/lθ, and let Up = infs∈S,t≥1 πθ(a∗(s|p)|s) > 0. Then, for all t ≥ 1, the regret is bounded by

Vπθt ,p(ρ)− Vπθ∗ ,p(ρ) ≤ 2SMp(π∗)2

Upη(1− γ)3t

∥∥∥∥ 1
µ

∥∥∥∥
∞
, (58)

where Mp(π∗) =
∥∥∥∥d

π∗
τ ,p

µ

µ

∥∥∥∥
∞

.

B.2 Softmax policy gradient with regularised objective

Mei et al. (2020) previously used the above smoothness and continuity to prove the convergence rate for
softmax policies on an entropy-regularised objective. Below we summarise their key results that factor into
our analysis.

Theorem 6 in Mei et al. (2020) provides convergence rate results for softmax policies with entropy regularisation,
a result which can be reused in our setting with a few parameter changes. We rephrase the theorem in slightly
more general manner based on the relation between the learning rate η and the smoothness coefficient lθ.
Theorem 6 (Convergence rate for softmax policies with entropy regularisation, Theorem 6 in Mei et al.
(2020) rephrased). Let p be the transition dynamics, let {θt}t≥1 be a sequence generated by regularised policy
gradient over logits according to

θt+1 = θt − η∇V τ
πθt ,p(ρ) , (59)

with η = 1/lθ, let the initial state be sampled from µ, and let Up = infs∈S,t≥1 πθt(a∗(s|p)|s) > 0. Then, for
all t ≥ 1, the regret on the regularised objective is bounded by

V τ
πθt ,p(ρ)− V τ

π∗
τ ,p(ρ) ≤

∥∥∥∥ 1
µ

∥∥∥∥
∞

1 + τ log(A)
(1− γ)2 e−C (t−1) , (60)

where C = η
S mins µ(s)U2

p (Mp(π∗
τ ))−1 is independent of the iteration t.

C Supporting lemmas for sample-based analysis

C.1 Analysis of the multipliers

To analyse the regret in terms of the value directly, the lemma below provides an equivalence between the
unconstrained value and the Lagrangian value at the optimum.
Lemma 11 (Complementary slackness). For any CMDP and any j ∈ [m], the optimal constrained solution
(π∗, λ∗) has either λ∗

j = 0 or V j
π∗(ρ) = 0, such that its Lagrangian value is equal to its unconstrained value:

Vπ∗(ρ;λ∗) = Vπ∗(ρ) . (61)

Lemma 12 (Bounds on the multipliers). The sequence of multipliers produced by Robust PMD-PD
{λk,j}k≥0, j ∈ [m] satisfy the following properties:

1. Non-negativity: for any macro step k ≥ 0, λk,j ≥ 0 for all j ∈ [m].
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2. Positive modified multiplier: for any macro step k ≥ 0, λk,j + ηλV̂
j

πk,pk
(ρ) ≥ 0 for all j ∈ [m].

3. Bounded initial multiplier: for macro step 0, |λ0,j |2 ≤ |ηλV̂
j

πk,pk
(ρ)|2 for all j ∈ [m]

4. Bounded value: for macro step k > 0, |λk,j |2 ≥ |ηλV̂
j

πk,pk
(ρ)|2 for all j ∈ [m]

Proof. 1) Note that λ0,j ≥ 0 is trivially satisfied by the initialisation in Algorithm 1. Via induction, if λk,j ≥ 0
note that if V̂πk+1,pk+1(ρ) ≥ 0 then λk, j + ηλV̂πk+1,pk+1(ρ) ≥ 0; if it is negative, then −ηλV̂πk+1,pk+1(ρ) ≥ 0.
2) Note that 0 ≤ λk,j = max{λk−1,j + ηλV̂πk,pk

(ρ),−ηλV̂πk,pk
(ρ)}. This implies either a) ηλV̂πk,pk

(ρ) ≥
λk−1,j ≥ 0 or b) V̂πk,pk

(ρ) ≤ 0. In case a),

λk,j + ηλV̂
j

πk,pk
(ρ) ≥ 0 .

In case b),

λk,j = −ηλV̂
j

πk,pk
≥ 0 .

3) This follows directly from the initialisation to λ0,j = max{0,−ηλV̂
j

π0,p0
(ρ)}.

4) Note that

|λk,j |2 = |max{λk−1,j + ηλV̂
j

πk,pk
(ρ),−ηλV̂

j
πk,pk

(ρ)}|2

= max{|λk−1,j + ηλV̂
j

πk,pk
|2, |ηλV̂

j
πk,pk

|2}

≥ |ηλV̂
j

πk,pk
(ρ)|2 .

The analysis of the dual variables focuses on the inner product between the modified Lagrangian multiplier
and the constraint-costs, which represents the total constraint-penalty at the end of an iteration. Due to the
approximation errors ϵk = V̂ 1:m

πk,pk
(ρ)− V 1:m

πk,pk
(ρ), the inner product can be written as〈

λk + ηλV̂
1:m

πk,pk
(ρ), V 1:m

π
tk
k

,pk
(ρ)
〉

=
〈
λk, V̂

1:m
π

tk
k

,pk+1
(ρ)
〉

+⟨λk,−ϵk⟩+
〈
ηλV

1:m
πk,pk

(ρ), V 1:m
π

tk
k

,pk+1
(ρ)
〉

+
〈
ηλϵk, V

1:m
π

tk
k

,pk+1
(ρ)
〉
.

(62)

The inner product can be lower bounded, which leads to a somewhat complex summation but a useful one
that can be telescoped in the average regret analysis.
Lemma 13 (Lower bound on the inner product, Eq. 41 in Liu et al. (2021)). For any k = 0, 1, . . . ,K − 1,〈
λk + ηλV̂

1:m
πk,pk

(ρ), V̂ 1:m
πk+1,pk+1

(ρ)
〉

≥ 1
2ηλ

(
∥λk+1∥2 − ∥λk∥2

)
+ η

2

(∥∥V 1:m
πk,pk

(ρ)
∥∥2 −

∥∥∥V 1:m
πk+1,pk+1

(ρ)
∥∥∥2
)

+ ⟨λk,−ϵk−1⟩+ ∥ϵk+1∥2 + ηλ

〈
ϵk, V

i:m
πk,pk

(ρ)
〉
− ηλ ∥ϵk∥ − 2ηλ

〈
V i:m

πk+1,pk+1
(ρ), ϵk+1

〉
− γ2ηλ

(1− γ)4Bd
πk+1,pk+1
ρ

(πk+1, πk) .

C.2 Analysis of the Bregman divergence

Another essential part of the regret analysis is the pushback property, which allows a telescoping sum.
Lemma 14 (Pushback property, Lemma 2 in Liu et al. (2021)). If x∗ = arg minx∈∆ f(x) +B(x, y;h) for a
fixed y ∈ Int(∆), then for α > 0 and any z ∈ ∆,

f(x∗) +B(x∗, y;h) ≤ f(x) + α (B(z, y;h)−B(z, x∗;h)) .

By selecting z = π, y = π∗
k, and x∗ = π∗, and using the weighted Bregman divergence, it is possible to use

the property in the context of softmax policies, which are always in the interior of the probability simplex.
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Lemma 15 (Pushback property for softmax policies, Lemma 10 in Liu et al. (2021)). For any softmax policy
π and any p,

Vπ∗
k

,p(ρ) + α

1− γBd
π∗

k
,p

ρ

(x∗, y) ≤ Vπ,p(ρ) + α
(
Bdπ,p

ρ
(π, πk)−Bdπ,p

ρ
(π, π∗

k)
)
.

The weighted Bregman divergence under the generating function
∑

i p(i) log(p(i)) is equivalent to the KL-
divergence, which is bounded by log(A) as shown below by noting that the uniform policy is the maximum
entropy policy.
Lemma 16 (Bound on Bregman divergence). Let π0 be a uniform policy, then for any policy π ∈ Π and any
p ∈ P,

Bdπ,p
ρ

(π, π0) =
∑
s∈S

dπ,p
ρ (s)

∑
a∈A

π(a|s) log(Aπ(a|s)) ≤ log(A) .

C.3 Convergence of approximate entropy-regularised NPG

Below is the supporting convergence result for approximate entropy-regularised NPG.
Lemma 17 (Convergence of approximate entropy-regularised NPG, Theorem 2 of Cen et al. (2022)). Let
ϵ > 0. Then if

∥∥∥Q̂α
πt

k
,p −Qα

πt
k

,p

∥∥∥
∞
≤ ϵ,

Ck ≥
∥∥∥Qα

π∗
k

,p −Qα
π0

k
,p

∥∥∥
∞

+ 2α
(

1− ηα

1− γ
∥∥log(π∗

k)− log(π0
k))
∥∥

∞

)
and

C ′ ≥ 2ϵ
1− γ (1 + γ

ηα
) ,

it follows that for all t ≥ 0 ∥∥∥Qα
π∗

k
,p −Qα

πt+1
k

,p

∥∥∥
∞
≤ Ckγ(1− ηα)t + γC ′ (63)∥∥log(π∗

k)− log(πt+1
k )

∥∥
∞ ≤ 2Ckα

−1(1− ηα)t + 2α−1C ′ (64)∥∥∥Vα
π∗

k
,p −Vα

πt+1
k

,p

∥∥∥
∞
≤ 3Ck(1− ηα)t + 3C ′ . (65)

The following lemma provides settings for the number, tk, of iterations to optimise the policy such that it has
negligible error on the regularised objective (i.e. with KL-divergence and modified Lagrangian multiplier).

Lemma 18 (Number of inner loop iterations, Lemma 7 in Liu et al. (2021)). Let ϵ > 0,
∥∥∥Q̂α

πt
k

,p −Qα
πt

k
,p

∥∥∥
∞
≤ ϵ,

η ≤ (1− γ)/α, tk = 1
ηα log(3CkK), and

Ck = 2γ
(

1 +
∑m

j=1 λj

1− γ + mηλ

(1− γ)2

)
.

It follows that ∥∥∥Vα
π∗

k
,p −Vπk+1α

∥∥∥
∞
≤ 1
K

+ 6ϵ
(1− γ)2 (66)

and
∥log(π∗

k)− log(πk+1)∥∞ ≤
2

3αK + 4ϵ
α(1− γ)2 . (67)

The following lemma bounds the performance difference of entropy-regularised NPG based on the approxima-
tion error.
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Lemma 19 (Performance difference lemma, Lemma 4 in Cen et al. (2022) and Lemma 6 in Liu et al.
(2021)). For learning rate η ≤ (1− γ)/α and any t ≥ 0, it holds for any starting distribution ρ that under
entropy-regularised NPG,

Vα
πt+1

k
,p

(ρ)−Vα
πt

k
,p(ρ) ≤ 2

1− γ

∥∥∥Q̂α
πt

k
,p −Qα

πt
k

,p

∥∥∥
∞
. (68)

Corollary 1. It follows from Lemma 19 that

Qπt+1
k

,p(s, a)−Qπt
k

,p(s, a) = γ(Vπt+1
k

,p(p(·|s, a))− Vπt
k

,p(p(·|s, a))) ≤ 2γ
1− γ

∥∥∥Q̂πt
k
−Qπt

k

∥∥∥
∞
. (69)

C.4 Performance difference across transition kernels

In the context of robust MDPs, the performance difference lemmas below have been formulated across
transition kernels, which help the analysis of changing transition dynamics in RCMDPs.
Lemma 20 (First performance difference lemma across transition kernels, Lemma 5.2 in Wang et al. (2023)).
For any pair of transition kernels p, p′ ∈ P and any policy π ∈ Π, we have for any value function that

Vπ,p(ρ)− Vπ,p′(ρ) = 1
1− γ

∑
s∈S

dπ,p′

ρ (s)
(∑

a∈A
π(a|s)

∑
s′∈S

(p(s′|s, a)− p′(s′|s, a)) [c(s, a, s′) + γVπ,p(s′)]
)
.

(70)

Lemma 21 (Second performance difference lemma across transition kernels, Lemma 5.3 in Wang et al.
(2023)). For any pair of transition kernels p, p′ ∈ P and any policy π ∈ Π, we have for any value function
that

Vπ,p(ρ)− Vπ,p′(ρ) = 1
1− γ

∑
s∈S

dπ,p
ρ (s)

(∑
a∈A

π(a|s)
∑
s′∈S

(p(s′|s, a)− p′(s′|s, a)) [c(s, a, s′) + γVπ,p′(s′)]
)
.

(71)

C.5 Value function approximation

A proof of Lemma 9 is provided below to demonstrate its applicability to the robust Sample-based PMD
algorithm.

Proof. a): approximation of V i
πt

k
,pk

(ρ) for all i ∈ [m].
Pick i ∈ [m] and k ∈ [K] arbitrarily. Note that since costs and constraint-costs are in [−1, 1], the cumulative
discounted constraint-cost is bounded by

∑∞
l=0 γ

tci(sl, al) ∈ [− 1
1−γ ,

1
1−γ ]. Denoting the NV,k-step cumulative

discounted constraint-cost as a random variable X =
∑NV,k

l=0 γlci(sl, al), and X̄ = 1
MV,k

∑MV,k

n=1 Xn, we have
by Hoeffding’s inequality that the number of samples required is derived as

P (|X̄ − E[X̄]| ≥ ϵ)

≤ 2 exp

−2 ϵ2∑MV,k

i=1

(
2

MV,k(1−γ)

)2


= 2 exp

(
− (1− γ)2MV,kϵ

2

2

)
= δk

MV,k = log
(

2
δk

)
2

(1− γ)2ϵ2
= Θ

(
log
(
δ−1

k

) 1
ϵ2

)
.
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Further, note that since constraint-costs are in [−1, 1], it follows that the number of time steps is derived as

|E[X]− V i
πk

(ρ)| ≤ 2
∞∑

t=NV,k

γt = 2γ
NV,k

1− γ = ϵ

NV,k log(γ) = log((1− γ)ϵ/2)

NV,k = logγ((1− γ)ϵ/2) = Θ
(

log1/γ

(
1
ϵ

))
, (72)

thereby obtaining an ϵ-precise estimate of V i
πk

(ρ) with the chosen settings of MV,k and NV,k.

b): approximation of Q̃α
πt

k
,pk

(s, a) for all (s, a) ∈ S ×A. Select (s, a) ∈ S ×A arbitrarily. First note that
c̃k(s, a) = O(max {1, ∥λk∥1}) and similarly Ṽπt

k
,pk

(s) = O(max {1, ∥λk∥1}) (again omitting the division by
1− γ from the notation).

Define the random variable

X(s, a) = c̃(s, a) + α log
(

1
πk(a|s)

)
+

NQ,k∑
l=1

γl

(
c̃(sl, al) + α

∑
a′

πt
k(a′|sl) log

(
πt

k(a′|sl)
πk(a′|sl)

))
.

For t = 0, the regularisation term drops. Defining X̄ = 1
MQ,k

∑MQ,k

n=1 X(s, a)n, we obtain

P (|X̄ − E[X̄]| ≥ ϵ)

≤ 2 exp

−2 ϵ2

MQ,k

(
max{1,∥λk∥1}

MQ,k

)2

 = δk

MQ,k = log
(

2
δk

)
max {1, ∥λk∥1}

2

ϵ2
= Θ

(
log
(
δ−1

k

) max {1, ∥λk∥1}
2

ϵ2

)
.

Therefore, setting MQ,K = Θ
(

log(δ−1
k ) max{1,∥λk∥1}2+ϵtk

ϵ2

)
is sufficient for approximating Q̃α

π0
k

,pk
(s, a).

For any t > 0, note that the regularisation term is bounded by

α
∑
a′

πt
k(a′|sl) log

(
πt

k(a′|sl)
πk(a′|sl)

)
≤ Ṽα

πt
k

,pk
(s)−Vπt

k
,pk

(s)

≤ Ṽα
πt

k
,pk

(s) +O(max {1, ∥λk∥1}) (from range)

≤ Ṽα
πk,pk

(s) +O(max {1, ∥λk∥1}) +
t−1∑
t=0

2
1− γ

∥∥∥Q̂α
πt

k
,pk
−Qα

πt
k

,pk

∥∥∥
∞

(iteratively applying Lemma 19 )

≤ Ṽπk,pk
(s) + α

1− γ log(A) +O(max {1, ∥λk∥1}) +
t−1∑
t=0

2
1− γ

∥∥∥Q̂α
πt

k
,pk
−Qα

πt
k

,pk

∥∥∥
∞

(via bound on KL-divergence)

≤ O(max {1, ∥λk∥1}+ 2ϵtk) .

Since the unregularised Lagrangian is bounded by O(max {1, ∥λk∥1}), and again applying Hoeffding’s inequal-

ity, it follows that MQ,K = Θ
(

log(δ−1
k ) (max{1,∥λk∥1}+ϵtk)2

ϵ2

)
is sufficient for approximating Q̃α

πt
k

,pk
(s, a).
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With similar reasoning as in Eq. 72, but applied to the augmented regularised Lagrangian, we have

|E[X]−Qπt
k
(s, a)| ≤

∞∑
l=NQ,k

γl (O(max {1, ∥λk∥1}) + ϵtk)

=
γNQ,kO(max {1, ∥λk∥1}) + ϵtk

1− γ = ϵ

NQ,k = Θ
(

log1/γ

(
O(max {1, ∥λk∥1})

ϵ
+ tk

))

Note that tk = Θ (log(max {1, ∥λk∥1} /ϵ)) = O
(

max{1,∥λk∥1})
ϵ

)
. Therefore NQ,k =

O
(

log1/γ

(
max{1,∥λk∥1}

ϵ

))
.

By union bound, with probability at least 1−
∑K−1

k=0 tkδk = 1− δ, the statement holds for iteration K−1.

As we seek to derive a bound based on telescoping, the term ∥λK∥1 is of particular interest.
Lemma 22. Let K ′ ≥ 0 be a macro-iteration. Under the event that |V i

πt
K′−1,pK′−1

(ρ)− V i
πt

K′−1,pK′−1
(ρ)| ≤ ϵ

for all i ∈ [m] and ∆p = Θ
(

(1−γ)
α log(A)

)
, it follows that ∥λK′∥1 = O(1).

Proof. The proof makes use of complementary slackness, telescoping, the inner product in Lemma 13, and
the basic upper bound via property 3 of Lemma 12 that ∥λ0∥ ≤ ∥λ0∥1 ≤ η2

λ
m

1−γ . Additionally, due to the
slack variable ζ > 0 in Assumption 3 for any p ∈ P and Lemma 16 in Liu et al. (2021), the optimal dual
variable can be bounded based on λ∗ ≤ 2

(1−γ)ζ = O(1). The full derivation is rather lengthy so we refer to
Lemma 21 of Liu et al. (2021). Our analysis adds a correction for the transition dynamic changes within
the uncertainty set ∆p = O(1) as derived in Eq. 43. Since the additional term is α∆pO( log(A)

1−γ ) = O(1), we
obtain the desired result.

D Algorithm implementation details

All the algorithms were implemented in Pytorch. The code for RMCPMD was taken from its original
implementation https://github.com/JerrisonWang/JMLR-DRPMD and the code for PPO was taken from
the StableBaselines3 class. Both were modified to fit our purposes by allowing to turn off and on robust
training and constraint-satisfaction. Similar to PPO, MDPO was also implemented following StableBaselines3
class conventions. All the environments are implemented in Gymnasium. The updates with LTMA are based
on modifying the TMA code in https://github.com/JerrisonWang/JMLR-DRPMD. For MDPO and PPO
experiments, we use four parallel environments and with four CPUs. Our longest experiments typically take
no more than two hours to complete. The remainder of the section describes domain-specific hyperparameter
settings.

D.1 Hyperparameters for Cartpole experiments

Hyperparameters settings for the Carpole experiments can be found in 8. Settings for robust optimisation,
including the policy architecture, transition kernel architecture, and TMA learning rate are taken from Wang
et al. (2023) with the exception that we formulate a more challenging uncertainty set with a 5 times larger
range. The policy learning rate and GAE lambda is typical for PPO based methods so we apply these for PPO
and MDPO methods. The number of policy epochs and early stopping KL target is based for PPO methods
on the standard repository for PPO-Lag (https://github.com/openai/safety-starter-agents/) and for
MDPO it is based on the original paper’s settings (Tomar et al., 2022). PPO obtained better results without
entropy regularisation and value function clipping on initial experiments, so for simplicity we disabled these
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for all algorithms. The batch size, multiplier initialisation, and multiplier learning rate and scaling are
obtained via a limited tuning procedure. For the tuning, the batch size tried was in {100, 200, 400, 1000, 2000}
and the multiplier learning rate was set to {1e−1, 1e−2, 1e−3, 1e−4} on partial runs. Then the use of a softplus
transformation of the multiplier was compared to the direct (linear) multiplier, and for the linear multiplier
we tested initialisations in {1, 5, 10}.

Table 8: Hyperparameter settings for the Cartpole experiments.

Hyperparameter Setting
Policy architecture MLP 4 Inputs – Linear(128) – Dropout(0.6) – Linear(128) – Softmax(2)
Critic architecture MLP 4 Inputs – Linear(128) – Dropout(0.6) – ReLU – Linear(1+m)
Policy learning rate (η) 3e−4

Policy optimiser Adam
GAE lambda (λGAE) 0.95
Discount factor (γ) 0.99
Batch and minibatch size PPO/MDPO policy update: 400 × 4 time steps per batch, minibatch 32, episode

steps at most 100
PPO/MDPO multiplier update: 100 × 4 time steps per batch, minibatch 32,
episode steps at most 100
LTMA: 10 × factor1 Monte Carlo updates, episode steps at most 10

Policy epochs MCPMD: 1
PPO: 50, early stopping with KL target 0.01
MDPO: 5

Transition kernel architecture multi-variate Gaussian with parametrised mean in (1 + δ)µc(s)
where δ ∈ (±0.005,±0.05,±0.005,±0.05)
and covariance σI where σ = 1e−7

LTMA learning rate (ηξ) 1e−7

Dual learning rate (ηλ) 1e−3

Dual epochs MCPMD: 1
PPO: 50 with early stopping based on target-kl 0.01
MDPO: 5

Multiplier initialise to 5, linear, clipping to λmax = 50 for non-augmented algorithms
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D.2 Hyperparameters for Inventory Management experiments

Hyperparameters settings for the unidimensional Inventory Management (see Table 9) are similar to the
Cartpole experiments. The key differences are the output layer, the discount factor, the transition kernel,
and the TMA parameters, which follow settings of the domain in Wang & Petrik (2024). Based on initial
tuning experiments with PPO and MDPO, the learning rates are set to η = 1e−3 and ηλ = 1e−2, a lower
GAE lambda of 0.50 was chosen and PPO is implemented without early stopping and with the same number
of (5) epochs as MDPO.

Table 9: Hyperparameter settings for Inventory Management experiments.

Hyperparameter Setting
Policy architecture MLP 1 Input – Linear(64) – Dropout(0.6) – ReLU – Softmax(4)
Critic architecture MLP 3 Inputs – Linear(128) – Dropout(0.6) – ReLU – Linear(1+m)
Policy learning rate (η) 1e−3

Policy optimiser Adam
GAE lambda (λGAE) 0.50
Discount factor (γ) 0.95
Batch and minibatch size PPO/MDPO policy update: 400 × 4 time steps per batch, minibatch 32, episode

steps at most 80
PPO/MDPO multiplier update: 100 × 4 time steps per batch, minibatch 32,
episode steps at most 80
LTMA: 20 × factor Monte Carlo updates, episode steps at most 40

Policy epochs MCPMD: 1
PPO: 5
MDPO: 5

Transition kernel architecture Radial features with Gaussian mixture parametrisation
LTMA learning rate (ηξ) 1e−1

Dual learning rate (ηλ) 1e−2

Dual epochs MCPMD: 1
PPO and MDPO: 5

Multiplier initialise to 5, linear, clipping to λmax = 500 for non-augmented algorithms
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D.3 Hyperparameters for 3-D Inventory Management experiments

Hyperparameters settings for the 3-D Inventory Management (see Table 9) are the same as in the IM domain
with a few exceptions. The policy architecture is now a Gaussian MLP. The standard deviation of the policy
is set to the default with Log std init equal to 0.0 albeit after some tuning effort. The optimiser is set to
SGD instead of Adam based on improved preliminary results.

Table 10: Hyperparameter settings for Inventory Management experiments.

Hyperparameter Setting
Policy architecture Gaussian MLP 3 Inputs – Linear(128) – Dropout(0.6) – ReLU – Linear(128) –

ReLU – Linear(3 × 2)
Critic architecture MLP 3 Inputs – Linear(128) – Dropout(0.6) – ReLU – Linear(1+m)
Policy learning rate (η) 1e−3

Policy optimiser SGD
Log std init 0.0
GAE lambda (λGAE) 0.50
Discount factor (γ) 0.95
Batch and minibatch size PPO/MDPO policy update: 400 × 4 time steps per batch, minibatch 32, episode

steps at most 100
PPO/MDPO multiplier update: 100 × 4 time steps per batch, minibatch 32,
episode steps at most 100
LTMA: 20 × factor Monte Carlo updates, episode steps at most 40

Policy epochs MCPMD: 1
PPO: 5
MDPO: 5

Transition kernel architecture Radial features with Gaussian mixture parametrisation
LTMA learning rate (ηξ) 1e−1

Dual learning rate (ηλ) 1e−2

Dual epochs MCPMD: 1
PPO and MDPO: 5

Multiplier initialise to 5, linear, clipping to λmax = 500 for non-augmented algorithms
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E Training performance plots

While the experiments with small and large training time steps were run independently, we report here the
training development under the large training data regime (i.e. between 200,000 and 400,000 time steps)
since this gives a view of both the early and late stages of training.

E.1 Cartpole
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Figure 7: Constrained MDP training development plots in the Cartpole domain, where each sample in the
plot is based on 20 evaluations of the deterministic policy. The line and shaded area represent the mean and
standard error across 10 seeds.
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Figure 8: Robust constrained MDP training development plots in the Cartpole domain, where each sample in
the plot is based on 20 evaluations of the deterministic policy as it interacts with the adversarial environment
from that iteration. The line and shaded area represent the mean and standard error across 10 seeds.
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E.2 Inventory Management
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Figure 9: Constrained MDP training development plots in the Inventory Management domain, where each
sample in the plot is based on 20 evaluations of the deterministic policy. The line and shaded area represent
the mean and standard error across 10 seeds.
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Figure 10: Robust constrained MDP training development plots in the Inventory Management domain,
where each sample in the plot is based on 20 evaluations of the deterministic policy as it interacts with the
adversarial environment from that iteration. The line and shaded area represent the mean and standard error
across 10 seeds.
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E.3 3-D Inventory Management
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Figure 11: Constrained MDP training development plots in the 3-D Inventory Management domain, where
each sample in the plot is based on 20 evaluations of the deterministic policy. The line and shaded area
represent the mean and standard error across 10 seeds.
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Figure 12: Robust constrained MDP training development plots in the 3-D Inventory Management domain,
where each sample in the plot is based on 20 evaluations of the deterministic policy as it interacts with the
adversarial environment from that iteration. The line and shaded area represent the mean and standard error
across 10 seeds.
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F Test performance plots with large sample budget

While the main text presents the test performance plots with small sample budgets, between 16,000 and
50,000 time steps, the section below presents the test performance plots after the larger sample budget of
200,000 to 500,000 time steps.
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Figure 13: Test performance of MDP and CMDP algorithms obtained by applying the learned deterministic
policy from the Cartpole domain after 200,000 time steps of training. The line and shaded area represent the
mean and standard error across the perturbations for the particular distortion level.
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Figure 14: Test performance of RMDP and RCMDP algorithms obtained by applying the learned deterministic
policy from the Cartpole domain after 200,000 time steps of training. The line and shaded area represent the
mean and standard error across the perturbations for the particular distortion level.
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F.2 Inventory Management
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Figure 15: Test performance of MDP and CMDP algorithms obtained by applying the learned deterministic
policy from the Inventory Management domain after 400,000 time steps of training. The line and shaded
area represent the mean and standard error across the perturbations for the particular distortion level.
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Figure 16: Test performance of RMDP and RCMDP algorithms obtained by applying the learned deterministic
policy from the Inventory Management domain after 400,000 time steps of training. The line and shaded
area represent the mean and standard error across the perturbations for the particular distortion level.
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F.3 3-D Inventory Management
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Figure 17: Test performance of RMDP and RCMDP algorithms obtained by applying the learned deterministic
policy from the 3-D Inventory Management domain after 400,000 time steps of training. The line and shaded
area represent the mean and standard error across the perturbations for the particular distortion level.
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Figure 18: Test performance of RMDP and RCMDP algorithms obtained by applying the learned deterministic
policy from the 3-D Inventory Management domain after 400,000 time steps of training. The line and shaded
area represent the mean and standard error across the perturbations for the particular distortion level.
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G Comparison of schedules

Tomar et al. (2022) propose either a fixed αk or a linear increase across iterations to give a larger penalty at
the end of the iterations (inspired by theoretical works, e.g. Beck & Teboulle (2003)). A potential problem
with such a linear scheme is that if the LTMA update is strong and the policy cannot take sufficiently
large learning steps, it may sometimes lead to a gradual loss of performance and premature convergence,
especially in the context of contrained optimisation where the objective is often subject to large changes due
to constraints becoming active or inactive. As an alternative, we also consider a schedule where after every
time the LTMA update to ξ was larger than a particular threshold, such that αk = 1

1−(k−k′)/(K−k′) , where k′

indicates the restart time. In the experiments, the restart is done every time any dimension i of the update is
larger than half the maximal distance from nominal, i.e. larger than 0.5 maxξi∈Uξi

|ξi − ξ̄i|. A last included
schedule is the geometrically decreasing schedule αk = αk−1 ∗ γ based on the discount factor γ as proposed
in earlier works (Xiao, 2022; Wang & Petrik, 2024).

Table 11 summarises the experiments comparing fixed schedules, restart schedules, linear schedules, and
the geometric schedules for MDPO-Robust and MDPO-Robust-Lag variants. For the fixed schedule, the
parameter is set to α = 2. For the geometric schedule, the starting parameter is set to α0 = 5.0. An overall
conclusion is that a fixed setting works reasonably well overall, while in particular cases there may be benefits
from time-varying schedules.
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Table 11: Return and penalised return statistics comparing the schedule with restart schedules to the
traditional linear schedule under the short runs (200-500 episodes × maximal number of time steps) and the
long runs (2000-5000 episodes × maximal number of time steps).

Domain Algorithm Return R±
pen (signed) Rpen (positive)

Mean ± SE Min Mean ± SE Min Mean ± SE Min
Cartpole (short runs) MDPO-Robust (fixed) 63.1 ± 0.1 56.4 -229.7 ± 179.6 -2610.6 -294.1 ± 171.4 -2610.8

MDPO-Robust (linear) 62.9 ± 0.1 55.0 -482.5 ± 182.3 -2487.1 -514.6 ± 177.4 -2487.1
MDPO-Robust (restart) 63.1 ± 0.1 55.2 -252.8 ± 179.1 -2520.5 -304.8 ± 172.0 -2520.6
MDPO-Robust (geometric) 63.1 ± 0.1 55.8 -148.0 ± 173.5 -2480.3 -219.3 ± 164.7 -2481.5
MDPO-Robust-Lag (fixed) 34.4 ± 0.3 24.9 108.4 ± 4.4 65.9 34.2 ± 1.2 24.9
MDPO-Robust-Lag (linear) 35.3 ± 0.3 25.2 107.1 ± 5.0 53.0 34.5 ± 1.2 25.0
MDPO-Robust-Lag (restart) 34.9 ± 0.3 25.7 107.2 ± 4.9 53.1 34.3 ± 1.1 25.4
MDPO-Robust-Lag (geometric) 34.8 ± 0.3 25.0 109.4 ± 4.8 60.2 34.5 ± 1.2 25.0
MDPO-Robust-Augmented-Lag (fixed) 34.6 ± 0.3 24.7 110.8 ± 4.9 61.6 34.6 ± 1.2 24.7
MDPO-Robust-Augmented-Lag (linear) 35.2 ± 0.3 25.4 106.6 ± 5.0 52.6 34.2 ± 1.2 22.9
MDPO-Robust-Augmented-Lag (restart) 35.4 ± 0.3 25.7 107.1 ± 5.4 45.6 34.4 ± 1.3 21.7
MDPO-Robust-Augmented-Lag (geometric) 35.1 ± 0.3 24.6 109.7 ± 5.1 56.4 34.7 ± 1.2 24.6

Cartpole (long runs) MDPO-Robust (fixed) 63.2 ± 0.1 56.1 -109.7 ± 176.0 -2647.1 -185.5 ± 167.1 -2648.3
MDPO-Robust (linear) 33.7 ± 0.1 29.2 -145.3 ± 24.1 -526.4 -165.0 ± 23.0 -541.6
MDPO-Robust (restart) 63.1 ± 0.1 55.8 -173.6 ± 174.9 -2537.4 -237.1 ± 167.0 -2538.1
MDPO-Robust (geometric) 63.2 ± 0.1 56.1 -120.4 ± 179.5 -2662.1 -193.7 ± 170.7 -2662.7
MDPO-Robust-Lag (fixed) 41.6 ± 0.2 32.1 105.1 ± 9.5 9.6 38.6 ± 2.5 2.6
MDPO-Robust-Lag (linear) 32.3 ± 0.3 22.9 72.0 ± 4.1 38.6 15.4 ± 1.8 -4.8
MDPO-Robust-Lag (restart) 41.8 ± 0.2 32.2 107.6 ± 9.3 14.5 39.2 ± 2.3 5.8
MDPO-Robust-Lag (geometric) 41.4 ± 0.2 31.7 103.7 ± 9.4 8.0 38.6 ± 2.5 1.3
MDPO-Robust-Augmented-Lag (fixed) 41.2 ± 0.2 31.4 106.2 ± 9.1 13.7 38.6 ± 2.2 5.0
MDPO-Robust-Augmented-Lag (linear) 30.0 ± 0.3 21.5 32.8 ± 2.8 12.2 -18.8 ± 1.3 -34.6
MDPO-Robust-Augmented-Lag (restart) 40.5 ± 0.2 30.5 108.7 ± 8.2 24.1 38.3 ± 1.9 10.7
MDPO-Robust-Augmented-Lag (geometric) 40.9 ± 0.2 31.4 102.1 ± 8.9 9.2 37.6 ± 2.7 -2.1

Inventory Management (short runs) MDPO-Robust (fixed) 118.0 ± 1.8 72.3 -3306.4 ± 9.7 -3350.0 -3306.4 ± 9.7 -3350.0
MPDO-Robust (linear) 98.4 ± 5.7 -59.6 -2764.0 ± 20.5 -2808.5 -2764.2 ± 20.2 -2808.5
MPDO-Robust (restart) 105.1 ± 6.3 -20.2 -3404.8 ± 32.9 -3634.3 -3404.8 ± 32.9 -3634.3
MPDO-Robust (geometric) 114.6 ± 2.3 49.7 -3166.4 ± 6.9 -3207.6 -3166.5 ± 6.9 -3207.6
MPDO-Robust-Lag (fixed) 60.7 ± 10.7 -228.5 -930.9 ± 32.3 -1118.2 -932.2 ± 30.8 -1118.2
MPDO-Robust-Lag (linear) 93.2 ± 4.7 -55.0 -2186.8 ± 6.9 -2248.8 -2187.3 ± 6.4 -2248.8
MPDO-Robust-Lag (restart) 88.3 ± 4.8 -61.3 -1880.7 ± 16.5 -2003.7 -1881.1 ± 16.1 -2003.7
MPDO-Robust-Lag (geometric) 67.2 ± 9.0 -156.8 -1046.3 ± 10.2 -1122.4 -1048.1 ± 8.0 -1122.4
MPDO-Robust-Augmented-Lag (fixed) 60.9 ± 10.6 -221.4 -938.6 ± 34.4 -1172.2 -940.1 ± 32.9 -1172.2
MPDO-Robust-Augmented-Lag (linear) 91.8 ± 4.4 -47.8 -2033.0 ± 8.0 -2054.6 -2033.3 ± 7.6 -2054.6
MPDO-Robust-Augmented-Lag (restart) 85.6 ± 5.9 -94.9 -1902.5 ± 6.5 -1954.2 -1902.7 ± 6.2 -1954.2
MPDO-Robust-Augmented-Lag (geometric) 60.0 ± 9.3 -206.9 -1095.9 ± 18.3 -1128.7 -1097.2 ± 16.3 -1128.7

Inventory Management (long runs) MDPO-Robust (fixed) 119.7 ± 1.8 72.4 -3416.7 ± 4.1 -3429.7 -3416.7 ± 4.1 -3429.7
MPDO-Robust (linear) 114.8 ± 2.3 53.6 -3166.7 ± 6.8 -3208.2 -3166.7 ± 6.8 -3208.2
MPDO-Robust (restart) 119.9 ± 1.8 74.4 -3425.2 ± 5.4 -3460.2 -3425.2 ± 5.4 -3460.2
MPDO-Robust (geometric) 114.7 ± 2.3 51.0 -3166.5 ± 6.9 -3207.6 -3166.6 ± 6.9 -3207.6
MPDO-Robust-Lag (fixed) 66.9 ± 7.1 -166.5 -837.4 ± 21.4 -939.3 -838.0 ± 20.4 -939.3
MPDO-Robust-Lag (linear) 66.8 ± 7.1 -165.7 -837.3 ± 21.4 -939.1 -838.0 ± 20.3 -939.1
MPDO-Robust-Lag (restart) 66.8 ± 7.2 -169.1 -837.3 ± 21.6 -939.8 -838.0 ± 20.5 -939.8
MPDO-Robust-Lag (geometric) 66.8 ± 7.2 -168.9 -837.3 ± 21.6 -939.7 -837.9 ± 20.6 -939.7
MPDO-Robust-Augmented-Lag (fixed) 66.8 ± 7.1 -167.7 -837.2 ± 21.5 -939.1 -837.9 ± 20.5 -939.1
MPDO-Robust-Augmented-Lag (linear) 66.8 ± 7.1 -163.4 -837.4 ± 21.3 -939.2 -838.0 ± 20.3 -939.2
MPDO-Robust-Augmented-Lag (restart) 66.8 ± 7.1 -162.8 -837.4 ± 21.2 -939.0 -837.9 ± 20.4 -939.0
MPDO-Robust-Augmented-Lag (geometric) 66.9 ± 7.1 -162.6 -837.4 ± 21.2 -939.2 -838.1 ± 20.2 -939.2

3-D Inventory Management (short runs) MDPO-Robust (fixed) 54.9 ± 0.4 -9.6 -7956.9 ± 457.5 -14747.8 -9376.8 ± 330.2 -14836.3
MPDO-Robust (linear) 56.5 ± 0.4 -8.1 -8716.0 ± 458.1 -15404.0 -9918.5 ± 343.1 -15469.0
MPDO-Robust (restart) 56.3 ± 0.4 -8.7 -8693.9 ± 455.4 -15503.7 -9866.2 ± 333.9 -15531.6
MPDO-Robust (geometric) 53.6 ± 0.4 -11.5 -7337.6 ± 459.1 -14074.2 -8846.6 ± 315.8 -14173.9
MPDO-Robust-Lag (fixed) 41.4 ± 0.5 -24.6 -1416.9 ± 446.1 -7726.9 -5088.9 ± 221.7 -8560.6
MPDO-Robust-Lag (linear) 41.8 ± 0.5 -25.5 -1584.6 ± 447.5 -8169.0 -5178.0 ± 222.3 -8982.4
MPDO-Robust-Lag (restart) 41.9 ± 0.5 -24.9 -1648.0 ± 446.1 -8138.0 -5308.1 ± 223.1 -8995.2
MPDO-Robust-Lag (geometric) 41.1 ± 0.5 -28.2 -1278.3 ± 449.6 -7571.7 -5060.9 ± 219.1 -8659.8
MPDO-Robust-Augmented-Lag (fixed) 39.5 ± 0.5 -29.6 -525.0 ± 441.2 -6861.9 -4957.0 ± 211.2 -8289.3
MPDO-Robust-Augmented-Lag (linear) 42.4 ± 0.5 -23.7 -1929.8 ± 446.9 -8420.5 -5311.8 ± 228.7 -9203.4
MPDO-Robust-Augmented-Lag (restart) 40.7 ± 0.5 -26.8 -1070.1 ± 441.9 -7347.8 -5155.6 ± 216.3 -8671.2
MPDO-Robust-Augmented-Lag (geometric) 42.8 ± 0.5 -25.1 -2123.5 ± 450.2 -8567.3 -5507.8 ± 228.9 -9303.0

3-D Inventory Management (long runs) MDPO-Robust (fixed) 87.0 ± 0.4 24.4 -23312.6 ± 525.6 -31314.1 -23459.7 ± 499.3 -31314.1
MPDO-Robust (linear) 96.3 ± 0.4 36.0 -27752.5 ± 547.7 -35936.5 -27902.6 ± 525.3 -35936.5
MPDO-Robust (restart) 90.8 ± 0.4 27.4 -25169.7 ± 523.8 -32979.5 -25265.0 ± 504.2 -32979.5
MPDO-Robust (geometric) 82.2 ± 0.4 20.0 -21022.5 ± 487.2 -28373.0 -21098.2 ± 469.0 -28373.0
MPDO-Robust-Lag (fixed) 32.8 ± 0.5 -32.4 2617.9 ± 378.6 -2601.7 -1011.4 ± 169.9 -3767.4
MPDO-Robust-Lag (linear) 33.2 ± 0.5 -31.9 2538.8 ± 368.0 -2793.7 -1353.1 ± 197.6 -4804.2
MPDO-Robust-Lag (restart) 34.0 ± 0.4 -31.2 2062.3 ± 375.3 -3333.9 -1317.1 ± 191.5 -4687.1
MPDO-Robust-Lag (geometric) 31.7 ± 0.5 -34.9 3269.5 ± 371.3 -2036.2 -1097.3 ± 173.3 -4299.3
MPDO-Robust-Augmented-Lag (fixed) 26.8 ± 0.4 -38.6 5312.6 ± 340.2 758.7 -1219.2 ± 150.4 -3867.7
MPDO-Robust-Augmented-Lag (linear) 23.5 ± 0.4 -41.1 6993.3 ± 325.6 2682.2 -963.4 ± 122.0 -3066.4
MPDO-Robust-Augmented-Lag (restart) 24.2 ± 0.5 -41.3 6811.0 ± 333.5 2581.0 -1043.3 ± 159.2 -3775.2
MPDO-Robust-Augmented-Lag (geometric) 26.5 ± 0.5 -40.3 5494.4 ± 348.4 824.2 -1644.2 ± 167.2 -4586.5
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