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ABSTRACT

Finetuning language models on domain-specific corpus is a common approach to
enhance their domain knowledge and capability. While improving performance
on domain tasks, it often brings a side-effect of forgetting of the model’s general
abilities. In this study, we analyze the effects of finetuning on language models
by dissecting its impacts on the modeling of topic, style, and factual knowledge
in text. Our method uses instruction-following LLMs such as ChatGPT to auto-
generate controlled-variable text examples which we use to probe the model. Our
findings reveal that finetuning results in significant shifts in the language model’s
topic and style priors, while actual knowledge learning only contributes to a small
fraction of the total probability change. Analysis shows that the adaptation of
topic and style priors behave akin to learning simple features: they are learned
rapidly and require little model capacity. They are also learned independently and
primarily at the beginning of a text sequence. In contrast, factual knowledge is
learned stably but slowly and requires significant model capacity. The findings
offer insights and understanding into the finer dynamics of learning and forgetting
in language models, and potentially inform future research on improving domain
adaptation and addressing the challenges of continual language learning.

1 INTRODUCTION

Large language models (LLMs) pre-trained on general corpus show impressive common-sense
knowledge, reasoning ability, and zero-shot performance on a variety of tasks (OpenAI, 2023; Tou-
vron et al., 2023; Chung et al., 2022). Finetuning LLMs on domain corpus further enhances their
domain knowledge and ability, substantially improving performance on domain tasks (Lewkowycz
et al., 2022; Chen et al., 2021; Singhal et al., 2023). However, it is also observed that finetuning
language models can lead to forgetting of previously learned information (Jang et al., 2022; Chen
et al., 2020), which is often mitigated in practice by mixing general corpus with domain data in
finetuning (Rozière et al., 2023; Ouyang et al., 2022).

To better understand the effect of finetuning on a language model (specifically, we study “domain
finetuning”of general models on a domain corpus), we perform a dissection analysis on how lan-
guage models model different factors of text. We analysis the topic (the overall theme, e.g., “lan-
guage model finetuning”), the style (the structure, tone and diction, e.g., academic writing in ICLR
paper format), and the factual knowledge (detailed factual information, e.g., methods, citation, and
results in this paper) as three main components of text. As language models represent probability
distributions of text, this dissection allows us to observe how they assign probabilities to text of dif-
ferent content during finetuning. This gives a finer and alternative perspective compared to existing
analysis based mainly on downstream task performance.

To understand the behavior of language models, a common approach is probing language models
with specifically designed examples (Srivastava et al., 2022; Lin et al., 2022). We create samples
of text with specific combinations of content and style and use them to query the language model’s
likelihood. We study open LLMs such as LLaMA (Touvron et al., 2023) domain finetuned with
the conventional causal language modeling recipe used in pre-training. Following a recent trend of
automatic data generation with LLMs (Honovich et al., 2023; Ho et al., 2023), we use ChatGPT to
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systematically generate high-quality text samples, enabling controlled-variable probing of language
models with minimal human effort in data curation.

Our investigation reveals that while domain finetuning enhances domain knowledge, it also induces
strong topic and style biases in the language model towards the training data, making the model
much less likely to generate text with other topics and styles. More interestingly, we found many
characteristics that differentiate the learning dynamics of simple topic and style biases vs. factual
knowledge. The following two findings summarizes the main contributions of our analysis:

• Domain finetuning leads to a significant change in the topic and style priors of the
language model, biasing them towards the training data. Effect caused by such bias
dominates the learning and forgetting observed in finetuning. The learning of factuals
knowledge only contributes to a small part of the change in modeling probabilities, which
offers a possible explanation of the difficulty in preserving general abilities while assimi-
lating knowledge in domain finetuning.

• Topic and style biases are learned like simple features, while factual knowledge are
learned like complex features in finetuning. Biases are learned rapidly with a strength
growing with the learning rate, and they require little model capacity to learn. Even consid-
erable dataset debiasing only partially mitigates them. The biases are also predominantly
acquired at the beginning of the text sequence, independent of other biases. In contrast,
factual knowledge is learned stably, relatively unaffected by token position, learning rate,
or data mixture. The learning of factual knowledge also requires significant model capacity
available for finetuning.

Our finding suggests that domain finetuning of language models has potential for improvement in
the light of a better understanding of the learning dynamics. They could also help us identify the
sources of catastrophic forgetting (French, 1999) in language models in order to facilitate effective
lifelong learning of general purpose LLMs. Our data 1 and code 2 are made publicly available.

2 METHOD

2.1 ESTIMATING CONTENT AND STYLE PROBABILITIES IN A LANGUAGE MODEL

Our method involves estimating content and style probabilities under a language model by querying
it with specific text examples. With a generative model p of text, we can roughly decompose the
probability of a document x into its generating factors. In this study, we assume that x is mainly
determined by three factors: topic (the main topic of text), style (the writing style), and factual (the
factual knowledge included in the text):

p(x) = p(topic, style, factual)
= p(topic)p(factual|topic)p(style|topic,factual)
= p(topic)p(factual|topic)p(style|topic) (1)

Note that the decomposition is only approximate and may not reflect the true generating process of
text. The factors, their granularity, and the order of dependence are chosen for convenience of the
analysis of the particular factor we are interested in. To simplify the analysis, we make a reasonable
assumption that the factual and style are independent given the topic.

Suppose we want to estimate the probability of different styles under model p: consider two doc-
uments xA and xB sharing an identical topic and factual content but written in styles A and B,
respectively. The likelihood ratio between these documents under p becomes the likelihood ratio of
the two styles (conditioned on the content).

p(xA)

p(xB)
=

p(styleA|topic)
p(styleB |topic)

1https://huggingface.co/datasets/xiaozeroone/pubmed_derived*
2https://github.com/xiaozeroone/lm_finetune_dissect*
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Now that we want to estimate the likelihood of style A vs. style B, we can use a dataset of document
pairs {(xiA, xiB)}Ni=1, where xiA and xiB only differ in style. All documents also have the same
topic. The likelihood ratio can be estimated by averaging over the dataset to smooth out its possible
dependency on specific documents:

log
p(styleA|topic)
p(styleB |topic)

≈ 1

N

N∑
i=1

log
p(xiA)

p(xiB)
(2)

=
1

N

N∑
i=1

log p(xiA)−
1

N

N∑
i=1

log p(xiB) (3)

which can be easily calculated for causal language models as the difference between the average
cross-entropy loss on the two set of examples {xiA}Ni=1 and {xiB}Ni=1.

The likelihood ratio between various topics can be similarly estimated by changing the order of
decomposition in Eq. 1. We do not get the raw probability, e.g., p(sports), but we can use the
likelihood ratio, e.g., p(sports)/p(politics), to learn about the topic probabilities. Though language
models do not explicitly learn a topic distribution like LDA topic models (Blei et al., 2003), they
could model an implicit topic variable through approximate Bayesian inference (Wang et al., 2023a).

For the factual factor, we are interested in the likelihood ratio of factual vs. counterfactuals, e.g.,
p(“the sky is blue”)/p(“the sky is red”), because such ratio represents the modeling of knowledge
in the model. Calculating the ratio would require pairs of documents that use factural and counter-
factuals with the same topic and style.

2.2 MANIPULATING CONTENT AND STYLE IN TEXT WITH INSTRUCTION-FOLLOWING LLMS

Documents that differ in only one factor, e.g., style, might not be easy to find in existing corpus. We
leverage the language understanding and instruction following capabilities of instruction-finetuned
LLMs to rewrite existing documents, letting it identify and manipulate the content and the style of
text. We found that with appropriate prompts, LLMs such as ChatGPT can generate high-quality
rewrites of a passage, altering the style while preserving the content and vice versa. For example, we
can explicitly ask ChatGPT to change the topic, the factual, or the style of a passage, while keeping
other elements unchanged (Figure 1):

So, there's this thing called myeloid sarcoma 
(MS), which is when you got a mass of these 
immature myeloid cells hanging out 
somewhere other than where they're supposed 
to be. It's pretty rare, but it happens 
sometimes with acute myeloid leukemia. Now, 
when it comes to kids and their testicles, MS 
can be a bit tricky to diagnose. Not a whole lot 
of cases have been reported, 

Financial fraud (FF) is defined as an illicit 
activity involving deceptive practices in the 
financial sector. It is a rare but well-known 
occurrence in the world of finance. The 
detection of complex financial fraud cases can 
sometimes pose a challenge, as demonstrated 
by the limited number of reported cases in the 
literature.

Femoral carcinoma (FC) is defined as an 
intramedullary fluid-creating structure 
composed of inexperienced femoral cells. It is 
a rare but well-known manifestation of 
immediate femoral eruption. Pediatrics tibial 
FC may present a potential diagnostic 
challenge, a matter that is emphasized in the 
few tibial pediatric FC cases reported in the 
literature.

Myeloid sarcoma (MS) is defined as an 
extramedullary mass-forming lesion 
composed of immature myeloid cells. It is a 
rare but well-known manifestation of acute 
myeloid leukemia. Pediatrics testicular MS 
may pose a possible diagnostic challenge, an 
issue that is underscored in the few testicular 
pediatric MS cases reported in the literature.

change 
topic

change 
style

change 
      factuals

Prompt for “change topic”:
Please rewrite the following passage by changing its topic to an irrelevant topic in finance.
- please keep the structure of the passage strictly unchanged
- please directly give the output without any comments

Figure 1: An illustration of changing the content and the style of a PubMed abstract with ChatGPT.

The results from rewriting show that ChatGPT effectively satisfies these strict rewriting require-
ments. For instance, it can produce new content compatible with the original text’s structure and
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style. We found that GPT-3.5 is capable enough for this task, although GPT-4 (OpenAI, 2023) pro-
duces more successful rewrites for harder cases, and its performance is less sensitive to the prompt.

Effective rewriting consists of generating good quality text and adhering to the instruction. We use
language modeling perplexity as a measure of quality and naturalness and found that the ChatGPT
generated rewrites typically have a low increase in perplexity which indicates their quality. Adher-
ence is measured by human judging whether the rewrite successfully complies with the instruction.
We found that ChatGPT has a high success rate of around 95% (see Appendix A.3 for evaluation).

3 RESULTS

3.1 ANALYSIS SETUP

Data. We utilize two corpus in our analysis: PubMed1, a collection of biomedical papers abstracts,
and C4 (Raffel et al., 2020), a large corpus of web text. PubMed is commonly used in finetuning
language models for the biomedical domain (Yasunaga et al., 2022; Luo et al., 2022; Wu et al.,
2023). We use it as a representative of domain corpus and use it to finetune LLMs. We use C4 as a
representative of general-domain corpus and use it for evaluation.

For probing the content and style probabilities as in Section 2.1, we use ChatGPT to rewrite docu-
ments from PubMed and C4 as described in Section 2.2. To make the analysis tractable, we sample
two random subsets of 1000 documents from PubMed and C4, and then rewrite the documents with
ChatGPT to generate documents with their topic, style, and factual changed. The generated derived
datasets are listed in Table 1. Instructions used for generating each dataset and examples from the
derived datasets are listed in Appendix A.1 and A.2.

Dataset Source Topic Factuals Style

Original datasets
PubMed - biomedical factual academic
C4 - nonbiomedical* factual* nonacademic*

Derived datasets
PubMed-nonbiomedical PubMed nonbiomedical factual academic
PubMed-counterfactual PubMed biomedical counterfactual academic
PubMed-casual PubMed biomedical factual casual
PubMed-rap PubMed biomedical factual rap
C4-biomedical C4 biomedical factual* nonacademic*
C4-counterfactual C4 nonbiomedical* counterfactual nonacademic*
C4-academic C4 nonbiomedical* factual* academic

Table 1: Datasets used for probing language models. Derived datasets are generated from the orig-
inal datasets by rewriting with ChatGPT. Bold indicates the factor that is changed from the original
dataset. * means “mostly”, as C4 is a general web corpus that could contain a small portion of
biomedical, academic, or counterfactual text.

In the following analysis, we calculate log-likelihood ratios by subtracting the negative causal lan-
guage modeling loss l between a derived and an original dataset as in Equation 3. For example, to
measure the likelihood of biomedical topic vs. nonbiomedical topic, we calculate

log
p(biomedical)

p(nonbiomedical)
= l(PubMed)− l(PubMed-nonbiomedical)

While we focus on the PubMed corpus in most parts of our analysis, we also apply the same protocol
to two more domain corpus, Pile of Law Henderson et al. (2022) in the legal domain and Amazon
reviews Ni et al. (2019) in the customer review domain, for comparative analysis. Results of limited
experiments on those two domains are deferred to Appendix D.

Finetuning setup. We finetune three language models, GPT-2 XL (Radford et al., 2019), LLaMA
2 7B and LLaMA 2 13B (Touvron et al., 2023), on the PubMed abstracts using conventional causal

1https://pubmed.ncbi.nlm.nih.gov. We use the annual baseline data of 2023.
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Figure 2: Change of likelihood ratios of content and style factors with the amount of training,
averaged over three runs (shaded area represents max/min values). Significant bias towards the
training topic and style is observed in finetuning.

language modeling loss. We finetune models on subsets of different sizes, up to 1 million abstracts.
We use both full-finetuning and low-rank finetuning (Hu et al., 2022). We use AdamW optimizer
(Loshchilov & Hutter, 2019) with a learning rate of 3e-6 for full-finetuning LLaMA and 1e-4 for
full-finetuning GPT-2 XL and low-rank finetuning of LLaMA, all with 10% warm-up and linear
learning rate decay. Learning rates are selected for each model using a grid search on a validation
set. The batch size is set to 64. Other details of finetuning can be found in Appendix B.

3.2 THE CHANGING TOPIC AND STYLE PRIORS DURING LM FINETUNING

Domain finetuning leads to significant change in topic and style probabilities. Figure 2 shows
the change of likelihood ratios between different topics, styles and factual during finetuning. The
likelihood of the dominant topic (biomedical) and style (academic) in the PubMed corpus in-
creases significantly during finetuning with respect to other topics and styles. This implies an
increase in the prior probability of the training topic and style and a decrease of other topics
and styles in the finetuned model. Comparing the likelihood ratio of styles academic/casual with
academic/rap, it is clear that the probabilities of styles that are more different from the train-
ing style (rap) have greater reduction than styles that are closer to the training style (casual).

Figure 3: Likelihood ratios of topics conditioned
on different styles and vice versa (LLaMA 2 13B).
Likelihood ratios of topics and styles are largely
independent of each other.

All the likelihood ratios change monotoni-
cally, with most showing an approximate log-
linear relationship with the amount of finetun-
ing data. The topic and style prior probabilities
are continually biasing towards the finetuning
data. The factual/counterfactual likelihood ra-
tio changes at a slower rate, reflecting the learn-
ing of new factual knowledge from the domain
data and the forgetting of factual knowledge in
the pre-training data. We show that the factual
ratio correlates well with downstream question
answering performance in Appendix D.

Learned topic and style biases are indepen-
dent. Figure 3 shows the likelihood ratios of
topics conditioned on different styles and of
styles conditioned on different topics. Notably,
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Figure 4: Ablating learning on PubMed and forgetting on C4 by evaluating on derivative datasets
(LLaMA 2 13B). Colored area show the loss change introduced by each factor. “- factuals” means
switching from factual to corresponding counterfactual dataset. The rest “-” and “+” mean removing
or adding a style or a topic from the dataset. The graphs show that topic and style adaptation
contributes to the main part of the loss change in both learning and forgetting.

the likelihood ratios of topics are changing similarly under different styles and vice versa, except
for very small training sizes. This suggests that the learned topic and style biases in finetuning are
generally independent of each other.

This independence would allow us to drop the conditioning in the likelihood ratios in Equation 2
and let us study the change of topic and style probabilities separately.

3.3 ABLATING LEARNING AND FORGETTING IN LM FINETUNING

Evaluation on derived datasets allows us to ablate the effect of learning and forgetting in language
model finetuning by introducing or removing one factor at a time. Here, we use learning to refer
to the loss reduction on the domain corpus and forgetting to refer to the loss increase on a general
corpus (which roughly represents the data distribution in pre-training) in language model finetuning.

Figure 4 shows the ablation results, with learning measured on PubMed and forgetting measured on
C4. The adaptation to biomedical topic and academic style contributes to the main part of the loss
reduction on PubMed and loss increase on C4. This shows that the change of topic and style prior
probabilities is the main cause of the observed learning and forgetting in language model finetuning.

However, the goal of finetuning on domain corpus is usually acquiring domain knowledge rather
than adapting to the topic and style of the domain text. We can see that the learning and forgetting
of factuals is steadily increasing with the amount of training data, although it only contributes to
a small portion of the total loss change. This shows that adaptation to domain topic and style is a
significant and probably unavoidable side effect of domain finetuning. This overly strong adaptation
is one possible reason for the catastrophic forgetting observed in the finetuning of language models.

3.4 CHARACTERISTICS OF BIAS LEARNING AND KNOWLEDGE LEARNING

We next delve into the distinct characteristics of bias learning and factual knowledge learning during
language model finetuning.

Topic and style biases are most significant on the first few tokens and are learned quickly. To
look at more details on how each factor affects the probability of a document, we compute likelihood
ratios separately for tokens at various positions within the text. Figure 5 shows that the likelihood
ratios are clearly changing in different ways for the first few tokens and later tokens. The topic
and style biases are much more significant at the beginning of the document (position ≤10) and are
quickly learned with 1-10k documents. This implies that in unconditional generation, the finetuned
language model will be much more likely to generate text with the topic and style of the finetuning
data by preferring those topics and styles early in generation.

For later tokens (position ≥100), the topic and style biases are much weaker in comparison but are
growing steadily with increased training data. The biases in later tokens seem quite consistent re-
gardless of position till the end of text, thus contributing significant change to the whole document’s
probability. This part likely affects the conditional generation of language models by slightly biasing
the generated text towards the topic and style of the finetuning data in each generation step.
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Training sizes

Figure 5: Likelihood ratios by tokens at different positions in the document (LLaMA 2 13B). Inside
circles are zoomed-in views of the curve at around position 102. Topic and style biases are most
significant at the beginning of a sequence and are learned quickly with little training data.

Compared to topic and style biases, the learning of factuals appears more uniform across positions.
This is because factual information can appear at any position, and there can be independent appear-
ances of multiple factuals within one document. The difference in learning speed is likely that topic
and syle are simple features that are easier to learn, and that the model may alrady seen these features
during pre-training on general corpora, unlike factual knowledge which are more domain-specific.

Topic and style biases require minimal capacity to learn, knowledge learning requires much
more. To examine the different natures of bias and knowledge learning, we finetune LLaMA 2 7B
with variable numbers of trainable parameters to simulate different capacities available during fine-
tuning. In full-finetuning, all parameters are tunable. In low-rank finetuning, only a small number
of parameters are tunable, controlled by the rank r. For example, for r = 8, 2, and 1, the number of
tunable parameters is 0.3%, 0.07%, and 0.04% of the total model parameters.

Figure 6 compares the change of likelihood ratios with full and low-rank finetuning at different r.
Interestingly, topic and style biases are learned comparably to full finetuning with just 0.02% of tun-
able parameters. On the other hand, factual learning is significantly hindered by low-rank finetuning
at large training sizes. This suggests that the changes of topic and style probabilities are simple
biases that only require adjustments in a low-dimensional subspace of the model’s representations,
whereas factual knowledge learning may encapsulate encoding a large number of complex patterns
which requires much more model capacity.

(Side note: the learning of factuals can cause a decrease of l(PubMed) therefore is also affecting the
topic ratio p(biomedical)/p(nonbiomedical) on PubMed. When capacity is limited, the topic ratio
and factual ratio simultaneously reduce on Pubmed in Figure 6.)

Figure 6: Likelihood ratios under different model
capacities for finetuning (LLaMA 2 7B). Larger
rank r corresponds to more trainable parameters.
Topic and style biases are learned with minimal
capacity. Factual learning requires much more.

Topic and style biases magnify with learning
rate, knowledge learning does not. We also
examine the effect of learning rate on the learn-
ing of different factors. Figure 7 shows that the
learned topic and style biases increase with the
learning rate and are non-saturating, while the
learning of factual remains consistent and does
not increase with the learning rate.

This shows that a large learning rate magnifies
learned bias, which is also correlated with the
forgetting of general abilities (evaluated in Ap-
pendix D). A smaller learning rate might suf-
fice for knowledge learning and offers a better
tradeoff between learning new knowledge and
preserving existing knowledge and abilities in
domain finetuning.
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Figure 7: Likelihood ratios with different learn-
ing rates for finetuning (LLaMA 2 7B). Topic
and style biases magnifies with larger learning
rate, while factual learning is unaffected.

Figure 8: Likelihood ratios of training with dif-
ferent percentages of Wikipedia text (LLaMA 2
7B). Mixing a small portion of general text has
limited effect on reducing the learned biases.

Mixing unbiased data reduces learned bias, but only to a limited degree. Mixing general cor-
pus with domain corpus is a common strategy to avoid forgetting and over-adaptation. We examine
the effect of data mixture using likelihood ratios in Figure 8, mixing Wikipedia text1 into the PubMed
corpus. The results indicate that mixing a small portion of general text reduces the learned biases,
but the reduction is limited and only increases modestly with the proportion of general text. This
shows that while it is possible to reduce the learned biases without affecting knowledge learning by
mixing a small portion of general corpus, eliminating or considerably attenuating the biases may
require a high general-to-domain data ratio, making it very uneconomic in terms of training cost.

4 RELATED WORK

Dataset bias and shortcut learning. Datasets used in machine learning often inevitably contain
biases in the data distribution (Torralba & Efros, 2011). These superficial correlations in the data
can be learned as a shortcut to achieve good performance on the training set (Geirhos et al., 2020).
The issue is more pronounced in neural networks due to the tendency to learn simple features first, a
phenomenon known as spectral bias (Rahaman et al., 2019; Xu et al., 2019). By adapting to biases,
language models can achieve loss reduction without learning much underlying knowledge. Such
“surface learning” (Geirhos et al., 2020) is analogous to the “principle of least effort” in linguistics
where language speakers generally try to minimize effort in communication (Chang, 2016).

Continual learning in language models. Finetuning pre-trained language models can improve
model’s performance on a new domain (Chen et al., 2021; Lewkowycz et al., 2022) or a series of
domains via continual pre-training (Gupta et al., 2023; Jin et al., 2022; Ke et al., 2023). Jang et al.
(2022) specifically study knowledge learning in continual pre-training. Forgetting is frequently
observed in continual pre-training and all the above work implement techniques to alleviate forget-
ting. Rehearsal (Chaudhry et al., 2019), regularization (Kirkpatrick et al., 2017), parameter isolation
(Rusu et al., 2016), or a combination of multiple methods are often used. Mixing general corpus
into the finetuning data also serves as a particular form of rehearsal.

Data generation with LLMs. LLMs such as GPT-3 (Brown et al., 2020) have been used to label
examples for a variety of tasks (Liang et al., 2021; Hsieh et al., 2023). The generated labels can be
used to train smaller specialized models as a form of knowledge distillation (Hinton et al., 2015).
LLMs have also been used to generate rationales and reasoning steps, enabling the transfer of rea-
soning abilities (Fu et al., 2023; Ho et al., 2023; Li et al., 2023). They also generates instruction data
for instruction-tuning and alignment of LMs (Wang et al., 2023b; Honovich et al., 2023).

Decomposition analysis of text. Separating the content and form has been a traditional approach
in literary theories Eagleton (2011). Content analysis includes aspects like themes, ideas, and the
narrative, while form (style) analysis deals with the use of literary devices like metaphors, tones, and
the organization of the text. Mutiple linguistic theories further decompose the content of text into an
overall topic and specific information, for example topic-focus articulation (Sgall et al., 1986) and
theme-rheme analysis (Halliday, 1994).

120230901 dump from https://dumps.wikimedia.org, English only
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In machine learning, the three components constitute invidividual topics of study. For example,
topic modeling (Hofmann, 1999; Blei et al., 2003) studies the topic distribution of text, style trans-
fer studies manipulation of style (Shen et al., 2017) and how to separate style from content (Fu et al.,
2018). Information extraction (Brin, 1998; Banko et al., 2007) studies identifying factual informa-
tion from text. Also, in document modeling, several work uses a hierachical structure to model the
overall theme and specific information in text(Lin et al., 2015; Li et al., 2015; Nawrot et al., 2022),
in a similar spirit as we did in this work.

5 DISCUSSION

Domain corpus used in language model finetuning can often exhibit significant homogeneity in topic
and style, creating a statistically simple and salient feature easily learned by the model (Rahaman
et al., 2019). We show that such adaptation creates a strong bias in the language model towards the
training distribution. The bias stably increases with the amount of training data and can overshadow
the learning of knowledge. The presence of a strong bias potentially makes the evaluation of knowl-
edge learning more difficult, as an overly strong bias might interfere with the general reasoning
abilities of the model.

Our observation shows that the topic and style biases are learned quickly and require little model
capacity, which could mean that bias learning is hard to avoid in domain finetuning. Mixing general
corpus in the finetuning data reduces the bias but adds significant training cost. This also poses a
challenge for lifelong learning of language models. For example, when LLMs are used as general
purpose agents, we want them to learn new knowledge from data without adapting too much to any
individual data distribution.

While the current study aim to uncover the learning dynamics in domain finetuning, we believe that
by identifying bias learning as a major hindrance in domain finetuning and showing the distinct be-
haviors of bias learning and knowledge learning, we also pointed out potential directions to improve
knowledge learning and forgetting mitigation. For example, based on the observation that bias learn-
ing mostly happens on the first few tokens of each sequence, we could mask out the loss from the
first few tokens in the finetuning objective to expect reduced bias learning. Based on the different
capacity requirement of bias and knowledge learning, in principle we could use a small low-rank
adapter to learn the bias, and subtract its weights from the full finetuned model to remove the bias
while keeping the learned knowledge. We leave the exploration of such methods for future work.

Limitations. While our analysis leads to interesting findings on the learning dynamics of language
models, it is limited in the following ways:

• Separability of text-generating factors: the decomposition of generating factors is only
approximate and there may not be a generally agreed way to decompose. The boundary
between content and style is not always clear, for example, terminology use is part of
content and is also part of style. Interdependence between content and style sometimes
prevents changing one factor without changing the other. In most domain corpora, the
separation is clear enough for our analysis, evidenced by the quality of rewritten documents.

• Quality of rewriting with LLMs: several issues may limit the quality of generated rewrites.
Safety alignment: requests for rewriting in the biomedical domain are sometimes rejected
by LLM due to safety alignment to reduce harmful outputs (Kenton et al., 2021). Pre-
training bias: LLMs may tend to generate text with certain topics or styles under a general
instruction, which may create a bias in the generated data. Hallucination (Ji et al., 2023):
LLMs have a certain probability of generating factually inaccurate content.

• Data dependency: the quantitative observations would reflect certain characteristics of the
corpus (for example, the style adaptation in training depends on the style distribution in the
corpus). We compare with more domain corpus in Appendix D and found our qualitative
observations generalizes to other domains.

• Limited training: we only finetuned on a maximum of 1 million documents (<1B total
tokens). Although we observe a consistent trend of learning of different factors with the
amount of training data, it may not generalize to very large training sizes.
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A DATA

A.1 DATASET GENERATION

Instructions used for each generating each derived datasets are listed below. A non-cherry picked
example is also provided.

We found that ChatGPT (GPT-3.5-turbo) is capable enough for this task with some tuning of the
prompts. We also found that GPT-4 require significantly less tuning of the prompts to produce
successful rewrites, and can produce successful rewrites for examples on which ChatGPT fails. We
use ChatGPT (GPT-3.5-turbo) with the following prompts for generating the derived datasets for the
analysis.

We use nucleus sampling with p=0.9 to reduce the likelihood of generating low-quality rewrites.

PubMed-nonbiomedical

Prompt:

Please rewrite the following passage by changing its topic to an irrelevant topic in art, finance,
education or software.
- please keep the structure of the passage strictly unchanged
- please directly give the output without any comments

PubMed-counterfactual

Prompt:

Please change the biomedical terms in the following passage into other random biomedical terms
so that the biomedical knowledge is disrupted.
- please keep the main topic and the words that are not biomedical terms unchanged
- please directly give the output without any comments

PubMed-casual

Prompt:

Please rewrite the following passage using a casual style.
- please keep the content (including all terminology) strictly unchanged
- please directly give the output without any comments

PubMed-rap

Prompt:

Please rewrite the following passage using the style of rap.
- please keep the content (including all terminology) strictly unchanged
- please directly give the output without any comments

C4-biomedical

Prompt:

Please rewrite the following passage by replacing its main topic with a biology or medicine related
topic (for instance, some disease, diagnosis, drug, or treatment).
- please keep the style and the structure of the passage unchanged
- please directly give the output without any comments

C4-counterfactual

Prompt:

Please swap all the nouns in the following passage into random related nouns so that every piece of
information given become random and completely different from the original.
- every piece of information must be changed
- please directly give the output without any comments

C4-academic
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Prompt:

Please rewrite the following passage using the style of an abstract of a research paper (without title).
- please keep all the content strictly unchanged
- please directly give the output without any comments

We randomly sampled 1000 documents from PubMed and C4 (the validation split) respectively
(each document have at least 500 characters), and generated derived datasets from the samples. The
generated datasets are listed in Table 1.

A.2 EXAMPLES OF GENERATED TEXT

PubMed (original)

According to preliminary data, seroconversion after mRNA SARS-CoV-2 vaccination might be unsatisfactory
in Kidney Transplant Recipients (KTRs). However, it is unknown if seronegative patients develop at least a
cellular response that could offer a certain grade of protection against SARS-CoV-2. To answer this question,
we prospectively studied 148 recipients of either kidney (133) or kidney-pancreas (15) grafts with assessment
of IgM/IgG spike (S) antibodies and ELISpot against the nucleocapside (N) and the S protein at baseline and 2
weeks after receiving the second dose of the mRNA-1273 (Moderna) vaccine. At baseline, 31 patients (20.9%)
had either IgM/IgG or ELISpot positivity and were considered to be SARS-CoV-2-pre-immunized, while 117
(79.1%) patients had no signs of either cellular or humoral response and were considered SARS-CoV-2-naı̈ve.
After vaccination, naı̈ve patients who developed either humoral or cellular response were finally 65.0%, of
which 29.9% developed either IgG or IgM and 35.0% S-ELISpot positivity. Factors associated with vaccine
unresponsiveness were diabetes and treatment with antithymocytes globulins during the last year. Side effects
were consistent with that of the pivotal trial and no DSAs developed after vaccination. In conclusion, mRNA-
1273 SARS-CoV-2 vaccine elicits either cellular or humoral response in almost two thirds of KTRs.

PubMed-nonbiomedical

According to preliminary data, the use of grayscale in abstract painting might be unsatisfactory in terms of
conveying emotions. However, it is unknown if paintings created without grayscale can still evoke a certain
level of emotional response. To answer this question, we conducted a prospective study involving 148 artists
who work primarily with either acrylic (133) or oil (15) paints, assessing the use of grayscale and color satu-
ration in their artworks. The assessment was done at baseline and 2 weeks after the artists experimented with
incorporating grayscale into their paintings. At baseline, 31 artists (20.9%) had already used grayscale or ex-
perimented with it in their artworks, and were considered pre-immunized to grayscale, while 117 (79.1%) artists
had no signs of using grayscale and were considered grayscale-naı̈ve. After the experiment, grayscale-naı̈ve
artists who incorporated grayscale into their paintings accounted for 65.0% of the participants, with 29.9%
using grayscale as part of their color palette and 35.0% achieving grayscale effects through techniques such
as cross-hatching. Factors associated with unresponsiveness to grayscale experimentation were the artists’
preference for vibrant colors and their training in traditional painting techniques. Overall, the results indicate
that the use of grayscale in abstract paintings can elicit a response in almost two thirds of artists.

PubMed-counterfactual

According to preliminary data, seroconversion after DNA HIV-1 vaccination might be unsatisfactory in Brain
Tumor Recipients (BTRs). However, it is unknown if seronegative patients develop at least a cellular response
that could offer a certain grade of protection against HIV-1. To answer this question, we prospectively studied
148 recipients of either brain (133) or brain-pancreas (15) grafts with assessment of IgM/IgG spike (S) anti-
bodies and ELISpot against the nucleocapside (N) and the S protein at baseline and 2 weeks after receiving
the second dose of the DNA-7532 (GenBio) vaccine. At baseline, 31 patients (20.9%) had either IgM/IgG or
ELISpot positivity and were considered to be HIV-1-pre-immunized, while 117 (79.1%) patients had no signs
of either cellular or humoral response and were considered HIV-1-naı̈ve. After vaccination, naı̈ve patients
who developed either humoral or cellular response were finally 65.0%, of which 29.9% developed either IgG
or IgM and 35.0% S-ELISpot positivity. Factors associated with vaccine unresponsiveness were diabetes and
treatment with antithymocytes globulins during the last year. Side effects were consistent with that of the pivotal
trial and no DSAs developed after vaccination. In conclusion, DNA-7532 HIV-1 vaccine elicits either cellular
or humoral response in almost two thirds of BTRs.

PubMed-casual

17



Published as a conference paper at ICLR 2024

So, here’s the deal: the early data suggests that people who have undergone kidney transplants (yeah, those
Kidney Transplant Recipients, or KTRs) might not be getting a good immune response after getting the mRNA
SARS-CoV-2 vaccine. But here’s the thing we don’t know yet: even if these patients don’t have antibodies,
could they still have some sort of cellular response that gives them at least some level of protection against
SARS-CoV-2? To find out, we did a study with 148 people who got either a kidney (133 of them) or a kidney-
pancreas (15 of them) transplant. We checked their IgM/IgG spike (S) antibodies and did ELISpot tests to see
their response to the nucleocapside (N) and S proteins before the vaccine and two weeks after they got the
second dose of the mRNA-1273 (Moderna) vaccine. At the start, we found that 31 patients (that’s about 20.9%
of them) already had either IgM/IgG antibodies or a positive ELISpot result, meaning they had some level of
pre-existing immunity to SARS-CoV-2. The other 117 patients (about 79.1% of them) showed no signs of either
a cellular or humoral response and were considered SARS-CoV-2-naı̈ve. After getting vaccinated, we found
that 65.0% of the initially naı̈ve patients ended up developing either a humoral or a cellular response. Out of
those, 29.9% had either IgG or IgM antibodies, and 35.0% had a positive S-ELISpot result. We also looked at
some factors that might be linked to not responding well to the vaccine, and found that diabetes and treatment
with antithymocyte globulins in the past year were associated with a lower response. The side effects were
pretty much what we expected based on the main trial, and we didn’t see any development of donor-specific
antibodies after vaccination. So, to wrap it up, the mRNA-1273 SARS-CoV-2 vaccine seems to trigger either a
cellular or a humoral response in almost two-thirds of kidney transplant recipients.

PubMed-rap

Yo, check it out, here’s the deal,
Preliminary data reveals what’s real,
Seroconversion after SARS-CoV-2 vax,
Might not be satisfactory in KTRs, that’s the facts.
But hold up, can seronegative patients shine?
With some cellular response to draw the line,
Against SARS-CoV-2, can they protect?
That’s the question we’re here to dissect.
Prospective study, 148 recipients in sight,
Kidney or kidney-pancreas, they’re in the fight,
Testing IgM/IgG spike antibodies, so fly,
ELISpot against N and S, let’s give it a try.
At baseline, 31 patients were pre-immunized,
With IgM/IgG or ELISpot, they were baptized,
But 117 patients showed no response at all,
SARS-CoV-2-naı̈ve, they stood tall.
After vaccination, the game changed,
65.0% of the naı̈ve were rearranged,
With humoral or cellular response in their veins,
29.9% with IgG/IgM, the victory remains.
And 35.0% with S-ELISpot positivity,
They’re building defenses with ferocity,
Factors linked to unresponsiveness, it’s true,
Diabetes and antithymocyte treatment can skew.
Side effects aligned with the pivotal trial,
No DSAs developed, that’s a smile,
In conclusion, the mRNA-1273 vaccine,
Brings cellular or humoral response on the scene.
KTRs, listen up, almost two-thirds rejoice,
With immunity rising, you have a choice,
To fight off SARS-CoV-2, stand tall and bold,
Thanks to Moderna’s vaccine, the story unfolds.

A.3 QUALITY ASSESSMENT OF GENERATED TEXT

Quality. The per-token perplexity of the original and derived datasets under LLaMA 2 13B is
listed in Table 2. We can see that the perplexity of the derived datasets are higher than the origi-
nal datasets but not much (except for the counterfactual rewrites which produce text contradicting
common knowledge, therefore can have high perplexity under a language model). The generated
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text are of acceptable quality and are not significantly different from the original text in terms of
natural-ness judged by a language model.

Dataset Perplexity

Original datasets
PubMed 5.66
C4 6.68

Derived datasets
PubMed (counterfactual) 9.29
PubMed (nonbiomedical) 9.04
PubMed (casual) 6.20
PubMed (rap) 8.13
C4 (counterfactual) 13.03
C4 (biomedical) 7.38
C4 (academic) 6.80

Table 2: Perplexity of original and derived datasets under LLaMA 2 13B.

Adherence. We also evaluate the adherence of the generated text to the instruction. We randomly
sampled 100 examples from each derived dataset and asked human annotators to label whether the
generated text successfully comply to the instruction. “Good” means the generated text generally
comply to the instruction, “partial” means the generated text only comply to part of the instruction
(for example, the text was successfully changed to the requested style but the content was also
significantly changed), and “bad” means the generated text does not comply to the instruction. The
results are listed in Table 3. We can see that the generated text are generally of high adherence to
the instruction. It seems that changing style has a higher success rate than changing content, which
could mean that identifying and changing style is easier for a LLMs.

Dataset Good Partial Bad

PubMed (counterfactual) 93 6 1
PubMed (nonbiomedical) 97 2 1
PubMed (casual) 100 0 0
PubMed (rap) 100 0 0
C4 (counterfactual) 97 3 0
C4 (biomedical) 94 5 1
C4 (academic) 96 3 1

Table 3: Adherence of generated text to the instruction.

B FINETUNING SETUP

To determine the learning rate, we perfomed grid search and train models under 100k documents
with learning rates {1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4} for full-finetune and {1e-5, 3e-5, 1e-4, 3e-4,
1e-3, 3e-3} for low-rank finetune. The final learning rate is chosen as the one that gives the lowest
perplexity on the validation set. We use a batch size of 64.

During finetuning, we treat each document as a separate sequence to keep the structure of the docu-
ment for better analysis of per-position likelihoods. This is different from a common LM pre-training
setup where all the documents are concatenated together. All documents are truncated to a maximum
of 1024 tokens.

Finetuning is performed with Huggingface’s transformer library (Wolf et al., 2020), with bfloat16
mix-precision on NVIDIA A100 GPUs.
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C RESULTS ON MORE DOMAIN DATA

To explore the effect of finetuning on other domain data, we perform similar analysis on the legal
domain and the customer review domain with the setup in Section 3.1. For the legal domain, we
use the Pile of Law corpus (Henderson et al., 2022). We finetune LLaMA 2 7B on up to 1M court
opinions from the “Court Listener Opinions” subset of the Pile of Law corpus. For the customer
review domain, we use the Amazon reviews dataset (Ni et al., 2019). We finetune LLaMA 2 7B
on up to 1M reviews of automotive products from the “automotive” subset of the Amazon reviews
dataset. We also rewrite the original documents to generate derived datasets. The datasets used are
listed in Table 4.

Dataset Source Topic Factuals Style

Original datasets
Pile of Law - legal factual court opinion
Amazon reviews - automotive factual customer review

Derived datasets
Pile of Law (nonlegal) Pile of Law nonlegal factual court opinion
Pile of Law (counterfactual) Pile of Law legal counterfactual court opinion
Pile of Law (casual) Pile of Law legal factual casual
Pile of Law (rap) Pile of Law legal factual rap
Amazon reviews (nonautomotive) Amazon reviews nonautomotive factual customer review
Amazon reviews (counterfactual) Amazon reviews automotive counterfactual customer review
Amazon reviews (academic) Amazon reviews automotive factual academic
Amazon reviews (rap) Amazon reviews automotive factual rap

Table 4: Datasets used for probing language models on the legal and the customer review domain.
Refer to Table 1 for explanation of the columns.

Figure 9 and 10 shows the change of likelihood ratios between different topics, styles and factual
during finetuning on the legal and the customer review domain. Similar to the biomedical domain,
the likelihood of the dominant topic and style in the training corpus increases significantly during
finetuning with respect to other topics and styles. The Pile of Law data has a dominant topic of
legal affairs and a dominant style of court opinion. The Amazon reviews data has a dominant
topic of automotive products but the style is generally casual and more diverse than other domain
text, therefore the adaptation of style prior is less significant. This shows that the presentation of
dominant topic and style in the training corpus would invariably leads to strong adaptation of topic
and style priors under the present language model finetuning regime.

For all the domains, the factual/counterfactual likelihood ratio changes at a significantly slower rate
than the topic and style likelihood ratios, showing that the effect of topic and style adaptation on text
modeling probabilities are much more significant than the effect of knowledge learning.

D ADDITIONAL LM EVALUATION

Language model evaluation: general abilities We evaluate LLaMA 2 7B finetuned in our anal-
ysis on Hellaswag (Zellers et al., 2019), ARC (Challenge Set) (Clark et al., 2018) and MMLU
(Hendrycks et al., 2021), using the Language Model Evaluation Harness framework Gao et al.
(2021). Zero-shot and 5-shot performance is presented in Table 5.

Learning rate Training size Hellaswag ARC-Challenge MMLU
0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

Baseline - 76.0 78.1 46.2 53.2 42.6 46.6
3e-6 1M 76.5 77.8 46.0 52.5 42.2 46.5
1e-5 1M 75.7 76.9 44.4 50.0 40.5 45.0
2e-5 1M 73.9 75.2 41.7 46.1 37.3 42.1

Table 5: Evaluation of LLaMA 2 7B finetuned on PubMed.
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Figure 9: Change of likelihood ratios of con-
tent and style factors with the amount of
training on Pile of Law.

Figure 10: Change of likelihood ratios of con-
tent and style factors with the amount of train-
ing on Amazon reviews.

Language model evaluation: medical knowledge To verify that medical knowledge is learned
through finetuning on the PubMed corpus, we evaluate LLaMA 2 7B on clinical subsets from
MMLU, following the Med-PaLM 2 paper (Singhal et al., 2023). Results (5-shot) are listed in Table
6. We further plot the factual/counterfactual likelihood ratio and the average accuracy on MMLU
clinical subsets on the same graph in Figure 11. The two curves show a similar trend, indicating
that the factual/counterfactual likelihood ratio is indeed an indicator of the learning of biomedical
knowledge, to the degree that MMLU clinical subsets reflects knowledge learning on PubMed.

Training size Anatomy Clinical
knowledge

College
biology

College
medicine

Medical
genetics

Professional
medicine

Baseline 46.7 45.7 46.5 41.0 51.0 51.8
1K 45.2 46.0 46.5 42.2 52.0 51.8
10K 45.9 46.0 45.1 42.2 53.0 52.6

100K 47.4 46.4 46.5 43.4 52.0 52.9
1M 48.1 46.4 46.5 42.8 54.0 54.4

Table 6: Evaluation of LLaMA 2 7B finetuned on PubMed.

Figure 11: Comparing the change in the factual/counterfactual likelihood ratio and question answer-
ing accuracy on MMLU clinical subsets.
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