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ABSTRACT

The autoencoder model uses an encoder to map data samples to a lower dimen-
sional latent space and then a decoder to map the latent space representations back
to the data space. Implicitly, it relies on the encoder to approximate the inverse of
the decoder network, so that samples can be mapped to and back from the latent
space faithfully. This approximation may lead to sub-optimal latent space repres-
entations. In this work, we investigate a decoder-only method that uses gradient
flow to encode data samples in the latent space. The gradient flow is defined based
on a given decoder and aims to find the optimal latent space representation for any
given sample through optimisation, eliminating the need of an approximate inver-
sion through an encoder. Implementing gradient flow through ordinary differen-
tial equations (ODE), we leverage the adjoint method to train a given decoder. We
further show empirically that the costly integrals in the adjoint method may not
be entirely necessary. Additionally, we propose a 2nd order ODE variant to the
method, which approximates Nesterov’s accelerated gradient descent, with faster
convergence per iteration. Commonly used ODE solvers can be quite sensitive
to the integration step-size depending on the stiffness of the ODE. To overcome
the sensitivity for gradient flow encoding, we use an adaptive solver that priorit-
ises minimising loss at each integration step. We assess the proposed method in
comparison to the autoencoding model. In our experiments, GFE showed a much
higher data-efficiency than the autoencoding model, which can be crucial for data
scarce applications.

1 INTRODUCTION

Auto-encoders are wildly successful as artificial neural network architectures for unsupervised learn-
ing Vincent et al. (2010). The appeal is centred on learning a lower dimensional representation of
the input data allowing extremely efficient computation. The idea is simple as it is brilliant, provided
there is correlation between the input data the latent dimension can be leveraged to output a model
of the input. Nevertheless, the encoding process is semi-arbitrary as there is no direct learning of
the encoder, rather than the decoder is optimised to rectify the encoding process. This sub-optimal
latent space representations can lead to inefficient learning, Park et al. (2019). In part to compensate
for this learning process extensive work has been done to regularise the latent space more directly,
Tschannen et al. (2018).

Auto-encoders depend on the encoder to approximate the inverse of the decoder network, this ap-
proximate inversion requires to be learned with additional parameters and therefore may get in the
way of learning with fewer data and adversely affect the latent space structure. Some research in
flow models, Dinh et al. (2015), can resolve this issue by using invertible maps however they are con-
strained to equi-dimensional latent representations. What if we can eliminate the need of an encoder
neural network altogether, retain the advantage of lower-dimensional latent space, while obtaining
a directly optimised representation? This may allow us to create a model that can map images to
lower dimensional latent space and reconstruct faithfully with fewer images and less iterations

In this work we propose a novel encoding method namely a gradient flow encoding (GFE). This
decoder-only method at each training step primarily determines the optimal latent space representa-
tion for each sample via a gradient flow, namely, an ordinary differential equation (ODE) solver. The
decoder is updated as usual by minimising the loss between input image and its reconstruction re-
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trieved from the optimal latent space representation for the image. The method, albeit being slower,
is considerably superior in data efficiency and ultimately obtains better reconstructions with very few
number of training samples when compared to a conventional auto-encoder (AE). A side-advantage
of GFE is ’halving’ the size of the AE neural network, no need for an encoder.

Using a gradient flow for encoding can be a computationally challenging task. Traditionally, ODE
solvers with adaptive step size are propagating the variables in such a manner as to minimise the
error of integration. These solvers are crucial for the accuracy of the ODE solution. However, they
also impede training of ODE based neural networks if the underlying ODE defined by the network
becomes stiff , Chen et al. (2018); Grathwohl et al. (2019). Adaptive step size becomes too small and
integration takes long. When using GFE at each training step, using an ODE solver with adaptive
step size can be a debilitating factor.

For integrating gradient flow in an encoding scheme, we observe that the exact path of the gradient
flow may be less important than the final point of convergence. Therefore, adapting step size to
minimise error in integration is not necessarily the best approach. Using a fixed step size is also not
an option as it may result in poor convergence and stability issues in training the decoder network.
Here, we develop an adaptive solver for the gradient flow, which adapts each optimisation (’time’)
step such as to directly minimise the distance, i.e. loss between input and output. Furthermore,
this adaptive minimise distance (AMD) solver is modified to include a loss convergence assertion
to improve performance. The AMD method can possibly make gradient flow a computationally
feasible module to be used in neural network architectures.

Here, an adjoint method, Butcher & Goodwin (2008), as also used in other recent works Chen et al.
(2018), is implemented to properly optimise the latent space and decoder of the GFE. Consequently,
for efficiency considerations we show that a full adjoint method is not necessarily needed and an
approximation is utilised. Furthermore, we present the implementation of a Nesterov 2nd order
ODE solver with accelerated convergence per training data size. Ultimately, the approximate GFE
utilising AMD (GFE-amd) is employed for testing and comparison with a traditional AE solver.

2 RELEVANT WORKS

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation Park
et al. (2019): The authors replace the auto-encoder network with an auto-decoder where, a similar
to here, latent vector z is introduced. z represents the encoding of a desired shape. They map this
latent vector to a 3D shape represented by a continuous signed Distance Function. I.e. For shape i
with function fτ and coordinate x, fτ (zi,x) ≈ SDF i(x). By conditioning of the network output
on a latent vector, they model multiple SDFs with a single neural network.

3 METHOD

An auto-encoder funnels an input y into a lower dimensional latent space representation z using an
encoder network E and reconstructs it back using a decoder network D. Here, the encoder E and
decoder D networks can be thought as approximate inverses of each other. During training, each
sample is mapped to the latent space using E, mapped back using D and the reconstruction error is
minimised with respect to the parameters of both of the networks.

At any point in this training process, given the decoder an optimal latent space representation for
each sample can be defined as the z∗ that minimises the reconstruction error. The encoder however,
does not map the sample to that optimal z∗. So, instead of trying to get the reconstruction of z∗ to get
closer to the sample, its parameters are updated to get the reconstruction of E(z) to get closer to the
sample. This may not be the most efficient use of data samples. Alternatively, one can determine z∗
for each sample and update the decoder’s parameters according to this optimal latent representation.

Determination of z∗ for each sample y can be formulated as an optimisation problem

z∗ = argzmin l(y,D(z, θ)),

where θ represent the parameters of the decoder network and l(·, ·) is a distance function between
the sample and its reconstruction by the decoder, which can be defined based on the application. One
obvious form can be the L2 distance ‖D(z, θ)−y‖22. The optimisation can be achieved by a gradient
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decent minimisation. In order to integrate the minimisation in the training of the decoder network,
a continuous gradient decent algorithm is implemented via a solution to an ordinary differential
equation dz/dt = −α(t)∇zl(y,D(z(t), θ)), where time t is the continuous parameter describing the
extent of the minimisation and α(t) is a scaling factor that can vary with time. When the extremum
is reached the z comes to a steady state. In practice we compute the optimal z∗ by integrating the
ODE

z∗ = z(τ) =

∫ τ

0

−α(t)∇zl(y,D(z(t), θ))dt, z(0) = z0,

where z0 is the initialisation of the optimisation, which is set as 0 vector in our experiments. Con-
sequently to the minimisation of z → z∗ ≡ z(t = τ) for a given D (’forward model’), the decoder
is trained with a total loss function for a given training set M (’backward’),

L(θ) =
M∑
m=1

l(ym, D(z∗m, θ)). (1)

At each iteration while searching for the argθminL(θ), a new z∗ is recalculated for each sample.
argθminL(θ) is computed via the adjoint method as explained in Section 3.1.

3.1 THE ADJOINT METHOD FOR THE GRADIENT FLOW

As described above, after finding z∗ ≡ z(τ) = argzmin l(y,D(z, θ)) the total loss is minimised
with respect to the model parameters. The dependence of z∗ to θ creates an additional depend-
ence of L(θ) to θ via z∗. For simplicity, let us consider the cost of only one sample y, effectively
l(y,D(z∗, θ)). We will compute the total derivative dθl(y,D(z∗, θ)) for this sample and the deriv-
ative of the total cost for a batch of samples can be computed as the sum of the sample derivatives
in the batch. The total derivative dθl(y,D(z∗, θ)) is computed as

dθl(y,D(z∗, θ)) = ∂θl(y,D(z∗, θ)) + ∂z∗ l(y,D(z∗, θ))∂θz
∗.

The derivative ∂z∗ l(y,D(z∗, θ))dθz
∗ can be computed using the adjoint method and leads to the

following set of equations

dz/dt = −α(t)∇zl(y,D(z(t), θ)), with z(0) = 0 (2)

dλ/dt = −α(t)λT∇2
zl(y,D(z(t), θ)), with λ(τ) = −∇zl(y,D(z(τ), θ)) (3)

dθl(y,D(z∗, θ)) = ∂θl(y,D(z∗, θ))−
∫ τ

0

α(t)λT∂θ∇zl(z(t), θ)dt, (4)

where we used z∗ = z(τ). Equations [2-4] define the so called adjoint method for gradient flow
optimisation of the loss. Due to the cost of solving all three equations we empirically find that for
this work sufficient and efficient optimisation can be accomplished by ignoring the integral (“adjoint
function”) part of the method. Theoretically, this is equivalent to ignoring the higher order term of
the total differential dθl(y,D(z∗, θ)) = ∂θl(y,D(z∗, θ))+∂zl(y,D(z∗, θ))∂θz ≈ ∂θl(y,D(z∗, θ)).
Reducing Equations [2-4] to

dz/dt = −α(t)∇zl(y,D(z(t), θ)), with z(0) = 0 (5)
dθL = ∂θl(y,D(z∗, θ)), (6)

i.e. optimise the latent space via solving an ordinary differential equation and minimise the loss
“naively” with respect to the parameters ignoring the dependence of z(τ) to θ.

3.2 NESTEROV 2nd ORDER ACCELERATED GRADIENT FLOW

The gradient flow described above is based on naive gradient descent. This method may be slow
in convergence. The convergence per iteration can be further increased by considering Nesterov’s
accelerated gradient descent. A second differential equation approximating Nesterov’s accelerated
gradient method has been developed in Su et al. (2016). This 2nd order ODE equation for z reads

d2z

dt2
+

3

t

dz

dt
+∇zl(y,D(z, θ)) = 0 (7)
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for dz/dt|0 = z(0) = 0. To be able to use this in the framework of the gradient flow encoding
we split the 2nd order ODE into two interacting 1st order equations and solve the simultaneously.
Specifically, solving

dv

dt
=

3

t+ ε
v +∇zl(y,D(z, θ)),

dz

dt
= v, (8)

where ε ensures stability at small t.

3.3 FIXED GRID ODE SOLVER

Being an ODE, the gradient flow can be solved with general ODE solvers. Unfortunately, generic
adaptive step size solvers are not useful because the underlying ODE becomes stiff quickly during
training, the step size is reduced to extremely small values and the time it takes to solve gradient
flow ODEs at each iteration takes exorbitant amount of time. Fixed time-step or time grid solvers
can be used, despite the stiffness. However, we empirically observed that these schemes can lead
to instabilities in the training, see Figure 3. To demonstrate this, we experimented with a 4th order
Runge-Kutta method with fixed step size. The δt slices are predefined in logarithmic series such
as δt is smaller closer to t = 0, where integrands, −∇zl(y,D(z, θ)), are more rapidly changing.
Similarly, α is empirically set to e(−2t/τ) to facilitate faster convergence of z, see Figure 1. For
the GFE full adjoint method the integrands for each time slice are saved during the forward pass so
they can be use for the calculation of the adjoin variable λ in the backward pass. We used the same
strategy for both basic gradient flow and the 2nd order model.
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Figure 1: Typical convergence curve of z during an ODE integration for GFE and GFE 2nd order
using the fixed grid ODE solver. Experiments were performed on MNIST. Mean cross-entropy loss
plotted against time for three training iterations, darker corresponds to earlier iteration. Curves are
obtained using the same batch of training images. The plot shows how convergence curves of z
changes with training iterations. Darker curves are for earlier iterations. In later iterations, the
convergence curves reach lower loss, meaning updates of the decoder network’s parameters lead to
more faithful latent space representations, as expected.

3.4 ADAPTIVE MINIMISE DISTANCE (AMD) SOLVER

The step size in any optimisation algorithm is of fundamental importance for reaching a local ex-
tremum in any optimisation problem. The same applies to the search for optimal latent space rep-
resentation for each sample by solving gradient flow equation through its time discretisation. As
discussed, fixed time step or time grid solvers empirically lead to instabilities during training of
the decoder. Adaptive step size ODE solvers can theoretically solve the instabilities but due to the
possible stiffness of the gradient flow equation, their use is impeded. Note that, the adaptive step
size solvers focus on an accurate integration, which is not necessarily an advantage for integrating
gradient flow in the training of a decoder. A solver that focuses on reaching a local extremum while
searching for the optimal z would be more advantageous. The path it takes to reach there may be
less crucial as long as it reaches the same local extremum. This is in contrast to generic ODE solvers
where the path can substantially change the end point, thus an focusing on accurate integration is
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more important. To this end, we develop an adaptive step size method, which guarantees a reduction
of the loss at each step.

The method follows a similar structure to an explicit ODE solver, such as the feed-forward Euler
method, but without a fixed grid. The problem lies in solving Equation 5 while taking time-steps of
appropriate size that reduce l(y,D(z(t), θ)) at each t. This approach is in essence a gradient descent
method that uses step-size selection mechanisms Bertsekas (2016). Lastly, viewing the time-step in
solving dz/dt = −α(t)∇zl(y,D(z(t), θ)) as a tool to minimise the loss makes α(t) obsolete. Its
role is now overtaken by the time-step δt and it can be set to 1 for all t.

In the AMD method, at each time t the time step is chosen based on finding the smallest m =
0, 1, . . . , that satisfies

l (y,D(z(tn)− βmsn∇zl(y,D(z(tn), θ)), θ)) < l (y,D(z(tn), θ)) (9)

with β ∈ (0, 1) (set as 0.75 in our experiments) and sn is a scaling factor. At each time point tn the
time step is chosen as δtn = βmsn. The scaling factor is updated at each iteration as

ŝn = max(κsn−1, s0), sn = min(ŝn, smax), smax = 10, s0 = 1, κ = 1.1

Based on this tn+1 = tn + δtn and

z(tn+1) = z(tn)− δtn∇zl(y,D(z(tn), θ) (10)

At the end, if time step chosen goes beyond τ , a smaller time step is used to reach τ exactly. The
solution of the integral 5 is then z(τ). Furthermore, the AMD solver is using the gradient of the
convergence curve (see Figure 1) to assert if the loss function is sufficiently optimised to assign a
new final τ ′ and stop in order to avoid unnecessary integration.

4 EXPERIMENTAL SETUP

For training with MNIST and FashionMNIST datasets we implement a sequential linear neural net-
work. The decoder network architecture corresponds to four gradually increasing linear layers with
ELU non-linearities in-between. The exact reverse is used for the encoder of the AE. A schematic
diagram of the GFE method is shown in Figure 2.

Step 2
𝑎𝑟𝑔𝑚𝑖𝑛	ℒ(y, D 𝑧∗, 𝜃 )

𝜃

D𝜃z(0)

z*

𝜕𝑧
𝜕𝑡 = −∇𝑧ℓ(y,	D(z,	𝜃))

Step 1

𝑧 0 = 0
𝑧∗

Figure 2: Schematic diagram of the GFE implementation. The two optimisation correspond to
(Step 1) the latent space optimisation i.e. ’encoding’ and (Step 2) the parameter update of the neural
network.

The network training is carried out with a momentum gradient decent optimiser (RMSprop), learning
rate 0.0005, ε = 1 × 10−6 and α = 0.9. The GFE and AE are considered trained after one epoch
and twelve epochs respectively.

5 RESULTS AND DISCUSSION

Initially a relative comparison between the full adjoint and the approximate fixed grid GFE methods
is carried out to assess the relevance of the higher order term. Specifically, we carry out MNIST
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experiments for a fixed network random seed, where we trained the Decoder using the different
GFE methods and computed cross entropy loss over the validation set. The proper adjoint solution
requires Equations 2 and 3 to be solved for each slice of the integral in Equation 4. Given N time-
slices (for sufficient accuracy N ≈ 100), this requiresO(5N) calls to the model D for each training
image. The approximate method as in Equations 5 and 6 requires only O(N) passes. From Figure
3 (left) it is evident that the 5-fold increase in computational time is not cost-effective as the relative
reduction in loss convergence per iteration is not significant.

Furthermore, to increase convergence with respect to training data the accelerated gradient flow 2nd

order GFE is implemented in Section 3.2. From Figure 3 (right), the accelerated gradient method
increases initially the convergence per iteration relative to GFE, nevertheless it is slightly more
computationally expensive due to solving a coupled system. Additionally, from the same Figure
certain stability issues are observed for both GFE and second order GFE methods later on despite
the initial efficient learning. In order to guarantee stability the GFE-amd method is implemented
as explained in Section 3.4. The black curve in Figure 3 (right) shows a clear improvement of the
GFE-amd over the later methods. Importantly, this result is robust to O of the experiment.
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Figure 3: Left Validation mean cross-entropy loss plotted against MNIST training iterations for the
approximate and full adjoint GFE methods. The full adjoint has a slight advantage over the approx-
imate. Right Validation mean cross-entropy loss plotted against MNIST training iterations for the
GFE, 2nd order GFE and GFE-amd methods. The GFE-amd is both more stable and approaches a
better convergence relative to the other methods

A direct comparison of the GFE-amd to a conventional AE for an MNIST training can be seen in
Figure 4. The x-axis shows the number of training images (instead of iterations) the algorithm sees
until that point in the training. The training is based on mini-batch training using the data with
replacement, going over the training data multiple times. The GFE-amd is substantially superior in
learning per training image, reaching near convergence with at 800000 images, see Figure 4 (left).
This is a consequence of the efficiently optimised latent space. Nevertheless, this comes at a higher
computational cost for each iteration due to the ODE solver as seen from Figure 4 (right). Import-
antly, the optimisation of the network parameters is performed using Adam optimiser for both AE
and GFE models. So the difference we see can be attributed to better gradients GFE model generates
to update the decoder network at each training iteration.

This increase in computation is not necessarily a disadvantage considering the efficient learning of
the GFE-amd method. In Table 1, the average cross entropy loss for a complete test-set is recorded
for both methods for some small number of training images. The GFE-amd is able to learn quite
well even after seeing a tiny fraction of the total training data. Furthermore, the GFE-amd method
noticeably improves an AE trained decoder when it is used to test, the result of an optimised latent
space even without a network parameters update.

To verify the overall quality of the method both the AE and GFE-amd are tested when converged as
shown in Table 2. The GFE-amd performs very similar to AE both for MNIST, SegmentedMNIST
and FMNIST. It is worth noting that the GFE-amd trainings are on average converged at 1/12th of
the number of iterations relative to the AE. For the segmented MNIST the networks are fully trained
while seeing only the first half (0-4) of the MNIST labels and they are tested with the second half
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Figure 4: Left Validation mean cross-entropy loss plotted against number of MNIST training
images for the GFE-amd and AE methods. The former shows a significant convergence with a tiny
amound of training images. Right Validation mean cross-entropy loss plotted against time for the
GFE-amd and AE methods. The latter is significantly faster to the former as much more iterations
are carried out in the same time-span

Number of Training images AE GFE-amd train:AE test:GFE-amd

480 (0.24%) 0.2660 0.2098 0.2634
960 (0.49%) 0.2618 0.1987 0.2525

1920 (0.98%) 0.2488 0.1558 0.2323
3840 (1.95%) 0.2195 0.1336 0.2038
5760 (2.9%) 0.1954 0.1136 0.1829

Table 1: Test-set average cross entropy loss for different number of training data, % reflects the
percentage relative to total training data needed for convergence of the method. Carried out for the
AE GFE-amd methods. The forth column represents testing the decoder of an AE trained network
with GFE-amd. The GFE-amd is far superior here in learning with a limited image sample.

(5-9) of the labels. The GFE-amd shows a clear advantage over the AE emphasizing the versatility
of a GFE-amd trained neural network.

Dataset AE (Test-set) GFE-amd (Test-set)

MNIST 0.0843 0.0830
SegmentedMNIST 0.1205 0.1135

FMNIST 0.2752 0.2767

Table 2: Test-set average cross entropy loss for trained networks with the AE and GFE-amd meth-
ods. Segmented MNIST represents training for half the labels and testing with the other half.

Sample test-set reconstructions with a fixed network random seed for GFE-amd and AE methods are
shown in Figure 5. From Figure 5 (a) it is evident that the GFE-amd is superior in producing accurate
reconstructions with the very limited amount of data. Figure 5 (b) indicates that both GFE-amd and
AE generate similar reconstructions when properly trained.

Finally, to further compare latent space representation, we visualize the samples in the latent space
using the t-distributed stochastic neighbour embedding (t-SNE) map, van der Maaten & Hinton
(2008). This is calculated for the GFE optimised z → z∗. This is shown for AE and GFE, MNIST
trained neural networks in Figure 6. The latent space representations are similar when both models
see the entire MNIST dataset multiple times. Similar t-SNE plots for models that only see 1% of
the data during training are given in Figure 7. Latent space structure of GFE is very similar for
both cases, while AE’s latent space structure is very different, not clustering the different numbers.
This result is inline with Table 1. GFE uses training images more efficiently at each iteration thanks
to latent space optimisation to invert the decoder rather than using an approximation through an
encoder network.
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Figure 5: (a) Test-set reconstructions for trained GFE-amd (left) and AE (right) that only see 1%
of MNIST (top) and FashionMNIST (bottom) training images. (b) Test-set reconstructions for fully
trained GFE-amd (left) and AE (right) with MNIST (top) and FashionMNIST (bottom) training
images. Note: The labels are identical in the respective reconstructions.

Figure 6: t-SNE map of the latent space plotted for MNIST trained Left GFE and Right AE
methods.

Figure 7: t-SNE map of the latent space plotted for MNIST trained with 1% training data Left GFE
and Right AE methods. The GFE latent space is well optimised even with a fraction of the data.

6 CONCLUSIONS

To this end, a gradient flow encoding, decoder-only method was investigated. The decoder depended
gradient flow searches for the optimal latent space representation, which eliminates the need of an
approximate inversion. The full adjoint solution and its approximation or leveraged for training and
compared. Furthermore, we present a 2nd order ODE variant to the method, which approximates
Nesterov’s accelerated gradient descent, with faster convergence per iteration. Additionally, an ad-
aptive solver that prioritises minimising loss at each integration step is described and utilised for
comparative tests to the autoencoding model. The gradient flow encoding shows a much higher
data-efficiency than the autoencoding model.
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