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ABSTRACT

Aligning Graph Neural Networks (GNNs) and Large Language Models (LLMs)
benefits in leveraging both textual and structural knowledge for Text-attributed
Graphs (TAGs) learning, which has attracted an increasing amount of attention
in the research community. Most existing literature assumes a uniformly iden-
tical level of learning difficulties across texts and structures in TAGs, however,
we discover the text-structure imbalance problem in real-world TAGs, i.e., nodes
exhibit various levels of difficulties when learning different textual and structural
information. Existing works ignoring these different difficulties may result in
under-optimized GNNs and LLMs with over-reliance on either simplistic text or
structure, thus failing to conduct node classifications that involve simultaneously
learning complex text and structural information for nodes in TAGs. To address
this problem, we propose a novel Curriculum GNN-LLM Alignment (CurGL)
method, which strategically balances the learning difficulties of textual and struc-
tural information on a node-by-node basis to enhance the alignment between GNNs
and LLMs. Specifically, we first propose a text-structure difficulty measurer to
estimate the learning difficulty of both text and structure in a node-wise manner.
Then, we propose a class-based node selection strategy to balance the training
process via gradually scheduling more nodes. Finally, we propose the curriculum
co-play alignment by iteratively promoting useful information from GNNs and
LLMs, to progressively enhance both components with balanced textual and struc-
tural information. Extensive experiments on real-world datasets demonstrate that
our proposed CurGL method is able to outperform state-of-the-art GraphLLM,
curriculum learning, as well as GNN baselines. To the best of our knowledge, this
is the first study of curriculum alignment on TAGs.

1 INTRODUCTION

Text-attributed Graphs (TAGs) are ubiquitous in real-world scenarios (Li et al., 2024b), including
academic networks, social networks, website networks, etc. These graphs are characterized by
nodes with rich textual attributes, providing valuable information for downstream tasks like node
classification and link prediction. To leverage both structural and textual information on TAGs,
aligning Graph Neural Networks (GNNs) and Large Language Models (LLMs), which excel in
structural and textual modeling respectively, has attracted an increasing amount of attention in the
research community (Li et al., 2023c; Zhao et al., 2022a; Jin et al., 2023b).

However, we discover the text-structure imbalance problem in real-world TAGs, i.e., nodes exhibit
various levels of difficulties when learning different textual and structural information, which is
neglected in most existing literature. For illustration, we give two examples of varying difficulties
across nodes in Figure 1, from the textual and structural perspectives respectively: 1) the learning
difficulties of different nodes vary depending on their textural attributes. For instance, in the task
of predicting the paper (node)’s field (label) on academic networks, some nodes could be simply
predicted due to explicit inclusion of field information in their texts, while other nodes necessitate a
comprehensive understanding of the full text for accurate field prediction; 2) the learning difficulties
of different nodes vary depending on their topological structures (Wei et al., 2023; Wu et al., 2024).
For instance, the nodes near the class boundaries are more challenging to learn compared with those
located at the center of their corresponding classes, as boundary nodes interact more frequently with,
and are more similar to nodes from other classes.
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Figure 1: (Left part) An illustrative example of the varying difficulty in learning textual attribute
semantics from two nodes belongs to Machine Learning in Citeseer Dataset is shown above. Text
1 contains more intuitive semantic information that directly corresponds to the ground truth label,
whereas Text 2 requires more complex semantic understanding and even includes potentially mislead-
ing information. (Right part) An illustrative example of the varying difficulty in learning topological
structures is shown above. Class boundary nodes are more challenges than center nodes, due to they
interact more frequently with nodes from other classes and are often closer to them.

Existing works ignoring these different difficulties may result in under-optimized GNNs and LLMs,
failing to conduct node classifications that involve simultaneously learning complex text and structural
information for nodes in TAGs. Specifically, these models may either rely heavily on simplistic
textual attributes, overlooking complex yet informative structures for GNNs optimization, or depend
mostly on simple structures, ignoring detailed textual content for LLMs optimization. Therefore, the
ignorance of different learning difficulties for topologies and texts across nodes inevitably leads to
suboptimal performance in TAG tasks that require a deep understanding of both textual and structural
information simultaneously.

To address this problem, we propose to balance the text-structure learning difficulty for GNN-LLM
alignment in TAGs via employing curriculum learning, which remain unexplored in the existing
literature with following key challenges: 1) How to estimate the difficulty of different nodes in TAGs
with both structures and texts being taken into consideration; 2) How to make balance in the training
process so that more nodes can be scheduled based on their textual and structural difficulties; 3) How
to progressively enhance both GNNs and LLMs with balanced textual and structural information
during alignment.

To tackle these challenges, we propose a Curriculum GNN-LLM Alignment (CurGL) for Text-
attributed Graphs. First, we propose a text-structure measurer that accounts for both textual attributes
and topological structures to measure the learning difficulty of each node. Particularly, we design a
global center-boundary detection method to estimate the topological complexity of structure learning
and integrate it with the loss from the LLMs or GNNs to determine the overall text-structure learning
difficulty for each node. Second, we propose a class-based node selection strategy that balances the
training process by gradually scheduling more nodes. This strategy selects nodes based on their class-
specific node’s difficulties, while preserving class balance of the selected subgraph. Third, we propose
a curriculum co-play alignment to progressively enhance both LLMs and GNNs with balanced textual
and structural information. In particular, we iteratively promote useful information obtained from
GNNs and LLMs, gradually involving more labeled nodes’ and confident pseudo-labeled nodes’
textual attributes and topological structures. Extensive experiments on five real-world datasets
demonstrate that our proposed CurGL method is able to outperform state-of-the-art GraphLLM,
curriculum learning, and GNN baselines significantly.

Our main contributions are summarized as follows:

• We propose a novel Curriculum GNN-LLM Alignment (CurGL) for TAGs, designed to
strategically balance the learning difficulties of textual attributes and topological structures on
a node-by-node basis, which is able to significantly improve GNN-LLM alignment and thus
enhance the performance. To the best of our knowledge, this is the first study of curriculum
alignment on TAGs.

• We propose a difficulty measurer for both textual attributes and topological structures to
estimate the learning difficulty in a node-wise manner. Additionally, we introduce a class-based
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node selection strategy that selects nodes according to their class-specific node’s difficulties
while maintaining subgraph class balance.

• We propose a curriculum co-play alignment to iteratively align the LLMs and GNNs by
gradually incorporating more labeled and confident pseudo-labeled nodes to promote useful
information obtained from both components, thus enhancing them with balanced textual and
structural information.

• We conduct extensive experiments on five real-world datasets to demonstrate that our proposed
CurGL is able to significantly outperform state-of-the-art GraphLLM, curriculum learning,
and GNN baselines.

2 PROBLEM FORMULATION

In this section, we introduce the fundamental concepts of text-attributed graphs and the notation used
in this paper. We focus on the node classification task and describe the learning objectives for LLMs
and GNNs on TAGs.

Text-attributed Graphs. A text-attributed graph, denoted as G = (V,A,S), consists of a node
set V = {v1, v2, . . . , vN} with N nodes, an adjacency matrix A ∈ {0, 1}N×N , and a set of textual
attributes S = {sv}v∈V , where sv is the textual attribute of node v.

Node Classification Task. The node classification task aims to predict the labels of unlabeled
nodes within the same label space as the labeled nodes in a given graph. Formally, given a graph
G = (V,A,S) with a label set Y , the task is to predict the labels of the unlabeled nodes VU = V \VL,
where VL is the set of labeled nodes. The objective is to learn a function f : (A,S) → Y that maps
the node embeddings to the label space.

Large Language Models for Node Classification. The node classification task on TAGs for LLMs
can be framed as a text classification task (Socher et al., 2013). LLMs aim to leverage the sentence
sv associated with each node v for label prediction. For a LLM f with parameters θ for node
classification task, the prediction process can be described as follows:

ŷv = Softmax(MLP(hv)), (1)
s.t. hv = SeqEnc(sv),

where SeqEnc(·) is a text encoder that projects the sentence sv into a vector representation hv, and
ŷv represents the predicted logits for node v. The training objective of the LLM fθ can be defined as
follows:

min
θ

Ep(y,S)L(fθ(S),y) (2)

Graph Neural Networks for Node Classification. The node classification task on TAGs for GNNs
requires an initial numerical representation for each node, which can be derived using text encoding
methods such as bag-of-words (Harris, 1954), TF-IDF (Salton & Buckley, 1988), or Pretrained
Language Models (PLMs). GNNs then employ a message-passing mechanism to iteratively update
these node representations. For a GNN g with parameters ϕ for node classification task, the prediction
process can be described as follows:

ŷv = Softmax(hL
v ), (3)

s.t. hl
v = COMl(hl−1

v ,AGG(hl−1
u : u ∈ N (v))),

where COM(·) and AGG(·) represent the combination and aggregation functions, respectively, hl
v

denotes the node representation of node v at layer l, and N (v) denotes the neighbor nodes of node v.
The training objective of the GNN gϕ can be defined as follows:

min
ϕ

Eq(y,G)L(gϕ(G),y). (4)

3 METHOD

In this section, we introduce Curriculum GNN-LLM Alignment (CurGL), a method designed to
strategically balance the learning difficulties of textual attributes and structures on a node-by-node
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basis. By progressively learning both the textual attributes and topological structures of nodes, our
approach enhances the alignment between GNNs and LLMs. The framework of our method is
illustrated in Figure 2.
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Figure 2: The framework of our proposed method (CurGL). The framework consists of three main
modules: text-structure difficulty measurer, class-based node selection, and curriculum co-play
alignment. (Part ①) We calculate the learning difficulty of both text and structure for each node using
the text-structure difficulty measurer. (Part ②) Then candidate nodes are selected based on their
class-specific difficulty levels through a class-based node selection strategy. (Part ③) We iteratively
align the LLM and GNN by gradually involve more the labeled and confident pseudo-labeled nodes
to balance the learning of textual attributes and topological structures in TAGs.

3.1 TEXT-STRUCTURE DIFFICULTY MEASURER

Previous curriculum graph learning methods primarily focused on designing difficulty measurers
for nodes or edges by considering the graph structure, such as class diversity among a node’s
neighbors (Wei et al., 2023). However, these methods lack a global structure difficulty measurement
and overlook difficulty of the textual attributes of the nodes, limiting their applicability to TAGs. To
address this, we propose a text-structure difficulty measurer that accounts for both textual attributes
and topological structures to estimate the learning difficulty of each node. Specifically, we design a
global center-boundary detection to measure the difficulty of learning the topological structure from
a global view, and combine this with the loss of the LLM or GNN to estimate the overall difficulty of
learning both the textual attributes and topological structures of each node.

Structure Difficulty. For structure difficulty, we introduce a global center-boundary detection method
to measure the difficulty of learning the topological structure of each node. This method assumes that
nodes located near class boundaries are more challenging to learn, while those at the center of a class
should be prioritized for earlier learning. The global center-boundary detection method is defined as
follows:

Ds(i) =
1

N(N − 1)
(
∑

u̸=i ̸=v
yu ̸=yv

σu,v(i)

σu,v
− γ

∑
u ̸=i̸=v

yu=yi=yv

σu,v(i)

σu,v
), (5)

Class Boundary Class Center

where σu,v denotes the number of shortest paths from u to v, and σu,v(i) denotes the number of
shortest paths from u to v that pass through i.

The first term in the equation is designed to detect the boundary degree of a node. Consider a node i
and a pair of nodes u and v, which belong to different classes. The denominator σu,v denotes the
number of shortest paths from u to v, while the numerator σu,v(i) denotes the number of shortest
paths from u to v that pass through i. The larger the first term, the more likely node i is to be
positioned at the boundary between two classes of u and v, indicating that node i is harder to learn.
The second term in the equation aims to detect the center degree of a node. Consider again a i and a
pair of nodes u and v, but the nodes i, u and v belong to the same class. As before, the denominator
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σu,v represents the number of shortest paths from u to v, and the numerator σu,v(i) represents the
number of shortest paths from u to v through i. The larger the second term, the more likely node
i is to be positioned at the center of its class, indicating that node i is easier to learn and should be
prioritized for earlier learning.

Our approach is inspired by Class-Conditional Betweenness Centrality (Wu et al., 2024), and we
extend this method to measure the difficulty of learning the topological structure of each node in
TAGs. We discuss the differences and provide an intuitive example in Appendix A.1 to demonstrate
how the method works.

Text Difficulty. For text difficulty, we can just use the loss of LLM to measure the text semantic
difficulty when selecting node for GNN training, as LLMs are specifically designed to capture textual
semantics. However, we can also use the loss of GNN to measure the text difficulty when selecting
node for LLM tuning, which can help to balance the learning of text and structure. Specifically, we
define the whole difficulty measurer as follows:

Dst(v) = Ds(v) + βDt(v) s.t. Dt(v) = 1− ŷv, (6)

where yv is the label of node v, and ŷv represents the output logits of node v from LLM or GNN.
The hyperparameter β controls the balance between text and structure difficulty.

Note that the difficulty measurer varies depending on whether we are tuning the LLM or training
the GNN. For LLM tuning, we utilize the output logits ŷ from the GNN, whereas for GNN training,
we rely on the output logits ŷi from the LLM. The value of β is adjusted accordingly: during LLM
tuning, where the focus is on text learning, β is set to a larger value; conversely, during GNN training,
where structure learning is prioritized, β is set to a smaller value.

Algorithm 1 Class-based Node Selection

Input: Current training step t, total number of training steps T , current candidate nodes Vt
C , node

difficulty Dst, and initial proportion of nodes selected from each class λ0.
Output: Selected nodes Vt

S .
1: Initialize Vt

S = ∅
2: Calculate λt using Eq. 8
3: Devide Vt

C into K classes, Vt
C = [Vt

C1
,Vt

C2
, . . . ,Vt

CK
]

4: for k = 1 to K do
5: Sort Vt

k based on Dst in ascending order
6: Select λt of nodes from Vt

k and add them to Vt
S

7: end for

3.2 CLASS-BASED NODE SELECTION

To balance the learning difficulties of textual attributes and structures in TAGs, we need to gradually
involve more nodes in the training process, considering the varying difficulty levels across different
nodes. However, involving nodes solely based on their difficulty Dst may overlook the fact that the
difficulty of nodes varies across different classes, and potentially leading to an imbalanced class
distribution within the subgraph.

To consider the varying difficulty levels across different nodes and classes, we propose a class-based
node selection strategy to balance the training process by gradually scheduling more nodes. This
approach selects nodes based on their class-specific node’s difficulty levels while maintaining sampled
subgraph class balance. Specifically,at each step t, we divide the candidate nodes Vt

C into K classes,
denoted as Vt

C = [Vt
C1

,Vt
C2

, . . . ,VCK
], where VCk

represents the candidate nodes in class k. We
then select low-difficulty nodes Vt

S from each class in a proportion to λt, which is controlled by a
PacingFunction(·):

Vt
S =

K⋃
k=1

Sample(λt,Vt
Ck

, Dst) s.t. Vt
Ck

= {vi|vi ∈ Vt
C ∧ vi ∈ Vk} (7)

λ = min(1, PacingFunction(λ0, t)) s.t. λ0 ∈ [0, 1], t ∈ [1, T ], (8)
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where Sample(·) denotes the sampling function that selects λt proportion of nodes from Vt
Ck

based
on the difficulty Dst of each node in Vt

Ck
, Vk represents the nodes in class k, λ0 is the initial

proportion of candidate nodes selected, T is the total number of training steps, and t ∈ {1, . . . , T} is
the current training step. The Pacing Function is a monotonically increasing function of the training
step t, controling the proportion of nodes λt selected from each class at each step. The algorithm is
provided in the Algorithm 1.

Algorithm 2 Curriculum GNN-LLM Alignment For TAGs

Require: Total number of training steps T , initial proportion of nodes selection λ0, confidence
pseudo-label hyperparameter αl and αg, difficulty balance hyperparameter βl and βg, labeled
nodes VL , and unlabeled nodes VU .

1: Pretrain LLM fp and GNN gp on VL to obtain initial pseudo-labels ŷ of VU

2: for t = 1 to T do

3: LLM E-step: Vt
S = ∅

4: Obtain Vt
C using Algorithm 3

5: Calculate Dst in Vt
C using Eq. 6

6: Obtain Vt
S using Algorithm 1

7: Train LLM fθ as in Eq. 9
8: Update Pseudo-labels ŷ

9: GNN M-step: Vt
S = ∅

10: Obtain Vt
C using Algorithm 3

11: Calculate Dst in Vt
C using Eq. 6

12: Obtain Vt
S using Algorithm 1

13: Train GNN gϕ as in Eq. 10
14: Update Pseudo-labels ŷ

15: end for

3.3 CURRICULUM CO-PLAY ALIGNMENT

To align the LLM and GNN in learning both complex textual attributes and topological structures
of nodes in TAGs, we iteratively promote useful information from LLM and GNN, progressively
enhancing both components with a balanced textual and structural information, i.e., ensuring that
the learning capabilities of the current LLM and GNN respectively correspond to the textual and
structural complexities of the nodes. Specifically, we propose a curriculum co-play alignment that
gradually incorporates more complex textual attributes and topological structures of nodes, iteratively
improving the learning of both text and structure via an easy-to-hard learning strategy. The GNN
primarily focuses on the progressively increasing topological complexity, while the LLM emphasizes
the growing difficulty of textual information. Therefore, the parameter β is set to a larger value during
LLM tuning and a smaller value during GNN training, as described in Section 3.1.

By employing a curriculum strategy, we prioritize simpler nodes at the beginning of the alignment
process. These simpler unlabeled nodes are more likely to be accurately predicted by the LLM
and GNN, making their pseudo-labels more reliable and suitable for training. Consequently, we
add a portion of the pseudo-labeled nodes to the candidate node set VC for further selection and
training. This approach offers two benefits: 1) it encourages the GNN and LLM to mutually learn the
textual and structural information of these unlabeled nodes; 2) adding the pseudo-labeled nodes to
the candidate set VC enables a more accurate calculation of the topological complexity of the nodes,
as the sampled subgraph from VC becomes more representative of the entire graph. We adopt the
output logits ŷ as the pseudo-label for each unlabeled node v in VU .

Specifically, we initially select α proportion nodes from the unlabeled set VU based on the output
logits ŷ of the LLM and GNN, adding them to the pool of candidate nodes VC for further selection.
Besides, to ensure the class balance of the subgraph, we also adopt a class-based strategy to select
the unlabeled nodes from each class. The detailed algorithm to obtain the candidate nodes set
VC from the labeled nodes VL and the unlabeled nodes VU is provided in the Algorithm 3 in the
Appendix A.4. We then select nodes from the candidate nodes set VC based on the text-structure
difficulty Dst of each node for training, as described in Section 3.2. For edges, we retain the edges
connecting these selected nodes VS to form a subgraph. Inspired by (Zhao et al., 2022a), we adopt a
variational EM algorithm to iteratively align the LLM and GNN through Curriculum Text-Structure
Learning. In the E-step, the GNN is fixed, and the LLM uses only the text information to predict the
labels (including both the labeled nodes and the pseudo-labeled nodes inferred by the GNN). In the
M-step, the LLM is fixed, and the GNN uses the text embeddings from LLM to predict the labels.
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Furthermore, pseudo-labels are continuously updated as the process progresses, with more confident
pseudo-labeled nodes being labeled.

We first pretrain an additional LLM model, fp, and a GNN model, gp (the LLM model and GNN
model that are subsequently trained are denoted as fθ and gϕ, respectively). Specifically, we train the
LLM model fp on the labeled node set VL, using sN as the input and yL as the target, to obtain the
text embeddings hN . Subsequently, we pretrain the GNN model gp on VL, using hN as the input and
yL as the target, to generate initial pseudo-labels ŷ for the unlabeled node set VU . We then iteratively
optimize the LLM f with parameters θ and the GNN g with parameters ϕ using the variational EM
algorithm.

LLM Optimization (E-step). We then train the LLM model f with parameters θ on the selected
node set VS with sN as input and yL, ŷU as the target. We denote distribution q as the LLM model
and p as the GNN model. The training objective is defined as follows:

min
θ

∑
v∈L

Ep(yv,sv)L(fθ(sv),yv) +
∑
v∈U

Ep(ŷv,sv)L(fθ(sv), ŷv) (9)

where L is the Cross-Entropy loss function, yv is the ground-truth label of node v, and ŷv is the
output logits v from GNN. And then we update text embeddings hN and the pseudo-labeled nodes
VU based on the output logits ŷ of the LLM model fθ.

GNN Optimization (M-step). We train the GNN model gϕ on the selected node set VS with hN as
input and yL, ŷU as the target. The training objective is defined as follows:

min
ϕ

∑
v∈L

Eq(yv,Gv)L(gϕ(Gv),yv) +
∑
v∈U

Eq(ŷv,Gv)L(gϕ(Gv), ŷv), (10)

where Gv is the ego-graph of node v and ŷv is the output logits v from LLM. And then we update the
pseudo-labeled nodes VU based on the output logits ŷ of the GNN model gϕ. The overall algorithm
is provided in the Algorithm 2.

4 EXPERIMENT

In this section, we conduct extensive experiments to veriy that our framework outperforms existing
GraphLLM approaches in TAGs learning tasks.

4.1 REAL-WORLD DATASETS

Baseline. We adopt several representative GNNs, Curriculum Graph Learning, Pretrained Language
Models, and GraphLLM methods as baselines to compare with our approach on real-world datasets.
We categorize the GraphLLM methods into three groups based on their training strategies (Jin et al.,
2023a; Li et al., 2023c). A more detailed description of these baselines is provided in Appendix C.1.

Datatsets. We evaluate our method on five real-world datasets: Cora, Citeseer, Pubmed, Ogbn-arxiv,
and WikiCS. The statistics of the datasets and train-validation-test splits are summarized in Table 2.
These datasets are widely used in the literature including citation networks and web link networks
ands contain nodes with textual attributes and labels. We provide a more description of each dataset
in Appendix C.2.

Exprimental Setting. We follow the same experimental setup as in GraphLLM benchmark (Li et al.,
2024b), utilizing the same train-validation-test split provided by the original datasets. The evaluation
metrics used are consistent with prior studies: we report both Accuracy and Macro-F1 scores for the
node classification task. To ensure a fair comparison, we employ Sentence-BERT as the LLM model
and GraphSAGE as the GNN model, in line with the settings used in the GraphLLM baseline.

Exprimental Results. Based on the results in Table 1, we make the following observations: (1)
GraphLLM methods achieve better performance than GNN-only methods, demonstrating the effec-
tiveness of leveraging LLMs for learning node text representations in TAGs. (2) Pretrained Language
Models methods do not surpass GNNs methods or the GraphLLM approach, indicating that graph
structure information is essential for learning node representations in TAGs. (3) Our method out-
performs all baselines across all datasets. This superiority can be attributed to our method’s ability
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Table 1: Accuracy and Macro-F1 results (%) of different methods on real-world datasets. The highest
result is bold, while the second-best result is marked with underline.

Model
Cora Citeseer Pubmed Ogbn-arxiv WikiCS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

GCN 82.11 80.65 69.84 65.49 79.10 79.19 72.24 51.22 80.35 77.63
GAT 80.31 79.00 68.78 62.37 76.93 76.75 71.85 52.38 79.73 77.40
GraphSAGE 79.88 79.35 68.23 63.10 76.79 76.91 71.88 52.14 79.87 77.05

CLNode 82.79 81.83 67.23 62.90 79.22 79.23 46.94 15.34 78.95 74.93
RCL 76.74 75.46 63.79 60.15 79.98 80.26 54.31 30.35 78.63 75.72
TSS 82.05 80.70 66.03 61.59 77.71 77.71 OOM OOM 79.04 75.50

Sent-BERT (22M) 69.73 67.59 68.39 64.97 65.93 67.33 72.82 53.43 77.07 75.11
BERT (110M) 69.71 67.53 67.77 64.10 63.69 64.93 72.29 53.30 78.55 75.74
RoBERTa (355M) 69.68 67.33 68.19 64.90 71.25 72.19 72.94 52.70 78.67 76.16

GIANT 81.04 80.13 65.82 62.31 76.89 76.05 72.04 50.81 80.48 78.67
TAPE 80.95 79.79 66.06 61.84 79.87 79.30 72.99 51.43 82.33 80.49
OFA 75.24 74.20 73.04 68.98 75.61 75.60 73.23 57.38 77.34 74.97
ENGINE 81.54 79.82 72.15 67.65 74.74 75.21 75.01 57.55 81.19 79.08

InstructGLM 69.10 65.74 51.87 50.65 71.26 71.81 39.09 24.65 45.73 42.70
GraphText 76.21 74.51 59.43 56.43 74.64 75.11 49.47 24.76 67.35 64.55
GraphAdapter 72.85 70.66 69.57 66.21 72.75 73.19 74.45 56.04 70.85 66.49
LLaGA 74.42 72.50 55.73 54.83 52.46 68.82 72.78 53.86 73.88 70.90

GLEMGNN 82.11 80.00 71.16 67.62 81.72 81.48 76.43 58.07 82.40 80.54
GLEMLLM 73.79 72.00 68.78 65.32 79.18 79.25 74.03 58.01 80.23 78.30
Patton 70.50 67.97 63.60 61.12 84.28 83.22 70.74 49.69 80.81 77.72

CurGL 85.49 84.00 73.92 69.75 85.07 84.56 76.77 60.74 82.43 80.79

to progressively align GNN and LLM, balancing the learning of textual attributes and topological
structures in TAGs, resulting in improved node representation learning. Additionally, the higher
Macro-F1 scores achieved by our method indicate balanced performance across all classes, which
can be attributed to the class-based node selection strategy.

4.2 ABLATION STUDY
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Figure 3: Ablation studies of (CurGL),
where ’w/o P’ denote remove the pseudo-
label, ’w/o P&C’ denote further remove
the class-based node selection strategy,
and ’w/o P&C&D’ denote further re-
move the text-structure difficulty mea-
surer.

In this section, we conduct ablation studies to verify the
effectiveness of the key modules in our method.

Pseudo-label. We first remove the pseudo-label and use
only the labeled nodes as the candidate nodes for train-
ing. As shown in Figure 3, the performance of our method
drops significantly without the pseudo-label selection strat-
egy, indicating that learning the textual attributes and topo-
logical structures of confident pseudo-labeled nodes en-
hances model performance.

Class-based node selection strategy. We further remove
the class-based node selection strategy described in Sec-
tion 3.2 and select the nodes solely based on their difficulty.
The results in Figure 3 show that the absence of this strat-
egy reduces the performance of our method, demonstrating
that selecting nodes based on difficulty while maintaining
class balance in the subgraph results in a more balanced
performance across all classes.

Text-structure difficulty measurer. We further remove
the text-structure difficulty measurer described in Sec-
tion 3.1 and select nodes solely based on the loss. The
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results in Figure 3 reveal a decline in performance without the text-structure difficulty measurer,
highlighting its effectiveness in measuring the learning difficulty of each node. Additionally, training
the model with a curriculum strategy further improves performance in TAGs learning tasks.
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Figure 4: (a)(b)The test accuracy of CurGL on the test set as increasing λ0 on Cora and Citeseer.
(c)(d) The test accuracy of CurGL on the test set as increasing αl on Cora and Citeseer.

4.3 HYPERPARAMETER ANALYSIS

In this section, we conduct a hyperparameter analysis to examine the impact of different hyperpa-
rameters on our method. We evaluate the performance of our method under various hyperparameter
settings on real-world datasets. The hyperparameter λ0 in Eq.8 represents the initial selection pro-
portion of candidate nodes, and we adjust its the value from 0 to 1. The results in Figure 4 (a) and
(b) show that λ0 is crucial for the performance of our method. When λ0 is set to 1, meaning that all
candidate nodes are selected for initial training, the performance drops significantly, indicating that
the curriculum learning strategy is essential for the success of our method.

The hyperparameter αl in Algorithm 3 controls the number of selected pseudo-labeled nodes, and
we adjust its value between 0 and 1. As shown in Figure 4 (c) and (d), αl plays a crucial role in
performance. When αl is set to 0, meaning no pseudo-labels are selected, the performance of our
method drops significantly, highlighting the importance of the curriculum confident pseudo-label
alignment strategy. However, setting αl too high can degrade performance, likely due to the increased
noise in the pseudo-labels.
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Figure 5: (a)(b)Accuracy of all pseudo-labels and selected pseudo-labels during training on Cora and
Citeseer. (c)(d)Accuracy of CurGLGNN and CurGLLLM on the test set during training on Cora and
Citeseer.

4.4 SELECTION STRATEGY ANALYSIS

In this section, we verify the effectiveness of our node selection strategy by comparing the accuracy
of pseudo-labeled nodes selected by our method with the overall accuracy of all pseudo-labeled
nodes, as shown in Figure 5 (a) and (b). (1) We observe that the accuracy of all pseudo-labeled nodes
increases during training, indicating that our method improves the quality of pseudo-labels over time.
(2) The accuracy of pseudo-labeled nodes selected by our strategy consistently exceeds the overall
accuracy of all pseudo-labeled nodes, demonstrating that our selection strategy effectively identifies
high-confident pseudo-labeled nodes for training, leading to improved performance on TAGs.
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4.5 TRAINING DYNAMICS ANALYSIS

In this section, we analyze the training dynamics of our method by examining the accuracy of the
GNN and LLM on the test set during training. Figure 5 (c) and (d) show the accuracy of GNN and
LLM in CurGL on the test set during training. We observe that the accuracy of GNN and LLM
increases over time, indicating that our method progressively aligns the LLM and GNN, balancing
the learning of textual attributes and topological structures in TAGs.

5 RELATED WORKS

GNN-LLM Alignment for TAGs TAGs have gained increasing attention in the research community,
with GraphLLM (Jin et al., 2023d; Tang et al., 2024b; Xia et al., 2024; Kong et al., 2024; Li et al.,
2023b; Ren et al., 2024; Zou et al., 2023; Tang et al., 2024b; Huang et al., 2024a; Chen et al., 2024b;d;
Wei et al., 2024a; Guo et al., 2024) methods emerging as a promising approach to leverage the
strengths of both LLMs and GNNs. Among these GraphLLM methods, the alignment between
LLMs and GNNs (Li et al., 2023c; Jin et al., 2023a) has attracted an increasing amount of attention
by aligning them in the same vector space. For instance, GLEM (Zhao et al., 2022a) integrates
GNNs and LLMs, within a variational Expectation-Maximization framework. It alternates updates
between LLMs and GNNs, enhancing performance on downstream tasks. PATTON (Jin et al., 2023b)
enhances GraphFormer Yang et al. (2021) by introducing two novel pre-training strategies tailored
for text-attributed graphs: network-contextualized masked language modeling and masked node
prediction. However, exising GNN-LLM alignment methods ignore the varying learning difficulties
of textual attributes and structures across nodes in TAGs, leading to a suboptimal textual and structural
representation learning. In this paper, we focus on the balance of learning difficulties between textual
attributes and structures on a node-by-node basis to improve the alignment between GNNs and LLMs.

Curriculum Learning on Graphs Graph Curriculum Learning (GCL) is different from traditional
Curriculum Learning due to the inherent dependencies of graph data. As a result, curriculum learning
methods (Gong et al., 2019; Zhou et al., 2022; Wang et al., 2023; Li et al., 2024a; 2023a) designed
for independent data cannot be directly applied to graphs. Researchers leverage graph structures
to measure difficulty through predefined or automated strategies. CLNode (Wei et al., 2023) is a
Curriculum Graph Learning method that measures local difficulty by considering the class diversity
among a node’s neighbors and uses global features to identify mislabeled nodes. RCL (Zhang et al.,
2023) is a Curriculum Graph Learning method that gradually integrates node relationships into the
training process, based on the complexity of those relationships. TSS (Wu et al., 2024) is a distinctive
perspective on employing curriculum learning methods specifically tailored for noisily labeled graphs.
However, existing GCL methods lack a measurer that accounts for global structural information to
estimate the learning difficulty of nodes and overlook the varying difficulty across different classes,
which can lead to subgraph imbalance. Additionally, these methods ignore textual attributes learning
difficulty, limiting their applicability to TAGs. In this paper, we propose a Curriculum Learning
approach for node selection that considers textual attributes, topological structures, and the varying
difficulty across different classes in TAGs.

6 CONCLUSION

In this paper, we propose a curriculum GNN-LLM alignment (CurGL) for TAGs, aimed at strate-
gically balance the learning of textual attributes and topological structures of nodes, improving
node representation learning. We introduce a text-structure difficulty measurer to estimate learn-
ing difficulty of textual and structural information of nodes. Then we propose a class-based node
selection strategy to balance the training process by gradually scheduling more nodes, considering
the varying class-specific node’s difficulties. Finally, a curriculum co-play alignment by iteratively
promoting useful information from LLM and GNN, progressively enhancing both components with
a balanced textual and structural information. Extensive experiments on real-world show that our
method outperforms existing GraphLLM approaches. In the future, we would like to extend our
method to other graph-related tasks, such as link prediction and graph classification.
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A METHODS DISCUSSION AND IMPLIMENTATION

A.1 DISCUSSION ON GLOBAL CENTER-BOUNDARY DETECTION

Our method is inspired by the class-conditional betweenness centrality method proposed by (Wu
et al., 2024). The betweenness centrality of a node i is defined as follows:

bi =
1

N(N − 1)

∑
u̸=i ̸=v

σu,v(i)

σu,v
(11)

where σu,v denotes the number of shortest paths from u to v, and σu,v(i) denotes the number of
shortest paths from u to v that pass through i.

Our method differs from prior methods by focusing on detecting not only boundary nodes but also
center nodes. Our global center-boundary detection method is defined as follows:

Ds(i) =
1

N(N − 1)
(
∑

u̸=i ̸=v
yu ̸=yv

σu,v(i)

σu,v
− γ

∑
u̸=i ̸=v

yu=yi=yv

σu,v(i)

σu,v
) (12)

Class Boundary Class Center

We use two cases to illustrate the effectiveness of our methods to measure the topological structure
difficulty of nodes, as shown in Figure 6. We denote the node 3 in case A as A3, and denote the
node 3 in case B as B3. The first term for node A3 is the same as for node B3. So class-conditional
betweenness centrality method fails to distinguish these two nodes. Our method consider the center
nodes, the second term for A3 is larger than for B3 the structural difficulty of B3 is higher than that
of A3 after the former minus the latter. This naturally reflects the more structural complexity of node
B3.

1 2
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4 5
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10

(a) Case A

1 2

4 3 6
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(b) Case B

Figure 6: Two case to illustrate the difficulty considering the topological structure of nodes.

A.2 GLOBAL CENTER-BOUNDARY DETECTION IMPLIMENTATION

Following (Wu et al., 2024), we adopt the random walk approach instead of calculating the shortest
path to assess the topological structure difficulty of nodes, thereby avoiding the high computational
cost associated with shortest path searches (Noh & Rieger, 2004; Liu & Lü, 2010; Zhao et al., 2022b).
Specifically, we employ the Personalized PageRank (PPR) method (Bahmani et al., 2010; Haveliwala
et al., 2003) to implement the random walk, which leads to the final formulation of our global
center-boundary detection method, as defined below.

Ds(i) :=
1

N(N − 1)
(
∑

u ̸=i ̸=v
yu ̸=yv

πu,iπi,v

πu,v
− γ

∑
u̸=i ̸=v

yu=yi=yv

πu,iπi,v

πu,v
), (13)

where π represents the Personalized PageRank matrix for the node, calculated as π = α(I− (1−
α)Â)−1

(
π ∈ RN×N

)
. Let D ∈ RN×N represent the diagonal matrix, and Â ∈ RN×N denote the

normalized adjacency matrix, calculated as D− 1
2AD− 1

2 . The element πu,v denotes the probability
of reaching node v from node u during an α-random walk. y represents the label of the node, and γ
is a hyperparameter that controls the balance between center and boundary.
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A.3 PACING FUNCTION IMPLIMENTATION

We propose a class-based node selection strategy. This approach selects nodes based on their class-
specific difficulty levels while maintaining sampled subgraph class balance. Specifically, we divide
the candidate nodes VC into K classes, denoted as VC = [VC1

,VC2
, . . . ,VCK

], where VCk
represents

the candidate nodes in class k. We then select low-difficulty nodes from each class in a proportion to
λ, which is controlled by a PacingFunction. We utilize three distinct pacing functions: linear, root,
and geometric.

• linear:
λt = min(1, λ0 + (1− λ0) ∗

t

T
) (14)

• root:

λt = min(1,

√
λ2
0 + (1− λ2

0) ∗
t

T
) (15)

• geometric:
λt = min(1, 2log2 λ0−log2 λ0∗ t

T ) (16)

where λ0 ∈ [0, 1] is the initial proportion of candidate nodes selected, T is the total number of training
steps, and t ∈ {1, . . . , T} is the current training step. The PacingFunction is a monotonically
increasing function of the training step t, controling the proportion of nodes λt selected from each
class at each step.

A.4 METHODS ALGORITHM

Algorithm 3 Class-based Pseudo-label Selection

Input: Unlabeled nodes VU , last model prediction ŷ, current training step t, confidence selection
hyperparameter α.
Output: Candidate nodes Vt

C .
1: Initialize Vt

C = VL

2: Devide VU into K classes, VU = [VU1
,VU2

, . . . ,VUK
]

3: for k = 1 to K do
4: Sort VUk

based on ŷ in descending order
5: Select α of nodes from VUk

and add them to Vt
C

6: end for

B RELATED WORKS

B.1 GRAPHLLM FOR TAGS

LLM-as-Enhancer. These methods utilizes LLMs to enrich initial node embeddings in GNNs with
semantic knowledge relevant to the nodes (Xie et al., 2023; Jin et al., 2023e; Qian et al., 2023; Huang
et al., 2023; Zhu et al., 2024a; Jin et al., 2023c; Wei et al., 2024a; Tan et al., 2024; He & Hooi,
2024; Pan et al., 2024). For example, SimTeG (Duan et al., 2023) applies LoRA (Hu et al., 2021) to
fine-tune LLMs on graph text corpora in a parameter-efficient manner, and subsequently leverages
the fine-tuned LLM to generate node representations for GNN predictions.

LLM-as-Predictor. These methods employ LLMs as predictors within a unified generative frame-
work for graph tasks (Wang et al., 2024a; Guo et al., 2023; Zhao et al., 2023a; Liu et al., 2024; Liu &
Wu, 2023; Fatemi et al., 2023; Hu et al., 2023; Liu et al., 2023b; Shi et al., 2023; Qin et al., 2023;
Das et al., 2023; Cao et al., 2023; Ai et al., 2023; Perozzi et al., 2024; Wei et al., 2024b; Wang
et al., 2024b). For example, InstructGLM (Ye et al., 2023) employs a generative framework in which
LLMs are trained to predict node labels by generating them based on the nodes’ textual attributes.
On the other hand, GraphGPT (Tang et al., 2024a) adapts LLMs for downstream graph tasks using
instruction tuning, leveraging natural language alongside a graph-text aligner to capture and convey
the structural information of the graph.
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GNN-LLM Alignment. GNN-LLM alignment ensure that the distinct strengths of each encoder
are maintained, while aligning their embedding spaces at a designated stage (Chandra et al., 2020;
Edwards et al., 2021; Sánchez et al., 2022; Su et al., 2022; Zhao et al., 2022a; Mavromatis et al.,
2023; Brannon et al., 2023; Wen & Fang, 2024). For example, GLEM (Zhao et al., 2022a) integrates
GNNs and LLMs within an EM framework, where the two models iteratively generate pseudo-labels
to assist each other. In contrast, PATTON (Jin et al., 2023b) introduces a novel pretraining framework
for language models on text-rich networks, combining network-contextualized masked language
modeling with masked node prediction to enhance performance on tasks that involve both textual and
structural data.

C EXPERIMENTS DETAILS

C.1 BASELINES

We adopt several representative GNNs, Curriculum Graph Learning, Pretrained Language Models,
and GraphLLM methods as baselines to compare with our approach on real-world datasets. We
categorize the GraphLLM methods into three groups based on their training strategies (Jin et al.,
2023a; Li et al., 2023c). A more detailed description of these baselines is provided as follows:

• GNNs
– GCN. (Kipf & Welling, 2017) Graph Convolutional Networks (GCN) is a well-known

GNN model that updates node representations by aggregating information from their
neighboring nodes.

– GAT. (Velickovic et al., 2017) Graph Attention Networks (GAT) is a graph neural
network that uses attention mechanisms to weigh the importance of neighboring nodes
when updating node representations.

– GraphSAGE. (Hamilton et al., 2017) GraphSAGE is a model for inductive represen-
tation learning on large graphs, which generates node embeddings by sampling and
aggregating features from neighboring nodes.

• Curriculum Graph Learning
– CLNode. (Wei et al., 2023) Curriculum Learning for Node Classification (CLNode) is a

Curriculum Graph Learning method that measures local difficulty by considering the
class diversity among a node’s neighbors and uses global features to identify mislabeled
nodes.

– RCL. (Zhang et al., 2023) Relational Curriculum Learning (RCL) is a Curriculum Graph
Learning method that gradually integrates node relationships into the training process,
based on the complexity of those relationships.

– TSS. (Wu et al., 2024) Topological Sample Selection (TSS) is a distinctive perspective on
employing curriculum learning methods specifically tailored for noisily labeled graphs.

• Pretrained Language Models
– BERT. (Kenton & Toutanova, 2019) Bidirectional Encoder Representations from Trans-

formers (BERT) is a pre-trained transformer model that uses a bidirectional attention
mechanism to understand the context of words in a sentence, enabling it to excel in
various natural language processing tasks.

– Sent-BERT. (Reimers & Gurevych, 2019) Sentence-BERT is an adaptation of the BERT
model specifically designed to generate sentence embeddings, allowing for effective
semantic similarity comparisons and improved performance on tasks like clustering and
information retrieval.

– RoBERTa. (Liu et al., 2019) RoBERTa is an enhanced version of BERT that modifies
the training process by using more data, longer training times, and removing the next
sentence prediction objective to improve overall model performance.

• LLM as Enhancer
– GIANT. (Chien et al., 2022) GIANT introduces a method that utilizes XR-Transformers

Zhang et al. (2021) to perform neighborhood prediction, resulting in a large language
model (LLM) capable of generating feature vectors that surpass those produced by both
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bag-of-words and standard BERT Kenton & Toutanova (2019) embeddings for node
classification tasks.

– TAPE. (He et al., 2023) TAPE employs custom prompts to engage LLMs, producing
predictions and textual explanations for each node. These text explanations are then
refined using DeBERTa He et al. (2020) to transform them into node embeddings
suitable for GNNs. Consequently, GNNs leverage a blend of original text features,
explanation-derived features, and prediction features to accurately predict node labels.

– OFA. (Liu et al., 2023a) OFA represents all nodes and edges using human-readable texts
and encodes these elements from various domains into a unified space using LLMs. The
framework is designed to be adaptable for different tasks by incorporating task-specific
prompting substructures into the input graph.

– ENGINE. (Zhu et al., 2024b) ENGINE incorporates a tunable G-Ladder module into
each layer of the LLM, which employs a message-passing mechanism to integrate
structural information. This configuration allows the output from each LLM layer,
specifically token-level representations, to be transferred to the corresponding G-Ladder
module. Here, the node representations are refined and subsequently utilized for node
classification tasks.

• LLM as Predictor

– InstructGLM. (Ye et al., 2023) InstructGLM proposes templates that encapsulate the
local ego-graph structure, covering up to a 3-hop connection for each node, and utilizes
instruction tuning to enhance node classification tasks.

– GraphText. (Zhao et al., 2023b) GraphText incorporates a fusion module that merges
the structural representations derived from GNNs with the contextual hidden states from
LLMs, such as the encoded node text. This integration allows the structural data from
the GNN adapter to enhance the textual information from the LLMs, creating a cohesive
representation suitable for supervised training.

– GraphAdapter. (Huang et al., 2024b) GraphAdapter introduces a method where the
graph encoder is first aligned with natural language semantics through text-graph ground-
ing. Subsequently, the trained graph encoder is integrated with a LLM using a projector.
By employing a two-stage instruction tuning process, the model is enabled to directly
address graph-related tasks using natural language, thereby achieving zero-shot transfer-
ability.

– LLaGA. (Chen et al., 2024a) LLaGA employs node-level templates to transform graph
data into structured sequences that are subsequently embedded into token space. This
mapping enables LLMs to handle graph-structured data, improving their versatility,
generalizability, and interpretability.

• LLM GNN Alignment

– GLEM. (Zhao et al., 2022a) GLEM integrates GNNs and LLMs, within a variational
Expectation-Maximization (EM) framework. It alternates updates between LLMs and
graph neural networks (GNNs) during the E-step and M-step, enhancing performance
on downstream tasks.

– PATTON. (Jin et al., 2023b) PATTON enhances GraphFormer Yang et al. (2021) by
introducing two novel pre-training strategies tailored for text-attributed graphs: network-
contextualized masked language modeling and masked node prediction.

C.2 DATASETS

Here we show the statistics of the datasets used in our experiments in Table 2 and briefly introduce
these real-world datasets as follows:

• Cora. (Yang et al., 2016) is a citation network focuses on computer science research papers.
Each node in the network corresponds to a paper, which includes titles and abstracts as text
attributes. Edges in this network represent citation links between the papers. The dataset
categorizes each paper, and the raw text data is available through the GitHub repository
mentioned in Chen et al. Chen et al. (2024c).
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Table 2: Statistics of all datasets, including the number of nodes, edges, average degree, average
number of tokens per node, number of classes, the percentage of training/validation/testing nodes,
amd the type of node text and domain.

Dataset # Nodes # Edges Avg. # Deg Avg. # Tok # Classes # Train/Val/Test Node Text Domain

Cora 2,708 5,429 4.01 186.53 7 5.17/18.46/76.37% Paper content Citation
Citeseer 3,186 4,277 2.68 213.16 6 3.77/15.69/80.54% Paper content Citation
Pubmed 19,717 44,338 4.50 468.56 3 0.30/2.54/97.16% Paper content Citation
Ogbn-arxiv 169,343 1,166,243 13.77 243.19 40 53.70/17.60/28.70% Paper content Citation
WikiCS 11,701 216,123 36.94 642.04 10 4.96/15.12/49.97% Entity description Web link

• Citeseer. (Yang et al., 2016) is a citation network comprising research papers in the field of
computer science. It features text attributes for 3,186 nodes, with each node representing a
paper and each edge indicating a citation relationship between two papers. The raw text data
for this dataset is sourced from the GitHub repository listed in Chen et al. (Chen et al., 2024c).

• Pubmed. (Yang et al., 2016) is a citation network of research papers in the biomedical domain.
Like the others, each node represents a paper, and each edge denotes a citation relationship
between two papers. The raw text data for PubMed is sourced from the GitHub repository
mentioned in Chen et al. (Chen et al., 2024c).

• Ogbn-arxiv. (Hu et al., 2020) is a citation network collected from the arXiv platform, compris-
ing papers and their citation relationships. Each node represents a paper, with edges denoting
citation relationships. The raw text data for Ogbn-arxiv is sourced from the GitHub repository
in OFA (Liu et al., 2023a) and is directly accessible via the link provided by the Stanford
Network Analysis Project (SNAP)1.

• WikiCS. (Mernyei & Cangea, 2020) is an internet link network where each node represents
a Wikipedia page, and each edge represents a reference link between pages. The raw text
data, including the name and content of each Wikipedia entry, collected from OFA (Liu et al.,
2023a). Each node’s label indicates the category of the Wikipedia entry.
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Figure 7: Test accuracy of the GNN-LLM alignment method GLEM (Zhao et al., 2022a) on the
Citeseer dataset varies significantly across different classes, particularly in the ML (Machine Learning)
and AI (Artificial Intelligence) categories, indicating that the learning difficulty of different classes is
not uniform across classes.

D DIFFICULTY VARY ACROSS CLASSES

We also observe that the text and structure learning difficulty can vary significantly across different
classes of nodes. For instance, in citation networks, papers in fields such as machine learning
and artificial intelligence may share similar keywords in their textual attributes and exhibit more
interactions in their topological structures, making it more challenging to distinguish between these
two classes, as shown in Figure 7.

1https://snap.stanford.edu/ogb/data/misc/ogbn_arxiv
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E LOW-QUALITY EXPERIMENT

Experimental Setting. To evaluate the robustness of our method in low-quality label scenarios, we
conduct experiments on synthetic noisy datasets. We introduce random noise at varying rates to the
labels of nodes in the training and validation datasets to simulate noisy conditions. We compare our
method against GNNs, curriculum graph learning methods, and competitive GraphLLM methods
across different levels of synthetic noise. The results are presented in Figure 8.
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Figure 8: Performance (%) of different methods on synthetic noisy datasets with different noise
levels.

Exprimental Results. Based on the results in Figure 8, we make the following observations: (1)
Competitive GraphLLM methods, while effective on real-world datasets, experience a significant
drop in performance on synthetic noisy datasets as noise rate increase. This suggests that GraphLLM
methods are sensitive to noise and struggle to learn accurate node representations in noisy environ-
ments. (2) Our method achieves the better performance than GNNs, curriculum graph earning and
GraphLLM methods on all synthetic noisy datasets. This demonstrates that our method is robust to
noisy scenarios in TAGs.

F TIME EFFICIENCY

100 101 102 103 104 105

Time (s)

70

75

80

85

90

A
cc

ur
ac

y 
(%

)

100 101 102 103 104 105

Time (s)

55

60

65

70

75

101 103 105 107

Time (s)

65

70

75

80

85

GCN GAT OFA ENGINE GraphText LLaGA GLEM PATTON CurGL

Figure 9: Training time analysis on Cora, Citeseer and WikiCS.

The experimental results show that our method achieves a significant improvement over the baselines,
with an acceptable time consumption, and some baselines even require more time than our method.

G PROBLEM SHOWCASE

The results after training separately with the LLM and GNN are shown in the figure 10. Experimental
findings reveal that some nodes are easily predicted by the LLM but are challenging for the GNN,
indicating that the textual content of these nodes is relatively simple. Conversely, some nodes are

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

RR WW RW WR
0
5

10
15
20
25
30
35
40
45
50
55

A
cc

ur
ac

y 
(%

)

Cora

RR WW RW WR
0
5

10
15
20
25
30
35
40
45
50
55

Citeseer

RR WW RW WR
0
5

10
15
20
25
30
35
40
45
50
55

Pubmed

RR WW RW WR
0
5

10
15
20
25
30
35
40
45
50
55

Arxiv

RR WW RW WR
0
5

10
15
20
25
30
35
40
45
50
55

WikiCS

Figure 10: RR represents the ratio of nodes where both the LLM and GNN make correct predictions.
WW represents the ratio of nodes where both the LLM and GNN make incorrect predictions. RW
represents the ratio of nodes where the LLM makes a correct prediction while the GNN makes an
incorrect prediction. WR represents the ratio of nodes where the GNN makes a correct prediction
while the LLM makes an incorrect prediction.

easily predicted by the GNN but misclassified by the LLM, suggesting that the structural features of
these nodes are easier to learn.

H DERIVATION OF LOSS FUNCTIONS IN THE VARIATIONAL EM ALGORITHM

In this section, we provide a derivation of the loss functions for our proposed algorithm, which
combines a LLM and a GNN within a variational EM framework following (Zhao et al., 2022a). We
ensure that the final loss functions match those defined in Equations equation 9 and equation 10.

H.1 PROBLEM SETUP

We consider a graph G = (V, E), where the node set V is partitioned into:

• A labeled set VL with known labels yL.

• An unlabeled set VU with unknown labels yU .

Each node v ∈ V has:

• Text features sv .

• An ego-graph Gv (for GNN input).

Our goal is to predict the labels of the unlabeled nodes yU by leveraging both the text features and
the graph structure.

H.2 PRETRAINING PHASE

We begin by pretraining:

1. LLM Pretraining (fp): Train the initial LLM fp on the labeled node set VL, using sv as
input and yv as target, to obtain initial text embeddings hv .

2. GNN Pretraining (gp): Train the initial GNN gp on VL, using hv as input and yv as target,
to generate initial pseudo-labels ŷv for v ∈ VU .

The models to be optimized are:

• LLM fθ with parameters θ.

• GNN gϕ with parameters ϕ.

H.3 VARIATIONAL EM FRAMEWORK

We aim to maximize the log-likelihood of the observed labels:
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log p(yL|sV , A) = log
∑
yU

p(yL,yU |sV , A). (17)

Due to the intractability of summing over all possible yU , we introduce a variational distribution
q(yU |sU ) and derive an evidence lower bound (ELBO):

log p(yL|sV , A) ≥ Eq(yU |sU ) [log p(yL,yU |sV , A)− log q(yU |sU )] . (18)

Our optimization involves alternating between:

• E-step: Optimize q (the LLM model) given p (the GNN model).

• M-step: Optimize p (the GNN model) given q (the LLM model).

H.4 PARAMETERIZATION

We parameterize:

• Variational Distribution q: Modeled by the LLM fθ, predicting labels based on text
features sv:

qθ(yU |sU ) =
∏

v∈VU

qθ(yv|sv). (19)

• Model Distribution p: Modeled by the GNN gϕ, predicting labels based on node embed-
dings hv , graph structure, and labels of neighboring nodes:

pϕ(yv|hV , A,yV \v) = pϕ(yv|Gv,yV \v). (20)

Here, hV are the text embeddings for all nodes, obtained from the LLM.

H.5 E-STEP: LLM OPTIMIZATION

In the E-step, we fix the GNN parameters ϕ and optimize the LLM parameters θ.

H.5.1 OBJECTIVE FUNCTION

We aim to minimize the KL divergence between p and q:

θ(t+1) = argmin
θ

KL (pϕ(yU |yL,hV , A) ∥ qθ(yU |sU )) . (21)

Expanding the KL divergence:

KL (pϕ ∥ qθ) =
∑
yU

pϕ(yU |yL,hV , A) log
pϕ(yU |yL,hV , A)

qθ(yU |sU )

= −
∑
yU

pϕ(yU |yL,hV , A) log qθ(yU |sU ) + const.
(22)

Assuming independence in qθ and using the approximation with pseudo-labels ŷv from the GNN, we
have:

KL (pϕ ∥ qθ) ≈ −
∑
v∈VU

log qθ(ŷv|sv) + const. (23)
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H.5.2 FINAL LOSS FUNCTION

Including the supervised loss on labeled data, the overall LLM loss function becomes:

min
θ

LLLM(θ) =
∑
v∈VL

L (fθ(sv),yv) +
∑
v∈VU

L (fθ(sv), ŷv) , (24)

where L is the cross-entropy loss function, yv is the true label for labeled nodes, and ŷv is the
pseudo-label from the GNN for unlabeled nodes.

This matches the loss function in Equation equation 9.

After optimizing θ, we update the text embeddings hv = fθ(sv) and generate new pseudo-labels for
the unlabeled nodes based on the LLM’s output logits.

H.6 M-STEP: GNN OPTIMIZATION

In the M-step, we fix the LLM parameters θ and optimize the GNN parameters ϕ.

H.6.1 OBJECTIVE FUNCTION

We aim to maximize the expected complete-data log-likelihood:

ϕ(t+1) = argmax
ϕ

Eqθ(yU |sU ) [log pϕ(yL,yU |hV , A)] . (25)

Approximating qθ(yU |sU ) using the pseudo-labels ŷv from the LLM, we have:

Eqθ [log pϕ(yL,yU |hV , A)] ≈
∑
v∈VL

log pϕ(yv|Gv) +
∑
v∈VU

log pϕ(ŷv|Gv). (26)

H.6.2 FINAL LOSS FUNCTION

Converting to a loss function to minimize, we get:

min
ϕ

LGNN(ϕ) =
∑
v∈VL

L (gϕ(Gv),yv) +
∑
v∈VU

L (gϕ(Gv), ŷv) . (27)

This matches the loss function in Equation equation 10.

After optimizing ϕ, we generate new pseudo-labels for the unlabeled nodes based on the GNN’s
output logits.
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