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Abstract

Background: The widespread adoption of electric vehicles (EVs) is critical for mitigating climate change and
transitioning towards a more sustainable future. As the number of EVs on the roads increases, the demand
for efficient smart charging solutions becomes more pressing. However, optimizing smart charging for EVs is a
complex area that has not yet been fully explored. This study intends to tackle this pressing challenge by lever-
aging advanced computational techniques, specifically genetic algorithms (GA) and particle swarm optimization
(PSO), to enhance the scheduling processes in smart charging hubs.
Approach: In our research, we thoroughly investigate five existing objective functions that are commonly
used in the context of smart charging. In addition to these established methods, we introduce an innovative
safety-aware loss function designed to ensure the reliability and safety of the charging process. This leads us to
develop a comprehensive framework consisting of a total of twelve distinct optimization strategies, each tailored
to optimize different aspects of smart charging operations.
Result: To evaluate the effectiveness and computational efficiency of these strategies, we conduct a series of
rigorous numerical experiments. These experiments not only assess the performance of each strategy under
varying conditions but also provide insights into their strengths and limitations. Furthermore, we delve into the
scalability of the proposed optimization framework, exploring how well it adapts to larger networks of charging
hubs and an increasing number of users.

AConclusion: Based on our findings, we offer practical recommendations aimed at facilitating the imple-
mentation of smart charging hubs in real-world scenarios. These insights are designed to assist policymakers,
urban planners, and technology developers in crafting strategies that support the sustainable integration of EVs
into our transportation systems while addressing the complexities of energy management and user safety1.
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1 Introduction

The global transition to electric vehicles (EVs) is driven
by the urgent need to mitigate climate change and re-
duce dependency on fossil fuels. Smart charging, which
dynamically adjusts charging patterns based on real-time
data such as energy availability, grid demand, and user
needs, has emerged as a critical enabler for optimizing
energy usage. This technology is particularly significant
for integrating renewable energy sources, such as wind
and solar, into the power grid. By aligning EV charg-
ing demand with periods of high renewable energy gen-
eration, smart charging facilitates efficient utilization of
green energy, reducing carbon emissions and reliance on
conventional power resources.

The global EV market has experienced exponential
growth in recent years, driven by technological advance-
ments, supportive policies, and increasing consumer de-
mand. According to the International Energy Agency
(IEA)[5], battery electric vehicles (BEVs) represented
two-thirds of both new electric car registrations and the
global EV stock in 2023. China led with the largest
fleet, comprising 4.5 million electric cars, while Europe
recorded the highest annual growth, bringing its total to
3.2 million vehicles (see Appendix A.0, Figure 4).

In 2024, the EVs market in Asia is anticipated to
generate a remarkable revenue of US$407.3 billion. This
market is expected to experience a steady annual growth
rate (CAGR of 2.31%) from 2024 to 2029, leading to a
projected market value of US$456.5 billion by 2029[10].
According to HSBC business[9], China continues to lead
the EV market, with EVs projected to account for ap-
proximately 45% of new vehicle sales this year. South
and Southeast Asia are emerging as key focus areas for
EV manufacturers, driven by a growing middle class,
supportive government policies, and aspirations to ad-
vance manufacturing capabilities. An EY report pre-
dicts an average annual growth rate of 16–39% in the
EV market across the six largest ASEAN economies from
2021 to 2035, with annual sales potentially reaching $100
billion by 2035. This growth presents developing mar-
kets with opportunities to leapfrog traditional automo-
tive technologies, as the global fleet of passenger and
light commercial vehicles is expected to more than dou-
ble to 2.5 billion by 2050, fueled primarily by demand
from these regions. However, Asia’s diverse policies, in-
frastructure readiness, and economic disparities will lead
to varied paths toward mobility electrification. While
two- and three-wheelers and public transport will dom-
inate some markets, private cars and commercial fleets
will take precedence in others. Vietnam exemplifies this
diversity, being the world’s second-largest electric two-
wheeler market (E2Ws). According to HSBC Global
Research, combined annual sales of E2Ws and electric
cars in Vietnam could increase from under one million in
2024 to over 2.5 million by 2036.

In the EV 2024 report by KPMG[6], although elec-

tric vehicles are still emerging in Vietnam’s market, they
have sparked considerable local interest, with nearly 70%
of survey respondents indicating a willingness to pur-
chase an EV, including both fully electric and hybrid
models. Individuals aged 25-44 with greater financial in-
dependence are more open to adopting new and emerging
technologies like fully electric or hybrid vehicles. In con-
trast, older generations and the youngest group generally
favor traditional internal combustion engine (ICE) vehi-
cles. More importantly, fast charging capacity and preva-
lence of charging stations are two key success factors
of charging station systems, followed by charging cost,
compatibility of types and brands, and user-friendliness.
Regarding preferred EV features, power, range, and the
availability of charging stations are key considerations.
Younger buyers, however, emphasize sustainability, tech-
nology, and insurance perks more.

Smart charging has garnered increasing global atten-
tion as a critical solution for sustainable EV adoption.
For instance, Canada’s recent EV Smart Charging Chal-
lenge has highlighted the international push towards de-
veloping innovative charging solutions to optimize grid
efficiency and support renewable integration [1]. How-
ever, despite this growing momentum, there remains a
notable research gap. While global efforts have focused
on expanding EV adoption and building charging net-
works, there needs to be more emphasis on develop-
ing and deploying smart charging solutions, particularly
in emerging EV markets such as Vietnam. This gap
presents a critical opportunity for advancing research and
innovation in this domain.

This study aims to address this gap by investigat-
ing smart charging strategies tailored to the unique chal-
lenges of emerging markets. Focusing on Vietnam as
a case study, this research seeks to contribute to the
global discourse on sustainable EV integration, with im-
plications for policy, technology development, and green
energy utilization. Specifically, we address the smart
charging problem of EVs using three PSO algorithms and
newly designed objective functions. The contribution of
this project is three-fold:

• We compare the efficiency and effectiveness of two
optimization algorithms for the smart charging
problem of EVs, including genetic and PSO algo-
rithms;

• We propose an objective function to simultaneously
encourage the charging efficiency and presenting
overload of electrical systems, named as a safety-
aware objective function (Section 3.3.6);

• In our proof of concept, we successfully reduce 30%
of the maximum energy required to change 10 EVs
concurrently.

This article is organized as follows:
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Section 2 introduces the smart charging problem of
EVs and investigates optimization algorithms;

Section 3 introduces our proposed framework;

Section 4 reports the numerical results using our ex-
perimental design;

Section 5 discusses the scalability; limitation and po-
tential extension of our proposed approach;

Section 6 concludes the research.

2 Backgrounds

2.1 Smart charge problem for EVs

Despite its importance, only some studies have tackled
smart charging for electric vehicles (EVs), limiting our
understanding of the issue. ACN-Sim[7, 8] is an open-
source simulation environment and dataset designed to
advance research in smart EV charging. It provides a
realistic platform for evaluating algorithms and testing
assumptions, modeling the complexities of real charging
systems, and integrating with tools like ACN-Data and
ACN-Live. It also supports grid simulators such as MAT-
POWER, PandaPower, OpenDSS, and OpenAI Gym
for training reinforcement learning agents. [2] presents
a quantum algorithm that demonstrates the potential
of the Quantum Approximate Optimization Algorithm
(QAOA) to outperform conventional algorithms in cer-
tain scenarios. However, more testing on larger instances
and actual quantum devices is needed. [4] propose a solu-
tion that enhances the EV charging experience by allow-
ing advanced reservations beyond the OCPP standard’s
limitations. Their algorithm optimizes station use, elim-
inates overlapping reservations, and improves user satis-
faction while ensuring secure transactions through a cen-
tral system.

Due to the importance of the problem, Quantum City,
the University of Calgary, ATCO SpaceLab, Canadian
Natural, and Amazon Quantum Solution Lab jointly
hosted a challenge during 2023-2024, which seeks efficient
quantum algorithms of the smart charging problem[1].
The issue at hand pertains to an urban area that has
experienced significant adoption of EVs yet needs more
support in home charging access due to its high pop-
ulation density. In response to this challenge, the city
intends to establish an independent, publicly accessible
network of EV charging stations to meet EV owners’
charging requirements effectively. The sketch of a de-
sirable solution by [1] is illustrated in Figure 5. In align-
ment with this vision, DENSO[3] and FPT, Vietnam, or-
ganized a hackathon focused on advancing toward more
sustainable manufacturing practices. This research is an
extension of a proposal that is in the top 10 finalists in
this competition.

2.2 Optimization algorithms

2.2.1 Genetic Algorithm (GA)

A genetic algorithm (GA) is a meta-heuristic optimiza-
tion technique inspired by the principles of natural selec-
tion and genetics. It is commonly used to solve complex
optimization problems by iteratively improving a popu-
lation of candidate solutions based on a fitness function.
The algorithm operates through key evolutionary mech-
anisms:

1. Initialization: A population of potential solutions
(chromosomes) is randomly generated or seeded.

2. Selection: Individuals with higher fitness values
are preferentially selected for reproduction, ensur-
ing that favorable traits are more likely to propa-
gate to the next generation.

3. Crossover (Recombination): Pairs of selected in-
dividuals exchange genetic information to produce
offspring, introducing diversity and allowing for the
combination of beneficial traits.

4. Mutation: Random alterations are introduced in
offspring to explore new regions of the solution
space and avoid premature convergence to local op-
tima.

5. Replacement: A new generation is formed by re-
placing some or all of the population with the off-
spring.

This process repeats over multiple generations, with the
population gradually converging toward optimal or near-
optimal solutions. GAs are particularly effective for solv-
ing non-linear, multi-modal, or high-dimensional opti-
mization problems where traditional methods may strug-
gle.

2.2.2 Particle Swarm Optimization (PSO)

PSO is a population-based optimization algorithm in-
spired by the social behavior of swarms, such as bird
flocking or fish schooling. It is widely used for solving
continuous and discrete optimization problems. PSO op-
erates by simulating the collective behavior of particles
(candidate solutions) that navigate the solution space to
find the optimal or near-optimal solution. The key steps
of PSO include

1. Initialization: A swarm of particles is initialized
with random positions and velocities within the so-
lution space.

2. Evaluation: Each particle’s position is evaluated
using a fitness function to determine its quality as
a solution.

3. Personal/Individual Best (pBest): Each par-
ticle remembers the best position it has found.
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4. Global Best (gBest): The swarm identifies the
best position found by any particle as the global
best.

5. Velocity update: Particles adjust their veloci-
ties based on their distance to their individual best
and the global best, incorporating stochastic coef-
ficients to balance exploration and exploitation.

6. Position update: Particles update their positions
based on their new velocities.

The process iterates until a stopping criterion is met,
such as a maximum number of iterations or convergence
to a solution. PSO’s strength lies in its simplicity, low
computational cost, and ability to handle multidimen-
sional and nonlinear optimization problems. It is partic-
ularly effective for problems where the objective function
is nondifferentiable or has multiple local optima.

3 Proposed Framework

3.1 Problem statement

Let N be the number of stations in the charging hub,
which is equal to the maximum number of EVs (capac-
ity). We assume that each EVs has the same maximum
battery capacity of F := 50, 000W = 50kW, similar to
[1]. We use a fixed voltage of U = 220(V) for the Viet-
namese market. The controllable charging current takes
a value in the option

Ioption = {8, 16, 32, 48, 64}. (1)

The power is computed by P = UI (W); thus, the range
of P is [1760, 14080] (W) or [1.76, 14.08] (kW). In an ex-
treme case, all N stations will be used to charge EVs
with request of full capacity; hence, the maximum re-
quired power is 10× 50 = 500kW. However, in practice,
these extreme case rarely happens; instead, the requested
charging of an EV is an i.i.d random variable B, which is
uniformly drawn from U [0, F ]. Besides, we assume that
all stations are requested, simulating the high-demand
period, which could lead to overloading of the charging
hub. We set the maximum allowable power to 70% of the
extreme case, which is Pallowance = 350 (kW). The con-
trol horizon is 60 minutes, divided into 13 time steps; i.e.,
t0 = 0, tmax = 60, s = 13 and δt = (t1 − t0)/(s− 1) = 5
minutes. In this setting, we will adjust the charging cur-
rent in a station adaptively, corresponding to the total
power used by all stations in the charging hub.

As a result, we present the power consumption as a
matrix

P = U · I = 220 ·


I0,0 I0,1 . . . I0,12
I1,0 I1,1 . . . I1,12

I9,0 I9,1 . . . I9,12

 (2)

In a generalized case, the power matrix P is N × s;
and the control current Ip,q with p ∈ [0, N − 1] and
q ∈ [0, s− 1]. The sequence

CIp = (Ip,0, Ip,1, . . . , Ip,s−1) (3)

is a charging configuration of an individual EV. Mean-
while, the summation (columns sum of I)

CP(T ) = 220 ·
N−1∑
p=0

Ip,T (4)

is the power of all stations used at time T ∈ [0, s − 1].
With the constrain Pallowance, we want

C := CP(T ) ≤ Pallowance; ∀T ∈ [0, s− 1]. (5)

For some objective function L (or fitness/loss function),
we find

I∗ = argmaxL(I|C), (6)

where I∗ is the optimal value of I that minimizes the
objective function L(I|C) with the constrain C in Equa-
tion 5. In the next section, we apply two optimization
algorithms (denoted as M): (1) genetic algorithm and
(2) PSO algorithm to solve for I∗ (Section 3.2), under
six objective functions (see Section 3.3).

3.2 Algorithms

3.2.1 GA for smart charging of EVs

In the parameter space, we use

Population Size: P = 50,

Generations: G = 100,

Mutation Rate: µ = 0.1

(7)

Initialization of population: The initial population
consists of P individuals:

Ik ∼ Uniform(Ioptions) (8)

where Ioptions is the set of possible current values, and
Ik ∈ RN×s is an individual’s charging schedule.
Crossover operation: The initial population consists
of P individuals:

Ik ∼ Uniform(Ioptions) (9)

where Ioptions is the set of possible current values, and
Ik ∈ RN×s is an individual’s charging schedule.
Crossover operation: Given two parents I1, I2,
crossover is performed at a random point c:

Child 1: I(1)c = [I1[:, : c], I2[:, c :]]

Child 2: I(2)c = [I2[:, : c], I1[:, c :]]
(10)

Mutation operation: For an individual Ik, each ele-
ment Ii,t is mutated with probability µ:

Ii,t =

{
Random(Ioptions), if probability less than < µ

Ii,t, otherwise.

(11)
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Selection process: The top P/2 individuals are se-
lected based on their fitness values:

{Ik : k ∈ argsort(f(I))[: P/2]} (12)

Update of charging matrix I:

Mi,0 = Bi

Mi,t =

{
min(Mi,t−1 + U · Ii,t, F ), if Mi,t−1 < F

F, otherwise.

(13)

where Bi is the initial battery level of EV i, F is the
maximum battery capacity, U is the power conversion
factor (voltage) and Ii,t is the current applied to EV i at
time t.

GA algorithm for smart charging of EVs

Step 1. initialization: Randomly generate P
individuals

Step 2. evaluate: Compute L(I) for each indi-
vidual using the charging matrix

Step 3. selection: Choose the top P/2 individ-
uals

Step 4. generation:

Step 4.1. Perform crossover to create off-
spring

Step 4.2. Apply mutation to offspring

Step 5. iterate: Repeat steps 2-4 for G genera-
tions

Step 6. return: The best charging schedule I∗

3.2.2 PSO for smart charging of EVs

Initialization: We initialize the global best value as

Global Best Value = −∞,

Global Best Position = ∅
(14)

Then, we randomly generate the particle positions and
velocities

Xi ∼ Random Choice(I, (N, s)),

Vi ∼ U(−1, 1, (N, s))
(15)

and copy initial positions to best positions using

IBPi := Individual Best Positionsi = Xi (16)

We evaluate the fitness of each particle’s position by L(I)
(discussed later in Section 3.3). The update rule is de-
fined as

GBV := Global Best Value = maxL(I),
GBP := Global Best Position = I∗.

(17)

PSO algorithm for smart charging of EVs
For each iteration t = 1, 2, . . . , G:

Step 1. velocity update: for each particle i:

Vi(t+ 1) = wVi(t)

+ ϕpRp ⊙ (IBPi −Xi(t))

+ ϕgRg ⊙ (GBP−Xi(t))

(18)

where Rp,Rg ∼ U(0, 1, (N, s)) and ⊙ is
element-wise multiplication.

Step 2. position update:

Xi(t+ 1) = Xi(t) +Vi(t+ 1). (19)

Clip positions to nearest allowable values in
I:

Xi(t+ 1) = Nearest(Xi(t+ 1), I) (20)

Step 3. objective evaluation: compute

IBPi =


Xi(t+ 1)

if L(Xi(t+ 1)) > L(IBPi)

IBPi otherwise.

(21)

Step 4. update global best:

GBV,GBP =


L(IBPi), IBPi

if L(IBPi) > GBV;

GBV,GBP otherwise.

(22)

Step 5. return: the global best solution I∗

3.3 Objective functions

Let I be the optimized matrix, whose entries Ip,q are RVs
randomly drawn values from current options in Equa-
tion 1. We denote the fitness value as fit. Objective
functions discussed in Section 3.3.2, 3.3.3 and 3.3.4 are
proposed in[2, 7, 8] and reviewed in[1]. Nevertheless, we
adjust these loss functions for our problem statement in
Section 3.1. Besides, we propose two new objective func-
tions, which are a weighted version of the existing ob-
jective function (Section 3.3.5) and a safety-aware cost
function (Section 3.3.6).

3.3.1 Generic objective function [LGen(I|C)]

First, we compute the quantity CP(T ) using Equation 4.
Then, the fitness value is computed as

fit = −max{0,CP(T )− Pallowance}, (23)
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where a negative penalty is given for an exceeding power
over Pallowance. The python code implementation of this
objective function is given in Section A1.1.

3.3.2 Quick charging objective [LQC(I|C)]

This objective function gives incentive for the rapid
charging of all EVs by

fit := LQC(I) =

s−1∑
T=0

s− T

s− 1
· CP(T ); (24)

where the pre-factor γ := (s − t)/(s − 1) decreases lin-
early over time and the incentive for early charging at
time T is γCP(T ) for T running from 0 to s−1. The pre-
factor γ linearly decreases over the controlling horizon,
encouraging the charging hub to deliver the total power
consumption as quickly as possible. This approach facil-
itates efficient throughput by ensuring prompt servicing
of electric vehicles (EVs) and freeing capacity for subse-
quent EVs in the queue, particularly when the number
of requested charging slots exceeds the available capac-
ity N . The python code of this loss function is given in
Section A1.2.

3.3.3 Non-competition penalty [LNC(I|C)]

This objective function emphasizes meeting the energy
charging needs of EV owners within the designated
charging time constraints. We modify the original loss
function for our problem as

fit := LNC(I) = −Penalty1/α

Penalty =

N−1∑
i=0

(
Energy Shortfalli

)α

Energy Shortfalli = |Total Energyi − Erequired,i|

Total Energyi =

s−1∑
j=0

Ii,j · U ·∆t;

(25)

where ∆t is the step size (in our experiment is 0.5) and
Erequired,i is the required energy for the i-th EV. Increas-
ing α to a value greater than 1 leads to prioritizing EVs
with larger energy demands and shorter available charg-
ing durations. The python implementation is given in
Section A1.3.

3.3.4 Load variation objective function
[LLV(I|C)]

Load variation refers to the changes or fluctuations in the
electrical load (demand for power) over a given period.
We want to minimize the total load variations to protect
the electrical system, which is defined as

fit := LLV(I) = −
s−1∑
q=0

(N−1∑
p=0

Ip,q
)2

(26)

The python implementation is given in Section A1.4.

3.3.5 Composite objective function [LComp(I|C)]

We simply weight the existing objective functions LQC,
LNC and LLV by weights wQC, wNC and wLV, respec-
tively. The composite objective function is given as

LComp(I) = wQCLQC(I) + wNCLNC(I) + wLVLLV(I),
(27)

where w ∈ [0, 1].

3.3.6 Safety-aware objective function [LSA(I|C)]

To protect the electrical grid, we construct a reward-
penalty objective function, which is

fit := Reward− Penalty. (28)

The reward encourages the total power at each time
step CP(T ) to stay close to the maximum power limit
(Pallowance), with a tolerance margin of ±5%. Meanwhile,
the penalty term penalizes power exceeding the maxi-
mum limit Pallowance, with the penalty growing quadrat-
ically with the excess. Specifically, we construct

Reward =

s−1∑
T=0

[− |CP(T )− Pmax|+ Pallowance]

Penalty =

s−1∑
T=0

[max (0,CP(T )− Pallowance)]
2

(29)

Our proposed objective function is an extension of the
generic loss function in Section 3.3.1. However, the
reward-penalty mechanism allows us to push the total
power consumption as close as possible to the maximum
capacity but avoid overload. The python code to imple-
ment this loss function is given in Section A1.5.

4 Numerical Results

4.1 Experimental environment

We use python 3.7.0, and numpy for numerical computa-
tion. Both GA and PSO are implemented from scratch,
following Section 3.2.1 and 3.2.2. For the numerical
results, we simulate each experiment using 100 indepen-
dent runs and report the mean and standard deviation of
optimal charging schedule (see Figure 1 and 2). In each
sub-figure, the left panel reports the optimal solution,
while the right panel illustrates the control current in
each station. The shared region represents one standard
deviation around the mean.
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4.2 Effectiveness analysis

Figure 1 and Figure 2 illustrate the optimization results
achieved using the GA and PSO algorithms introduced
in Section 3.2.1 and Section 3.2.2, respectively, under the
six objective functions described in Section 3.3.

Overall, only two strategies, GA-LQC and GA-LComp,
resulting in overloads beyond the allowable capacity,
Pallowance in some simulation. In contrast, all other
strategies maintain total power consumption below the
allowable threshold. The GA algorithm demonstrates
a tendency to schedule high power loads within the
initial 0–10 minutes of the control horizon (except for
GA-LComp). Subsequently, the total power consump-
tion gradually decreases over time, ensuring that all EVs
are fully charged by the horizon’s end. In contrast,
the PSO algorithm distributes the power load more uni-
formly across the entire control horizon, except for PSO-
LGen. However, PSO algorithms incorporating load vari-
ation and composite loss objectives (PSO-LLV and PSO-
LComp) are less efficient, as a few of EVs remain un-
charged after 60 minutes. This phenomenon may result
from the load variation constraint, which limits fluctua-
tions in the control current. Notably, the mean charging
current for PSO-LLV shows minimal variation, whereas
GA-LLV exhibits significant variation. This suggests that
the GA algorithm explores a larger solution space than
the PSO algorithm.

Finally, the proposed safety-aware objective function
proves to be an effective fitness function. Specifically,
the loss function prioritizes solutions that approach the
allowable capacity without exceeding the electrical sys-
tem’s limit in both algorithms.

4.3 Efficiency analysis

Table 1 compares the mean running times for two op-
timization strategies under six different objective func-
tions. The times are measured in seconds ([s]) and rep-
resent the approximate time per run.

PSO demonstrates slightly better efficiency than GA,
as it has lower runtime values across most objective func-
tions. The average runtime across all objective functions
for GA and PSO are ≈ 2.10 [s] and ≈ 1.83 [s]. PSO is
approximately 12.9% average faster than GA. PSO main-
tains consistent runtime improvements across most ob-
jective functions. The largest efficiency gap is observed
for LLV, where PSO is 25% faster than GA. The smallest
difference is noted for LQC, with PSO being only 1.5%
faster. Although the differences are small for some ob-
jective functions, PSO’s improved efficiency, particularly
for LGen, LNC, and LLV, makes it a favorable choice for
time-critical applications.

5 Discussion

5.1 Scalability of the framework

We examine the scalability of the proposed framework
using N = 100 stations and calculate the maximum
power allowance for the charging hub with Pallowance =
0.7 · N · F . For stress testing, we focus on the time-
consuming objective function LComp. Our findings reveal
that the current approach struggles to scale effectively.
The Genetic Algorithm (GA) for LComp takes 2,153 sec-
onds (35.9 minutes) to optimize for 100 stations, whereas
Particle Swarm Optimization (PSO) takes only 1,595 sec-
onds (26.6 minutes).

Figure 3a shows results from 100 independent runs.
The GA-based method peaks at approximately 3,500
kW, reaching the maximum power limit within 0 to 10
minutes. Its mean optimization curve gradually reduces
total power consumption but exhibits a wider devia-
tion band. In contrast, the PSO-based approach peaks
slightly below 3,000 kW, with a more consistent decline
in power consumption and a narrower deviation band, in-
dicating steadier optimization. This suggests that PSO
adheres better to constraints while GA engages in more
exploration. These trends align with our previous exper-
iments.

5.2 Our recommendations

For practitioners interested in building an actual smart
charging hub based on the findings from these optimiza-
tion strategies, we have several recommendations:

• Prioritize load management and safety-
aware objectives: Implement a safety-aware ob-
jective function to ensure power consumption re-
mains within allowable limits, especially during
peak times. This will help maintain system safety
while optimizing efficiency.

• Address load variation constraints in PSO:
PSO variants with load variation constraints (e.g.,
PSO-LLV) can struggle with complex demands,
leaving some EVs uncharged. Consider relaxing
these constraints for more dynamic charging pro-
files.

• Dynamic solution space exploration with
GA: For diverse charging loads, GA-based algo-
rithms like GA-LLV can explore the solution space
more effectively, optimizing schedules early in the
charging period.

• Real-time power monitoring and adjust-
ment: Both GA and PSO can benefit from real-
time feedback. While GAs may cause load spikes,
PSO might undercharge some EVs if constraints
are too strict. Dynamic adjustments can enhance
charging efficiency within capacity limits.
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5.3 Limitations and future works

Firstly, our approach does not rely on data-driven meth-
ods as seen in [7, 8], which incorporate external datasets
for smart charge scheduling. We aim to overcome this
limitation in future work by collecting a local dataset
to enable a data-driven solution. Secondly, despite eval-
uating 12 optimization strategies, we still need to ad-
dress their comparison using formal metrics. The de-
velopment of such evaluation metrics warrants further
investigation. Thirdly, while we acknowledge the ex-
istence of other PSO-based algorithms and combinato-
rial optimization techniques applicable to this problem,
we regard both GA and PSO as valuable benchmarks
for encouraging future research on algorithmic develop-
ment. Besides, the hyperparameter optimization of GA
and PSO should be investigated to determine the robust-
ness of these algorithms under different configurations.
Lastly, the scalability of our proposed methods is cur-
rently limited to more than a single charging hub. We
anticipate that more efficient implementations, such as
utilizing distributed or parallel computing and leveraging
more powerful computational resources, will be necessary
to extend this approach to multiple hubs.

6 Conclusion

To achieve the goal of this project, we introduced the
smart charging problem for electric vehicles (EVs) in Sec-
tion 3.1 and provided a review of existing approaches in
Section 2.1. Adaptations of GA and PSO for this prob-
lem are discussed in Section 3.2, along with six objec-
tive functions outlined in Section 3.3. As a result, we
analyzed 12 optimization strategies regarding their effec-
tiveness in Section 4.2 and efficiency in Section 4.3. Fol-
lowing this, we addressed the scalability of our proposed
approach, offered recommendations for practical deploy-
ment, highlighted the limitations of the current research,
and outlined several directions for future research in Sec-
tion 5.
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Table 1: Efficiency analysis of optimization strategies using GA and PSO under the six investigated objective
functions, measured using the mean running time in [s]econd; i.e., approximate time elapsed per run

GA PSO

LGen 1.63[s] 1.26[s]
LQC 2.01[s] 1.98[s]
LNC 2.09[s] 1.82[s]
LLV 1.96[s] 1.47[s]

LComp 3.19[s] 3.13[s]
LSA 1.71[s] 1.34[s]

(a) Generic loss (b) Quick charging loss

(c) Non-competition loss (d) Load variation loss

(e) Composite loss (f) Safety-aware loss

Figure 1: Optimization result for smart charge scheduling of EVs using GA algorithm in Section 3.2.1

Appendix

A0. EV market research by IEA and desirable solution of smart charging system

We reuse market research of EVs form IEA[5] under BY-CC-4.0, demonstrated in Figure 4. A sketch for a good
optimized solution by [1] is in Figure 5.

A1. Python code to implement objective functions

A1.1 Generic objective function

1 def GenericLoss(I):

2 column_sum = I.sum(axis =0)

3 excess_power = np.maximum(0, column_sum - max_power_limit)

4 # Negative penalty for exceeding power

5 fitness_value = -np.sum(excess_power)

6 return fitness_value

Listing 1: The python code of generic objective function

A1.2 Quick charging objective function
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(a) Generic loss (b) Quick charging loss

(c) Non-competition loss (d) Load variation loss

(e) Composite loss (f) Safety-aware loss

Figure 2: Optimization result for smart charge scheduling of EVs using PSO algorithm in Section 3.2.2

(a) GA-LComp

(b) PSO-LComp

Figure 3: Scalability analysis of GA and PSO algorithm using composite objective function for N = 100 charging
stations
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(a) Global electric passenger car stock (2010-2020)
(b) Global electric car registrations and market share
(2015-2020)

(c) Electric car registrations and market share in North-
Western Europe (2015-2020)

(d) Electric car registrations and market share in selected
countries (2015-2020)

Figure 4: Trends and developments in electric vehicle markets analyzed by IEA[5]. The figures are reused under
IEA. License: CC-BY-4.0-The Organisation for Economic Co-operation and Development (OECD), on behalf of the
IEA (collectively the OECD/IEA) remains the owner of any intellectual property rights in the CC-licensed Content
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Figure 5: A sketch for a good solution by[1]

1 def QuickChargeLoss(particle):

2 total_quick_charge = 0

3 for T in range(s):

4 # Prefactor decreases linearly over time

5 prefactor = (s - T) / (s - 1)

6 # Sum current for all EVs at time t - CP(T)

7 CP_T = np.sum(particle[:, t])

8 # Incentivize early charging

9 fitness_value += prefactor * CP_T

10 return fitness_value

Listing 2: The python code of quick charging objective function

A1.3 Non-competition objective function

1 def NonCompetitionLoss(particle , alpha):

2 penalty = 0

3 for i in range(N):

4 total_energy = np.sum(particle[i, :] * U * Delta_t)

5 energy_shortfall = abs(total_energy - E_required[i])

6 penalty += energy_shortfall ** alpha

7 fitness_value = -penalty **(1/ alpha)

8 return fitness_value

Listing 3: The python code of non-competition objective function

A1.4 Load variation objective function

1 def LoadVariationLoss(particle):

2 fitness_value = 0

3 for t in range(s):

4 N_t = np.sum(particle[:, t])

5 fitness_value += -N_t ** 2

6 return fitness_value

Listing 4: The python code of load variation objective function
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A1.5 Safety-aware objective function

1 def SafetyAwareLoss(I):

2 column_sum = I.sum(axis =0)

3 target_range = 0.05 * max_power_limit

4 reward = np.sum(-np.abs(column_sum - max_power_limit) + max_power_limit)

5 excess_power = np.maximum(0, column_sum - max_power_limit)

6 penalty = np.sum(excess_power ** 2)

7 fitness_value = reward - penalty

8 return fitness_value

Listing 5: The python code of safety-aware objective function
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