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Abstract

Medical question-answering (QA) is a critical001
task for evaluating how effectively large lan-002
guage models (LLMs) encode clinical knowl-003
edge and assessing their potential applications004
in medicine. Despite showing promise on005
multiple-choice tests, LLMs frequently strug-006
gle with open-ended medical questions, produc-007
ing responses with dangerous hallucinations or008
lacking comprehensive coverage of critical as-009
pects. Existing approaches attempt to address010
these challenges through domain-specific fine-011
tuning, but this proves resource-intensive and012
difficult to scale across models. To improve013
the comprehensiveness and factuality of medi-014
cal responses, we propose a novel approach015
utilizing structured medical reasoning. Our016
method guides LLMs through an seven-step017
cognitive process inspired by clinical diagnosis,018
enabling more accurate and complete answers019
without additional training. Experiments on the020
MedLFQA benchmark demonstrate that our ap-021
proach achieves the highest Factuality Score of022
85.8, surpassing fine-tuned models. Notably,023
this improvement transfers to smaller models,024
highlighting the method’s efficiency and scala-025
bility. Our code and datasets are available.026

1 Introduction027

Language lies at the heart of healthcare delivery,028

serving as the primary medium through which med-029

ical knowledge is communicated and healthcare de-030

cisions are made. Recent advances in LLMs have031

shown promising potential in medical applications,032

particularly in tasks requiring deep clinical knowl-033

edge and reasoning (Singhal and et al., 2022; Tu034

and et al., 2023; Labrak et al., 2024; Jeong et al.,035

2024b; Liu et al., 2023). Among these applica-036

tions, medical QA stands out as a critical task for037

evaluating how effectively LLMs encode and apply038

clinical knowledge. This task is particularly chal-039

lenging, as it requires an understanding of medical040

context, the recall of relevant knowledge, and the041

ability to reason with expert-level information. 042

While existing LLMs have demonstrated impres- 043

sive performance on medical benchmarks, such as 044

MedMCQA (Pal et al., 2022) and USMLE (Ex- 045

amination, 2023), these evaluations primarily fo- 046

cus on knowledge retrieval rather than comprehen- 047

sive reasoning. This limitation has led to the de- 048

velopment of more challenging benchmarks like 049

MedLFQA (Jeong et al., 2024a), which demands 050

detailed, factually accurate, and clinically relevant 051

long-form responses. 052

However, when tasked with generating long- 053

form medical answers, LLMs frequently struggle 054

with two critical challenges. First, they often pro- 055

duce responses containing dangerous hallucina- 056

tions or factual errors. As shown in Figure 6, con- 057

sider a patient’s inquiry regarding the concurrent 058

use of Zyrtec and Hydroxyzine: while an accurate 059

response should detail potential adverse interac- 060

tions between these antihistamines and emphasize 061

the importance of professional medical guidance, 062

LLMs sometimes generate misleading or incorrect 063

information about drug compatibility. Such inaccu- 064

racies could lead to serious clinical consequences 065

if relied upon for medical decision-making. 066

As shown in the Figure 4, the second challenge 067

lies in generating comprehensively informed re- 068

sponses. When asked about a health condition like 069

boils and carbuncles, an adequate response must 070

cover multiple aspects: how they are treated, po- 071

tential causes, and common symptoms. Current 072

models sometimes provide incomplete responses, 073

addressing only certain parts of the question while 074

leaving out critical information. This lack of com- 075

prehensive detail can result in patients or healthcare 076

providers missing important aspects of diagnosis 077

and treatment. 078

Existing approaches have primarily relied on 079

two strategies to address these challenges: super- 080

vised fine-tuning with domain-specific datasets and 081

chain-of-thought (CoT) prompting (Kalajdzievski, 082
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Figure 1: A flowchart showing the doctor’s cognitive process to answer a patient’s question, involving medical
analysis, relevant information, and follow-up steps.
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Figure 2: Factuality Scores for different models
(LLaMA2-7B, Meditron-7B, Mistral-7B, BioMistral-
7B) across three methods: Zero-shot, OLAPH, and Med-
SoCoT (Ours).
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Figure 3: Factuality Scores for different models
(Gemma-7B, LLaMA3.1-3B-INSTRUCT, GPT-3.5-
Turbo) across three methods: Zero-shot, CoT and Med-
SoCoT (Ours).

2024). While fine-tuning can improve performance,083

it requires substantial computational resources and084

risks catastrophic forgetting of pre-trained knowl-085

edge. CoT prompting has shown promise in en-086

hancing reasoning capabilities, but its effectiveness087

in generating comprehensive medical responses088

remains limited, particularly for models with re-089

stricted context lengths.090

Drawing inspiration from cognitive science re-091

search on how humans process complex infor-092

mation (Thagard, 1996; Breedlove et al., 2010;093

Gazzaniga et al., 2018; Krathwohl, 2002; Dun-094

can, 2013), we propose a novel medical structured095

output approach. As shown in the Figure 1, this 096

method guides LLMs through a systematic pro- 097

cess of medical reasoning, breaking down the re- 098

sponse generation into distinct cognitive steps: un- 099

derstanding the question, recalling relevant med- 100

ical knowledge, analyzing implications, and syn- 101

thesizing comprehensive answers. By explicitly 102

structuring the output process, we enable LLMs to 103

better organize and validate their medical knowl- 104

edge, leading to more accurate and complete re- 105

sponses (Zhao et al., 2024). 106

Our research demonstrates that Medical Struc- 107

tured Output CoT (Med-SoCoT) effectively miti- 108

gates hallucinations and "echo" phenomena while 109

improving the factuality in a training-free manner, 110

enabling even smaller models to generate high- 111

quality medical responses. For models with limited 112

context length, overly long prompts can hinder the 113

complete output of structured content. To address 114

this, we adopt a step-by-step reasoning approach, 115

where the model generates one piece of structured 116

content at a time, and the outputs are concatenated 117

for summarization. Notably, this approach notably 118

achieves performance improvements on par with 119

fine-tuned models, demonstrating that prompt engi- 120

neering alone can substantially enhance factuality 121

without requiring additional training. 122

Our research focuses on two key questions: First, 123

whether structured output can enhance the factual 124

accuracy of medical question answering; and sec- 125

ond, whether smaller models can achieve structured 126

outputs solely through prompt engineering. Our 127

contributions are summarized as follows: 128

• We integrate chain-of-thought reasoning with 129

structured output to develop novel medical 130

prompts, demonstrating that general-purpose 131

LLMs can produce comprehensive answers 132

2



Question: Are boils and carbuncles curable?

Answer: Keep the affected area clean ... visit the 

doctor for immediate treatment ... not to take any 

over the counter medicines on your own ... taking 

demi at home comes with a risk of spreading of 

bacteria ... using specific techniques during cleaning 

and cleaning tools to decrease pain. 

Structured 
Output

Answer: Boils and carbuncles are typically treated 

with antibiotics, either orally or topically. ... surgical 

drainage may be necessary to remove the infected 

tissue. ...  keep cuts and scratches clean and covered 

to prevent the entry of bacteria. ...  see a healthcare 

provider for proper diagnosis and treatment. …

Factuality Score : 0.0 Factuality Score : 100.0

Direct 
Output

…

Figure 4: Model: Gemma2-7B. LLMs often generate unreliable answers, due to cognitive limitations. Structured
output helps LLMs analyze problems step by step, leading to more complete and accurate answers.

with reduced hallucinations without additional133

training. Our approach achieves the highest134

Factuality Score of 85.8, surpassing even fine-135

tuned models, which achieve a maximum Fac-136

tuality Score of 74.2.137

• For models with shorter context lengths, we138

employed stepwise reasoning without altering139

the prompt content, achieving an 12.7% im-140

provement in the comprehensiveness of the141

model’s output, increasing Factuality Score142

from 61.6 to 69.4.143

• For smaller models (3B), our approach re-144

mains highly effective, boosting Factuality145

Score from 78.6 in Zero-shot settings to 84.5.146

This improvement highlighting the robustness147

of our method across model sizes.148

2 Related Work149

2.1 Medical question answering150

The landscape of medical question answering (QA)151

is diverse, encompassing various formats that cater152

to different aspects of clinical reasoning and knowl-153

edge application. These formats include multiple-154

choice QA (Jin et al., 2020; Hendrycks et al., 2021;155

Jin et al., 2019; Pal et al., 2022; Xiong et al., 2024),156

fragment-based QA (Krithara et al., 2023), open-157

domain QA (Lee et al., 2019), factoid QA (Jin et al.,158

2022), multi-turn dialogue QA (Bao et al., 2023),159

knowledge-base QA (Lozano et al., 2023), and160

clinical decision-making QA (Hager et al., 2024).161

Each format presents unique challenges, ranging162

from simple knowledge retrieval to complex reason-163

ing and multi-step decision-making, reflecting the164

multifaceted nature of real-world medical problem-165

solving.166

Among these, Long-Form Question Answering167

(LFQA) is particularly crucial in the medical field,168

as it allows for detailed and comprehensive re- 169

sponses to open-ended questions. This is espe- 170

cially important in biomedical and clinical set- 171

tings, where accuracy and depth are vital for pa- 172

tient care (Fan et al., 2019; Stelmakh et al., 2023). 173

To address these needs, Minbyul developed the 174

MedLFQA dataset by combining several existing 175

QA datasets (Abacha et al., 2019). MedLFQA pro- 176

vides a valuable resource for evaluating how large 177

language models (LLMs) handle patient queries, 178

offering insights into the quality of their long-form 179

responses. The dataset includes five distinct medi- 180

cal QA datasets and encompasses various fields like 181

question, answer, and essential details, enabling a 182

thorough assessment of the comprehensiveness and 183

accuracy of LLM-generated medical content. 184

2.2 Evaluation of Long-Text Generation 185

To evaluate the quality of long text generation 186

by LLMs, ROUGE metrics, such as ROUGE-1, 187

ROUGE-2, and ROUGE-L, are commonly used to 188

assess text similarity at different granularities. To 189

provide a more comprehensive evaluation, we use 190

the Words Composition metric from MedLFQA, 191

which is calculated as shown in Equation A.1. 192

This metric averages the F1 scores of ROUGE-1, 193

ROUGE-2, and ROUGE-L, offering a more accu- 194

rate assessment of the text’s quality in terms of 195

word-level, bigram-level, and sentence structure 196

performance. 197

Some metrics, such as Hallucination Score and 198

Comprehensiveness Score (Manes et al., 2024a) , 199

are used to assess the inclusion of key statements 200

in the clinical domain. Specifically, Hallucina- 201

tion Score is a metric designed to measure how 202

many clinical statements in the language model’s 203

response contradict factual information. This score 204
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is calculated using Equation A.2. Where S rep-205

resents all the statements that must be included206

(Must Have, MH) and those that are optional (Nice207

to Have, NH), such that |S| = |MH|+ |NH|. Addi-208

tionally, Comprehensiveness Score is a metric used209

to measure how many key clinical statements are210

included in the language model’s response. This211

score is calculated using Equation A.3. To predict212

the entailment of the response, we used a classifi-213

cation model based on BioBERT (Lee et al., 2019),214

which was trained on NLI datasets (Bowman et al.,215

2015; Williams et al., 2018).216

The Factuality Score is calculated using Equa-217

tion A.4. Our work is based on these fine-grained218

and cost-effective evaluation metrics to understand219

the factuality and lexical structure of LLMs when220

generating long text.221

2.3 Structured Output222

In traditional NLP literature, structured data typ-223

ically refers to the extraction of entity-relation-224

entity triples and attributes from plain text, fol-225

lowed by the construction of knowledge graphs226

or databases with specific data formats or227

schemas (Jiang et al., 2023b; Li et al., 2023). In228

previous work, "structuring" was used to reorga-229

nize input sentences into a three-layer structure230

based on the internal semantic relationships be-231

tween them. This method captures the dependen-232

cies and connections among elements in long-text233

inputs, thereby enhancing LLMs’ understanding234

of knowledge structure and relationships. Earlier235

studies have explored how structuring input infor-236

mation can improve LLMs’ cognitive abilities (Liu237

et al., 2024). In the work on GPT-4o, structured238

output refers to organizing the content generated239

by a language model into a specific format or pat-240

tern (OpenAI, 2023). This output often includes241

predefined labels, fields, or sections to make it more242

convenient for users to interpret and use. Structured243

output not only helps reduce redundancy in gen-244

erated content but also ensures that the text meets245

certain requirements or standards.246

In this paper, instead of focusing on entity-level247

information extraction or restructuring the input248

content, we primarily leverage the model’s struc-249

tured output capabilities to guide it in completing250

structured thinking. This enhances the model’s251

ability to recognize the structure and relationships252

between recalled knowledge and the posed ques-253

tions.254

3 Methodology 255

3.1 Overview 256

Structured reasoning plays a crucial role in mod- 257

ern medical applications by enhancing diagnostic 258

accuracy and decision-making efficiency through 259

the systematic organization of complex medical 260

knowledge. By emulating human cognitive pro- 261

cesses, it ensures a logical and coherent approach 262

to clinical problem-solving. This is particularly 263

vital for large language models (LLMs) in medical 264

decision-making, where, despite vast knowledge, 265

LLMs often produce fragmented outputs without 266

guidance. A structured framework allows these 267

models to analyze data systematically, consider rel- 268

evant clinical factors, and generate contextually 269

appropriate, reliable conclusions, improving both 270

accuracy and consistency. 271

To implement this, we propose a framework 272

based on established clinical reasoning theo- 273

ries (Higgs, 2020; Young et al., 2020; Shin, 2019; 274

Pelaccia et al., 2011). It breaks down diagnostic 275

and therapeutic reasoning into systematic steps, 276

ensuring a logical progression from patient assess- 277

ment to treatment planning. Supported by evidence- 278

based strategies and structured models, this ap- 279

proach yields precise, actionable outputs that en- 280

hance clinical decision-making. 281

3.2 Medical Structured Reasoning Process 282

Structured reasoning is a cognitive approach that or- 283

ganizes complex medical problems into systematic 284

decision-making steps. Inspired by clinical reason- 285

ing in medicine (Higgs, 2020; Young et al., 2020; 286

Shin, 2019; Pelaccia et al., 2011), we propose a 287

structured framework comprising seven key cogni- 288

tive processes. This framework provides large lan- 289

guage models (LLMs) with a clear reasoning path- 290

way that mimics human medical cognition, thereby 291

improving accuracy, interpretability, and reducing 292

reasoning errors. 293

1. Understand the Question 294

The first step in medical reasoning is accurately 295

understanding the patient’s problem. This involves 296

an in-depth analysis of the chief complaint, medical 297

history, and contextual factors. Research indicates 298

that a well-defined problem statement is the foun- 299

dation of a successful diagnosis (Ng et al., 2024). 300

For LLMs, precise input interpretation is critical 301

in minimizing errors and setting the context for 302

subsequent logical analysis. 303

2. Recall Relevant Medical Knowledge 304
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Figure 5: Model: Gemma-7B, Dataset: LiveQA. An overview of structured medical reasoning process shows a
step-by-step framework to improve the comprehensiveness and factuality of medical QA.

Once the problem is clearly defined, clinicians305

recall relevant disease patterns, risk factors, and306

physiological mechanisms. The disease script the-307

ory suggests that experienced physicians rely on308

stored patterns for rapid decision-making (Thampy309

et al., 2019). This step is essential for LLMs, as310

an effective knowledge retrieval mechanism can311

reduce hallucinations and ensure medically accu-312

rate responses. Moreover, robust knowledge recall313

directly supports the next step—logical analysis of314

the medical information.315

3. Analyze Medical Information316

Using the retrieved knowledge, clinicians sys-317

tematically compare and interpret the collected pa-318

tient data to generate differential diagnoses. The319

dual-process theory highlights that analytical rea-320

soning is particularly crucial in complex or unfa-321

miliar cases (Higgs, 2020). For LLMs, this step re-322

quires strong logical reasoning capabilities to avoid323

misinterpretations caused by data noise or biases.324

Furthermore, accurate knowledge recall (Step 2)325

enhances this analytical process by providing the326

necessary context for reasoning.327

4. Assess Impacts and Considerations328

After forming diagnostic hypotheses, clinicians329

evaluate potential treatment risks, ethical consider-330

ations, and resource constraints. Multilevel deci-331

sion frameworks, such as the Four Quadrant Model,332

help balance medical, ethical, and logistical fac-333

tors (Corrao and Argano, 2022). This step bridges334

logical analysis (Step 3) and actionable decision-335

making (Step 5). For LLMs, incorporating struc-336

tured assessment criteria reduces bias and ensures337

recommendations align with clinical best practices.338

5. Provide Additional Relevant Information339

During diagnosis and treatment, clinicians must340

ensure that all necessary medical information is 341

conveyed clearly to patients and colleagues. Stud- 342

ies show that effective patient education fosters 343

trust and improves treatment adherence (Richards 344

and et al., 2020). This step is crucial for LLMs, as 345

providing clear, accessible explanations enhances 346

transparency and interpretability. Additionally, 347

structured information delivery reinforces the justi- 348

fication for proposed actions (Step 6). 349

6. Suggest Follow-Up Steps or Actions 350

A well-structured medical decision should in- 351

clude a personalized follow-up plan, specifying 352

additional tests, treatment goals, and monitor- 353

ing schedules. Research indicates that structured 354

follow-up plans help prevent complications and im- 355

prove patient adherence (Bae et al., 2023). This 356

step naturally follows information provision (Step 357

5), ensuring continuity of care. For LLMs, integrat- 358

ing clinical pathways into their reasoning process 359

enables them to generate practical and clinically 360

relevant recommendations. 361

7. Reference Reliable Sources 362

Finally, clinical decisions must be grounded in 363

peer-reviewed literature and evidence-based guide- 364

lines (e.g., Cochrane Database, PubMed). Med- 365

ical education research emphasizes that reliance 366

on high-quality information sources is critical 367

for maintaining diagnostic and treatment consis- 368

tency (Young et al., 2020; Pelaccia et al., 2011). 369

This final step strengthens the credibility of previ- 370

ous recommendations and mitigates misinforma- 371

tion risks in LLM-generated medical reasoning. 372

8. Conclusion 373

This structured framework in medical decision- 374

making ensures a cohesive and logical process by 375

following a sequential reasoning path, where each 376
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step builds upon the previous one. It begins with377

problem identification, integrates relevant medical378

knowledge, and systematically analyzes informa-379

tion to enable evidence-based decisions. By assess-380

ing potential impacts and ethical considerations, it381

refines reasoning to ensure contextually appropriate382

choices. Additionally, it provides supplementary383

information and follow-up recommendations, sup-384

porting both immediate and long-term care strate-385

gies.386

Unlike unconstrained generative methods, struc-387

tured outputs follow predefined frameworks, en-388

hancing consistency, accuracy, and interpretability389

while reducing errors from fragmented recall or390

misinterpretation. This approach improves clinical391

reasoning by guiding models through a step-by-392

step diagnostic process, minimizing critical over-393

sights. It also strengthens explainability and verifi-394

ability, ensuring AI recommendations are transpar-395

ent, traceable, and aligned with medical guidelines,396

reinforcing LLM reliability.397

3.3 Structured Output Generation398

Instructional Guidance To ensure the generated399

content is logical and coherent, we use prompts or400

guidewords to direct the model step by step in pro-401

ducing content in a specific format. As shown in402

Figure 8, by clearly specifying the required sections403

or types of information, the model sequentially fills404

in the corresponding information, ensuring that the405

generated content adheres to the expected structure.406

Additionally, by imposing constraints on the out-407

put, the model avoids repetition and redundancy,408

making the content more concise and intuitive.409

Template Generation By predefining structured410

templates, the model can populate each field of the411

template step by step. To enhance the comprehen-412

siveness and accuracy of medical question answer-413

ing, we designed seven key stages of prompts to414

guide the model in generating structured content.415

Stepwise Generation Given the complexity of416

certain tasks that may exceed the model’s context417

processing capabilities. For example, LLaMA2-418

7B-HF supports a context length of only 4k to-419

kens, we divide them into multiple stages, with420

the model outputting structured content one step421

at a time. Each generation focuses on a specific422

stage, and through multiple iterations, the model423

progressively constructs the complete structured424

content. After generating the content for all stages,425

the model combine the information to generate a426

comprehensive long-form response.427

3.4 Optimization Strategies 428

To further enhance the comprehensiveness and 429

credibility of medical question answering, we pro- 430

pose the following optimization strategies: 431

One-shot Example After the chain of thought, 432

provide an example closely related to the question 433

to help validate the reasoning process. This exam- 434

ple should directly guide towards the final answer, 435

ensuring the accuracy and operational effectiveness 436

of the reasoning chain. 437

Conciseness of the Problem Statement Ensure 438

the problem is presented immediately after the 439

chain of thought, avoiding unnecessary spaces, line 440

breaks, or redundant information to improve in- 441

put clarity and processing efficiency. Refining the 442

problem statement helps reduce potential misin- 443

terpretations by the model and improves response 444

time. 445

Instruction Reinforcement For critical instruc- 446

tions, repeat them multiple times in the prompt 447

to reinforce their execution. For example, both 448

in the chain of thought and the one-shot example, 449

the "Structured Outputs" tag should be used, and 450

it should be appended again at the end to clearly 451

guide the model’s output. 452

Specialized Markers Use specific markers to ex- 453

tract important content, such as "ANSWER END," 454

to facilitate subsequent processing and analysis. 455

Content and Word Count Limitation We per- 456

form quality checks on each step of the step-by-step 457

reasoning, including content and format checks to 458

remove information that is irrelevant to the question 459

in the model output, so that the intermediate rea- 460

soning steps do not affect the quality of the answer 461

in the final step. Ensure that the chain of thought 462

is free from redundancy, with each phase of the 463

reasoning chain kept to a maximum of 200 words 464

to avoid repetitive outputs. The final answer should 465

be limited to 512 tokens, ensuring it is concise and 466

precise. 467

Content Output Strategy In the first stage, the 468

reasoning chain may output longer structured infor- 469

mation (up to 4096 tokens). However, in the second 470

stage, the answer extraction should be limited to 471

512 tokens to ensure efficiency and focus. 472

Through the above methods and strategies, we 473

ensure that the structured output for medical ques- 474

tion answering is comprehensive, accurate, and 475

meets the high standards required for clinical and 476

research applications. 477
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4 Experiments478

We evaluated the effectiveness of Medical Struc-479

tured Outputs CoT (Med-SoCoT) in medical ques-480

tion answering based on general-purpose LLMs,481

comparing it with the strong baseline method482

OLAPH (Jeong et al., 2024a), which was fine-483

tuned, whereas our approach was training-free. Our484

experimental setup closely follows previous work485

to ensure a fair comparison. Additionally, we val-486

idated the effectiveness of our method on other487

open-source models.488

4.1 Experimental Setup489

We used the MedLFQA benchmark (Jeong et al.,490

2024a) for evaluation and adhered to existing work491

by using factuality as the primary evaluation metric.492

To facilitate reproducibility, we used five datasets493

in the benchmark: LiveQA, MedicationQA, Health-494

SearchQA, K-QA Golden, and K-QA Silver.495

Comparison Method We compared our ap-496

proach with the state-of-the-art (SoTA) OLAPH497

method, which utilizes automated evaluation to498

generate synthetic preference sets and employs499

preference optimization through iterative learning.500

Model Configuration We applied the structured501

output method to several popular LLMs, including502

LLaMA2-7B-HF (Touvron et al., 2023), Mistral-503

7B (Jiang et al., 2023a), BioMistral-7B (Labrak504

et al., 2024), Gemma-7B (Team and et al., 2024),505

GPT-3.5-Turbo. By default, we set the decod-506

ing temperature to 0.0 to minimize the random-507

ness in the output of the LLMs. We applied the508

step-by-step reasoning approach to the LLaMA2-509

7B-HF, Mistral-7B, BioMistral-7B, and Meditron-510

7B models, and the direct output approach to511

the Gemma-7B, LLaMA3.1-3B-INSTRUCT, and512

GPT-3.5-Turbo models, and reported the Factuality513

Score.514

4.2 Overall Performance515

This chapter examines whether general and medical516

models enhance factual scores via structured output517

and whether models with limited context length518

benefit from step-by-step reasoning. Additionally,519

it analyzes the impact of structured output on text520

quality, including Words Composition indicators.521

Below is a detailed analysis:522

Table 1 shows that both general models523

(LLaMA2-7B, Mistral-7B) and medical fine-tuned524

models (BioMistral-7B, Meditron-7B) significantly525

improve Factuality Score using the Med-SoCoT526

method. This demonstrates the effectiveness of 527

structured output. Notably, Mistral-7B achieves a 528

factual score of 79.3, surpassing other methods. 529

Table 1 shows that for models with limited 530

context length, step-by-step reasoning enhances 531

both structured output and factuality scores. For 532

example, after applying Med-SoCoT, Mistral-7B 533

achieved high factuality scores, particularly on the 534

HealthSearchQA datasets, with scores of 85.8. 535

In terms of Words Composition, the Med-SoCoT 536

method outperformed the OLAPH method, show- 537

ing significant improvements across multiple mod- 538

els. For example, Mistral-7B and BioMistral-7B 539

achieved Words Composition scores of 11.3 and 540

17.3, respectively, surpassing OLAPH. 541

4.3 Additional Experiments 542

According to Table 2, in the additional experi- 543

ments, we compared the effects of standard Chain- 544

of-Thought (CoT) prompts and structured output 545

prompts, while also evaluating the structured out- 546

put capabilities of both the 3B small model and 547

general large models. The experimental results 548

show that structured output significantly improves 549

the factuality score while maintaining text quality, 550

for both the open-source Gemma-7B model and the 551

closed-source GPT-3.5-Turbo model. For instance, 552

when Gemma-7B adopted the Med-SoCoT method, 553

its factuality score increased from 56.7 to 85.8, 554

demonstrating a remarkable improvement. Simi- 555

larly, GPT-3.5-Turbo’s factuality score improved 556

from 77.7 to 83.5 with structured output, further 557

confirming the effectiveness of this approach. 558

Additionally, for the latest 3B small model, 559

LLaMA3.1-3B-INSTRUCT, its strong instruction- 560

following ability and contextual understanding al- 561

low it to generate structured content in a single step 562

without requiring iterative reasoning. Experimental 563

results show that after adopting the Med-SoCoT 564

method, LLaMA3.1-3B-INSTRUCT’s factuality 565

score increased from 80.2 to 84.5, approaching 566

the performance of GPT-3.5-Turbo. This indicates 567

that the small-scale model has strong potential in 568

structured output tasks. 569

4.4 Ablation Study 570

Our method employs the Med-SoCoT prompt, and 571

we conducted ablation studies on the MedLFQA 572

dataset using the Gemma-7B model to assess the 573

impact of key steps on performance. The studies 574

focused on the contribution of steps like "Under- 575

standing the Question," "Analyzing Medical Infor- 576
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Method LiveQA MedicationQA HealthSearchQA K-QA Golden K-QA Silver Average

Words Fact. Words Fact. Words Fact. Words Fact. Words Fact. Words Fact.

LLaMA2-7B w/ Zero-shot 7.4 58.1 4.4 48.8 11.0 62.4 6.9 50.4 6.1 40.7 7.2 52.1
LLaMA2-7B w/ OLAPH 7.7 71.2 5.1 57.1 12.0 68.2 8.4 64.3 7.5 47.4 8.1 61.6
LLaMA2-7B w/ Med-SoCoT (Ours) 7.8 76.9 7.1 65.0 13.2 75.1 10.5 72.5 12.2 57.3 10.2 69.4

Mistral-7B w/ Zero-shot 8.5 59.6 5.4 56.6 15.8 78.7 9.8 57.9 8.4 42.8 9.6 59.1
Mistral-7B w/ OLAPH 6.6 66.8 6.3 67.5 13.7 83.8 10.9 75.2 18.2 77.5 11.1 74.2
Mistral-7B w/ Med-SoCoT (Ours) 9.6 80.6 8.2 70.7 14.5 85.8 12.1 80.8 12.2 78.8 11.3 79.3

BioMistral-7B♣ w/ Zero-shot 4.7 27.4 2.1 12.9 7.0 41.1 7.5 37.0 5.4 27.5 5.3 29.2
BioMistral-7B♣ w/ OLAPH 13.5 69.1 12.5 70.9 18.4 76.9 17.3 75.6 17.2 59.8 15.8 70.5
BioMistral-7B♣ w/ Med-SoCoT (Ours) 14.9 71.1 15.5 73.6 20.5 78.7 17.5 79.4 17.8 63.0 17.3 73.2

Meditron-7B♣ w/ Zero-shot 6.5 49.5 3.7 44.0 7.4 45.7 6.0 44.6 5.5 37.3 5.8 44.2
Meditron-7B♣ w/ OLAPH 8.0 66.7 5.9 62.7 8.7 50.4 10.4 71.3 11.0 59.6 8.8 62.1
Meditron-7B♣ w/ Med-SoCoT (Ours) 10.1 69.9 6.4 63.6 9.3 70.3 12.5 72.2 13.4 71.2 10.3 69.4

Table 1: Performance of models (LLaMA2-7B, Mistral-7B, BioMistral-7B, Meditron-7B) on MedLFQA datasets,
evaluated on Words Composition (Words) and Factuality Score (Fact.). Models are tested in Zero-shot (no prompt),
fine-tuned with OLAPH, and with our Med-SoCoT method. Models with ♣ are medically fine-tuned. The best
result for each model is bolded, and average values are in blue.

Method LiveQA MedicationQA HealthSearchQA K-QA Golden K-QA Silver Average

Words Fact. Words Fact. Words Fact. Words Fact. Words Fact. Words Fact.

Gemma-7B w/ Zero-shot 8.3 55.7 6.0 41.1 12.4 58.0 12.4 40.9 6.1 31.9 9.1 45.5
Gemma-7B w/ CoT 12.7 60.4 6.8 55.7 12.9 69.9 8.6 55.9 8.2 41.3 9.8 56.7
Gemma-7B w/ Med-SoCoT (Ours) 12.7 86.6 10.2 83.0 23.3 92.2 17.9 83.8 21.1 83.4 17.0 85.8

LLaMA3.1-3B-INSTRUCT w/ Zero-shot 10.6 82.1 9.6 76.6 21.2 82.8 15.8 82.7 18.8 69.0 15.2 78.6
LLaMA3.1-3B-INSTRUCT w/ CoT 11.0 82.5 10.7 77.6 20.1 83.7 15.3 82.6 18.9 74.7 15.2 80.2
LLaMA3.1-3B-INSTRUCT w/ Med-SoCoT (Ours) 11.5 86.0 10.9 81.6 21.8 87.6 15.9 84.5 19.2 82.7 15.8 84.5

GPT-3.5-Turbo♠ w/ Zero-shot 28.8 77.7 38.2 79.2 29.7 74.0 35.6 76.3 36.2 75.7 33.7 76.6
GPT-3.5-Turbo♠ w/ CoT 29.3 78.2 40.6 80.1 30.9 76.5 37.8 76.6 38.6 77.3 35.4 77.7
GPT-3.5-Turbo♠ w/ Med-SoCoT (Ours) 31.2 87.2 43.2 80.8 37.6 78.1 45.2 87.6 45.3 83.7 40.5 83.5

Table 2: Performance of models (Gemma-7B, LLaMA3.1-3B-INSTRUCT, GPT-3.5-Turbo) on MedLFQA datasets,
evaluated on Words Composition (Words) and Factuality Score (Fact.). Models are tested in Zero-shot (no prompt),
CoT (Chain-of-Thought), and with our Med-SoCoT method. Models with ♠ are closed source. The best result for
each model is bolded, and average values are in blue.

mation," and "Suggesting Follow-Ups" to the Fac-577

tuality Score. The results are presented in Tables 5,578

6, and 7.579

Table 5 demonstrates that removing core steps580

significantly degrades performance, highlighting581

their role in improving reasoning and coherence.582

Table 6 confirms that retaining core steps leads to583

better results, while Table 7 shows that altering the584

order of core steps harms performance, emphasiz-585

ing the need for a logical sequence.586

Additionally, Table 8 reveals that removing fea-587

tures like One-shot Examples, Instruction Rein-588

forcement, and Specialized Markers leads to a sig-589

nificant drop in the Factuality Score, highlighting590

their importance in task understanding and clarity.591

In summary, our findings validate that the Med-592

SoCoT prompt, with its carefully structured steps593

and technical components, is crucial for optimizing594

performance and reasoning capabilities. Further595

experimental data and case studies are available in596

the Appendix.597

5 Conclusion 598

This paper introduces a method centered on struc- 599

tured outputs to improve the factuality and com- 600

prehensiveness of LLMs in medical QA tasks. By 601

leveraging structured prompts and supporting both 602

one-shot reasoning and stepwise reasoning, the 603

method enhances long-form text generation with- 604

out additional training. Structured outputs signifi- 605

cantly improve factual accuracy, enabling smaller 606

models to perform comparably to fine-tuned large 607

models, while stepwise reasoning helps mitigate 608

performance limitations in resource-constrained 609

settings. The structured prompts, covering seven 610

key aspects of medical reasoning, consistently out- 611

perform baselines in factuality accuracy and com- 612

prehensiveness. This approach demonstrates the 613

potential of structured outputs in optimizing LLM 614

performance across specialized domains, offering 615

a cost-effective alternative to model training with 616

broader applicability in areas like legal and techni- 617

cal documentation. 618
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Limitations619

Our Med-SoCoT prompt is an initial step toward620

optimizing structured outputs in medical reasoning621

tasks. However, its generalizability to non-medical622

domains and efficiency in resource-constrained set-623

tings remain open questions. Future work could ex-624

plore more advanced prompt designs and adaptive625

strategies to enhance performance and applicability626

across diverse tasks and models.627

Ethical Considerations628

Ethical considerations are central to our research.629

In this study, we ensure adherence to ethical630

principles by exclusively using publicly available631

datasets and employing models that are open-632

source or widely accepted within the research com-633

munity. We emphasize transparency in all stages634

of our work and prioritize the responsible appli-635

cation of technology, particularly in the sensitive636

domain of medical reasoning, to ensure that our637

contributions promote fairness, reliability, and so-638

cietal benefit.639
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A Evaluation Index Calculation Method 826

In this section, we describe the formulas used to compute various evaluation metrics. 827

A.1 Words Composition (Words Composition) 828

The Words Composition metric is calculated as the average of ROUGE-1, ROUGE-2, and ROUGE-L F1 829

scores: 830

Words Composition =
ROUGE-1 F1 + ROUGE-2 F1 + ROUGE-L F1

3
831

A.2 Hallucination Score (Hallucination Score) 832

The Hallucination Score measures the proportion of elements in set S that are contradicted by the 833

prediction P̂ : 834

Hallucination Score(P̂ ) =
|{x ∈ S | P̂ contradicts x}|

|S|
835

A.3 Comprehension Score (Comprehensiveness Score) 836

The Comprehension Score evaluates the proportion of elements in the medical hypothesis set MH that 837

are entailed by the prediction P̂ : 838

Comprehensiveness Score(P̂ ) =
|{x ∈ MH | P̂ entails x}|

|MH|
839

A.4 Factual Score (Factuality Score) 840

The Factual Score combines the Comprehension Score and the Hallucination Score to produce a balanced 841

metric, normalized to a scale of 0 to 100: 842

Factuality Score =
(Comprehensiveness Score − Hallucination Score) + 100

2
843

B Experiment Settings 844

Dataset Format # of QA
pairs

# of Ambiguous
Questions

Avg. Length
of Answers

Avg. # of
MH statements

Avg. # of
NH Statements

LiveQA (Abacha et al., 2017) (Q, A, MH, NH) 100 4 82.8 2.6 2.3
MedicationQA (Abacha et al., 2019) (Q, A, MH, NH) 666 24 55.5 2.6 2.3
HealthSearchQA (Singhal et al., 2023) (Q, A, MH, NH) 3,077 96 118.8 2.6 2.3
K-QA Golden (Manes et al., 2024b) (Q, A, MH, NH) 201 1 88.5 4.4 3.5
K-QA Silver (Manes et al., 2024b) (Q, A, MH, NH) 904 106 99.9 2.4 2.0

Table 3: Overview of MedLFQA datasets with formats and key statistics.

C Model Settings 845

Model Method Context Length Type

LLaMA2-7B-HF STEPWISE 512 General
Mistral-7B STEPWISE 512 General
BioMistral-7B STEPWISE 512 Medical specific
Meditron-7B STEPWISE 512 Medical specific
Gemma-7B DIRECT 2048 General
LLaMA3.1-3B-INSTRUCT DIRECT 4096 General
GPT-3.5-Turbo DIRECT 4096 General

Table 4: Specific Model Settings Adopted by the Med-SoCoT Method

D Ablation Study 846
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Gemma-7B Step Removed Factuality Score ∆

Baseline (7-step Full) None 71.6 -
w/o Step 1 Understand the Question 66.5 ↓ 5.1 (7.1%)
w/o Step 2 Recall Medical Knowledge 70.4 ↓ 1.2 (1.7%)
w/o Step 3 Analyze Medical Info 65.0 ↓ 6.6 (9.2%)
w/o Step 4 Assess Impacts 69.8 ↓ 1.8 (2.5%)
w/o Step 5 Add Relevant Info 70.0 ↓ 1.6 (2.2%)
w/o Step 6 Suggest Follow-Ups 66.0 ↓ 5.6 (7.8%)
w/o Step 7 Reference Sources 70.5 ↓ 1.1 (1.5%)

Table 5: Ablation Study on the Importance of Each Step in the Med-SoCoT Using the Gemma-7B on the MedLFQA.

Gemma-7B Steps Retained Factuality Score ∆

Baseline (7-step Full) All Steps 71.6 -
Step 1 + Step 3 + Step 6 Core Steps Combination 60.5 ↓ 11.1 (15.5%)
Step 1 + Step 3 Only Two Core Steps 55.0 ↓ 16.6 (23.2%)
Step 2 + Step 4 + Step 5 Non-Core Steps Combination 58.7 ↓ 12.9 (18.0%)

Table 6: Ablation Study on the Effectiveness of Different Step Combinations in the Med-SoCoT Using the Gemma-
7B Model on the MedLFQA.

Gemma-7B Step Order Adjusted Factuality Score ∆

Baseline (7-step Full) Standard Order 71.6 -
Step 3 ↔ Step 6 Swap Step 3 and Step 6 70.5 ↓ 1.1 (1.5%)
Step 1 ↔ Step 4 Swap Step 1 and Step 4 70.8 ↓ 0.8 (1.1%)
Step 5 ↔ Step 7 Swap Step 5 and Step 7 71.2 ↓ 0.4 (0.6%)

Table 7: Ablation Study on the Impact of Step Order Adjustments in the Med-SoCoT Using the Gemma-7B Model
on the MedLFQA.

Gemma-7B Prompt Version Factuality Score ∆

Baseline (Med-SoCoT) 69.4 -
w/o One-shot Example 65.2 ↓ 6.0%
w/o Instruction Reinforcement 66.8 ↓ 3.7%
w/o Specialized Markers 67.5 ↓ 2.7%
w/o All Features 60.3 ↓ 13.1%

Table 8: Ablation Study Results of Gemma-7B on Med-SoCoT Prompt Variations, Evaluating the Impact of
One-shot Examples, Instruction Reinforcement, and Specialized Markers on Factuality Score Performance.
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E Example Analysis 847

Reasoning without prompt

Question: I take zyrtec for my allergies will hydroxyzine be ok to take with it?

Answer: Can Zyrtec (cetirizine) be combined with hydroxyzine? Absolutely! In general, cetirizine for the histamine issues
and hydroxyzine you like probably for the itching component. Can I mix Benadryl and hydroxyzine?

Factuality Score: 27.4 ✗

Reasoning with OLAPH

Question: I take zyrtec for my allergies will hydroxyzine be ok to take with it?

Answer: Hydroxyzine is a diphenhydramine. It is an antihistamine that reduces the effects of natural chemical histamine in
the body. Hydroxyzine is used to treat or prevent the symptoms of an allergic reaction. ... Zyrtec is a brand name for the
drug cetirizine. It is an antihistamine that reduces the effects of natural chemical histamine in the body. Zyrtec is used to
treat or prevent the symptoms of an allergic reaction. Zyrtec is also used to treat the itching and swelling of a skin rash
caused by a condition called urticaria.

Factuality Score: 58.4 ✗

Figure 6: Dataset: K-QA Silver (Manes et al., 2024b), Model: Mistral-7B (Jiang et al., 2023a) (Upper) LLM
directly answers questions, resulting in a large number of hallucinations (Lower) After training with the OLAPH
framework, although it can answer relevant knowledge, it cannot provide accurate answers.
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Reasoning with Structed Outputs (Ours)

Question: I take zyrtec for my allergies will hydroxyzine be ok to take with it?

Structured Output:
1. Understand the Question: Zyrtec is an antihistamine used to treat allergic reactions, while Hydroxyzine is also an
anti-histamine but used for anxiety and insomnia. Both medications can cause drowsiness, so it is important to be aware of
potential interactions and side effects.
2. Recall Relevant Medical Knowledge: Hydroxyzine is an antihistamine that is used to treat allergic reactions, anxiety,
insomnia, nausea, vomiting, ... , watery eyes, cough, wheeziness, asthma, hay fever, insect bites, stings, allergens, ... ,
infections, viruses, bacteria, fungi, parasites, toxins, poisons, venoms, snake bit, spider bit.
3. Analyze Medical Information: Zyrtec is a brand name for cetirizine, an antihistamine used for allergies. Zyrtec is also
used as a sedative, hypnotic, antidepressant, and anti-anxiety medication. Hydroxyzine and Zyrtec are both antihistamines.
They are used in different ways. The main difference between hydroxyzine and cetirizine is that hydroxyzine is more
sedating than cetirizine. Cetirizine has less sedation than hydroxyzine. Both hydroxyzine and cetirizine are antihistamines.
Antihistamines are drugs that block the effects of histamine. ...

Answer: Zyrtec is one of the most popular anticholinergic drugs used today. This drug is often used by people who suffer
from allergies. However, this drug can also be used with other drugs. One of these drugs is hydrocortisone.When you take
this medication, you will experience a lot of side-effects. These side effect include dizziness and drowsy. You should not
take hydrocodone with Zyrtec. If you are taking this medicine, then you should consult your doctor first.

Factuality Score: 100.0 ✓

Figure 7: Dataset: K-QA Silver (Manes et al., 2024b), Model: Mistral-7B (Jiang et al., 2023a) Use structured
outputs and answer questions that include all correct statements.
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F Prompt 848

Prompt

Medical Structured Output Prompt (part1):
# Task: You are a helpful assistant. Step-by-Step Thinking for Structured Medical Question Answering.
## General Instructions: - Generate detailed and structured medical responses based on the given
medical question. Answers should be grounded in current medical knowledge, covering all key aspects
of the question.
- Ensure the answer includes background, etiology, symptoms, diagnosis, treatment, and prevention.
- The answer should be logically organized and provide accurate, comprehensive medical information.
## Task Instructions: - Generate a comprehensive response based on the input question. The response
should cover everything from background information to diagnosis and treatment recommendations,
ensuring a structured and coherent output.
- The answer should address as many aspects of the medical question as possible, considering risk
factors, complications, and related medical conditions.
- Consider the relationship between diseases and medications.
- Do not output duplicate content.
- Each thought process should not exceed 200 words.
## Output Structure: - The output should follow the structured template below to ensure the complete-
ness and professionalism of the medical response.
- Please ensure that the output contains Long-Form Answer

Figure 8: Medical Structured Output Prompt (part1).
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Prompt

Medical Structured Output Prompt (part2):
## Chain of Thought:
### 1. Understand the Question:
- Explain the background or definition of the medical issue. Provide a brief description of basic concepts
and possibly affected systems or organs.
- Identify and define key medical terms and concepts.
- Clarify the specific information or details requested.
### 2. Recall Relevant Medical Knowledge: - Retrieve information related to the disease, medication,
or procedure.
- Consider anatomy, physiology, pathology, pharmacology, and current medical guidelines.
### 3. Analyze Medical Information: - Combine 1. understanding the question and 2. relevant medical
knowledge to connect the issue with pertinent medical knowledge using clinical reasoning.
- Consider possible explanations, mechanisms, or interactions.
### 4. Assess Impacts and Considerations:
- Evaluate any risks, side effects, or contraindications.
- Consider specific patient factors (age, comorbidities, allergies).
### 5. Provide Additional Relevant Information:
- Include important details that help in understanding.
- Mention any exceptions, alternative options, or preventive measures.
### 6. Suggest Follow-Up Steps or Actions:
- If necessary, recommend consulting a healthcare professional.
- Advise on monitoring, follow-up, or further evaluation.
### 7. Reference Reliable Sources:
- Base responses on evidence from authoritative medical texts or guidelines.
- Cite clinical studies, professional organizations, or regulatory agency information.
### 8.Long-Form Answer:
- Combine the above reasoning to accurately and comprehensively answer the question. Provide a
"long-form answer" that contains 400-500 words. The word count must not be less than 400 words.
### END
-Please end the output here.

Figure 9: Medical Structured Output Prompt (part2).
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Prompt

Medical Structured Output Prompt (one-shot):
Please refer to the following questions, along with examples of chain of thought and long-form answers.
Question: What is the relationship between Noonan syndrome and polycystic renal disease?
Chain of Thought:
1. Understand the Question: Noonan syndrome is a genetic disorder characterized by distinct facial
features, short stature, heart defects, and developmental delays. It affects multiple systems in the
body, including the cardiovascular, musculoskeletal, and endocrine systems. Polycystic renal disease,
particularly autosomal dominant polycystic kidney disease (ADPKD), is a genetic condition leading to
the formation of numerous cysts in the kidneys, resulting in kidney enlargement and impaired function.
The question seeks to explore the potential relationship between these two conditions, particularly any
shared genetic or pathological mechanisms.
2. Recall Relevant Medical Knowledge: Noonan syndrome is primarily caused by mutations in genes
involved in the RAS-MAPK signaling pathway, particularly the PTPN11 gene. It affects approximately
1 in 1,000 to 1 in 2,500 births. On the other hand, polycystic renal disease is commonly caused by
mutations in the PKD1 or PKD2 genes. ADPKD has a prevalence of about 1 in 400 to 1 in 1,000.
Understanding the genetic basis and clinical manifestations of both conditions is crucial for identifying
potential links between them.
3. Analyze Medical Information: The relationship between Noonan syndrome and polycystic renal
disease may stem from shared genetic pathways or phenotypic associations. Some studies suggest
that patients with Noonan syndrome exhibit renal anomalies, including renal agenesis or structural
abnormalities, although true polycystic kidney disease is less commonly reported. This indicates a
potential overlap in genetic vulnerabilities that could lead to renal pathologies in Noonan syndrome
patients. The mechanisms may involve disruptions in cellular signaling pathways that are pivotal for
kidney development and function.
4. Assess Impacts and Considerations: Patients with Noonan syndrome may have additional comor-
bidities that can influence renal health, such as hypertension or congenital heart defects, which could
complicate the presentation of renal disease. Conversely, individuals with polycystic kidney disease are
at risk of hypertension and kidney failure, potentially impacting their overall health and necessitating
careful monitoring. Genetic counseling may be beneficial for families with a history of either condition
to better understand the risks and implications of genetic inheritance.
5. Provide Additional Relevant Information: While there is limited direct evidence linking Noonan
syndrome and ADPKD, awareness of renal complications in Noonan syndrome patients is important for
clinicians. Furthermore, certain genetic syndromes may predispose individuals to multiple anomalies,
making regular screenings for renal function essential in affected individuals.
6. Suggest Follow-Up Steps or Actions: For individuals diagnosed with Noonan syndrome, it is
advisable to perform regular renal assessments, including ultrasound examinations to check for any
renal structural anomalies. Genetic counseling can provide insights into the risks of polycystic kidney
disease and the implications for family planning. Patients should be educated on signs of kidney
dysfunction, such as changes in urination patterns, hypertension, or abdominal pain.
7. Reference Reliable Sources: Sources for this information include clinical guidelines from the
National Kidney Foundation, the American Academy of Pediatrics, and recent genetic studies published
in peer-reviewed journals regarding the genetics of Noonan syndrome and polycystic kidney disease.
8. Long-Form Answer: Noonan’s syndrome is an eponymic designation that has been used during
the last 8 years to describe a variable constellation of somatic and visceral congenital anomalies,
which includes groups of patients previously referred to as male Turner’s, female pseudo-Turner’s
and Bonnevie-Ullrich syndromes. It is now recognized that both sexes may show the stigmas of this
condition and, unlike Turner’s syndrome, there is no karyotype abnormality although there is often a
familial pattern. The most commonly observed anomalies include webbing of the neck, hypertelorism,
a shield-shaped chest and short stature. Congenital heart disease, principally pulmonary stenosis, and
sexual infantilism often with cryptorchidism in the male subject are additional associated anomalies in
this syndrome. Renal anomalies have been described rarely and usually consist of rotational errors,
duplications and hydronephrosis. We report the first case of an infant who displayed many of the
stigmas of Noonan’s syndrome and also showed early evidence of frank renal failure secondary to renal
dysplasia with cystic disease.
END

Figure 10: Text Generation Prompt of Med-SoCoT (one-shot).
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