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ABSTRACT

Real-world physical systems are inherently complex, often involving the coupling
of multiple physics, making their simulation both highly valuable and challeng-
ing. Many mainstream approaches face challenges when dealing with decoupled
data. Besides, they also suffer from low efficiency and fidelity in strongly cou-
pled spatio-temporal physical systems. Here we propose GenCP, a novel and
elegant generative paradigm for coupled multiphysics simulation. By formulat-
ing coupled-physics modeling as a probability modeling problem, our key inno-
vation is to integrate probability density evolution in generative modeling with
iterative multiphysics coupling, thereby enabling training on data from decou-
pled simulation and inferring coupled physics during sampling. We also uti-
lize operator-splitting theory in the space of probability evolution to establish
error controllability guarantees for this “conditional-to-joint” sampling scheme.
We evaluate our paradigm on a synthetic setting and three challenging multi-
physics scenarios to demonstrate both principled insight and superior application
performance of GenCP. Code is available at this repo: github.com/Al4Science-
WestlakeU/GenCP.

1 INTRODUCTION

Most real-world physical systems are governed by the intricate interplay of multiple physical pro-
cesses spanning diverse disciplines (Yang et all [2025). As a result, multiphysics problems are
widely recognized as both fundamental and practically valuable. They arise across a broad range
of applications, including aerospace engineering (Malikov et al.| 2024} |Hu et al.| |2024), biological
engineering (Pramanik et al., [2024; |Gerdroodbary & Salavatidezfoulil 2025])), and civil engineering
(Wang et al., 2025} [Wijesooriya et al.,|2020). Despite their importance, accurate simulation of cou-
pled physics remains notoriously difficult (McCabe et al.,[2024), largely due to strong cross-physics
interactions and the resulting high system complexity, which are far more challenging to model than
in single-physics settings.

Numerical multiphysics simulation methods include tightly coupled methods, which achieve high
fidelity by solving the entire system jointly (Knoll & Keyes} 2004; |Yu et al., [2025)), often incur pro-
hibitive complexity and computational costs in real-world applications (Guo et al., [2025). Loosely
coupled methods, which solve each physics field separately and iteratively exchange information un-
til convergence, are more widely adopted, balancing practicality, efficiency, and acceptable precision
(Lohner et al., 2006). However, both approaches suffer from requirements of extensive interdisci-
plinary expertise for solver development, and high computation demands (Fan & Wang|, [2024).

Surrogate models (McCabe et al., [2024) and neural operators (Li et al., |2025), therefore, have
emerged as an alternative to accelerate multiphysics simulation, given the limitations of numeri-
cal methods. Most of these models, however, rely heavily on coupled solutions as training data,
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making data acquisition at least five times more computationally expensive compared to using de-
coupled data (Degroote et al., 2008; Causin et al., 2005). To enable training on more accessible data
from decoupled physics, surrogate models further borrow ideas from numerical solvers, such as the
Gauss—Seidel framework (Milaszewicz,1987)) and perform ADMM-like (Deng et al.| 2017) iterative
inference to approximate the coupled solution (Lyu et al., 2025 |Gao & Jaiman, [2024)). Although
improving efficiency and leveraging decoupled data, surrogate models struggle with complex spa-
tiotemporal dynamics due to their limited ability to capture high-frequency, high-dimensional, and
stochastic behaviors (Liang et al., [2024)). The defect motivates emerging efforts in generative sim-
ulation (Fotiadis et al., |2025). Notably, existing generative approaches primarily focus on single-
physics problems (Sun et al.l 2023) or directly learn multiphysics solutions from coupled data (Park
et al.|[2021), largely overlooking the challenge of learning coupled physics from decoupled training
data. A recent study (Zhang et al.l 2025) explored embedding coupling iterations into every de-
noising step of diffusion models to enable coupled sampling. However, the study lacks a rigorous
theoretical foundation or guarantees of reliability. Emerging generative approaches show promise
for high-fidelity modeling but typically rely on coupled data or lack theoretical guarantees of relia-
bility. The above challenges raise a critical research question: How can we develop a framework
that learns coupled physics from decoupled training data while ensuring high fidelity, efficiency, and
reliability?

To address the challenges, we introduce Generative Coupled Physics Simulation (GenCP), a novel
and principled paradigm for multiphysics simulation, which achieves decoupled training and cou-
pled inference with “3H”, combining high fidelity from generative modeling, high efficiency from
our “coupling in flow” design, and high reliability guaranteed by numerical theory.

We begin by clarifying that the essence of solving coupled problems can be reformulated as mod-
eling probability density evolution in functional spaces of physical fields. During training on de-
coupled data, we employ flow matching (Lipman et al., 2022) to learn the evolution of conditional
probability, where each physical field evolves from noise to its target conditioned on the other one.
During inference, we apply operator splitting in the functional space at each flow step, thereby
merging conditional probability transitions into a coherent joint distribution transition. Our method
physically corresponds to iteratively solving the coupled fields in the noisy latent space as they
evolve toward the solution. Figure[T]illustrates the overall schematic of the GenCP paradigm.

Starting from the continuity equation of the joint distribution, we show that the flow matching (Lip-
man et al.,[2022) sampling process can be reinterpreted with an operator-splitting scheme for proba-
bility density functions. We prove in a Hilbert space that our proposed joint inference method enjoys
error controllability guarantees. On top of the theoretical foundation, we examine GenCP on both
naive and complex settings. First, we design a synthetic dataset in 2D space to demonstrate the joint
distribution sampling effect from learning the conditional distribution. Then, we evaluate GenCP on
three challenging multiphysics settings and compare it against surrogate-based and other generative
paradigms. Across these tasks, GenCP consistently outperforms existing approaches with error re-
ducing ranging from 12.54% to 42.85%, and even exceeding 65% on certain metrics, demonstrating
its effectiveness and robustness in coupled scenarios.

The contributions of our work include: (1) We reformalize generative coupled simulation by mod-
eling it as probability density evolution in the functional space of the physical field, offering a prin-
cipled view of the problem. (2) We propose GenCP, an efficient generative paradigm that achieve
coupled inference with decoupled learning by introducing an operator splitting mechanism into the
flow matching process. (3) We establish a theoretical guarantee by connecting the flow-matching
continuity equation with operator splitting, and prove that our scheme enjoys controllable error
bounds. (4) We conduct concrete evaluations on both synthetic setting and challenging multiphysi-
cal scenarios, where GenCP consistently outperforms surrogate and generative baselines.

2 RELATED WORK

In this section, we briefly review the related work on both numerical and learning-based coupling
simulation, highlighting key insights as well as the gaps that motivate our approach. A full discus-
sion is provided in Appendix [A]
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Figure 1: The schematic of GenCP. With a pretrained model with decoupled physics, GenCP could
manage to achieve coupled physics during flow steps. Note that here we only use Lie-Trotter Split-
ting as a demonstration.

Numerical simulation. Classical numerical solvers are typically categorized into tightly coupled
(monolithic) and loosely coupled (partitioned) schemes. Monolithic approaches enforce interface
conditions exactly and ensure strong stability, but are computationally prohibitive (Ruan et al., 2021}
Sun et al., [2024). Partitioned approaches are more efficient and easier to implement, though they
are often prone to unstable convergence (MacNamara & Strang} 2016; Yue & Yuan, |2011;/Ha et al.,
2023}, [Fourey et al.| 2017). To mitigate this trade-off, techniques such as operator splitting (Go-
dunov & Bohachevskyl [1959; Strang, (1968 [Trotter, |1959) offer theoretically grounded compromise
between strictly monolithic and partitioned approaches.

Learning-based simulation. When coupled training data are available, neural operators have been
extended to directly model multiphysics PDEs with enhanced cross-field communication, underscor-
ing the importance of functional priors (Rahman et al.,|[2024; [Li et al.| [2025}; |Kerrigan et al., [2023).
In settings where only decoupled data are accessible, surrogate models aim to reconstruct coupled
solutions via iterative inference, yet often fail to capture high-frequency, high-dimensional dynam-
ics (Sobes et al. 2021} [Tiba et al., [2025). More recently, generative approaches have been explored
to improve fidelity, but existing efforts either remain confined to single-physics scenarios or lack
rigorous theoretical guarantees, limiting their applicability (Zhang et al., 2025} |Sun et al., [2023).

3 METHOD

We organize the methodology into three parts. Section [3.1] formulates the coupled problem, intro-
duces the weak continuity-equation perspective, and explains how decomposing the velocity field
naturally leads to operator splitting as the basis for our method. Section [3.2] describes the time-
parameterized linear interpolation used to produce instantaneous-velocity targets and the resulting
training objectives. Section [3.3] presents coupled inference via operator splitting together with an
informal error bound. Finally, Appendix [B]provides the precise assumptions and complete technical
proofs of stability, consistency, and convergence.

3.1 PROBLEM REFORMULATION

Let D C R? be a bounded open domain where the physical fields live. The first field is a function
f:D — R%_ f € F, and the second field is ¢ : D — R%, g € G. For concreteness and
implementation one may take 7 = L?(D;R%/) and G = L?(D;R%), which are separable Hilbert
spaces. The joint state is u = (f,g) in the product space U := F x G, |ull; = [|f% + llgll3-
We consider probability laws p on I/ with finite second moment, denoted p € P2 (U). The coupled
evolution of the joint state is described by a family {1 };c[o,1]- In flow-matching, we seek a time-
dependent velocity vector field v(t,u) : [0, 1] x U — U, such that {y} is transported by v.

Fully coupled trajectories are typically unavailable. Instead we assume access to decoupled single-
field solver data over a unit physical time step, where subscripts 0 and 1 denote the beginning and
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end of that solver step in physical time (not to be confused with the normalized interpolation time
t € [0, 1] used later for flow matching): Dy = {(fo,90) = (f1,9)}, Dy = {(fo,90) = (f,91)}-
Here g means that the g-field is held fixed while f evolves from fy to fi, and f means that the
f-field is frozen while g evolves from g to g;. The two-field presentation is for clarity; GenCP can
extend to m fields by learning from decoupled datasets where each field evolves while others are
frozen, and composing them in a cyclic order.

Weak continuity equation. We first recall the strong-form continuity equation. If the joint proba-
bility law p; admits a density p;(u) on the functional state space U = F x G, and if p; is sufficiently
regular, then its evolution under a time-dependent velocity field v(¢, u) satisfies the strong-form PDE

Opi(u) + V- (pe(uw) v(t,u)) =0, (1)

expressing conservation of probability mass as it is transported by v. In finite dimensions this PDE is
well-defined, but for distributions over function spaces several obstacles arise: empirical measures
coming from decoupled physics solvers are typically singular and do not admit a density p;; the
divergence operator V,, - (p;v) is not meaningful when u represents functions rather than vectors;
and even when densities exist, numerical or learned models cannot reliably approximate derivatives
in infinite-dimensional spaces.

These limitations motivate the use of the weak continuity equation (Kerrigan et al., [2023), which
defines the evolution of yu; only through its action on smooth test functions ¢ : U — R:

/01 /u (attp(u) + (Dy(u), v(t,u))u) dpy(u) dt =0, )

where v(t, u) is the time-dependent velocity vector field. Instead of differentiating the measure or
its density, the weak form enforces that all observables evolve consistently with the velocity field.
This provides a mathematically well-posed description of measure transport in infinite-dimensional
settings such as F x G.

Decomposing the weak equation. To exploit the decoupled datasets we decompose Because the
weak formulation is linear in v, we obtain

1
/0 /M (Do) + (L5 (5) + L (#)p(w)) dps () dt =0,
where the component Liouville operators are

Ly(t)p(u) = WD (), Do, Lo(t)p(w) := (09(t,u), Dp(u))y.

Thus if we can learn vy and vy, from Dy and Dy, their sum recovers the generator of
the joint weak evolution. The decomposition enables us to consider the weak continu-
ity equations formed separately for each component velocity field. For the f-component:

fol |y (@cp(u) + (Dyp(u), v(t, u)}u) dpi(u) dt = 0. For the g-component: fol Iy (8t<p(u) +
(Dp(u), v (t, u)>u) dpg(u) dt = 0.

Lie-Trotter splitting. The Lie—Trotter splitting scheme provides a principled mechanism for re-
combining the two learned partial dynamics during inference. Because v = v(/) + v(9) the full
coupled evolution can be approximated over a small time step 7 by first evolving f with g held fixed
(the flow induced by v(/)), and then evolving g with f held fixed (the flow induced by v(9)). In the
limit of small 7, this alternating update is consistent with the joint flow generated by v(/) + v(9),
which explains how separately learned conditional velocities can be merged into a coherent coupled
inference procedure.

To formalize this, let S .+ denote the observable propagator (Sii 1) (u) := @(Prpnet(u)),
where ®;, . ¢+ is the flow map of the full velocity field v. For sufficiently small %, the propagator
admits the first-order approximation

~ ¢l9) ()
Stahet = St © et
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where S/) and S9) correspond to the flows induced by v/) and v(9), respectively. By duality, this
translates to the measure-level operator splitting

Hith = ((I)g—)lu—t o (I)g-)m—t)# He- 3)

Iterating this update with step size 7 yields the classical Lie—Trotter product formula used during
inference (Trotter, |1959; [Strang} [1968; [Batkai et al., 2011). This justifies recombining the separately
learned conditional velocity fields through alternating partial flows, thereby recovering an approx-
imation of the true coupled dynamics. Rigorous stability, consistency, and convergence results are
deferred to Appendix [B]

3.2 TIME-PARAMETERIZED LINEAR INTERPOLATION AND TRAINING

We now give a fully constructive procedure that produces instantaneous-velocity targets from de-
coupled data.

Reference distributions. Choose tractable reference measures 7 on F and g on G. In practice,
these may be simple Gaussian priors defined on the finite discretization of D.

Learning the velocity for the field. Sample (f1,g) ~ Dy and independent references z; ~ mr,
zg ~ mg. Fort € [0, 1] define the linear interpolants f; = (1 —t)zy +tf1 and g, = (1 —t)z4 + tg.
The instantaneous derivative along this interpolation is vector

df

— =Vf = — Zr.
o7 r=5 —z5

We use (f:, g+,t) as input to the conditional velocity model for f and take vy as target. This setup
yields a random supervisory signal whose expectation conforms to the conditional velocity stipulated
in the weak continuity equation. Symmetrically, sample (f, g1) ~ D, with independent references
2%, zg and set fy = (1—1)2} +tf, 9= (1 —t)z, +tg1. The vector is given by % =V, =01—%
Then (f;, g+, t) is the input and v, is the target for the conditional velocity of g.

/
g

Learning objectives. Parameterize two operator-valued models ¢(f, g,t;0¢) and 04(f,g,t;6,)

that map inputs (f¢, g¢, t) to elements of F and G, respectively. Minimize the mean-square losses
‘Cf(ef) = Et,(f1,§)~D_f,z_f,zg [va - ﬁf(fh Gt tv 9f)||~27-'j|7 (4)
Ly(0g) = Et,(f791)~Dg’Z},z; [va — 0g(ft, 91, t; Hg)”é]' e

The two training procedures use different decoupled datasets, which match typical solver outputs.
The specific training algorithm can be found in Appendix

3.3 COUPLED INFERENCE VIA OPERATOR SPLITTING

Coupled inference. After training we obtain learned conditional velocity estimators 0 and 0.
We then recombine their induced flows using Lie-Trotter splitting to produce coupled samples.
Concretely, let Q)gA) be the flow map obtained by integrating #(4) = (0¢,0) and @&B) the flow map
for 5(B) = (0,%,). For a step size 7 = 1/N, the Lie-Trotter push-forward update is given by Eq.
which at the state level corresponds to the explicit alternating update:

Algorithm 1 Coupled Sampling via Lie-Trotter Splitting

1: Input: initial ug = (fo, go), trained operators 0 ¢, 04, steps N
2: U4 Ug

3: fork=0to N —1do

4: t <+ k/N

5: [ f+T10s(f, 9,t;0¢)

6: g<—g+7’ﬁg(f,g,t;99)

7w (f,9)

8: end for

9: return v
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Theoretical guarantee of an acceptable error bound. The two error sources of the learned split-
ting scheme are the splitting discretization and the learning approximation. Under the stability and
regularity hypotheses stated precisely in Appendix [B] one can show the following bound.

Theorem 3.1 (Informal error bound). Let 11 denote the true terminal measure at t = 1 generated

by the unknown joint velocity v. Let ;LY’leam) denote the terminal measure obtained by applying

the learned Lie-Trotter composition with step size T using ¥y, 0qy. If the learned fields uniformly
approximate the true conditional velocities on the region visited by the dynamics with errors at most
€f,Eg, then

W (’ugf,learn), ’ul) < Cstab (7- +er+ eg),

where Wy is the Wasserstein-1 distance and Cg;,y, depends on Lipschitz and growth constants for
the flows.

The term 7 comes from the first-order nature of Lie—Trotter splitting, meaning the error introduced
by time-splitting scales linearly with the step size. The terms ¢, ¢4 capture how well the learned
conditional velocities approximate the true conditionals. Thus, improving either time resolution or
regression accuracy reduces the total error.

Precise assumptions, the stability lemma for propagator composition, the infinitesimal consistency
of the split generator, and the detailed convergence proof are collected in Appendix[B] Those techni-
cal statements track which Lipschitz and growth conditions are needed and make the informal bound
above rigorous.

4 EXPERIMENTS

In this section, we aim to answer the following 3 questions: (1) In the purely mathematical setting of
probability distributions, can GenCP enable training two separate flow matching models on datasets
describing conditional distributions, and then directly combine them at inference to sample from
the joint distribution? (2) Beyond the mathematical case, can GenCP maintain strong performance
(effectively modeling coupling behaviors at inference with only decoupled training) in complex and
high-dimensional coupled simulation problems? (3) In addition to simulation accuracy, how does
the inference efficiency of GenCP compare with existing paradigms? Next, question (1) is addressed
in Section[d.2] and questions (2) and (3) are answered in Section .3 and Section[4.4]

4.1 EXPERIMENTAL SETUP

We evaluate GenCP on four representative cases: a simple 2D distribution, designed to directly illus-
trate our conditional-to-joint sampling paradigm, two canonical FSI benchmarks (Double-Cylinder
and Ture-Hron) and a complex nuclear-thermal setting. To assess the capability of GenCP, we
compare it against two alternative paradigms for modeling coupled physics, each with two neural
operator backbones (CNO and FNO*ﬂ). The two alternative paradigms represent (i) a surrogate
model-based Picard-iteration approach and (ii) the M2PDE paradigm.

Across all tasks, training is conducted exclusively on decoupled datasets, following Algorithm[2] In
practice, this means we model the distributional evolution of one variable while treating the other as
a known control condition. A subset of the decoupled data is reserved as a validation set to evaluate
learning on the decoupled setting, and the coupled data serve as the test set to assess the coupling
performance. Further details on the datasets used can be found in Appendix [D]

At inference time, GenCP performs coupled simulation by alternately evolving from noise to the
target distribution using the learned conditional distributions via operator splitting. Specifically, we
adopt the Lie—Trotter splitting method, as shown in Algorithm |1} to achieve a balanced trade-off
between precision and computational cost.

For comparison among the paradigms, the surrogate-based paradigm trains a neural network that
end-to-end maps system inputs to outputs on decoupled data and then applies Picard iteration at
inference to approximate the coupled solution. The M2PDE paradigm instead trains a diffusion

YENO* denotes the FNO framework with SiT as its internal model, making the backbone more expressive
for our learning objectives while retaining its functional properties.
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Table 1: Comparison of statistical distances between the target joint distributions and those gener-
ated from different paradigms.

Easy Distribution =~ Complex Distribution

GenCP M2PDE GenCP M2PDE

Wi 0.4366 0.5177 0.4928  25450.5442
MMD 0.0095 0.0141  0.0053 inf
Energy Distance  0.0411  0.0625  0.0061 332.3619

Original M2PDE GenCP
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Figure 2: Visualization of sampling results on complex distribution with different paradigms in the
synthetic setting. In order to examine behavior except outlier sampling, the visualized results of
M2PDE also include a zoomed-in view on the same coordinate region as the other views.

model on each decoupled dataset, using the DDIM estimation on the denoised result of one field as
the condition to denoise the other. Detailed implementation settings and pseudo-code for baseline
paradigms are provided in Appendix [F|

Full implementation details (including backbone architectures, sampling paradigms, and training
configurations) are provided in Appendix. As an additional contribution, we also open-source the
dataset used in this study to support further method development in coupled simulation.

4.2 SYNTHETIC SETTING ON 2D DISTRIBUTION

To intuitively demonstrate the core idea of GenCP, that learning p(« | y) and p(y | ) on decoupled
samples suffices for direct joint sampling of p(z,y) during inference, we first investigate it on the
synthetic dataset. We note that M2PDE (Zhang et al.| [2025) also tried to sample on the joint dis-
tribution with a generative model based on training with conditional data. So here we compare our
performance with M2PDE.

We design two synthetic distributions as synthetic dataset: an “Easy distribution” based on simple
Gaussian mixture, and a “Complex distribution” with multiple Gaussian components arranged in
a multimodal pattern. To obtain conditional information while avoiding direct joint sampling, we
generate two complementary datasets for training that separately focus on p(y|z) and p(x|y) with
perturbed marginal for x and y, respectively. This setup ensures that models are trained only on
conditionals, while the underlying target joint structure remains nontrivial. Further details of the
synthetic setting could be seen in Appendix

We visualize the sampling effect in Figure[2]and report quantitative metrics, including Wasserstein-1
distance, MMD, and Energy distance between the target distribution and the generated one in Table
[Il The distributional distance results show that our paradigm slightly outperforms the baseline on
simple distribution and achieves a substantial advantage on more complex distribution, maintaining
stable performance while the baseline degrades severely. These results demonstrate that GenCP can
successfully recover the true joint distribution with only conditional training, closely matching the
ground truth both visually and in distributional metrics. In contrast, the baseline method performs
poorly: it not only fails to capture the main body of the distribution, but also exhibits strong instabil-
ity that leads to frequent sampling of outliers. This weakness arises from its iterative-to-convergence
design, as well as the error accumulation induced from using intermediate estimates as conditions,
ultimately causing mode collapse or drift, especially in complex distributions.
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4.3 APPLICATION TO FSI SCENARIOS

We next evaluate GenCP on two fluid-structure coupling tasks, which exemplify real multiphysics
coupling with strong bidirectional feedback. Both settings are widely used benchmarks for FSI
and present significant challenges: strongly coupled fields, high-dimensional and high-frequency
features, as well as nonlinear feedback loops. The FSI tasks here are formulated as follows: given 3
known steps of both fields, the goal is to predict the couple dynamics over the next 12 steps, using a
model trained only with decoupled data.

In both settings, we describe fluid behavior using velocity fields (u, v) and a pressure field (p),
while structural dynamics are represented by a signed distance field (SDF). Thus, the multiphysics
representation of the FSI problem can be composed into a four-channel field defined on the same
computational domain. Through this careful design, we avoid the common difficulty encountered
when representing fluid-structure interface in normal FSI algorithms, such as Arbitrary Lagrangian-
Eulerian (ALE) (Korobenko et al.,|2018) and Immersed Boundary Method (IBM) (Tian, [2014).

Turek-Hron. Turek-Hron is a classical FSI case: a rigid cylinder is placed in cross-flow, followed
by a flexible beam that bends under the influence of vortices shed in the wake. This setup is also
widely used as a standard for evaluating numerical FSI solvers, making it a stringent test of fidelity.
We conduct training and inference following the procedure described in the previous section.

Table [2] compares the relative L2 norm errors and inference costs of the three inference paradigms
across two backbone models. On both FNO* and CNO backbones, GenCP consistently achieves bet-
ter test accuracy on coupled data than both surrogate-based and M2PDE paradigms. With the FNO*
backbone, the average error across four fields is about 26.77% lower than the best-performing base-
line, and with the CNO backbone, the error is about 12.54% lower. Furthermore, the CNO backbone
even achieves results on SDF that are close to those of Joint Training. In terms of efficiency, our
paradigm demonstrates an extremely pronounced advantage: thanks to the operator-splitting design
that embeds coupling directly into the flow matching process, GenCP requires only 10 sampling
steps to generate accurate coupled solutions. This design allows GenCP to simultaneously maintain
accuracy while significantly improving inference efficiency compared to surrogate—based explicit
iterations or diffusion-based iterative coupling condition on estimated fields.

Table 2: The relative L2 norm error and inference time of different methods on the Turek-Hron
setting.

Rel L2 Norm Validation on Decoupled Data Test on Coupled Data .
Inference Time
Field u v p SDF U v P SDF
Joint Training / / / / 0.0088 0.03441 0.0544 0.0079 /

M2PDE-FNO* 0.0452  0.1582 0.1444 0.0206  0.0590 0.2415 0.2474 0.2482 277.20s

Surrogate-FNO*  0.0181 0.0756 0.0953 0.0087  0.0550  0.2257 0.2553 0.0112 93.20s

Our GenCP-FNO*  0.0091 0.0471 0.0548 0.0069  0.0396  0.1678 0.1897 0.0081 19.50s
M2PDE-CNO 0.0497 0.2075 0.3466 0.03937 0.05769 0.2809  0.4087 0.0390 347.00s
Surrogate-CNO 0.0204 0.0994 0.1526 0.0205 0.0469  0.1888 0.2278 0.0242 300.25s

Our GenCP-CNO  0.0150 0.0626 0.1187 0.0152  0.0388  0.1821 0.2166 0.0183 16.25s

Figure 3] provides a visual comparison of the coupled solutions for each field across different
paradigms using FNO* as the backbone. As shown, our method closely matches the ground truth,
with error maps confirming its ability to preserve both global patterns and the high-frequency details
induced by fluid-structure interactions, and it clearly outperforms the baseline methods. In partic-
ular, examining the reconstructed SDF field highlights that, although the surrogate-based method
reports relatively low error values in Table 2] it fundamentally fails to model the oscillatory bending

dynamics of the beam. By contrast, our GenCP, while trained only on decoupled data, is the onl

method that can successfully capture these bending effects, which are intrinsic to true coupling. In
fact, the seemingly low error of surrogate models arises from their deterministic end-to-end predic-

tion. In contrast, our probabilistic modeling approach accounts for both mode errors and stochastic
noise, explaining why our visual results appear far superior to the baselines, even though the quan-
titative metrics show modest improvements.
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Figure 3: The visualization of results from different paradigms using FNO* as backbone on Turek-
Hron setting. (Note that the structural boundary shown in the fluid field visualization is masked from
the ground truth and does not represent actual structural deformation.)

Table 3: The relative L2 norm error of different methods on the Double Cylinder setting.

Rel L2 Norm Validation on Decoupled Data Test on Coupled Data
Field U v P SDF U v P SDF
Joint Training / / / / 0.0110 0.0387 0.0786 0.0034

M2PDE-FNO* 0.0128 0.0414 0.2238 0.0065 0.0571 0.2583 0.8879 0.0152
Surrogate-FNO*  0.0189 0.0625 0.0681 0.0041 0.0717 0.3058 0.4979 0.0196
Our GenCP-FNO*  0.0098 0.0441 0.0525 0.0060 0.0522 0.2397 0.3987 0.0061

M2PDE-CNO 0.0295 0.2072 0.6468 0.0156 0.0379 0.2694 0.9966 0.0179
Surrogate-CNO 0.0364 0.1078 0.2060 0.0067 0.0612 0.2058 1.0722 0.0080
Our GenCP-CNO  0.0141 0.0474 0.1753 0.0058 0.0279 0.1150 0.6208 0.0055

Double cylinder. To evaluate the performance of our method on more strongly coupled problems,
we construct a more challenging FSI scenario by increasing the time step. Specifically, we adopt
a double-cylinder configuration, in which one cylinder is fixed in a cross-flow while the other is
attached to a linear spring and allowed to oscillate vertically with respect to the inlet. This setup in-
duces strong bidirectional feedback between vortex shedding and structural oscillation. The training
and inference procedures are identical to those described previously and are not repeated here.

The error analysis of GenCP compared with baseline paradigms is quantified in Table[3] The trends
are consistent with those observed in the Turek-Hron case. Evidently, our method significantly out-
performs baseline methods across all physical fields, with average error reductions of approximately
34.44% on FNO* backbone and up to 42.85% on CNO backbone. These results demonstrate that
GenCP exhibits even greater advantages over baselines in strongly coupled problems.

In addition, we also report results obtained by training flow matching models directly on coupled
data, i.e., learning the joint distribution. Theoretically, this approach represents the upper bound
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of our method. In other words, the discrepancy between the results of joint training and those of
training on decoupled data reflects the error introduced by “conditional learning to joint sampling”.
Although the error values from joint training remain lower, the performance of GenCP is already
very close to this upper bound compared to other baselines, highlighting the value of our proposed
paradigm. For additional visualization results and analyses, please refer to Appendix [E}

4.4  APPLICATION TO NT COUPLING SCENARIOS

To further demonstrate the scalability and generality of GenCP, we include an additional experiment
on a Nuclear—Thermal Coupling problem. Here GenCP can be seamlessly applied to this more
complex multiphysics scenario, involving scaling to additional physical fields, and stronger or more
intricate coupling mechanisms.

The NT coupling system requires jointly solving neutron diffusion, solid heat conduction, and fluid
heat transfer equations, while accounting for (i) the negative thermal feedback between neutron
physics and temperature, (ii) the unidirectional influence of the fluid field on the neutron field
through temperature, and (iii) the strong interface coupling between the fuel and the coolant. The
geometry and coupling configurations of this system are illustrated in Figure In this setting,
our goal is to predict the system’s transient evolution of coupling physics under different boundary
conditions (neutron flux and fuel temperature measurement at the left side), with learning only on
completely decoupled data.

The visualizations of the experimental results with three paradigms are provided in Figure [§] As
shown in the Table@ GenCP consistently outperforms both baselines across the neutron, fluid, and
solid fields. Specifically, using FNO* as the backbone, GenCP achieves an average error reduction
of 49.9% relative to M2PDE and 51.7% relative to the Surrogate paradigm. With the CNO backbone,
the improvements are even more substantial, with error reductions of 58.2% over M2PDE and 78.8%
over Surrogates. These results demonstrate that our method significantly surpasses existing baselines
on “decoupled-training to coupled-inference” tasks in complex multiphysics settings.

To further investigate the source of errors, we also report the validation error on the coupled dataset,
obtained by models evaluated using the ground-truth auxiliary coupled fields as known conditions.
This error corresponds to the approximation error € in Theorem [3.1] while the discrepancy between
this prediction and the actual coupled inference result reflects the splitting error 7. The results
indicate that, consistent with our theoretical guarantees, the error introduced by our conditional-to-
joint sampling method is minimal.

Table 4: The relative L2 norm error of different methods on the Nuclear-Thermal Coupling setting.

Rel L2 Norm Decoupled validation on decoupled data Decoupled validation on coupled data Coupled test on coupled data
Field Neutron Fuel Fluid Neurton Fuel Fluid Neurton Fuel Fluid
Our GenCP-FNO* 0.0022 0.0006 0.0038 0.0081 0.0371 0.0364 0.0085 0.0364 0.0270
Surrogate-FNO* 0.0086 0.0014 0.0032 0.0140 0.0167 0.0767 0.0149 0.0576 0.1095
M2PDE-FNO* 0.0052 0.0014 0.0018 0.0082 0.0085 0.0237 0.0136 0.1237 0.0463
Our GenCP-CNO 0.0024 0.0005 0.0110 0.0047 0.0083 0.0303 0.0044 0.0105 0.0330
Surrogate-CNO 0.0046 0.0007 0.0082 0.0073 0.0044 0.0567 0.0130 0.0553 0.3086
M2PDE-CNO 0.0053 0.0016 0.0092 0.0084 0.0017 0.0236 0.0164 0.0646 0.0401

5 CONCLUSION

In this work, we tackle the fundamental challenges of coupled simulation, where efficiency, fidelity,
and the ability to leverage decoupled data remain major bottlenecks. To address these challenges,
we reformulated the problem from a functional probabilistic evolution perspective, recognizing that
the essence of coupling is sampling from the joint distribution via learned conditional distributions.
Building on this insight, we have introduced GenCP, a principled generative paradigm that enables
decoupled training and coupled inference in flow matching, achieving substantially higher accuracy
and efficiency than existing methods across three distinct scenarios. Moreover, by applying operator-
splitting theory to the probability density evolution process, we established a provable error bound
for this conditional-to-joint sampling scheme, providing GenCP with a solid theoretical foundation.

Looking ahead, we believe this work paves the way toward probabilistically principled and prac-
tically scalable generative paradigms for coupled simulation, uniting theoretical guarantees with
real-world applicability.
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This work proposes a generative modeling paradigm for coupled simulation using synthetic and
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REPRODUCIBILITY STATEMENT

The code is available at|github.com/AlI4Science-WestlakeU/GenCP. We provide a unified and mod-
ular code framework, together with scripts for reproducing all experiments. We will also release the
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A RELATED WORK

A.1 NUMERICAL COUPLING SIMULATION

Traditional numerical simulation for coupling physics mainly target at solving major difficulties
about ensuring accuracy, stability, and efficiency (Felippa et al., 2001; [Hou et al., 2012). Classical
numerical solvers distinguish between tightly coupled (monolithic) and loosely coupled (partitioned)
schemes. Tightly coupled solvers assemble fluid and solid equations into a coupled system, enforc-
ing interface conditions exactly and offering strong stability, but at the expense of high computa-
tional cost. Ruan et al.|(2021)) introduce a monolithic framework that accurately handles momentum
transfer at liquid—solid—air interfaces. |Sun et al.| (2024) proposed an immersed multi-material arbi-
trary Lagrangian—Eulerian method to realize a monolithic coupling framework.

Loosely coupled solvers, in contrast, partition system into subproblems for more practical solution,
while they may suffer from unstable convergence. Besides, equipped with numerical techniques
such as operator splitting (MacNamara & Strang, [2016) and Picard iteration (Yue & Yuan, [2011)),
they typically enjoy theoretical guarantees on acceptable error bounds. Representative developments
include improvements in numerical integration strategies, such as semi-implicit coupling schemes
(Ha et al.||2023)) and time-adaptive partitioned methods (Bukac et al., 2023), as well as advances in
representation techniques, such as coupling SPH with FEM (Fourey et al., 2017), and a partitioned
explicit Lagrangian FEM tailored for highly nonlinear multiphysics problems (Meduri et al.|[2018).

More specifically about operator splitting, it provides a theoretically grounded compromise between
strictly monolithic and partitioned approaches. By decomposing the global operator into sub-
operators advanced sequentially, splitting schemes exploit sub-solvers while maintaining control
over stability and error (Godunov & Bohachevsky, |1959; |Strang, (1968; [Trotter, |1959). Extensive
surveys have confirmed that Lie-Trotter and Strang compositions remain central tools in multi-
physics applications (Blanes et al., [2024; |Bukac et al., 2014; Canic et al.| 2020).

A.2 LEARNING-BASED SIMULATION

Existing learning-based approaches for multiphysics simulation have also basically evolved along
two categories: tightly coupled (monolithic) and loosely coupled (partitioned) methods. The first

14
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category leverages neural operators to directly simulate multiphysics PDEs. CANO (Rahman et al.,
2024]) introduced codomain attention to enhance information exchange across coupled PDE outputs,
demonstrating its potential for improving generalizability in multiphysics problems. COMPOL (Li
et al., |2025) further incorporated explicit cross-field interaction mechanisms and gained notably
increased accuracy. [Kobayashi et al.| (2025) systematically examined the relationship between op-
erator architectures and the coupling strength of multiphysics. Collectively, these works underscore
the importance of embedding functional priors (Kerrigan et al.| 2023)) for multiphysics simulation.

The second category employs Al models to learn decoupled physics in systems and then recomposes
them to obtain coupled solutions (Sobes et al.,[2021). In nuclear engineering, Al methods have been
proposed for modeling of complex thermo—hydraulic—neutronic interactions (Huang et al.| [2025).
For unsteady problems, [Tiba et al.| (2025) incorporated reduced-order models for enabling better
convergence and efficiency. These studies demonstrate the effectiveness of surrogate models in ac-
celerating coupled simulations while keeping accuracy. More recently, generative models have also
been explored for coupled simulation (Zhang et al.| 2025), like applying compositional generation
to capture joint dynamics across multiple conditional models. However, its lack of theoretical guar-
antees limits its applicability in strongly coupled scenarios.

B DEFINITIONS AND PROOFS

B.1 OPERATOR SPLITTING SCHEME: ASSUMPTIONS AND CONVERGENCE GUARANTEES

This appendix provides the operator-splitting analysis underlying the error control bound in Sec-

tion[3.3]

Assumptions. To ensure the well-posedness of the dynamics and convergence of the splitting
scheme, we impose the following:

(A1) Local Lipschitz and growth. For every R > 0, there exists Lr > 0 such that for all
t €10,1] and u, @ € U with ||u|ly, [|@|ly < R,
[o(t,u) = vt @)l < Lrllu—allu, (vt u)llu < Cillull + Co.
This ensures local existence and uniqueness of solutions.

(A2) Well-posedness of subproblems. For every initial state u € U, the A- and B-subproblems
(evolving f with g frozen, and g with f frozen) are well-posed, generating evolution fami-
lies U4 (¢, s) and Ug(t, s). They satisfy:

(i) Existence: for any starting time s, there exists a dense subspace Y on which classical
solutions exist.

(i1) Uniqueness: each y € Y generates a unique solution.

(iii) Continuous dependence: solutions depend continuously on (s, y), uniformly on com-
pact intervals.

(iv) Exponential boundedness: there exist constants M > 1, w € R such that
Jus(t,y)| < Me* 9 ly||, Vt>s.

(A3) Accuracy of learned vector fields. On the bounded state set BB visited during evolution, the
learned vector fields ¥, D4 satisfy uniform approximation bounds

sup [lvg(t,u) — 05 (t,u)||lF < ef,  sup [Jug(t,u) — 0g(t, u)llg < &g,
ueB ueB

and are Lipschitz in u with a uniform constant L,odel.

Lie-Trotter splitting. With v = v(4) 4+ v(5) define the Liouville operators from the weak conti-
nuity equation

ﬁA(t)%O(U) = <Uf(t7 f? g)a Df‘p(u»]:v EB(t%O(’U/) = <Ug(ta fa 9)7 DQ@(U‘))ga
so that L(t) = L4(t) + Lp(t). The splitting scheme evolves measures as

T 2 (B 2 (A T
ul(fk,-)u — ((I)( ) O(I)( ) ) M( ) T = 1/,”’

tet14tk teprs—te ) 4k
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where (1) and (B denote flows generated by the learned fields ¥, 94. The global approximation
over [0, 1] is the n-fold composition

W7 = (@) 0 )" g,

Stability. Assume there exist constants M > 1, w € R such that for any partition {t;} and
corresponding propagators S(4), S(5),

< Me¥
L(B)

3

n—1
B A
H H St(k+)1<—tk ° St(k+)1 —tg
k=0
for a Banach space B of observables controlling sup-norms and gradients.

Consistency. The scheme is consistent:

(B) (A)
lim Sithet ©SiihetP — ¢

h—0 h - E(t)%%

for any ¢ € T This follows from the Taylor expansion of the A- and B-flows on finite-dimensional
projections.

Convergence. The local splitting error is

S oS p(u) — p(u)
Ri(p;t,u) = —Hhet ”hhH — L(t)p(u),

which is O(h) under regularity conditions. Thus, the global error is first order O(7) when using
exact vector fields. With learned fields, an additional error € ¢ +¢, appears. Combining with stability
yields the Wasserstein bound

Wi (MgT’learn)7 1) < Coan (T + 67 +4)-

B.2 PROOF OF STABILITY

The goal is to show that the composition of the propagators St(;i)l 1, and St(,i)l 1, satisfies the
bound:

< Me”,
L(B)
where B is a Banach space of observables (e.g., equipped with the norm || - |00 + || D - ||00), M > 1,
and w € R. This ensures that the operator splitting scheme remains stable over multiple time steps.

n—1

(B) (4)
H Stk+1<_tk © Stk+1<—tk
k=0

To ensure the stability of the Lie—Trotter splitting scheme, we need to bound the operator norm of

the composition of the propagators St(;i)l —ty © St(;i)l «t, Over n steps, where S (4) and S(P) are the

solution operators (propagators) associated with the flows ®(4) and ®(#) acting on a Banach space

of observables B. We define B as the space of test functions ¢ : &/ — R equipped with the norm:
lells = llelloo + 1Delloo,

where [[¢|cc = supyey [¢(u)] and [[Dglloc = sup, ey || Dup(u)]

ux*-

Proof. We proceed by analyzing the action of the propagators St(f,)l .~ and St(f,)l ., over a single

time step [t,¢ + h] with h = 7. The propagator St(f,)l - Ef%et, which
evolves the field f according to:

d
%f(s):vf(svf(s)vg% g(s)zg(t), s € [t7t+h]7
and similarly for S(5). For a test function ¢ € B, the propagator is defined as:

A A
Siinerpu) = @(@i L (w).
We need to bound the operator norm:

, corresponds to the flow ®

A A A A
ISl = sw IS wle = s (IS i@l + IDES )l ) -
llellz<1 llellz<1

16



Published as a conference paper at ICLR 2026

B.2.1 BOUND ON THE SUP-NORM

(4)

Since <I>t+het

is a flow map on U, we have:
A A
IStk eelloe = sup (@i, ()] < sup ()] = ||l
ueld u'eU
because the flow map simply reparametrizes the domain of ¢.

B.2.2 BOUND ON THE GRADIENT NORM

The Fréchet derivative of St(f,)l st

A A A
DS o) () = Dp(®L), ,(w) - DBV (u),

where D@Ef% ) U — U is the Jacobian of the flow map. We need to bound

HD<I>(A) (W)l £ The flow ®(4) satisfies the ODE:

t+h<t

D5, (u) = v (5,89, (), B, () = .

ds st st t<t

The Jacobian D@gf‘_)t(u) evolves according to the variational equation:

d
DY, (u) = D (s, 0L, () - DO, (w), DL, (u) = 1.

dS st t<t

By assumption (A1), v(4) (¢, u) = (vf(t, f,g),0) satisfies the Lipschitz condition:

[0 (1, u) — v (@)l = [[og (2, £.9) = vs (8, F §)lr < Ll — @l

for u, @ in a ball of radius R. Thus, the operator norm of the Fréchet derivative Dv(4) (¢, u) is
bounded by L. Applying Gronwall’s inequality to the variational equation:

A t+h
IDB) ()| < el " s = eLh

Therefore:

A A A
1D o)l = sup IDe(\), ., (w) - DO, (W) - < |Dllsce™s".

Combining both bounds:

A
180 _ellm < @l + €721 Dg]|oo < €“2(||¢]loo + [ Delloe) = 22"l 5,

SO:

A
18 e < e

Similarly, for St(f})b > We obtain:

B
1SE) ey < ebmh,

(B)

since v'*~/ satisfies the same Lipschitz bound by (Al).

B.2.3 COMPOSITION OVER ONE STEP

For the composition St(fll 4 © St(f,)L P

Lgh  ,Lrh _ ,2Lgh

B A B A
ISEn s 0 St illes S USEn e ISELillem) < eFn' e
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B.2.4 COMPOSITION OVER n STEPS

Over n = 1/ steps covering [0, 1], with h = 7 = 1/n, the total composition is:
n—1

B A
H St(kJr)1<_tk St(k+)1 K
k=0

S H €2LRT — eQLR-n-T — 62LR-1 — 62LR.

£(B)

Thus, we set M = 1 and w = 2L, satisfying the required bound:

n—1

B A
H St(kgl%tk St(;_*,)l(ftk
k=0

< 62LR'

L£(B)

B.3 PROOF OF CONSISTENCY

Consistency means the local error (difference between the exact flow and the split flow on one
subinterval) vanishes as h — 0. Forevery t € [0,1) and ¢ € T,

B
) (St(Jrf)H—t 0 8(+het<p <,0)
lim
h—0 h
uniformly on bounded subsets of /.

=L()y

Proof. Fix a bounded set K C U and u € K. We expand S p(u) = (@ (u)) using Taylor’s
theorem for Fréchet differentiable functions. For small h, the A-flow satisfies:
O () = u+ o™ (tu) + Ra(h,u),

where the remainder R (h,u) satisfies M

chitzness of v).

— 0 as h — 0 (uniformly on K, by local Lips-

Expanding ¢ around u:
p(@ () = p(u) + (Dup(w), hoD (¢, u) + Ra(h,w)) + o [ho' + Ral)).
Dividing by h:

1 1 hv) + Ry
3 (S96(0) = ) = (Dusp(u) o0, 0) + 1 Dupl) Ra(r ) + o (1AL
As h — 0, the second and third terms vanish (uniformly on K), so:

1

7 (S(A)tp(u) - @(u)) — (Dyp(u), v (t,u)) uniformly on K.

Now apply the B-flow to S(Y) . Expanding S(®) S p(u) = o(®5)(®) (v))) similarly:
B
D (@ () = 8 (w) + ho ) (2, 8 (w)) + R (h, w),

M — 0 uniformly on K. Expanding ¢ around &) (v):

@(‘P(B)( W () = (@ (u) + A{Dyp(@ (), v P (¢, 8D () + o(h).
Substituting the A-step expansion:
SPIS M o(u) = p(u) + h(Dyp(u), o™ (t,u)) + H{Dup(u), v'P) (8, 1)) + o(h),

since D, o(®) (1)) = Dyp(u) 4 o(1) (continuity of D) and v(B) (t, &) (u)) = v(B)(t,u) +
o(1) (continuity of v).

with

Combining terms and dividing by h:

1 (88 Wep(u) — o(w)) = (Duplw), o(t,0)) +o(1) = ~L(t)elaw) + o).
Taking h — 0 gives the result. O

18



Published as a conference paper at ICLR 2026

B.4 PROOF OF CONVERGENCE

Below, we provide a complete and rigorous proof of the convergence result stated in the paragraph.
The proof is constructed based on standard results from operator splitting theory for ODEs in Hilbert
spaces, error estimates for Lie-Trotter methods, and bounds on Wasserstein distances for pushfor-
ward measures. It assumes the conditions from Assumptions (A1)—(A3) as defined in the document.
The proof is divided into steps for clarity: first, bounding the splitting error with exact vector fields,
then incorporating the learning error, and finally combining them via the triangle inequality.

B.4.1 PRELIMINARIES

Recall that the coupled evolution is governed by the flow map &, : & — U, satisfying the ODE

L) = v(t, W), Bo(w) = u=([9) €U

where v(t,u) = (Vi(t, f,9), Vy(t, f, g)) is the velocity field from the weak continuity equation Eq.
The true measure at time 1 is uy = @1 # o (pushforward of 15 under @4).

The Lie-Trotter splitting approximates this flow with component flows <I>§1A) and <I>§LB), where: - For
A A A .

oM. 4o () = @ (¢, 0 (u)) with v (t,u) = (Vy(t, f,9),0), - For &{7: Lo (y) =

o) (1, @7 (u)) with P (t,u) = (0, Vy (¢, . 9)).

The split flow over one time step h is <I>§fp ) = @;LB) o <I>§LA). Over the interval [0,1] with N = 1/7

(number of steps) and step size h = 7, the approximate measure from exact splitting is /157) =

(split) N ~ s (split)
L #1o (pushforward under N-fold composition of ®; ).

For learned velocity fields ©¢ and 94, the learned component flows are @EIA) (governed by 54 =
(9¢,0)) and @EIB) (governed by (B = (0,94)). The learned split flow is égfpm) = <i>§LB) ) @ELA),

o\ N
and the corresponding learned approximate measure is ugT’leam) = <<I>(T‘9p m)) #10-

We assume g € Po(U) (probability measures on U with finite second moment) and use the

Wasserstein-1 distance:
[ odn [ oav
u u

denotes the Lipschitz constant of ¢.

Wl(,uvy) = Sup
llllip<1

)

[6(w)— (@)

where ||@||Lip = Supu,acu Ta—allu
UFAU

B.4.2 STEP 1: LOCAL SPLITTING ERROR WITH EXACT FIELDS

Under Assumption (A1) (local Lipschitz continuity and polynomial growth of v), the flows @,
fIJEA), and @EB) exist and are unique for all ¢ € [0, 1] (Picard-Lindeldf theorem for ODEs in Banach
spaces).

To analyze the local error (error over one step &), we use Taylor expansions of the flows around u:
- For the true flow: ®p(u) = u + ho(t,u) + h—;%v(t, u) + O(h3), - For the A-component flow:
M (u) = u + ho(t,u) + B2 4 (A (¢, u) + O(h?), - For the B-component flow: o\B) (@) =

i+ hB) (t,a) + 2 LyB) (¢, 7) + O(h3) (substitute @ = B (w)).

Substituting <I)§LA) (u) into @;lB), the split flow expands to:
spli h2 d d
P () = u + b (U(A) + v<B>> +5 (dtU(A) - %”(B) + [v<A),u<B>]) +O(h?),

where [v() v(B)] = Dy(B) . (A — Dy(A) . (B is the Lie bracket (commutator) of v(4) and v(B)
(with Dv denoting the Fréchet derivative of v).
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Since v = v4) 4+ v(P) and %v = %U(A) + dt vB) (component-wise additivity), the local error of
the split flow is:

spli h2
i (u) = B () = (0@, 0Pt 0) + O(h?).
Under Assumption (A1), the Lie bracket [v(1), v(?)] is bounded by a constant Kz > 0 on any ball

Br = {u € U | |lullu < R} (local boundedness follows from local Lipschitz continuity of v).
Thus, the local error in the || - ||;,-norm satisfies:

@5 (u) — @57 (u) | = O(R?).

For observable propagators (acting on test functions ¢), define S,(LA)g)(u) = @(@2’4)@)) and
S,(ZB)go(u) = <p(CI>§LB)(u)). The local splitting error for propagators is:

Ru(eit,u) = ™ (SE)cy 0 Sihciplw) — o) = L) = Oh),

where L(t) = v(t,-) - D is the generator of the true flow. This holds for cylindrical test functions
@ € T with bounded Fréchet derivatives (Assumption (A2) on well-posedness of the continuity
equation).

B.4.3 STEP 2: GLOBAL SPLITTING ERROR WITH EXACT FIELDS

To extend the local error to the global error over [0, 1], consider the N-fold composition of the split
AN _ A ,

flow: (cpﬁspl”)) — Pt @LPlt) o o P (N times), with N7 = 1.

By the Lady Windermere’s Fan Lemma (a standard tool for operator splitting(Hairer et al., 2006))
or a telescoping sum argument for splitting methods, the global error of the flow map satisfies:

AN
[@1(u) = (@6710) " (w)ll < CePr,

where: - C' > 0 depends on the commutator bound K r (from Step 1) and the time horizon 7" = 1, -

L > 0is the local Lipschitz constant of v (from Assumption (A1)).

The bound assumes trajectories stay in a bounded ball Bg, (justified by the polynomial growth of v
and finite second moment of 1o, which prevents trajectories from escaping to infinity).

To translate this flow error to a measure error (Wasserstein-1 distance), use the definition of W; and
Lipschitz continuity of test functions:

Wi (g, 1) = W1(¢1#Mo( s”“t)) #io) < sup
[[fllLip<1JuU

o) - ((2679)" @) o).

By Lipschitz continuity of ¢, |¢(P1(u)) — ¢ ((cbﬁs”“”) " (u)) | < [|®1(u) — (‘IJSSPM)) " (w)|lu-

Taking the supremum over ¢ and using the flow error bound:

) < [ 19100 = (8879) (@ ladpo(w) < Cuar

where Cyp, = Cel incorporates stability constants (from Section b and the time horizon. This is
a Chernoff-type convergence result in the weak sense, extended to W, via Lipschitz bounds.

B.4.4 STEP 3: LEARNING ERROR IN FLOWS

Under Assumption (A3) (accuracy of learned velocity fields), the learned fields ¥, 0, satisfy uni-
form bounds on bounded sets Bg:

[Vi(t,u) = 0p(t,u)llr <ep, [[Ve(t,u) — b4t u)llg < &g,
forall ¢ € [0,1] and u € Bp. Define the total learning error as e = €7 + £, SO:

lo(t,u) — 0(t, u)||u < e ¥Vt € [0,1],u € Bg.
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Let &, denote the learned flow (governed by 0): %fﬁt(u) = 0(t, ®4(u)) with ®g(u) = u. Define
the flow error e, (u) = @, (u) — B, (u); its time derivative satisfies:

%et(U) = o(t, De(u)) — 0(t, By (u) = v(t, Bo(u)) = v(t, By (w)) +v(t, 8o (u)) = 0(t, &y(w)).

T T2
Bounding each term: - Tj: By local Lipschitz continuity of v (Assumption (Al)), || 11|y <
Lg|les(w)|lu, - To: By Assumption (A3), [|T5]ly < Etot-
Combining these, the error ODE becomes:

d
Eleetu)lle < Lallew(u)u + e

Applying Gronwall’s Inequality (with initial condition ||eq(w)||s = 0):
lez () e < ewote™ .
For ¢t = 1 (final time), this simplifies to:

191 (1) = &1(u) s < Ee™™.

Translating to a measure error (via IW7), similar to Step 2:
W1 (P14 10, P1#410) < eoe™.

B.4.5 STEP 4: TOTAL ERROR FOR LEARNED SPLITTING

We now analyze the total error of the learned splitting scheme, where the learned approximate
, e WN o . .

measure is ,ugT’le"m) = (CD(TSP “t)) #110. Here, Pt — B o 3 denotes the learned split

flow: &Y evolves under the learned field 5(4) = (0y,0), and ) evolves under 9(B) = (0, D).

First, we bound the splitting error of the learned flow (analogous to Step 2 for exact fields). Under
Assumption (A3) (learned fields are locally Lipschitz with constant Lyqe; =~ Lp, matching the
Lipschitz regularity of the true fields), the key properties of the split flow are preserved:

* The Lie bracket of the learned components [¢(4), 9(7)] is bounded on bounded sets (by
7 ~ Kpg, since Lipschitz continuity implies bounded Fréchet derivatives).

N
* The global splitting error for the learned flow (<I>7(-Spm)> (relative to the learned full flow

<i>1) is O(7), with stability constant Cuab ~ Cyap (the smallness of £, ensures Linogel and
K, remain close to L and Kg).

Next, we bound the error between the exact split measure u(lT) and the learned split measure u(lT’leam)

AN
This error arises from the discrepancy between the exact split flow <<I>(fp m)) and the learned split

e\ N
flow <<I>(Tép m)) . Using an argument analogous to Step 3 (Gronwall’s inequality for split flows): -

For each step k € {0,1,..., N — 11, the error between ®{**"") and ${**""") is bounded by O(e\7)
(local error), - Compounding this over N = 1/ steps gives a global flow error of O(gy), with
constant C' (depending on Lyoqe; and T = 1).

Translating this to the Wasserstein-1 distance (via Lipschitz continuity of test functions and finite
moments of fig):
W (uY),uY’leam)) < Cea.

Finally, we combine the two error components using the triangle inequality for the Wasserstein-1

distance:
Wl (u(lf,leam)"ul) < W1 (ugr,learn)7u(17—)) + Wl (MY)JM) .

21



Published as a conference paper at ICLR 2026

Substituting the bounds from Step 2 (W ( ugT), 1) < Cyap7) and the above learned split error:

W, (/uqu-.,learn)7 M1> < é&?tot + CyabT-

Defining Cyoy = max{Cypap, C’} (a constant depending on the Lipschitz constants L g, Lnoegel, cOM-
mutator bounds K, K, stability constants M, w from Assumption (A3), and time horizon T = 1),
this simplifies to:

W (M({’leam), Ml) < Ciot (T + €ar) -

This completes the convergence proof. A key implicit assumption—trajectories remain in a bounded
set Br where the uniform Lipschitz and learning error bounds apply—is justified by: 1. The polyno-
mial growth condition on v (Assumption (A 1)), which prevents trajectories from escaping to infinity
in finite time, 2. The finite second moment of yy (hence finite first moment), which ensures the bulk
of trajectories stay within By for some R > 0.

For infinite-dimensional spaces i/ (e.g., function spaces), the weak formulation of the continuity
equation (Assumption (A2)) ensures that all integrals and pushforward measures are well-defined
(measurable and integrable), as cylindrical test functions avoid issues with infinite-dimensional
norms.

C EXPLANATIONS IN THE FFM FRAMEWORK

C.1 OVERVIEW OF FUNCTIONAL FLOW MATCHING

Functional Flow Matching (FFM) is a function-space generative model that generalizes the recently-
introduced Flow Matching model to operate in infinite-dimensional spaces (Kerrigan et al., [2023).
The key motivation for developing models in functional spaces stems from the fact that many real-
world data types, such as time series, solutions to partial differential equations (PDEs), and audio
signals, are inherently infinite-dimensional and naturally represented as functions. Traditional gener-
ative models that operate on finite-dimensional discretizations (e.g., grids) are often tied to specific
resolutions, making them ill-posed in the limit of zero discretization error and difficult to trans-
fer across different discretizations. In contrast, functional approaches like FFM are discretization-
invariant, allowing generation of functions that can be evaluated at any arbitrary points, ensuring
consistency and flexibility for infinite-dimensional data.

FFM works by defining a path of probability measures that interpolates between a fixed Gaussian
measure and the data distribution, then learning a vector field on the underlying space of functions
that generates this path. Unlike density-based methods, FFM is purely measure-theoretic, avoiding
issues with non-existent densities in infinite dimensions (e.g., no analogue of Lebesgue measure
exists in Banach spaces). It enables simulation-free training via a regression objective, making it
efficient and suitable for function spaces.

Let X C R and consider a real separable Hilbert space F of functions f : X — R equipped with
the Borel o-algebra B(F). The goal is to sample from a data distribution  on F. FFM constructs a
path of measures (f1¢)¢c[o,1), Where juo is a fixed reference measure (e.g., Gaussian) and ji; ~ v.

A time-dependent vector field v : [0, 1] x F — F generates the flow ¢ : [0,1] x F — F via the

ODE:
Ore(g) = vi(de(9)),  ¢ol9) =g
The path is jiy = [¢¢] 410, the pushforward of p.

C.2 MATHEMATICAL JUSTIFICATION: MARGINAL-TO-JOINT CONSTRUCTION AND SPLITTING

We recall the marginalization identity established in functional flow matching (Theorem 1 of |[Ker-

rigan et al. (2023)): if for each f the conditional path ,u{ is generated by a vector field v{ and is
absolutely continuous with respect to the marginal p;, then the averaged vector field

f
Buu) = / of (u) %m) v (f)
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generates the marginal path iy = [ u{ dvf(f), and the pair (o, u;) satisfies the weak continuity
equation.

In our split setting, we apply this construction coordinate-wise. For almost every joint sample ( f, g)

from v, let vt(f l9) be the conditional velocity for f with g frozen, and let wt(g 1) be the conditional

velocity for g with f frozen. Lifting these to the product space by zero-padding, we define

/ I
0= ([0 PED (), 0),

and analogously

(B) @1y (D) g0
v (f, g :z(O,/w g) ———=dvi(g )
P1.9) ) G 9)
Under absolute continuity and integrability, these define the A- and B- component fields, yielding
generators

La) =", Du), Lo(t) = (07, Dy,
and hence the full Liouville operator £L = L4 + Lp. This provides a principled justification for
learning ﬁ;f and w7 separately and composing their lifted actions in the joint space.

C.3 EQUIVALENCE TO PAIRED-TRAINING SCHEMES VIA BIJECTIVE REPARAMETRIZATIONS

Several applied works, such as the marginal-to-PDE framework of [Zhang et al.| (2025)), train con-

ditional models with mixed parameterizations. For example, one may train vtf using pairs (f:, g1)

and v{ using (f1, g¢), where f1, g1 denote prescribed boundary or terminal states. Despite appearing
different, these paired schemes are mathematically equivalent to the decoupled training described
above, once we account for bijective reparametrizations between the complementary coordinates
(e.g., mapping g; to g along the frozen B-flow).

Theorem C.1 (Equivalence under bijective coordinate reparametrization.). Let Ry : G — G be a
measurable bijection such that for each frozen f, the reparametrization between the complementary
coordinates in the two training schemes is given by R, (and analogously R ¢ for the f-coordinate).

Assume Ry, Ry and their inverses are Lipschitz on bounded supports and preserve conditional path

measures. Then training ’u{ with pairs (fi,g1) is equivalent, up to reparametrization, to training

with pairs (fi, gt); similarly for vJ. Consequently, inference using @tf , W trained under either
scheme yields the same joint pushforward after mapping representations appropriately.

Proof. Let U, denote the representation map from scheme (A) to scheme (B), e.g. ¥4(g;) = g1.
By assumption, W, is bijective with Lipschitz inverse and pushes forward conditional measures
correctly. For scheme (1) (pairs (f:, g+)), the training loss is

Ti(0) =B, [Ilvf (9) — uf (9:0,)]%]-
Changing variables h = U, (g) gives
Ti(05) = Bs By s 0] (051 (R) —uf (W (R);00))1%].

Define o/ (h) = v (@, '(h)). Then this loss coincides with the scheme (2) objective (pairs

(ft, 1 = h)) with target @tf . Thus the two schemes are equivalent up to pullback by ¥,. The
same argument applies to v{. At inference time, pushforwards commute with coordinate changes,
so the joint pushforward is identical under either parametrization. O

D ADDITIONAL DETAILS FOR DATASET

Synthetical dataset. The “Easy distribution” is defined as a two-component Gaussian mixture.
One component (weight 0.6) is centered at the specified mean, while the other (weight 0.4) is slightly
shifted. The covariance matrices capture different correlation structures, with one showing a positive
correlation of 0.8 and the other a negative correlation of -0.42, along with distinct variances across
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dimensions. The “Complex distribution” is constructed from multiple equally weighted Gaussian
components arranged along a circle. These components feature angle-dependent correlations, vary-
ing standard deviations, and a small isotropic Gaussian perturbation that enhances multimodality.

To construct datasets that preserve conditional information, we avoid direct joint sampling and in-
stead generate two complementary datasets: one focusing on p(y|x) and the other on p(z]y). A
portion of samples is drawn directly from the mixture to preserve global structure. For the p(y|z)
dataset, 2 is drawn uniformly from [-3, 3], and y is sampled from the conditional distribution p(y|x).
Conversely, for the p(x|y) dataset, y is drawn from a scaled Beta distribution over [-2, 2], and x is
sampled from p(z|y). To further perturb the marginals, we introduce a mixing parameter that blends
the original x marginal with a uniform distribution and the original ¥ marginal with a scaled Beta
distribution, while keeping the conditionals intact. The conditionals for Gaussian distributions are
computed exactly and those for Gaussian mixtures are obtained via mixture-conditioning.

Turek-Hron. This simulation models a FSI scenario using the CFD solver (Lilypad (Weymouth
& Yue, 2011)) where a flexible Bernoulli beam is placed downstream of a circular cylinder in a
two-dimensional viscous flow. The system features a Reynolds number of Re=1000. Let us make D
denotes the diameter of cylinder. The spatially computational domain is 20D x 14D. The flexible
beam has a length of 2D and thickness of 0.06 D, characterized by an elastic modulus of approxi-
mately 336,000 and density of 10. The simulation captures the coupled dynamics between the fluid
flow and structural deformation over a 10 time units episode with a fixed timestep of 0.001. Key
outputs include velocity fields, pressure distributions, and beam displacement data saved at each
time step for experiments.

Normally, the original solver addresses a FSI problem, with one FSI trajectory computed as ground
truth. To generate decoupled data, we implemented two solver modifications. First, for solid-to-
fluid unidirectional coupling, we compute flow fields using only a single square cylinder (the side
length is D) flow, then inversely calculate beam forces from this fluid data to control the beam, and
finally compute resulting flow fields induced by its motion. Second, for fluid-to-solid unidirectional
coupling, we generate flow fields using a 0.5D cylinder at each timestep to inversely compute beam
positions. Both datasets contain no bidirectional coupling data, and crucially use flow conditions
(square cylinder and reduced-diameter cylinder) completely distinct from the test set to prevent
information leakage.

This scenario has extensive applications across diverse fields involving flexible structures in fluid en-
vironments. The methodology proves particularly valuable in aquatic ecosystem research, where it
accurately models the dynamic behavior of submerged vegetation such as kelp forests and seagrass
beds under varying current conditions, enabling scientists to understand their role in coastal pro-
tection and marine biodiversity conservation. In biomedical engineering, the framework facilitates
critical hemodynamics studies by simulating blood flow interactions with deformable arterial walls,
helping predict aneurysm rupture risks and optimize cardiovascular device designs like stents and
artificial heart valves. The renewable energy sector benefits from applications in wave energy har-
vesting, where flexible oscillating elements mimic the motion of aquatic plants to efficiently capture
ocean wave energy.

Double Cylinder. This simulation models a dual-cylinder fluid-structure interaction system where
a fixed upstream cylinder is positioned ahead of a freely oscillating downstream cylinder that can
vibrate in the y-direction. The flow is characterized by a Reynolds number Re=1000. Let us also
make the diameter of cylinder D. The computational domain spans 8D x 8D lengths (128 x 128
grid points). Both cylinders have the same diameter D. The fixed upstream cylinder is positioned at
(1.5D, 4D) while the oscillating downstream cylinder is located at (4D, 4D), creating a center-to-
center spacing of 2.5D. The downstream cylinder exhibits a mass ratio is 15.0 (relative to displaced
fluid mass), dimensionless natural frequency is 0.01, and damping ratio is 0.8. The simulation
employs a time step 0.1 over a total duration of 1000 time units, capturing characteristic vortex-
induced vibration phenomena. Our method of generating decoupled data is similar to the Turek-
Hron.

This scenario finds critical applications in underwater structural stability and multi-body hydrody-
namic systems across various engineering domains. In offshore engineering, the model accurately
predicts the complex wake interference effects between multiple platform columns subjected to
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ocean currents, where the upstream cylinder’s vortex shedding can trigger vortex-induced vibra-
tions in the downstream cylinder, leading to structural fatigue. Additionally, the simulation sup-
ports the design of underwater cable systems with multi-point anchoring configurations, deep-sea
aquaculture net cage arrays where inter-structure spacing affects fish habitat stability, tidal energy
converter farms requiring optimal turbine spacing to balance energy harvesting efficiency with struc-
tural safety, and autonomous underwater vehicle swarms where wake interference affects formation
stability and energy consumption.

It is worth noting that in our FSI experiments, when generating the structure-condition-on-fluid
decoupled data, the prescribed fluid fields had strong periodicity, resulting in negligible structural
deformation. This led to a limitation: the model never observed meaningful structural motion during
training, and thus could not reasonably be expected to predict structural dynamics. To address this, in
all experiments we replaced the structure-condition-on-fluid decoupled data with fully coupled data,
while still using the fluid-condition-on-structure decoupled data (constructed as described above).
Importantly, this “half-decoupled” setting is a fair compromise that does not undermine the core
functionality of our method nor diminish the demonstration of its key advantages.

Nculear Thermal Coupling. The NT Coupling dataset is generated using the open-source
MOOSE (Multiphysics Object-Oriented Simulation Environment) framework (Icenhour et al.|
2018). The governing equations for the coupled evolution of the neutron flux (¢), fuel temper-
ature (7), and fluid temperature, velocity, and pressure (T, @, p) are provided in the following
equations. The physical fields are discretized on separate meshes: 64 x 8 for the fuel temperature,
64 x 12 for the fluid variables, and 64 x 20 for the neutron field. Neutron physics and fuel temper-
ature are solved using the Finite Element Method (FEM), while the fluid domain is computed using
the Finite Volume Method (FVM). All fields are subsequently interpolated onto a common grid to
ensure spatial alignment. An adaptive time-stepping scheme is employed, and 16 output frames are
recorded to capture the transient evolution of the system.

10 '
5% — DAG+ (v — 5u(T))p, x€[0,Ls+ Ly], y € [0,L,), t € 0,5],
6
6(0,,) = f(y,1), ©
¢(Ls+ Ly, y,t) = ¢(x,0,t) = ¢(x, Ly, t) = 0.
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We generate the data following the pre-iteration method (Zhang et al., 2025), ensuring the resulting
dataset preserves the intrinsic multiphysics interactions. The sequence begins by holding the fluid
variables and fuel temperature constant while solving for the neutron field. The resulting neutron
distribution, together with the assumed constant fluid temperature, is then used to update the fuel
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Figure 4: The geometric configuration and coupling mechanism of NT Coupling setting.

temperature field. The process continues by computing the fluid fields using the partially coupled
states, followed by a final fully coupled pass over the neutron and fuel temperature equations. For
simplicity in the coupling process, we use spatially distributed fuel temperature fields as inputs in
place of the explicit heat flux.

E ADDITIONAL VISUALIZATION RESULTS

In this section, we present additional visualizations that were omitted from the main paper due to
space limitations. Figure [5] shows the coupled simulation results for the same sample as in Fig-
ure 3] but using CNO as the backbone. Figure [6] provides analogous visualizations using FNO* as
the backbone, on a sample from the Double-Cylinder dataset. In both cases—regardless of back-
bone or dataset, our proposed GenCP consistently delivers visually superior results compared to the
baselines.

Furthermore, to illustrate the difference between decoupled data used for training and coupled data
used as inferring, Figure[7]reports predictions of four physical fields under three settings: (i) training
and inference both on decoupled data, (ii) training on decoupled data but inferring on coupled data
using GenCP, and (iii) joint training and inference on coupled data. The results reveal that the
coupled fields differ significantly in pattern from the decoupled ones, especially near structures.
Nevertheless, our GenCP successfully learns the underlying physical interactions from decoupled
data and incorporates them into the flow-matching generative process, thereby producing predictions
that closely approximate the truly coupled solutions.

Figure [§|presents the visualized results of coupled inference with decoupled learning, using different
paradigms on NT Coupling setting.

26



Published as a conference paper at ICLR 2026

’
14
© ((\
Z
<
2
5 —— 0 b i
g e
n L
W
o £ \
o
\'\

M2PDE-CNO

GenCP-CNO

Figure 5: The visualizations of results from different paradigms using CNO as backbone on Turek-
Hron setting.

F IMPLEMENTATION DETAILS

F.1 PSEUDOCODE FOR TRAINING

Algorithm 2 Training decoupled conditional velocity fields.

1: Input: decoupled datasets Dy, D,
2: Initialize 6,0,
3: for epoch=1to E do

4: for batch (f1, go) ~ Dy do

5: Sample t ~ U[0,1], zf ~ TF, zg ~ g

6: Compute ft, g¢, f+ and update 67 to minimize || f; — 0¢(fi, g, 5 05)|?
7: end for

8: for batch (fo, g1) ~ Dy do

9: Sample t ~ U[0,1], 2% ~ 77, 2, ~ 7g
10: Compute ft, g;, §: and update 6, to minimize ||, — d4(fr, gt, t; 0,) ||
11: end for
12: end for
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Surrogate-FNO*

M2PDE-FNO*

GenCP-FNO*

Figure 6: The visualizations of results from different paradigms using FNO* as backbone on Double
Cylinder setting.

F.2 BACKBONE MODELS

This section provides detailed descriptions of the two backbone models used in our GenCP frame-
work: Fourier Neural Operator with modifications (FNO*) and Convolutional Neural Operator
(CNO). Both models operate in functional spaces, making them particularly suitable for interaction
problems where the solution fields are naturally represented as continuous functions over spatial
domains.

FNO%*. The FNO* model operates in the functional space by leveraging the Fourier transform
to represent solution fields as combinations of Fourier modes, providing resolution independence,
global receptive fields, and alignment with the spectral bias of neural networks toward smooth so-
lutions typical in physical problems. Our implementation combines the Scalable Interpolant Trans-
former (SiT) framework with Fourier Neural Operator components, where the core computational
unit is the spectral convolution layer operating in the Fourier domain as F (R - (F(v)))(x),
with R being a learnable linear transformation and the model truncating high-frequency modes
by only learning weights for the lowest M7 x My x Ms modes. The architecture incorporates a
compact 1D FNO-based final layer that operates along the patch dimension through the sequence
x = OutputProj(GELU(BatchNorm(SpectralConv1d(z) +Conv1d(x)))), along with adaptive layer
normalization for timestep conditioning AdaLN(z, ¢) = 7(c) - LayerNorm(z) + §(c), and both spa-
tial and temporal sinusoidal positional embeddings for rectangular domains and temporal sequences.

Training of the FNO* model employs AdamW optimizer with learning rate 1 x 1074, co-
sine annealing with warm restarts, batch sizes of 8, gradient clipping with maximum norm
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Figure 7: Comparison of results across different training strategies: Decoupled, Coupled, and Joint.
Each column corresponds to a physical field (u, v, p, and SDF).

of 1.0, Xavier uniform initialization for linear layers, and zero initialization for output lay-
ers to ensure stable convergence. The model processes inputs through spatial patch embed-
ding combined with positional encoding, timestep embedding via sinusoidal encoding followed
by MLP transformation, and alternating spatial-temporal transformer blocks where spatial at-
tention operates on (b x f, num_patches, hidden_dim) tensors while temporal attention processes
(b x num_patches, frames, hidden_dim) configurations, ultimately producing outputs through the
compact FNO final layer that maintains spectral properties while reducing computational complex-
ity through 1D spectral convolutions along the patch dimension.

CNO. The CNO model operates in functional space through a hierarchical U-Net-like architec-
ture that preserves the infinite-dimensional nature of solution operators by employing anti-aliased
operations, multi-scale processing, and explicit functional lifting and projection operations that
map between finite-dimensional representations and infinite-dimensional function spaces. The ar-
chitecture consists of CNO blocks with filtered Leaky ReLU activations to prevent aliasing dur-
ing upsampling/downsampling operations, residual blocks incorporating Feature-wise Linear Mod-
ulation (FILM) for timestep conditioning as FILM(z,t) = x - (1 + v(¢)) + S(¢), and a lift-
project structure where the lifting operation Lift : R% — R% maps input functions to higher-
dimensional latent space while projection Project : R%wen — R maps back to output space.
The network processes inputs through five distinct phases: lifting g = Lift(tinput), encoding

with downsampling CNO blocks and residual skip connections x;41 = CNOBIlock?) (x;) and
s; = ResBlockN‘“(a:i), bottleneck processing Xpeck = ResBlockN““k(mdeepest), decoding with up-

sampling and optional invariant blocks z; = CNOBlock ") (Concat(z;, sx—;)), and final projection
Uouput = Project(Concat(zo, s¢)).

Training of the CNO model utilizes Adam optimizer with learning rate 2 x 10, exponential decay
scheduler with v = 0.99, batch size of 8 for 3D volumes, batch normalization without dropout for
regularization, and MSE loss with gradient penalty for stability. The model integrates timestep infor-
mation through sinusoidal encoding temp = MLP([sin(wot), cos(wot), . . . , sin(wg/2t), cos(wqyat)])
and employs carefully designed anti-aliasing filters with cutoff frequency w. = s/2.0001 slightly
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Figure 8: The visualization of the final frame of predicted results from different paradigms on NT
Coupling setting. (Here we only represent T’y as fluid field visualization.)

below the Nyquist frequency, half-width A = 0.8s — s/2.0001, 6-tap Kaiser window filter design,
and upsampling factor of 2 for LReLU operations to maintain the continuous function interpretation
throughout the hierarchical processing while capturing both fine-grained local features and global
structure necessary for accurate multiphysics interaction modeling.

F.3 HYPERPARAMETERS OF BACKBONE MODELS
To ensure a fair comparison and minimize bias from hyperparameter tuning, we standardized the

backbone hyperparameters for each task. Minor adjustments were made only to accommodate the
inherent modeling complexity of different methods, as detailed in Tabel 3} [6} [7} [8] Ol

Table 5: Hyperparameters of GenCP-FNO¥* for different datasets.

Turek Hron Double Cylinder NT Coupling
Hyperparameter name  fluid  structure  fluid structure fluid  fuel neutron

Number of Blocks 4 4 4 4 4 4 4
FNO mode 4 4 4 4 4 4 4
Hidden size 256 128 256 128 256 128 128
Patch size [2, 2] [2, 2] 2, 2] [2, 2] [2,2] [2,2] [2, 2]
Number of blocks 4 4 4 4 4 4 4
MLP ratios 4 4 4 4 4 4 4
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Table 6: Hyperparameters of M2PDE-FNO* for different datasets.

Turek Hron Double Cylinder NT Coupling
Hyperparameter name  fluid  structure  fluid  structure  fluid fuel  neutron
Number of Blocks 4 4 4 4 4 4 4
FNO mode 4 4 4 4 4 4 4
Hidden size 256 128 256 128 256 128 128
Patch size [2, 2] [2, 2] [2,2] [2, 2] [2,2] [2,2] [2,2]
Number of blocks 4 4 4 4 4 4 4
MLP ratios 4 4 4 4 4 4 4

Table 7: Hyperparameters of Surrogate-FNO* for different datasets.

Turek Hron Double Cylinder NT Coupling

Hyperparameter name  fluid  structure  fluid structure fluid  fuel neutron
Number of Blocks 4 4 4 4 4 4 4
FNO mode 4 4 4 4 4 4 4
Hidden size 128 64 128 64 128 64 64
Patch size [2, 2] [2,2] [2,2] [2, 2] [2,2] [2,2] [2,2]
Number of blocks 4 4 4 4 4 4 4
MLP ratios 4 4 4 4 4 4 4

Table 8: Hyperparameters of GenCP-CNO for different datasets.

Turek Hron Double Cylinder NT Coupling

Hyperparameter name fluid structure fluid structure fluid fuel neutron
Number of layers 4 2 4 2 4 2 2
Number of residual blocks per level 1 1 1 1 1 1 1
Number of residual blocks in the neck 6 6 6 6 6 6 6
Channel Multiplier 16 16 16 16 16 16 16
Size of Conv Kernel 3 3 3 3 3 3 3
latent dimension in the lifting layer 64 64 64 64 64 64 64

Table 9: Hyperparameters of M2PDE-CNO for different datasets.

Turek Hron Double Cylinder NT Coupling

Hyperparameter name fluid structure fluid structure fluid fuel neutron
Number of layers 4 2 4 2 4 2 2
Number of residual blocks per level 1 1 1 1 1 1 1
Number of residual blocks in the neck 6 6 6 6 6 6 6
Channel Multiplier 16 16 16 16 16 16 16
Size of Conv Kernel 3 3 3 3 3 3 3
latent dimension in the lifting layer 64 64 64 64 64 64 64
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Table 10: Hyperparameters of Surrogate-CNO for different datasets.

Turek Hron Double Cylinder NT Coupling

Hyperparameter name fluid structure fluid structure fluid fuel neutron
Number of layers 4 2 4 2 4 2 2
Number of residual blocks per level 1 1 1 1 1 1
Number of residual blocks in the neck 6 6 6 6 6 6 6
Channel Multiplier 8 8 8 8 8 8 8
Size of Conv Kernel 3 3 3 3 3 3 3
latent dimension in the lifting layer 64 64 64 64 64 64 64

F.4 INFERENCE SCHEME OF BASELINE METHODS

Surrogate-based scheme The surrogate model in this article refers to a neural network that di-
rectly maps system inputs to outputs in one step, unlike diffusion models that generate outputs
step-by-step through denoising. For multiphysics problems, surrogate models are trained separately
for each physical field using decoupled data and obtain coupled solutions through iteration.

Our work follows the convention from M2PDE (Zhang et al., |2025) for implementing the surrogate
model combination algorithm in a Picard-iteration approach. The surrogate models’ combination
algorithm are identical, as demonstrated in Alg 3. The relaxation factor « is set to 0.5 by default,
and the tolerance €5 is set to O by default, effectively running the iteration for the maximum
number of steps without early stopping based on convergence.

Algorithm 3 Surrogate Model Combination Algorithm for Multiphysics Simulation.

Require: Compositional set of surrogate model eé (24, C),i=1,2,..., N, outer inputs C, maxi-
mum number of iterations M, tolerance €., relaxation factor o.
1: Initialize constant fields z;, ¢ =1,...,N,m =0

2: while m < M and € > €, do
3: m=m-++1

4 fori=1,...,Ndo

5: ,7:’2 = Z;

6: zi = aey(24,C) + (1 — )2
7: end for

8: EZLl(ZZ—,’/S'l),Z:].,,N
9: end while

Ensure: z1,290,...,2N

The notation used in Algorithm 3 differs from this paper’s notations and is briefly explained as fol-
lows: € represents the trained surrogate model, such as a neural network like FNO, for the i-th
physical field; z.; denotes the predictions from all other physical fields used as conditions; C' rep-
resents the outer system inputs, such as initial conditions or boundary values; z; are the predicted
fields for each physical process; 2; is a temporary copy of the previous prediction; « is the relaxation
factor, a scalar between O and 1; M is the maximum number of iterations; and €, iS the conver-
gence tolerance threshold. The L1 norm (L1) computes the absolute difference as a convergence
metric, which can be adapted to other norms like L2 if needed.

The algorithm takes trained single-field surrogate models, one per physical process and trained on
decoupled data, and iteratively combines them to approximate a coupled multiphysics solution. It
starts with initial constant fields z;, such as a uniform value like 0.5 or problem-specific priors, along
with outer inputs C'. In each iteration, it updates each field’s prediction conditioned on the others
and applies a moving average for stabilization. The loop ends when the maximum iterations M are
reached or the convergence metric €, based on the L1 norm of prediction changes, falls below €.

The moving average with relaxation factor o prevents divergence or instability in iterative updates,
particularly in strongly coupled systems where direct updates (o« = 1) might oscillate or fail to
converge. This approach resembles under-relaxation in traditional numerical methods like Picard
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iteration, blending new predictions with previous ones weighted by o and 1 — « to ensure smoother
convergence.

M2PDE scheme The M2PDE framework composes multiple diffusion models, each trained on
a single physical process using decoupled data, to simulate coupled multiphysics systems through
iterative conditional sampling during inference. Unlike surrogate models that directly map inputs to
outputs, M2PDE generates solutions via a reverse diffusion process, implicitly handling interactions
between fields.

Algorithm 4 Inference of Multiphysics Simulation with the Composition of Diffusion Models.

Require: Compositional set of diffusion models eé(z¢i7 C,t), i = 1,2,..., N, outer inputs C,
number of reverse diffusion steps 7', number of outer iterations K.

1: fork=1,..., K do

2 zZr ~ ./\/(0, I)

3 fort=T,...,1do

4 fori=1,...,Ndo

5: 2) = ey(2,,C0) > Estimate clean sample for component i
6 end for

7 Compose 2 = (29,...,2%))

8 271 = py(21]2°,¢) > Perform conditional sampling step
end for

10: 2(F) = 20

11: end for

Ensure: le), zéK) . ,ZEVK)

The composition algorithm is identical, as demonstrated in Alg. 4. The number of outer iterations
K is set to 2 by default. As introduced in the surrogate model combination algorithm, M2PDE
schema shares the same notations: e}; represents the trained diffusion model (score network) for the
i-th physical field; z;l denotes the current noisy estimates from all other physical fields at diffusion
timestep ¢; C represents the outer system inputs, such as initial conditions or boundary values; z*
is the noisy state at timestep ¢; 20 is the estimated clean (denoised) sample for field i; T is the total
number of reverse diffusion steps; K is the number of outer iterations; and py denotes the conditional
sampling function in the diffusion process.

The algorithm takes trained single-field diffusion models, one per physical process and trained on
decoupled data, and iteratively composes them during reverse diffusion to generate a coupled mul-
tiphysics solution. It starts by sampling initial noise zp from a standard normal distribution, along
with outer inputs C'. In each outer iteration k, it performs a full reverse diffusion process: for each
timestep ¢ from 7' to 1, it estimates denoised samples for each field conditioned on the others’ cur-
rent states, composes them, and advances the sampling step. The outer loop refines the solution over
K iterations, with the final output being the denoised fields after the last iteration.

The outer iterations (K) enable progressive refinement of field interactions, improving accuracy in
strongly coupled systems. Conditional sampling ensures that each field’s generation accounts for
others, implicitly capturing multiphysics couplings without explicit iteration during training.

G LIMITATIONS AND FUTURE WORK

GenCP has been evaluated on two-dimensional synthetic distribution and multiphysical problems,
without yet being applied to more complex systems like 3D or real-world engineering problems.
Additionally, it has not considered irregular geometric boundaries, which is another notable limi-
tation. These limitations arise because we primarily focus on introducing our core paradigm, and
are further constrained by limited data availability, which also opens up exciting and broad avenues
for future research. Besides, we have not yet explored incorporating physical priors into our frame-
work. Such integration may further improve our performance on out-of-distribution data, thereby
enhancing both the accuracy and robustness of coupled predictions after training on decoupled data.
Looking ahead, we also plan to leverage GenCP to unlock the value of abundant historical single-
physics data and integrate cross-institutional datasets for learning complex coupled physics.
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