
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DOTS: LEARNING TO REASON DYNAMICALLY IN
LLMS VIA OPTIMAL REASONING TRAJECTORIES
SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Enhancing the capability of large language models (LLMs) in reasoning has
gained significant attention in recent years. Previous studies have demonstrated
the effectiveness of various prompting strategies in aiding LLMs in reasoning
(called “reasoning actions”), such as step-by-step thinking, reflecting before an-
swering, solving with programs, and their combinations. However, these ap-
proaches often applied static, predefined reasoning actions uniformly to all ques-
tions, without considering the specific characteristics of each question or the ca-
pability of the task-solving LLM. In this paper, we propose DOTS, an approach
enabling LLMs to reason Dynamically via Optimal reasoning Trajectories Search,
tailored to the specific characteristics of each question and the inherent capability
of the task-solving LLM. Our approach involves three key steps: i) defining atomic
reasoning action modules that can be composed into various reasoning action tra-
jectories; ii) searching for the optimal action trajectory for each training question
through iterative exploration and evaluation for the specific task-solving LLM;
and iii) using the collected optimal trajectories to train an LLM to plan for the
reasoning trajectories of unseen questions. In particular, we propose two learning
paradigms, i.e., fine-tuning an external LLM as a planner to guide the task-solving
LLM, or directly fine-tuning the task-solving LLM with an internalized capabil-
ity for reasoning actions planning. Our experiments across eight reasoning tasks
show that our method consistently outperforms static reasoning techniques and the
vanilla instruction tuning approach. Further analysis reveals that our method en-
ables LLMs to adjust their computation based on problem complexity, allocating
deeper thinking and reasoning to harder problems.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance in solving complex
reasoning tasks (Rae et al., 2021; Lewkowycz et al., 2022; Zhong et al., 2023), such as math reason-
ing (Imani et al., 2023; Ahn et al., 2024), symbolic reasoning (Kojima et al., 2022), and common-
sense reasoning (Krause & Stolzenburg, 2023; Zhao et al., 2024). The dominant approaches to
eliciting reasoning capability in LLMs mainly fall into two categories, i.e., instruction tuning and
prompt engineering. Instruction tuning (Wang et al., 2022) collects question-answer pairs about the
reasoning task and employs supervised fine-tuning to optimize an LLM for better reasoning perfor-
mance (Yue et al., 2024; Tang et al., 2024), with recent effort focusing on improving the scale and the
quality of the fine-tuning data (Luo et al., 2023; Peng et al., 2023; Yue et al., 2023; 2024; Chan et al.,
2024). Prompt engineering instead aims to design better prompts to elicit the reasoning capability of
an LLM without updating its parameters. The Chain-of-Thought (CoT) approach (Wei et al., 2022;
Kojima et al., 2022) prompts an LLM to answer the reasoning question step by step in natural lan-
guage, and program-aided approaches (Chen et al., 2022; Gao et al., 2023) prompt the LLM to write
executable code and leverage an interpreter to execute code for obtaining the final result. Besides,
prompting the LLM to decompose the question before answering it (Radhakrishnan et al., 2023;
Zhou et al., 2023), or to verify the solution before returning it as the final answer (Madaan et al.,
2024), has also been proven effective in specific reasoning tasks.

However, both types of approaches suffer from a critical limitation, i.e., being unable to dynami-
cally decide the best reasoning strategies. Instruction-tuned LLMs are constrained by the reasoning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(b) Prompt Engineering (c) External Planner
Tuning (DOTS)

(a) Vanilla Instruction
Tuning/SFT

 LLMs Tunable

Static Reasoning Actions

Dynamic Reasoning Actions

LLMs

 LLMs Frozen

LLMs

LLMp

LLMs

Query

Reasoning Process
+ Answer

Query + Reasoning
Format

Reasoning
Process + Answer

Query

Reasoning Trajectory (w/
Explanation) + Reasoning

Process + Answer

Query

Reasoning
Trajectory
(w/ Expl.)

LLMs

Reasoning
Process + Answer

Query

Fixed Prompt

Query 1 Query 2

Result 1 Result 2

Query 1

Rewriting

CoT PoT

Self-Verification

EMPTY

EMPTY

Result 1

Decomposition

Query 2

Result 2

(d) Internalized Planner
Tuning (DOTS)

Figure 1: A comparison of different paradigms of LLM reasoning. Unlike prior approaches with
predefined, static reasoning actions, DOTS dynamically plans for the optimal reasoning trajectory
per each question and the specific task-solving LLM (LLMs). In particular, DOTS encompasses two
inference setups, i.e., external planner tuning (c) and internalized planner tuning (d), depending on
whether to introduce an external LLM as a planner (LLMp) or to internalize the trajectory planning
capability into the same solver LLM (LLMs). (: tunable; : frozen)

formats in their training data (e.g., CoT (Luo et al., 2023)), as illustrated by a GPT-4o case in Ap-
pendix B. FireAct (Chen et al., 2023a) shows that fine-tuned LLMs can switch between reasoning
strategies like CoT and ReAct, but our experiments reveal that training with varied trajectories alone
is insufficient for optimal results. On the other hand, current prompt engineering approaches assume
predefined prompting strategies and uniformly apply the same to every question. However, different
types of questions are better suited to different reasoning strategies (Zhao et al., 2023), and the effec-
tiveness of a prompting approach also depends on the inherent capability of the task-solving LLM
(e.g., LLMs pre-trained on code data are better at programming-aided reasoning). Consequently, the
same prompt may not be equally effective for every question and every LLM.

In this paper, we present DOTS, an approach empowering LLMs to actively select optimal reason-
ing actions for given questions and the task-solving LLM (Figure 1). We begin by constructing
atomic reasoning action modules, which are composed to generate multiple potential reasoning ac-
tion trajectories. Then we collect the training data by searching for an optimal (in terms of both
its success rate and the number of reasoning actions needed) action trajectory through numerous
explorations and evaluations. This optimal trajectory is tailored to the specific task-solving LLM.
Subsequently, we employ supervised fine-tuning to train an LLM in determining the optimal rea-
soning action trajectory. We implement this approach in two distinct setups: (1) For closed-source
or computationally costly task-solving LLMs, we fine-tune a smaller LLM as an external planner
to predict optimal reasoning actions for the task-solving LLM; (2) For open-source and small-size
LLMs, we fine-tune the task-solving LLM itself to plan on the reasoning actions to take before solv-
ing the reasoning task, internalizing the autonomous planning capability directly into the LLM. This
dual approach allows for flexible application across different LLM accessibility constraints.

Our experimental results demonstrate the efficacy of our proposed method in enhancing the reason-
ing capabilities of LLMs. We conducted extensive evaluations across multiple LLMs (GPT-4o-mini,
Llama3-70B-Instruct, and Llama3-8B-instruct (Dubey et al., 2024)) and a diverse set of reasoning
tasks, encompassing in-distribution, few-shot, and out-of-distribution scenarios. The results reveal
that DOTS consistently outperforms static prompt engineering techniques and vanilla instruction
tuning methods across various reasoning challenges. Through a comprehensive ablation study, we
validate the significance of each component in our methodology. Moreover, our analysis of rea-
soning action distributions highlights that our method can adapt to the specific characteristics of
reasoning questions and the inherent capability of task-solving LLMs. We further confirm that our
method incurs minimal additional financial costs. Lastly, we showcase that LLMs can naturally de-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

velop the capacity to allocate more computational resources to complex problems through a process
of exploration and learning, without explicit guidance.

2 DOTS: LEARNING TO REASON DYNAMICALLY

2.1 OVERVIEW

Our goal is to enable LLMs to select the most effective reasoning actions autonomously. Denote
LLMs as the task-solving LLM, Q as the input query, p as the reasoning action trajectory path, E
as the explanation for a trajectory, and R as the reasoning process leading to the final answer y. Our
approach encompasses two setups during the inference stage (Figure 1):

External Planner Tuning This setup is designed for scenarios where the solver (LLMs) is a
closed-source LLM or is computationally costly to train. As depicted in Figure 1 (c), we train an
external planner, denoted as LLMp, to determine the optimal reasoning actions:

(E, p) = LLMp(Q; θp) (1)

where θp is the parameters of LLMp. We empirically found that training the planner to explain
its trajectory selection (E) helps its learning. Upon obtaining reasoning actions, the solver LLMs

parameterized by θs then proceeds to generate the reasoning process R and the final answer y:

(R, y) = LLMs(Q, p; θs) (2)

Internalized Planner Tuning This setup is designed for task-solving LLMs (LLMs) that are
open-source and small-size. In this case, we propose to internalize the trajectory planning capability
into the task-solving LLM by training it to simultaneously learn to plan and learn to perform the
reasoning task. As shown in Figure 1 (d), the final answer y is obtained by:

(E, p,R, y) = LLMs(Q; θs) (3)

An overview of DOTS’s learning process is presented in Figure 2, consisting of three key steps: (i)
Defining atomic reasoning modules: We define several atomic reasoning modules, each represent-
ing a distinct reasoning action, (ii) Searching for optimal action trajectories: We conduct explo-
rations and evaluation of various reasoning paths to identify optimal reasoning actions for questions
in the training data, and (iii) Fine-tuning LLMs to plan for optimal reasoning trajectories: We
fine-tune LLMs to autonomously plan the reasoning action trajectory under the two aforementioned
setups. In what follows, we elaborate on each step.

Table 1: Prompt engineering methods with different reasoning actions. Our method could dynami-
cally select reasoning actions among all of them.

Prompting Method Analysis Layer Solution Layer Verification Layer
Rewriting Decomposition NL Program Verification

CoT (Wei et al., 2022) ✗ ✗ ✓ ✗ ✗
PoT (Chen et al., 2022) ✗ ✗ ✗ ✓ ✗
LTM (Zhou et al., 2023) ✗ ✓ ✓ ✗ ✗
R&R (Deng et al., 2023) ✓ ✗ ✓ ✗ ✗
Self-Refine (Madaan et al., 2024) ✗ ✗ ✓ ✓ ✓
Self-Verification (Weng et al., 2022) ✗ ✗ ✓ ✗ ✓
PromptAgent (Wang et al., 2023) ✓ ✓ ✓ ✗ ✗
DOTS (ours) ✓ ✓ ✓ ✓ ✓

2.2 DEFINING ATOMIC REASONING ACTIONS MODULES

Prior studies have validated the effectiveness of various reasoning strategies (Table 1). We build on
top of them and categorize the existing strategies as reasoning actions across three layers:

Analysis Layer Actions in this layer enable the LLM to analyze the input query before attempting
to solve it, including (1) Query rewriting: reformulating the query to enhance comprehen-
sion, and (2) Query decomposition: breaking down the initial question into multiple, more
manageable sub-questions. We denote the action taken in this layer as Aa.

Solution Layer Actions in this layer consider variants in the reasoning format. Prior works
showed that different queries are better solved following different reasoning processes (Zhao et al.,
2023). In our work, we consider the most commonly adopted formats, i.e., (1) CoT: solving the
question step-by-step in natural language, and (2) PoT: addressing the question through code gen-
eration. We denote the action chosen in this layer as At.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Analysis Layer

Solution Layer

Verification Layer

Query: How many integers between 1 and 200 are multiples of both 3 and 5 but not of either 4 or 7?

10 9

Fine-Tuning the Planner LLM

LLMp

Query

Explanation, Trajectory

(a) External Planner Tuning (b) Internalized Planner Tuning

LLMs

Query

Explanation, Trajectory,
Reasoning Process, Answer

Rewriting EMPTYDecompositionRewriting EMPTYDecomposition

CoT PoTCoT PoT

Self-Verification EMPTYSelf-Verification EMPTY

Use GPT-4o to explain why the
trajectory is optimal for this question

Constructed Training Data

Searching Optimal Reasoning Actions Trajectory (given LLMs)

Explanation: The problem can be efficiently solved using programming to iterate through
the range...The answer is easy to verify. Verification ensures that the programmatic
solution aligns with the problem's logic and conditions...

Reasoning Process: Now write Python codes to answer this question: ```python
... Let's verify the answer by formulating a verification question...

Optimal Reasoning Trajectory: PoT -> Self-Verification

Figure 2: The training process of DOTS, including searching for the optimal reasoning trajectories
for questions in the training set and fine-tuning the internalized/external planner LLM.

Verification Layer Finally, the verification layer is responsible for checking the correctness of
the proposed solution. It is particularly useful for problems where verification is significantly eas-
ier than solving the problem itself, e.g., the Game of 24 (Yao et al., 2024). Therefore, we set a
Self-Verification action module in this layer. If this module determines that the reasoning
process from the solution layer is incorrect, the LLM will revert to the solution layer to reattempt to
solve the problem. During this reattempt, the LLM is provided with both the initial answer and the
feedback from the verifier explaining why the initial answer was incorrect. The process continues
until the verifier confirms that the answer is correct or the pre-defined maximum number of iterations
for self-verification is reached. We denote the action taken in this layer as Av .

We observe that introducing excessive reasoning actions can lead to increased latency, and even
sometimes result in incorrect answers. To mitigate this issue, we introduce an Empty action in both
the analysis and the verification layers, allowing the LLM to bypass these two layers when dealing
with simple questions. Detailed prompts for each module are provided in Appendix D.

2.3 SEARCHING FOR OPTIMAL REASONING ACTION TRAJECTORIES

To teach the external/internalized planner to plan for the optimal reasoning trajectory, we start by
constructing training data containing questions and their optimal action trajectories for the specific
task-solving LLM. We obtain this by iteratively searching all possible reasoning trajectories for each
question, including exploring the current paths and pruning paths that are unlikely to be optimal.
The task-solving LLM is used during this search process to generate answers to make the reasoning
trajectory align with their intrinsic ability to perform different reasoning actions effectively.

This searching process is shown in Algorithm 1. Given the query and ground-truth answer sourced
from the training data, the process runs iteratively. In each iteration, the algorithm considers either
the full set of candidate trajectories (for iteration k = 1) or the current best subset (for iteration
k > 1). Each candidate trajectory is executed for Neval times with a non-zero temperature to obtain
a more reliable evaluation of its success rate. We then sort the current subset of trajectories by its
success rate accumulated from the past k iterations and then the trajectory length to encourage a
shorter trajectory (which is thus computationally more efficient). Only the top Nk candidates will
be retained and rolled over to the next iteration of the assessment. In practice, we opt for a smaller
Neval and run the search for multiple iterations, as opposed to finishing the search with a larger

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Searching for the Optimal Reasoning Action Trajectory
Require: Input query Q and ground true answer y∗, solver LLMs, max iteration K, number of evaluations

Neval, and number of candidate trajectories to retain in each iteration N1, N2, · · · , NK .
Ensure: Optimal action trajectory path p∗ for query Q and solver LLMs.

1: Initialized candidate trajectory set P ← {(Aa = Empty, At = CoT, Av = Empty), · · · };
2: Initialize the record of the accumulated success rate of each candidate trajectory: R← {p : 0 | p ∈ P};
3: for iteration k = 1 to K do
4: for all p ∈ P do
5: Execute the trajectory p against Q and LLMs for Neval times with non-zero temperature and

obtain an average success rate rp (compared to the true answer y∗);
6: Update the accumulated success rate of p: R[p]← R[p]·(k−1)·Neval+rp·Neval

Neval·k
;

7: end for
8: Sort P first by the accumulated success rateR[p] and then the trajectory length |p| in ascending order;
9: Reset P ← top Nk trajectories in P .

10: end for
11: Return p∗ ← argmaxp∈P R[p].

Neval in one iteration, as the latter incurs a much larger cost (Neval × |P0| with a large Neval vs.
Neval × (|P0|+N1 + · · ·+NK−1) with a small Neval in our algorithm).

In the process of validating various trajectories for each question, we exclude instances where any
trajectory solves the query or all fail to do so, as they do not contribute to the planner LLM’s
trajectory planning learning. After identifying the best reasoning trajectory, we leverage GPT-4o to
verbally explain why the trajectory is optimal. Our prompt is shown in Appendix D. This process
is applied to all instances in the training data, giving us tuples of query Q, ground true answer
y∗, optimal trajectory p∗, and its explanation E. For internalized planner tuning, we collect the
reasoning process R when running the solver LLMs following the optimal trajectory p∗.

2.4 LEARNING TO PLAN FOR OPTIMAL REASONING TRAJECTORIES

Having obtained the optimal trajectories, we then use supervised fine-tuning with cross-entropy loss
to train the planner LLM to predict optimal trajectories for input questions and the specific solver
LLM. For external planner tuning, a lightweight LLMp is trained to predict a concatenation of the
explanation and the optimal trajectory (Eq 1); for internalized planner tuning, the solver LLMs

is trained to predict the explanation, the optimal trajectory, the reasoning process collected from
LLMs itself, and the true answer y∗ (Eq 3).

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Table 2: Overview of our evaluation datasets.

Dataset Distribution and Size Task Type
MATH In Distribution, Many shot math
BBH

In Distribution, Few-shot
mixture

Game of 24 numerical
TheoremQA scientific
Deepmind Math

Out-of-Distribution

math
MMLU-pro scientific
StrategyQA common sense
DROP multi-hop

Datasets We evaluate the effectiveness of our
method across multiple datasets and various reason-
ing tasks. Based on the distribution of the training
and testing data, we divide the evaluation into three
settings as shown in Table 2: In-distribution setting
evaluates the model that resembles what it has seen
during training. Few-shot setting aims to evaluate
whether our proposed method can effectively learn
from a small amount of labeled data. In the real
world, it is often difficult to obtain large amounts of in-domain training data across different tasks,
but a small number of cases can be annotated. Out-of-distribution (OOD) setting further evaluates
whether the model can handle scenarios it was not explicitly trained for, testing its ability to gen-
eralize beyond the training set. For the training data, we use the MATH (Hendrycks et al., 2021)
training set. For the few-shot learning, we select 4 examples from each category of BBH (Suzgun
et al., 2022) as it is composed of 27 diverse tasks,1 resulting in 108 examples in total, 4 examples
from Game of 24 (Yao et al., 2024), and 4 examples from TheoremQA (Chen et al., 2023b) datasets.
For the test data, we evaluate the model on the test set of the MATH dataset for the in-distribution
setting and on the test sets or hold-out sets of BBH, Game of 24, and TheoremQA for the few-shot

1https://huggingface.co/datasets/lukaemon/bbh

5

https://huggingface.co/datasets/lukaemon/bbh

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 3: Accuracy (%) of the external planner tuning on in-distribution and few-shot datasets. The
reasoning format L represents language, and P means program.

Method Tuning Reasoning MATH BBH Game of 24 TheoremQA AverageFormat
External Planner: Llama-3-8B-Instruct; Solver: Llama-3-70B-Instruct
CoT ✗ L 50.4 72.7 27.5 27.4 44.5
LTM ✗ L 50.1 73.8 24.9 28.8 44.4
PA ✓ L 52.5 72.9 26.8 28.8 45.3
PoT ✗ P 54.7 65.8 63.9 31.1 53.9
Self-refine ✗ L, P 55.9 71.4 68.3 30.8 56.6
DOTS: External ✓ L, P 57.7 77.3 67.7 31.2 58.5
External Planner: Llama-3-8B-Instruct; Solver: GPT4o-mini
CoT ✗ L 70.2 80.3 27.7 38.9 54.2
LTM ✗ L 72.2 79.4 25.5 36.4 53.3
PA ✓ L 73.5 81.1 26.7 38.9 55.1
PoT ✗ P 67.2 73.9 61.4 35.8 59.6
Self-refine ✗ L, P 73.7 74.8 68.7 34.6 63.0
DOTS: External ✓ L, P 75.4 84.2 65.2 41.4 66.5

learning setting. For the OOD evaluation, we test each approach’s generalization ability on Deep-
mind Math (Saxton et al., 2019), MMLU-pro (Wang et al., 2024), strategyQA (Geva et al., 2021),
and DROP (Dua et al., 2019). All evaluations (unless specified) were conducted when prompting
the solver LLMs in zero shot. For answer evaluation, we use the simple-eval2 for MATH, a standard
evaluation for Game of 24 (Yao et al., 2024), and exact string matching for the others.
Training Setup For external planner tuning, we utilize Llama-3-8B-Instruct as our planner and
GPT-4o-mini and Llama-70B-Instruct as task-solving LLMs. Experiments of internalized planner
tuning were conducted with Llama-3-8B-Instruct. For more details, refer to Appendix A.

3.2 BASELINES

We include the following highly related baselines in our experiments. (1) CoT (Wei et al., 2022)
prompts an LLM to answer step-by-step; (2) PoT (Chen et al., 2022) prompts an LLM to generate
Python code and execute the code to get the final answer; (3) Least-to-most (LTM) (Zhou et al.,
2023) prompts an LLM to first decompose the question into multiple sub-questions before solving
it; (4) Self-refine (Madaan et al., 2024) prompts an LLM to generate the answer and verify and refine
the answer by the LLM itself. Madaan et al. (2024) used PoT in solving math questions, therefore we
follow their setting to use PoT in generating the initial answer; (5) PromptAgent (PA) (Wang et al.,
2023) searches for a better prompt for the specific task based on its training data; this baseline is im-
plemented with the default hyperparameter setting; and (6) Vanilla Supervised Fine-Tuning (Vanilla
SFT) uses GPT-4o to generate the CoT reasoning process for questions in the training datasets and
then fine-tune the solver LLM to predict the generated reasoning process and the ground-truth an-
swer; this baseline is fine-tuned using the same hyperparameter setting as our internalized planner
tuning. The training data for PA, Vanilla SFT, and DOTS are from the same source.

3.3 EXTERNAL PLANNER TUNING RESULTS

Table 3 presents the results of using the external planner, which suggest that:
External planner tuning outperforms other methods on the in-domain task Our method
achieves 57.7% accuracy with Llama-3-70b-Instruct and 75.4% accuracy with GPT-4o-mini on
MATH, achieving significant improvement than baselines. This suggests that DOTS is robust across
different LLMs and it can significantly enhance the LLM’s zero-shot reasoning ability. The improve-
ment from DOTS remains consistent as the solver LLM’s capabilities increase, indicating DOTS has
a long-term value even as LLMs continue to improve rapidly.
The external planner can learn the appropriate action trajectory with only a few training
examples. On the BBH, DOTS achieves improvements of 3.5% and 3.1% over the best static
methods when using Llama-3-70B-Instruct and GPT-4o-mini, respectively. In the Game of 24 and
TheoremQA, DOTS also shows slight improvements or performs similarly to the best static method.
This indicates that even a small number of cases can help the LLM learn the optimal strategy for the
given task. Besides, DOTS demonstrates greater stability across various datasets. Our flexible action

2https://github.com/openai/simple-evals.

6

https://github.com/openai/simple-evals

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

trajectory selection demonstrates its advantages on datasets requiring diverse reasoning actions, such
as BBH as shown in Appendix C. Conversely, the Game of 24 features a uniform question type,
where the predefined static method self-refine is sufficient. While the self-refine excels on Game
of 24, it significantly lags behind on other datasets. This reflects the external planner’s ability to
effectively select the appropriate action trajectory, leading to more robust performance even across
tasks with varying reasoning demands.

3.4 INTERNALIZED PLANNER TUNING RESULTS

Table 4 presents the results of our internalized planner tuning, where we observed:

Internalized planner tuning demonstrates superior performance DOTS outperforms existing
methods on average, including prompt engineering methods and vanilla SFT. Notably, our approach
surpasses self-refine in the Game of 24, a different observation than the experiments with an exter-
nal planner (Table 3). We attribute this performance boost to our joint optimization of the trajectory
planning and problem-solving processes. Unlike external planner tuning which only updates the
external planner (LLMp), internalized planner tuning enables the task-solving LLM to simultane-
ously learn trajectory planning and accurate reasoning process generation. This highlights that the
internalized planner tuning effectively further enhances performance.

Searching for the optimal reasoning action trajectory helps enhance the utilization of training
data Compared to vanilla SFT, our method consistently shows performance improvements across
all datasets, notably achieving an 8.7% increase on BBH. This suggests that, instead of training
with a question and step-by-step reasoning process pair, our approach of searching for an optimal
action trajectory and generating the corresponding reasoning process to construct training data is
superior. This finding indicates that our search methodology could effectively enhance the utilization
of training data for reasoning tasks without the need for additional human annotations.

Table 4: Internal planner tuning performance on in-distribution and few-shot datasets.

Method Tuning Reasoning MATH BBH Game of 24 TheoremQA Averageformat
Solver: Llama-3-8B-Instruct
CoT ✗ L 29.6 48.9 12.7 14.8 26.5
LTM ✗ L 29.5 50.3 14.4 15.2 27.4
PA ✓ L 31.0 47.2 11.8 15.1 26.3
PoT ✗ P 25.3 44.6 16.8 16.7 25.9
Self-refine ✗ L, P 28.7 46.6 17.0 15.3 30.1
Vanilla SFT ✓ L 33.9 61.0 18.5 14.8 33.6
DOTS: Internalized ✓ L, P 34.4 69.7 21.9 16.1 35.5

3.5 OUT-OF-DISTRIBUTION EXPERIMENTAL RESULTS

Our method consistently generalizes well across diverse OOD challenges As shown in Table 5,
DOTS maintains high accuracy across different datasets and models. In contrast, static methods of-
ten fluctuate significantly in performance. For instance, despite static methods like CoT showing a
slight advantage on MMLU-Pro and StrategyQA over DOTS using the Llama-3-70B-Instruct model,
they experience a sharp decline on DeepMind Math. This pattern of fluctuations can be observed
in other methods as well, where some excel on individual tasks but fail to maintain strong perfor-
mance. In contrast, DOTS continues to deliver consistently high accuracy across various models and
datasets. The stability of our method is attributed to its ability to dynamically select appropriate
reasoning trajectories. The results indicate that DOTS is better suited to meet the demands of diverse
tasks, demonstrating stronger robustness and generalization, making it a more reliable and adaptable
approach for handling a wide variety of OOD challenges.

3.6 ABLATION STUDY

In this section, we perform the ablation study and assess the effectiveness of each component of
our method: (1) Without Searching: To demonstrate the effectiveness of searching for the optimal
action trajectory, we test the performance of the LLM tuned with a randomly selected action trajec-
tory; (2) Without Explanation: To understand if training the planner to generate an explanation for
the optimal reasoning trajectory is helpful, we test DOTS’s performance when the planner is trained
to predict the trajectory without explanation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Accuracy (%) on out-of-distribution (OOD) tasks.

Method DeepMind-Math MMLU-pro StrategyQA DROP Average
External Planner: Finetuned Llama-3-8B-Instruct; Solver: Llama-3-70B-Instruct
CoT 54.6 60.6 81.3 66.1 65.6
LTM 55.6 60.9 81.9 64.3 65.6
PA 58.1 54.2 80.3 58.7 62.8
PoT 73.0 57.3 74.8 62.8 66.9
Self-refine 73.9 59.5 77.8 64.8 69.0
DOTS: External 74.1 59.4 80.3 66.3 70.0
External Planner: Finetuned Llama-3-8B-Instruct; Solver: GPT4o-mini
CoT 80.2 61.7 78.8 65.8 71.6
LTM 80.6 61.4 80.9 64.5 71.8
PA 82.2 48.1 78.3 67.0 68.9
PoT 87.7 57.1 77.9 72.4 73.7
Self-refine 85.9 58.3 77.2 72.3 73.4
DOTS: External 87.6 61.5 78.8 73.8 75.4
Solver: Finetuned Llama-3-8B-Instruct
CoT 28.3 37.2 72.7 52.9 47.8
LTM 30.9 38.6 70.7 55.2 48.9
PA 29.3 34.5 69.7 51.6 46.3
PoT 48.1 37.3 63.9 44.6 48.5
Self-refine 44.9 33.1 65.3 47.1 47.6
Vanilla SFT 39.6 40.3 71.8 49.0 50.2
DOTS: Internalized 55.3 39.7 68.2 48.8 53.0

Table 6: Ablation Study

MATH BBH Game24 TheoremQA Average
External Planner: Llama-3-8B-Instruct; Solver: GPT-4o-mini
DOTS: External 75.4 84.2 65.2 41.4 66.5
-w/o Searching 69.2 78.6 28.9 40.2 54.2
-w/o Explanation 68.2 81.3 57.4 36.4 60.8
Internalized Planner & Solver: Llama-3-8B-Instruct
DOTS: Internalized 34.4 69.7 21.9 16.1 35.5
-w/o Searching 31.4 55.8 19.6 15.1 30.5
-w/o Explanation 33.8 65.8 18.6 15.7 33.4

The results in Table 6 indicate that both optimal trajectory searching and explanation generation
are crucial in DOTS. For example, in the Game of 24, the planner trained without searching for
the optimal trajectory did not consistently select the PoT action (which was considered the most
effective for this task) in its trajectory. Additionally, we observe that without explanations, the
planner’s ability to predict optimal trajectories becomes less reliable. Incorporating explanations
effectively guides the planner to learn to predict suitable action trajectories for the given questions.

3.7 OPTIMAL TRAJECTORY ANALYSIS FOR DIFFERENT TASKS

Table 7 shows the distribution of actions selected in the optimal trajectories by our planner on the
MATH test set. The distribution suggests two key findings:
DOTS adapts to the characteristics of specific questions In mathematics, number theory prob-
lems are more suitable to be solved with programs, so the proportion of PoT is higher, while geom-
etry problems are not easily represented and solved with naive Python code; as a result, our planner
mainly uses CoT for such problems. This indicates that DOTS tailors its action selection based on
the unique characteristics of each problem type.
DOTS adapts to the capability of specific task-solving LLMs As shown in Table 3, on the
MATH dataset, GPT-4o-mini performs better using CoT for problem-solving, whereas Llama3-
70B-instruct performs better using PoT. When GPT-4o-mini is the task-solving LLM, our fine-tuned
planner selects a higher proportion of CoT actions; when Llama3-70B-Instruct is used, PoT actions
dominate. This suggests that our planner is not only aware of the problem type but also adapts the
reasoning action trajectory prediction based on the capabilities of the task-solving LLM.

Furthermore, we observe that question rewriting and decomposition were selected with a low fre-
quency. This is likely because the MATH dataset consists of precise problems that do not benefit

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Planning action distributions of DOTS over three different layers on the MATH test set.

Sub-tasks on MATH Accuracy (%) Analysis Layer Solution Verification
Rewr. Deco. Empty CoT PoT Veri. Empty

External Planner: Llama-3-8B-Instruct; Solver: GPT-4o-mini
Algebra 92.1 0.03 0.05 0.92 0.90 0.10 0.29 0.71
Prealgebra 88.6 0.03 0.01 0.96 0.79 0.31 0.21 0.79
Number Theory 81.8 0.01 0.01 0.98 0.43 0.57 0.15 0.85
Counting and Probability 76.8 0.08 0.06 0.84 0.78 0.32 0.30 0.70
Geometry 61.8 0.03 0.01 0.96 0.95 0.05 0.06 0.94
Intermediate Algebra 57.1 0.05 0.02 0.93 0.85 0.15 0.44 0.56
Precalculus 52.6 0.06 0.02 0.92 0.95 0.05 0.46 0.54
External Planner: Llama-3-8B-Instruct; Solver: Llama-3-70B-Instruct
Algebra 74.9 0.03 0.04 0.93 0.77 0.23 0.12 0.88
Prealgebra 74.5 0.02 0.03 0.95 0.57 0.43 0.10 0.90
Number Theory 69.9 0.01 0.01 0.98 0.32 0.68 0.13 0.87
Counting and Probability 55.4 0.04 0.02 0.94 0.59 0.41 0.11 0.89
Geometry 39.6 0.05 0.01 0.94 0.76 0.24 0.18 0.82
Precalculus 36.9 0.07 0.03 0.90 0.78 0.22 0.28 0.72
Intermediate Algebra 34.6 0.03 0.01 0.96 0.72 0.28 0.20 0.80

from rewriting. Additionally, given the strong reasoning abilities of Llama3-70B-Instruct and GPT-
4o-mini, their CoT process inherently includes task decomposition, reducing the need for further
planning interventions.

3.8 ADDITIONAL ANALYSES
Table 8: External planner tuning under the few-shot
setting with GPT-4o-mini as the solver.

Method MATH BBH TheoremQA Average
CoT 72.3 84.2 38.2 64.9
LTM 72.7 83.4 37.3 64.5
PA 71.3 83.3 38.7 64.4
PoT 69.8 82.1 36.4 62.8
Self-refine 73.2 83.1 35.4 63.9
DOTS 75.4 86.1 39.9 67.1

Few-shot In-context Learning Setting
Our main results report the performance
with zero-shot evaluation. In cases where
reasoning tasks are known in advance,
a common approach to leveraging train-
ing data and improving the performance
of closed-source LLMs is few-shot in-
context learning (ICL), where training ex-
amples are incorporated directly into the
context. Our external planner tuning can
also be utilized in this scenario seamlessly. Specifically, we can first construct few-shot ICL prompts
for each potential reasoning action trajectory. Once the external planner selects the appropriate rea-
soning actions, the corresponding few-shot prompt will be chosen and applied. We evaluate the
external planner tuning setup of DOTS, with Llama-3-8B-Instruct being the external planner and
GPT-4o-mini being the solver LLM, in this setting. We compare our approach with the same base-
lines similarly implemented in the few-shot ICL setting, where we randomly selected 8 examples
from MATH, 4 examples from each category of BBH, and 4 examples from TheoremQA to form the
prompt.3 All few-shot demonstrations were generated by GPT-4o and manually verified for quality.

As shown in the Table 8, DOTS continues to outperform baseline models. Interestingly, compared
to Table 3, which presents the zero-shot results, adding few-shot demonstrations to static prompting
methods does not lead to consistent improvement, except on the BBH dataset. This indicates that
simply expanding the context with additional demonstrations does not always serve as an effective
way to leverage available training data. In contrast, our method demonstrates its superior ability to
effectively utilize the training data.

Table 9: Avg. number of output tokens for
each method (solver: Llama-3-8B-Instruct).

Method Avg. # of
Output Tokens

CoT (Wei et al., 2022) 263.6
LTM (Zhou et al., 2023) 436.4
Self-refine (Madaan et al., 2024) 527.6
DOTS: Internalized 409.1

How efficient is DOTS? We compare the cost effi-
ciency, measured by the average output token count,
of each method (based on Llama-3-8B-Instruct) in
Table 9. The result shows that DOTS consumes
fewer tokens on average than other advanced ap-
proaches and only more than CoT. Advanced prompt
engineering methods often introduce supplementary
text to facilitate reasoning. However, not all ques-

3We excluded the “Game of 24” task because knowing the task in advance enables it to be solved with a
straightforward program.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

tions require this additional context to the same ex-
tent. By constructing training data via searching, our goal is to optimize the balance between min-
imizing extraneous steps and maintaining a high success rate, thereby reducing unnecessary output
tokens. Our method avoids redundant reasoning actions, resulting in a more efficient system.

Figure 3: Average reasoning trajectory
length per difficulty level on MATH for
DOTS (solver: GPT-4o-mini; External

planner: Llama3-8B-Instruct).

level 1 level 2 level 3 level 4 level 5
Difficulty Level

1.15

1.20

1.25

1.30

1.35

1.40

1.45

A
ct

io
n

Tr
aj

ec
to

ry
 L

en
gt

h

Do we need more reasoning steps for difficult
questions? Recent research suggests that LLMs
can better solve difficult questions by increasing the
thinking time in the inference stage (Brown et al.,
2024; OpenAI, 2024). In our study, we explore the
relationship between question difficulty and the av-
erage reasoning action trajectory length. The trajec-
tory length is determined by assigning a value of
0 to the EMPTY module and 1 to all other actions,
while the question difficulty is derived from anno-
tated levels on the MATH dataset. Figure 3 presents
that harder problems demand more computational
steps, resulting in longer reasoning trajectories. Case
analyses further reveal that our planner increases the
proportion of verification steps as problem difficulty
rises. This highlights an exciting fact — LLMs can learn to employ more reasoning steps for chal-
lenging problems through exploration, without requiring explicit expert guidance.

4 RELATED WORK
Prompt engineering for LLM reasoning LLMs have demonstrated remarkable proficiency in
solving complex reasoning tasks (Lewkowycz et al., 2022). The Chain-of-Thought (CoT) approach,
introduced by Wei et al. (2022), significantly improves performance on reasoning problems by
prompting LLMs to think step-by-step in natural language. Chen et al. (2022) and Gao et al. (2023)
proposed the Program-of-Thought prompting method, where code is used as an intermediate rea-
soning step. Advanced prompt engineering methods, such as question decomposition (Zhou et al.,
2023) and self-verification (Madaan et al., 2024), have also proven effective in improving reason-
ing performance. Additionally, recent approaches have incorporated automatic prompt optimiza-
tion based on training data. For instance, Wang et al. (2023) refines prompts by analyzing error
cases, and self-discovery (Zhou et al., 2024) utilizes modular reasoning components to construct
the task-adaptive prompt. However, these automated prompt optimization techniques still produce
static prompts for all instances. Srivastava et al. (2024) proposed instance-level prompt optimization
via LLM self-refining, but it relies on expert-designed workflows and lacks active adaptation. In
our method, we internalize the reasoning action selection capability into the LLM itself without an
expert-designed workflow, allowing it to autonomously fit both the characteristics of questions and
the inherent capability of task-solving LLM.
Searching for boosting LLM reasoning Recent research suggests that incorporating searching
mechanisms can significantly enhance LLM reasoning. In the inference process, Tree-of-Thought
(ToT) (Yao et al., 2024) and Graph-of-Thought (GoT) (Besta et al., 2024) have been proposed to
search and investigate different reasoning paths, either by leveraging the LLM itself (Yao et al.,
2024) or designing heuristic functions (Hao et al., 2023) as the signal to evaluate each step. More
recently, Monte Carlo Tree Search (MCTS) has been introduced to assist the LLM in learning how
to evaluate each step (Qi et al., 2024; Xie et al., 2024). The searching mechanism can also be used
in training to collect training instances for improving LLM reasoning (Luo et al., 2024). However,
all these searching methods treat each “CoT reasoning step” as the atomic component or step in
searching, while we choose each reasoning action as the atomic component in our case.

5 CONCLUSION
In this paper, we introduce DOTS, a method that enables LLMs to autonomously think about appro-
priate reasoning actions before answering questions. By defining atomic reasoning action modules,
searching for optimal action trajectories, and training LLMs to plan for reasoning questions, we en-
able LLMs to dynamically adapt to specific questions and their inherent capability. The flexibility
of our two learning paradigms, i.e., external and internalized planner tuning, further highlights the
adaptability of our method to different LLMs. Our experimental results show the effectiveness of
DOTS, revealing the promise of harnessing explorations and evaluations to turn LLMs into planners
for better reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Lightning AI. Litgpt. https://github.com/Lightning-AI/litgpt, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation with
1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. arXiv preprint arXiv:2310.05915, 2023a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. Theoremqa: A theorem-driven question answering dataset. In The 2023 Conference
on Empirical Methods in Natural Language Processing, 2023b.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let large
language models ask better questions for themselves. 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346–361, 2021.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8154–8173, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023.
emnlp-main.507.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

11

https://github.com/Lightning-AI/litgpt
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Stefanie Krause and Frieder Stolzenburg. Commonsense reasoning and explainable artificial in-
telligence using large language models. In European Conference on Artificial Intelligence, pp.
302–319. Springer, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models, 2022. URL https://arxiv. org/abs/2206.14858, 2022.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/. Accessed: 2024-10-01.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reason-
ing makes smaller llms stronger problem-solvers. arXiv preprint arXiv:2408.06195, 2024.

Ansh Radhakrishnan, Karina Nguyen, Anna Chen, Carol Chen, Carson Denison, Danny Hernandez,
Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilė Lukošiūtė, et al. Question decomposition
improves the faithfulness of model-generated reasoning. arXiv preprint arXiv:2307.11768, 2023.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=H1gR5iR5FX.

Saurabh Srivastava, Chengyue Huang, Weiguo Fan, and Ziyu Yao. Instances need more care:
Rewriting prompts for instances with LLMs in the loop yields better zero-shot performance. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Compu-
tational Linguistics ACL 2024, pp. 6211–6232, Bangkok, Thailand and virtual meeting, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.371. URL
https://aclanthology.org/2024.findings-acl.371.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint arXiv:2403.02884, 2024.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. arXiv preprint arXiv:2310.16427, 2023.

12

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openreview.net/forum?id=H1gR5iR5FX
https://aclanthology.org/2024.findings-acl.371

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, An-
jana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Benchmarking generalization via in-context instructions on 1,600+ language tasks. arXiv preprint
arXiv:2204.07705, 2, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. arXiv preprint
arXiv:2212.09561, 2022.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

James Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Michael Qizhe Xie. Automatic model
selection with large language models for reasoning. arXiv preprint arXiv:2305.14333, 2023.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models. arXiv preprint arXiv:2304.06364, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
WZH7099tgfM.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed H Chi, Denny
Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-
compose reasoning structures. arXiv preprint arXiv:2402.03620, 2024.

13

https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A TRAINING IMPLEMENTATION

In our optimal trajectory search, we set the number of iterations (K) to 2 and the number of evalu-
ation times (Neval) to 4. The number of paths retained N1 is set to 8 and N2 to 3. Throughout the
search, we maintain a sampling temperature of 0.4. Searching on the training datasets eventually
yields 1722 for GPT-4o-mini, 1624 for Llama-3-70B-Instruct, and 2140 for Llama-3-8B-Instruct
training examples for planner tuning, respectively. We up-sample few-shot examples by a factor of
8 and fine-tune the planner LLM using the LitGPT library (AI, 2023), applying a learning rate of
2e-5, a global batch size of 64, a maximum sequence length of 4096, and training epoch of 4.

B CASE STUDY

In this section, QI is a numerical reasoning problem that can be solved with Python code easily,
so our tuned LLM selected PoT to solve it. QII is a question widely tested in the community
where GPT-4o even tends to make mistakes, but after tuning with searched trajectory data, the LLM
actively chose to use code to solve the problem.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Question 1 Case Study

Question I:
A book with 50 pages numbered 1 through 50 has its pages renumbered in reverse, from 50
to 1. For how many pages do both sets of page numbers share the same digit?

Answer from GPT-4o-2024-08-06 (Incorrect):
To solve this problem, we need to determine how many pages have the same ones digit in
both the original numbering (1 to 50) and the reversed numbering (50 to 1).
First, let’s understand the problem: - The original numbering of the pages is from 1 to 50.
- The reversed numbering is from 50 to 1, meaning page 1 becomes 50, page 2 becomes
49, and so on, until page 50 becomes 1. We need to find pages where the ones digit of the
original page number is the same as the ones digit of the reversed page number. Let’s denote
the original page number as n and the reversed page number as 51− n. We are looking for
n such that the ones digit of n is equal to the ones digit of 51− n.
The ones digit of a number is the remainder when the number is divided by 10. Therefore,
we need:

n ≡ 51− n (mod 10)

Since 51 ≡ 1 (mod 10), we have:

2n ≡ 1 (mod 10)

Thus, multiplying both sides of the congruence by 5 gives:

n ≡ 5× 1 ≡ 5 (mod 10)

This means n must have a ones digit of 5. The pages with a ones digit of 5 in the original
numbering are 5, 15, 25, 35, and 45.
Thus, the number of pages that share the same one’s digit in both numbering systems is: 5

Answer from our internal planner tuned Llama3-8b-Instruct:
It can efficiently iterate through the range of page numbers to count occurrences of the same
ones digit. Programming solver provides a quick and reliable method to handle the counting
of digits across a defined range.
Required Action: programming

c o u n t = 0
f o r o r i g i n a l p a g e in range (1 , 5 1) :

r enumbered page = 51− o r i g i n a l p a g e
Check i f t h e ones d i g i t i s t h e same
i f o r i g i n a l p a g e % 10 == renumbered page % 1 0 :

c o u n t += 1
p r i n t (c o u n t)

After execution, we get: 0
Answer: 0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Sub Task CoT PoT DOTS
object counting 94.4 98.0 98.0
temporal sequences 96.8 83.6 97.2
tracking shuffled objects five objects 95.2 78.8 96.4
word sorting 50.8 98.0 98.0
salient translation error detection 61.6 59.2 62.6
penguins in a table 71.2 54.8 73.3
snarks 83.1 69.1 83.3
ruin names 81.2 80.2 81.2
web of lies 91.2 59.2 92.0
navigate 96.4 90.4 96.8
date understanding 80.8 52.8 76.4
hyperbaton 92.0 67.6 91.0
dyck languages 38.0 42.4 54.4
tracking shuffled objects three objects 99.2 89.2 99.2
formal fallacies 82.0 74.4 82.0
tracking shuffled objects seven objects 91.2 73.2 92.8
causal judgement 62.6 62.6 62.0
sports understanding 85.6 74.8 87.6
logical deduction five objects 85.6 80.4 88.8
movie recommendation 62.0 56.0 62.8
logical deduction three objects 99.2 96.4 99.2
multistep arithmetic two 98.0 100.0 100.0
boolean expressions 99.2 96.8 99.2
geometric shapes 56.4 65.6 78.8
disambiguation qa 42.8 40.8 45.6
logical deduction seven objects 76.8 71.6 82.0
reasoning about colored objects 87.6 66.0 87.6
Average 80.3 73.9 84.2

Table 10: Results of BBH sub-tasks.

Question 2 Case Study

Question II:
How many r in word ‘strawberry’?

Answer from GPT-4o-2024-08-06 (Incorrect):
The word “strawberry” contains 2 letter “r”s.

Answer from our internal planner tuned Llama-8b-Instruct:
It can efficiently count the occurrences of a specific character (in this case, ‘r’) in a word.
Programming solver provides a quick and reliable method for counting characters in text,
ensuring accuracy in the result.
Required Action: programming

word = ‘ s t r a w b e r r y ’
c o u n t =word . lower () . c o u n t (‘ r ’)
p r i n t (c o u n t)

After execution, we get: 3
Answer: 3

C SUB-TASK PERFORMANCE OF BBH

Table 10 shows the results of BBH sub-tasks of GPT-4o-mini as task-solving LLM and our tuned
Llama-3-8B-instruct as the planner. From the table, we can see that our planner has learned to select
appropriate actions based on the task. For instance, in the word sorting task, our model consistently

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

uses code to solve the problem. Additionally, for the Dyck languages task, our method outperforms
both CoT and PoT. This is because the task is easy to verify, and our model proactively requests
GPT-4o-mini to verify the answer, thereby improving performance. The only exception is the date
understanding task. Upon analysis, we found that while code could solve this type of problem using
Python’s “datetime” library, it often fails to follow the required output format. This leads to lower
accuracy in our method’s prediction when choosing writing a program as the reasoning action.

D PROMPTS USED IN EXPERIMENTS

Prompt for query rewrite module

In this step, you need to reveal the Core Question with only a simple sentence and useful
information. The output follows the format:
core question:...
Note: Please extract the question-solving information related to the problem, and list them
one by one.
useful information:...

Prompt for query decomposition module

In this step, you need to reflect on the problem, and describe it in your own words. Analyze
how you can decompose the problem into smaller, more manageable sub-tasks. Pay attention
to small details, nuances, notes and examples in the problem description.

Prompt for CoT module

In this step, you need to think step by step with words, solve the problem and get the answer.

Prompt for PoT module

In this step, you need to write Python codes to solve the query. Use the simplest and most
straightforward programming methods to solve the problem. For instance, if a query can
be efficiently solved using a brute force method, prefer it over heuristic or more complex
methods. Utilize any available and commonly-used libraries that can simplify the task or
improve code maintainability. All the calculations must leverage codes. Print out the results
with the print() function. Before executing the program, you have no idea of the final answer.
Don’t show it in your comment or code. And don’t use the plot function.
In this step, start with “# Now write Python codes to answer this question and use print() to
print out the result”

Prompt for self-verification module

In this step, you need to carefully verify the correctness of the previous thoughts with natural
language. You need to formulate a verification question (not the same question as before)
based on the final answer and then verify the final answer you have. If the results are in-
correct, the last line should end up with “The answer is: incorrect”. Otherwise, the last line
should end with “The answer is: correct”

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Prompt for explanation generation

Action Categories:
1. Understanding process: query rewriting: Rewrite the question and answer it. Decomposi-
tion: Decompose the questions into multiple subtasks to solve the sub-question. 2. Solving
process: chain of thought: For step-by-step reasoning with language. programming: For
programming solver. 3. Verification process: self-verification: To check the correctness of
the solution.
Task Instruction: For the given question, explain why the above Required actions are nec-
essary.
Example 1:
Query: Find 2 · 5−1 +8 · 11−1 (mod 56). Express your answer as an integer from 0 to 55,
inclusive.
Required Action: programming, self-verification
Explanation: This is a Modular arithmetic problem. The problem can be solved using
straightforward python code with sympy library, particularly modular arithmetic. Besides,
this type of problem is relatively easy to verify. After computing the result, one can check
the calculations step by step to ensure correctness and verify that the final answer is within
the given range (0 to 55 inclusive). Programming solver is more efficient and accurate for
this type of calculation and the verifier ensures the correctness of the result and adherence
to the given constraints.
... (multiple examples)
Query: Given Query
Required Action: Actions After Searching
Explanation:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Prompt for prior knowledge exploration module

...(test query)
Before solving the problem, take a moment to: Choose the most appropriate action trajecto-
ries from: 1. Understanding Process:
- query rewriting: - Suitable for: Ambiguous or poorly phrased questions. - Reasoning:
This action is ideal when the question is not clear or is open to multiple interpretations.
By rewriting the question, we can clarify the intent and ensure that the answer addresses
the correct issue. This is particularly useful in natural language processing tasks where the
original query might be vague or contain errors.
-Decomposition: - Suitable for: Complex questions that can be broken down into simpler,
more manageable parts. - Reasoning: When a question involves multiple components or
steps, decomposing it into subtasks can make it easier to tackle. This approach is beneficial
for multi-step problems, such as those found in project management, research planning, or
complex problem-solving scenarios where each subtask can be addressed individually before
integrating the solutions.
2. Solving Process: - chain of thought: - Suitable for: Questions requiring logical reasoning
or step-by-step deduction. - Reasoning: This method is effective for problems that benefit
from a structured approach, such as mathematical proofs, logical puzzles, or any scenario
where a sequential thought process is necessary to arrive at the correct answer. It allows for
a clear demonstration of the reasoning path taken to solve the problem.
- programming: - Suitable for: Questions that can be solved algorithmically or require com-
putational solutions. - Reasoning: When a problem can be addressed through coding, such
as data analysis, algorithm design, or simulation tasks, using a programming solver is appro-
priate. This approach is particularly useful for problems that can be solved with brute force
searching, where writing and executing code can efficiently produce the desired outcome.
3. Verification Process: - verifier: - Suitable for: Questions where the correctness of the
solution is critical. - Reasoning: This action is essential when the accuracy of the solution
must be confirmed, such as in scientific research, engineering calculations, or any high-
stakes decision-making process. Verification ensures that the solution is not only plausible
but also correct, providing confidence in the results.
You need to first think about the question and select the best action trajectories, for exam-
ple, [programming, verifier] to solve it. Then proceed with solving the problem using your
selected strategies. Remember to follow the question format.

E MORE BASELINES

E.1 THREE-LAYERS STATIC PROMPTING

The baselines in experiments did not utilize all layers. To ensure a fairer comparison, in this section,
we compared our method with results using all layers, as shown in Table 11. The results demonstrate
that our method still outperforms all baselines.

E.2 HYBRID TRAINING

The second baseline is about hybrid training, i.e., using a mixture of training data with both CoT and
PoT (Yue et al., 2023). We use the same training instance and each instance is provided with both the
PoT and CoT reasoning paths. We reported the results in Table 12. The result shows that our method
still outperforms the hybrid training. From the results, it can also be observed that for datasets
where CoT outperforms PoT, training solely with CoT yields better performance. We analyzed
several cases and found that although mixed training allows the LLM to choose between CoT and
PoT dynamically, the results tend to perform random selection rather than actively analyzing the
problem and selecting the most suitable path for the given question carefully because we didn’t
guide the LLM learn this. This highlights the importance of searching for the optimal reasoning
path before tuning the LLM.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Method MATH BBH Game Theorem DM MMLU Strategy DROP Average
24 QA math pro QA

Task solving LLM: Llama3-70b-Instruct
Rewr.+CoT+Veri. 50.9 73.1 28.2 28.8 58.1 60.1 81.9 66.0 55.9
Rewr.+PoT+Veri. 55.3 70.5 67.9 30.6 73.4 58.1 79.1 65.2 62.5
Deco.+CoT+Veri. 51.1 74.2 29.6 29.1 58.6 60.5 81.4 65.7 56.3
Deco.+PoT+Veri. 55.8 72.5 68.1 30.8 73.9 58.6 78.9 65.6 63.0
DOTS 57.7 77.3 67.7 31.2 74.1 59.4 80.3 66.3 64.3
Task solving LLM: GPT-4o-mini
Rewr.+CoT+Veri. 71.9 79.5 32.1 36.9 80.1 61.1 80.6 68.5 63.8
Rewr.+PoT+Veri. 73.4 76.7 67.9 34.8 85.8 58.4 75.8 72.9 68.2
Deco.+CoT+Veri. 72.7 79.8 33.5 37.8 82.8 62.3 81.2 67.3 64.7
Deco.+PoT+Veri. 73.6 78.7 68.7 35.2 86.5 59.3 76.9 71.9 68.9
DOTS 75.4 84.2 65.2 41.4 87.6 61.5 78.8 73.8 71.0
Task solving LLM: Finetuned Llama3-8b-Instruct
Rewr.+CoT+Veri. 29.5 48.9 14.5 15.8 30.1 38.7 70.3 52.9 37.6
Rewr.+PoT+Veri. 27.2 48.3 17.8 14.9 46.9 35.5 64.9 47.1 37.8
Deco.+CoT+Veri. 30.1 49.5 15.5 14.6 31.7 39.2 71.3 52.1 38.0
Deco.+PoT+Veri. 27.6 49.2 18.9 15.2 47.8 36.2 64.7 45.8 38.2
DOTS 34.4 69.7 21.9 16.1 55.3 39.7 68.2 48.8 44.3

Table 11: The three-layer baselines performance

SFT MATH BBH Game24 Theorem DM MMLU Strategy DROP Average
Method QA math pro QA
Vanilla SFT 33.9 61.0 18.5 14.8 39.6 40.3 71.8 49.0 36.7
Hybrid SFT 32.3 53.3 18.7 15.6 49.1 36.5 65.9 46.2 39.7
DOTS 34.4 69.7 21.9 16.1 55.3 39.7 68.2 48.8 44.3

Table 12: The result of hybrid training

F DISTRIBUTION OF REASONING PATH

In this section, we show a detailed distribution of reasoning paths. We denote the reasoning paths
as:

• P1: Empty, CoT, Empty

• P2: Empty, PoT, Empty

• P3: Empty, CoT, verification

• P4: Empty, PoT, verification

• P5: Question Decomposition, CoT, Empty

• P6: Question Decomposition, PoT, Empty

• P7: Question Decomposition, CoT, verification

• P8: Question Decomposition, PoT, verification

• P9: Question Rewrite, CoT, Empty

• P10: Question Rewrite, PoT, Empty

• P11: Question Rewrite, CoT, verification

• P12: Question Rewrite, PoT, verification

The distribution is shown in Table 13. We can still maintain the conclusion drawn from the sec-
tion 3.7. For different tasks, the planner predicts different action trajectories. For example, the
planner selects PoT more frequently in Game of 24, while preferring CoT in DROP. The planner

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Dataset P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Task solving LLM: Llama3-70B-Instruct
MATH 50.5 26.0 8.4 3.7 3.1 1.1 0.4 1.9 1.7 1.9 1.3 0.0
BBH 32.1 16.2 21.1 9.1 10.9 0.3 0.5 0.7 9.0 0.1 0.0 0.0
Game 24 0.2 0.7 4.3 94.1 0.0 0.4 0.0 0.3 0.0 0.0 0.0 0.0
TheoremQA 42.6 30.3 13.0 8.1 0.4 0.0 5.0 0.0 0.4 0.2 0.0 0.0
Deepmind Math 1.1 32.1 6.1 59.1 0.2 0.2 0.0 0.6 0.0 0.0 0.0 0.6
MMLU-pro 59.8 5.2 31.0 0.4 1.0 0.4 2.0 0.2 0.0 0.0 0.0 0.0
StrategyQA 62.6 4.0 20.1 2.1 10.2 0.0 1.0 0.0 0.0 0.0 0.0 0.0
DROP 82.8 0.9 16.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Task solving LLM: GPT4o-mini
MATH 54.9 12.4 20.1 5.1 1.6 1.1 0.6 0.0 3.4 0.0 0.8 0.0
BBH 45.4 15.8 14.7 2.0 13.0 3.7 0.0 0.0 5.0 0.0 0.0 0.0
Game 24 0.5 1.6 0.3 97.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TheoremQA 43.8 25.2 28.4 0.0 1.1 0.0 0.0 0.0 1.5 0.0 0.0 0.0
Deepmind Math 2.1 41.1 0.6 50.2 0.0 0.0 0.0 0.0 0.0 4.0 0.0 2.0
MMLU-pro 71.3 20.7 5.0 0.0 0.0 2.0 0.0 0.0 0.8 0.0 0.2 0.0
StrategyQA 68.1 7.0 19.1 0.0 5.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0
DROP 98.7 1.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Table 13: The action trajectory distribution of all datasets

Method MATH BBH Game Theorem DM MMLU Strategy DROP Average
24 QA math pro QA

Solver: GPT4o-mini
DOTS 75.4 84.2 65.2 41.4 74.1 59.4 80.3 66.3 68.4
w/o Searching 69.2 78.6 28.9 40.2 62.5 58.3 79.5 64.5 60.2
w/o Explanation 68.2 81.3 57.4 36.4 58.5 59.2 81.2 66.1 63.5
Solver: Llama3-8B-Instruct
DOTS 34.4 69.7 21.9 16.1 55.3 39.7 68.2 48.8 44.3
w/o Searching 31.4 55.8 19.6 15.1 42.5 38.2 67.5 47.5 39.7
w/o Explanation 33.8 65.8 18.6 15.7 47.2 38.5 69.6 50.2 42.4

Table 14: Full result of ablation study

can also adapt to the LLM ability. For instance, GPT-4o-mini excels at solving problems using CoT,
leading to a higher selection rate of CoT compared to Llama-3-70B-Instruct.

G ABLATION STUDY FULL RESULT

In this section, we provide the full ablation result of all datasets in Table 14. It reveals the effective-
ness of each step of our method.

H CAN WE ADD PRIOR KNOWLEDGE IN THE PROMPT TO HELP THE LLM
SELECT ACTIONS?

We designed an experiment with Llama-3-8B-Instruct, which shows that simply feeding the prior
knowledge as instruction is insufficient for effective planning. Specifically, we compared the inter-
nalized DOTS planner with two variants: (1) Vanilla Prompting-based Planning, where an off-the-
shelf Llama3-8B-Instruct model was directly prompted to select optimal actions for a given question
based on its parametric knowledge; and (2) Prompting-based Planning w/ Prior Knowledge, where
the model was prompted with the prior knowledge that we summarized from the solver LLM’s op-
timal trajectories (e.g., common rules for action selection) as part of the instructions at test time.
The prompt is provided in D. In both variants, we did not train the planner LLM. The results are
shown in Table 15. Our experimental results show that feeding no prior knowledge, or simply feed-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Method MATH BBH Game
of 24

Theorem
QA

Deepmind
-math

MMLU
-pro SQA DROP Average

Vanilla Prompting
-based Planning 29.5 48.7 11.9 13.3 34.9 38.0 69.2 53.0 37.3

Prompting-based
Planning with
Prior Knowledge

30.2 47.5 13.0 14.5 34.2 37.8 69.3 55.2 37.7

DOTS 34.4 69.7 21.9 16.1 55.3 39.7 68.2 48.8 44.3

Table 15: The result of using prompt with prior knowledge

ing the prior knowledge without SFT, is insufficient for an LLM to plan effectively for reasoning
tasks. We analyzed several cases and found that LLMs often failed in selecting the best trajectory.
For example, one prior knowledge in the prompt is that “decomposition is useful when a question
involves multiple components. . . ”. We find that prompt-based LLM tends to select a fixed subset
of actions including decomposition. However, our search results indicate that incorporating decom-
position does not provide significant benefits in tasks such as Game of 24. Because decomposition
appears reasonable to the LLM, it is only through search and learning that the LLM can know that
decomposition is unnecessary for this type of problem. It clearly demonstrates that relying solely
on naive prompt design is insufficient for enabling LLMs to learn how to reason about selecting
paths effectively. The reason is that enumerating all detailed and comprehensive prior knowledge
in the prompt is challenging, as it is difficult to account for numerous case-by-case scenarios. Our
method integrates prior knowledge from explanations with the searched optimal trajectory, effec-
tively teaching the model to learn how to select the optimal trajectory. In our view, searching is
to implicitly acquire the “prior knowledge” and training is a reliable way to make LLMs learn the
“prior knowledge” to determine how to select reasoning actions.

22

	Introduction
	Dots: Learning to Reason Dynamically
	Overview
	Defining Atomic Reasoning Actions Modules
	Searching for Optimal Reasoning Action Trajectories
	Learning to Plan for Optimal Reasoning Trajectories

	Experiment
	Experimental Setup
	Baselines
	External Planner Tuning Results
	Internalized Planner Tuning Results
	Out-of-Distribution Experimental Results
	Ablation Study
	Optimal Trajectory Analysis for Different Tasks
	Additional Analyses

	Related Work
	Conclusion
	Training Implementation
	Case Study
	Sub-Task Performance of BBH
	Prompts Used in Experiments
	More baselines
	Three-layers Static Prompting
	Hybrid Training

	Distribution of Reasoning Path
	Ablation Study Full Result
	Can we add prior knowledge in the prompt to help the LLM select actions?

