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ABSTRACT

Instruction tuning has emerged as a crucial process for harnessing the capabilities
of large language models (LLMs) by providing explicit task instructions, lead-
ing to improved performance in various tasks. However, prevalent text-to-text
instruction tuning (TextTuning) methods suffer from limitations in generalization,
robustness, and controllability due to the ambiguity and lack of explicit struc-
ture in tasks. In this paper, we propose JsonTuning, a novel structure-to-structure
approach for instruction tuning. By leveraging the versatility and structured na-
ture of JSON to represent tasks, JsonTuning enhances generalization by helping
the model understand essential task elements and their relations, improves robust-
ness by minimizing ambiguity, and increases controllability by providing explicit
control over the output. We conduct a comprehensive comparative study with di-
verse language models and evaluation benchmarks. Experimental results show
that JsonTuning outperforms TextTuning in various applications, showcasing im-
proved performance, adaptability, robustness, and controllability. By overcoming
the limitations of TextTuning, JsonTuning demonstrates significant potential for
more effective and reliable LLMs capable of handling diverse scenario

1 INTRODUCTION

Natural language processing has advanced significantly with large language models (LLMs) such as
GPT-3 (Brown et al.,|2020), PaLM (Chowdhery et al., 2022), and LLaMA (Touvron et al., 2023a)),
which excel in various tasks such as machine translation and sentiment analysis. However, effec-
tively responding to human instructions remains challenging. Instruction tuning (Wei et al., [2022)
addresses this by fine-tuning LLMs using explicit task instructions, improving task comprehension
and execution. This approach has led to the success of instruction-following LLMs, such as Instruct-
GPT (Ouyang et al.| [2022) and ChatGPT (OpenAl, |2023a), in a wide range of applications.

Existing instruction tuning methods formulate all tasks as natural language generation (Wei et al.,
2022; Sanh et al.| [2022; [Wang et al.| [2022b; |Chung et al.| [2022). They describe the task and de-
sired output with natural language, which is straightforward as LLMs are typically trained with the
language modeling task. However, natural language instructions can sometimes be ambiguous or
open to interpretation, leading to suboptimal understanding or unintended outputs from the model.
Providing long and detailed instructions may be necessary for complex tasks, but it can also be cum-
bersome and challenging for users, thus reducing user satisfaction. Specifically, such text-to-text
instruction tuning (TextTuning) methods suffer from the following limitations: (1) Generalization.
TextTuning methods mix task elements and instructions in natural language texts, which can obscure
the structure in tasks. This lack of explicit representation in the data structure may cause ambiguity
and make it difficult for the model to understand the essential elements of tasks and their relations.
Consequently, the model might struggle to learn and generalize intricate relations and dependencies
present within the data, potentially hindering its overall performance and adaptability. (2) Robust-
ness. Ambiguity in natural language texts can lead to models being more sensitive to variations in
the input, resulting in less robust performance. TextTuning methods have been shown sensitive to
phrasings of instructions (Sanh et al.| 2022 |Sun et al., 2023, variations of labels (Ye et al.| |2023}
Wei et al., [2023)), and the order of options (Pezeshkpour & Hruschkal 2023). (3) Controllability.

!Code and model will be publicly available.



Under review as a conference paper at ICLR 2024

Text: Bonjour, comment ¢a va? Identify the language of the text and provide
probability scores for the candidate languages: French, English, Spanish. The TextTuning

sum of all probability scores should be 1. Language and probability scores:

“input”: {
text”: “Bonjour, comment ¢a va?”,
candidate languages”: [‘French”, “English”, “Spanish’]
‘instruction”: “Text: {text}. Identify the language of the text and provide
probability scores for the candidate languages: {candidate languages}. The
sum of all probability scores should be 1. Language and probability scores:
{language}. {probability scores}.” {
}

“language” “French”,

“probability scores”: {
‘French”: 1,
“English™: 0,
“Spanish”: 0

“output control”: {
language”: {"type”™: “string”}
probability scores”: {
type”: “object”,
properties”: {
“French”: { “type”: “number”},
“English”: { “type™: “number”},
“Spanish”: { “type”: “number”}

}
}
}

Figure 1: Overview of the typical TextTuning method and our proposed JsonTuning paradigm.

It can be difficult to provide a clear description or enforce a specific structure or format for the de-
sired output due to the ambiguity of natural language (Han et al., 2023), preventing the model from
effectively controlling the output.

To address the above limitations, it is crucial to incorporate explicit structure into the input and
output representations during the instruction tuning process. Structured data representations such
as JavaScript Object Notation (JSON) can help minimize misunderstandings and ensure a clearer
communication of the intended task. Inspired by this, we propose a novel structure-to-structure ap-
proach called JsonTuning by leveraging the versatility and structured nature of JSON for instruction
tuning. JsonTuning represents the inputs and outputs of all tasks as JSON structures, with the input
JSON structure containing task input elements, instructions, and control information, and the output
JSON structure encompassing task output elements. As depicted in Figure[I] JsonTuning addresses
the limitations of TextTuning in the following ways: (1) Generalization. By explicitly representing
the structure in tasks, JsonTuning helps the model understand essential elements of tasks and their
underlying relations and ensures a consistent representation of data across different tasks, leading to
improved generalization and adaptability to new tasks. (2) Robustness. JsonTuning helps minimize
ambiguity and manage inconsistencies in the data, facilitating the model to process and generate
accurate outputs when faced with input variations, resulting in enhanced robustness. (3) Controlla-
bility. JsonTuning offers explicit control over the output structure and content, enabling the model
to effectively manage output generation. For the language detection task in Figure |1} JsonTuning
clearly describes the output structure, including the organization and data types of output elements,
which is challenging or even impossible to achieve using natural language texts alone.

We conduct a comparative study to demonstrate the advantages of JsonTuning by instruction-tuning
five prominent pre-trained language models, namely LLaMA-7B, LLaMA-13B (Touvron et al.,
2023a)), LLaMA2-7B, LLaMA2-13B (Touvron et al., [2023b)), and Falcon-7B (Penedo et al., [2023)).
The fine-tuning process involves a subset of the Flan 2022 collection (Chung et al., 2022} and struc-
tured tasks from InstructUIE (Wang et al.,[2023a). Subsequently, we assess the performance of Json-
Tuning and TextTuning models in terms of generalization, robustness, and controllability across a
diverse range of tasks, such as MMLU (Hendrycks et al.,[2021), BBH (Suzgun et al.,[2023), and tasks
with intricate input and output structures. The experimental results reveal the following key find-
ings: (1) JsonTuning outperforms TextTuning in terms of generalization across all language models
and tasks. (2) JsonTuning models exhibit significantly greater robustness compared to TextTuning
models with respect to variations in instructions and labels. (3) JsonTuning models demonstrate the
ability to generalize to more complex structures even when trained on a limited number of simpler
structured tasks and generate the desired output in a well-defined structured format.

2  JSONTUNING: STRUCTURE-TO-STRUCTURE INSTRUCTION TUNING

2.1 UNIFIED STRUCTURE-TO-STRUCTURE FORMULATION

We formulate instruction tuning as a structure-to-structure generation problem, representing task
inputs and outputs using JSON format. Given a task 7', we denote its input elements as 77 =
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(I1,Is,...,I,) and output elements as Tp = (O1,Oq,...,O,,), where I; is the ith input element,
and O; is the ith output element. Taking the multiple-choice question answering (MCQA) task
in Table [I] for illustration, it has two input elements: question and options and an output element:
answer. With T7, Tp, the task prompt T'P, label space L, and control information C', we construct
the input JSON structure S and output JSON structure S as follows:

Sr={“input”: {I; : v1, I : vo,..., I, : vy, -key : L, “instruction” : TP}, “output control” : C'}
SO = {01 ZU1,02 : UQ,...,Om:um}

where v; is the value of I;, u; is the value of O,, and [_key is the key in .St to indicate L and varies
for different tasks. For instance, [_key is candiate answers for the MCQA task since its output
element is answer. We identify the following components for effective instruction tuning:

* Task Prompt T'P. The task prompt T'P provides instructions for generating T;» conditioned
on 77 and is necessary for instruction tuning. We incorporate a key named instruction in Sy to
provide such information.

» Label Space L. The label space L is applicable only for tasks with limited label spaces and in-
cludes all possible outputs. For example, L for the MCQA task comprises all candidate answers.
Including L in Sy offers the following benefits: (1) Improving training consistency. For example,
in the case of the MCQA task, if the correct option is (A) Sundar Pichai, the answer can be A,
(A), or the entire option (A) Sundar Pichai. These answers are all valid but may cause inconsis-
tency during training since different datasets may use different types of answers. Moreover, there
is a diverse range of tasks with limited label spaces. Incorporating L unifies all these tasks and
scenarios as a selection task, which involves choosing an item from the label space as the output.
(2) Controlling the output. With L, we can restrict the output within a predetermined range.

* Control Information C'. To improve the controllability of JsonTuning models, we incorporate
the control information C for each task, which specifies the structured format, explanations, and
constraints for the output. In particular, we introduce a key called output control in St to represent
the control information. We employ JSON Schema to define control information, resulting in C
being a JSON structure as well. As shown in Table |1} for the named entity recognition (NER)
task, its control information describes that its output is an array of objects, where each object has
two properties: entity category and entity span, both of which are strings. Also, for the MCQA
task, C indicates that the answer is a string and should be one of the candidate answers, i.e., its
label space. JSON Schema enables C' to clearly define the desired output.

With S; and S, we can employ a language model M : St — So for training and inference.

2.2 TUNING DATA

The Flan 2022 collection (Chung et al.} 2022} [Longpre et al.,[2023)) is a comprehensive and widely-
used public instruction tuning collection consisting of over 1800 tasks. It integrates resources from
Flan 2021 (Wei et al.| 2022), P3++ (Sanh et al., 2022), Super-Natural Instructions (Wang et al.,
2022b), and additional reasoning, dialogue, and program synthesis datasets. For our primary ex-
periments, we randomly sample a subset from the Flan 2022 collection, maintaining the original
collection’s data proportion to ensure task diversity.

Despite the diverse tasks in the Flan 2022 collection, the input and output structures are relatively
simple. The outputs for nearly all tasks are purely textual, lacking arrays, objects, or their combina-
tions. Consequently, language models tuned with the Flan 2022 collection may struggle to generalize
to diverse and complex structured tasks. To address this limitation, we introduce structured tasks
for instruction tuning. Specifically, we employ information extraction (IE) tasks from InstructUIE
(Wang et al.,[2023a)) as structured tasks for the following reasons: (1) they are well-defined and rep-
resentative, as numerous structure prediction tasks, such as semantic role labeling and coreference
resolution, can be formulated as IE tasks (Paolini et al., 2021} Wang et al., 2022a); (2) they possess
complex input and output structures; (3) different IE task datasets have varying schemas, such as
different entity categories and relations, thus fostering diversity. InstructUIE comprises three tasks:
named entity recognition (NER), relation extraction (RE), and event extraction (EE). We utilize the
NER and RE tasks for training, reserving the EE task for evaluation. Since the output structure of
the EE task is more intricate than that of the NER and RE tasks, we can assess the instruction-tuned
language models’ capability to generalize to more complex structures. To encourage diversity, we
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Table 1: Examples of TextTuning and JsonTuning. Each example is associated with a prompt con-
sisting of an input template and an output template. We highlight the input template in brown and
the output template in . MCQA refers to multiple-choice question answering, and NER rep-
resents named entity recognition.

Method Input Output

MCQA: [Answering the following question: {question} {options}. Answer:, ]

Text Answering the following question: Who is the CEO of Google? (A) Sundar (A)
Pichai (B) Bill Gates (C) Tim Cook (D) Satya Nadella. Answer:

Json  {“input”: { “question”: “Who is the CEO of Google?”, “options”: “(A) Sun-  {“answer”: “(A)” }
dar Pichai (B) Bill Gates (C) Tim Cook (D) Satya Nadella”, “candidate an-
swers”: [“(A)”, “(B)”, “(C)”, “(D)”], “instruction”: “Answering the following
question: {question} {options}. Answer: {answer}” }, “output control”: {

“answer”: { “type”: “string”, “description”: “The answer should be one of the
candidate answers in the input.” } } }

NER: [definition: {definition}\ntext: {text}entity categories: {entity categories}\nentities:, ]

Text definition: Given a text and entity categories, your task is to scan the text and [[location, = Tokyo],
identify a list of named entities in it. Each entity contains an entity category [location, Japan]]
and an entity span.\ntext: Tokyo is the capital of Japan.\nentity categories:
location, person, organization\nentities:

Json { “input™: { “definition™: “Given a text and entity categories, your task is  {“entities™: [
to scan the text and identify a list of named entities in it. Each entity con- {entity category: lo-

tains an entity category and an entity span.”, “text”: “Tokyo is the capital cation, entity span:
of Japan.”, “instruction” “definition: {definition}\ntext: {text}entity cate- Tokyo},

gories: {entity categories}\nentities: {entities}” }, “output control”: { “enti- {entity category: lo-
ties”: { “type”: “array”, “items”: { “type”: “object”, “properties”: { “entity cation, entity span:

2, <

category”: {“type”: “string”}, “entity span”: {“type”: “string”} } } } } } Japan}] }

uniformly select examples from the training sets of multiple datasets of each task for tuning. Further
details regarding the training datasets of IE tasks can be found in Appendix [A]

2.3 DATA PROCESSING

We use the defined data structures S; and Sp in Section |2;1'| to represent all tuning data in JSON
structured format with the following data types: object, array, and string. The number and
boolean types can be represented as the string type for simplicity. Further details regarding JSON
and its utilization in data processing are available in Appendix [C]

Following the approach in (Chung et all 2022; Sanh et al., 2022; Wei et al [2022), we employ
multiple prompts for each task during instruction tuning, where each prompt 7'P consists of an
input template and an output template. For example, in the case of an MCQA prompt, the input
template could be “Answer the following question: {question} {options}. Answer:”, and the output
template could be “{answer}”. The prompt clearly indicates the essential task elements, namely
question, options, and answer, as well as their relations. The tasks in the Flan 2022 collection
already have multiple prompts. We manually construct 10 prompts each for NER and RE tasks for
training, which can be found in Appendix [D] Many tasks with limited label spaces in the Flan 2022
collection already include the label space in the task data source. For those that do not provide such
information, we collect all possible task outputs in the data source to construct the label space. As
for the control information C, all output elements of tasks in the Flan 2022 collection are of the
string type, and we manually define C for IE tasks, which can be found in Appendix

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Pre-trained Language Models We adopt five strong and prevalent pre-trained language models,
namely LLaMA-7B, LLaMA-13B (Touvron et al.,|2023a), LLaMA2-7B, LLaMA2-13B (Touvron
et al., 2023b)), and Falcon-7B (Penedo et al.l [2023)), for our experiments. These models are trained
on trillions of tokens and are among the most widely used open-source language models.
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Evaluation Tasks and Datasets We focus on performance on unseen datasets and tasks. We
evaluate models on popular aggregated benchmarks: MMLU (Hendrycks et al., 2021) consisting
of 57 tasks of exam questions and BBH (Suzgun et al., 2023)) including 23 challenging tasks from
BIG-Bench (Srivastava et al.| [2023)) following [Chung et al| (2022). In addition, we adopt tasks
with complex input and output structures for evaluation. Specifically, we use the NER, RE, and
EE tasks from InstructUIE (Wang et al.| [2023a), the table question answering (TQA) task, which
involves answering questions based on a given structured table, and the NL2SQL task, requiring the
conversion of natural language queries into SQL using a provided database schema. For NER and
RE, we use datasets unseen during training. Specifically, we use 5 datasets, namely, Al, literature,
music, politics, and science, from CrossNER (Liu et al.| 2021) for the NER task and 2 datasets,
namely CoNLL2004 (Roth & Yih, 2004) and FewRel (Han et al., 2018), for the RE task. For the
unseen EE task, we use ACE2005 (Walker et al., |2006), CASIE (Satyapanich et al., [2020), and
PHEE (Sun et al.| |2022) datasets for evaluation. We use the WikiTableQuestions (Pasupat & Liang,
20135)) dataset for the TQA task and the Spider (Yu et al.,|2018) dataset for the NL2SQL task. Apart
from datasets in MMLU and BBH, we randomly select up to 500 examples for each dataset from
its test sef?] for evaluation so that a single dataset will not dominate the results of its task and the
evaluation cost is acceptable. The details of evaluation datasets and prompts are in Appendix [E]

Evaluation Metrics We use accuracy for MMLU and BBH following (Chung et al.| (2022), entity
F1 for the NER task, relation boundary F1 for the RE task, event trigger F1 and argument F1 for
the EE task following Wang et al.| (2023a), accuracy for the TQA task following [Pasupat & Liang
(2015), and execution accuracy for the NL2SQL task following |Yu et al.| (2018)).

Implementation Details We employ the parameter-efficient method LoRA (Low Rank Adapta-
tion) (Hu et al.l [2022) for fine-tuning. The rank is set to 8. We use 50K examples from the Flan
collection 2022 and 10K examples from structured tasks in InstructUIE, with an equal division be-
tween the NER and RE tasks, and train the learnable parameters for 3 epochs with a batch size of
64. For model optimization, we use the AdamW (Loshchilov & Hutter, 2019) optimizer with linear
learning rate decay, and the peak learning rate is set to le-3. We set the maximum length as 2048
for training and evaluation.

3.2 GENERALIZATION RESULTS

Table[2]presents the zero-shot generalization results of JsonTuning and TextTuning using five distinct
language models. We have the following observations:

» JsonTuning surpasses TextTuning in the majority of tasks and models. This is evident from the
higher average scores for JsonTuning across all models and tasks, where JsonTuning achieves an
overall average score of 25.54 compared to TextTuning’s 22.24. This suggests that JsonTuning is
a more effective method for instruction tuning.

JsonTuning significantly improves the model’s ability to tackle complex structured tasks. Json-
Tuning models consistently outperform TextTuning approaches on tasks with complex structures,
such as NER, EE, and NL2SQL. Models trained with JsonTuning can adapt to intricate EE struc-
tures, even when only trained on simpler NER and RE structures. In contrast, TextTuning meth-
ods rarely generate valid EE structures, highlighting the superior controllability of JsonTuning.
Notably, simply improving pre-training and enlarging the model size may not result in consistent
performance enhancements for these tasks. For instance, transitioning from the LLaMA-7B to
the better pre-trained LLaMA2-7B model does not improve generalization results on the EE task,
and increasing the model size for LLaMA from 7B to 13B does not enhance TextTuning perfor-
mance on the NER task. These observations suggest that JsonTuning is the preferred choice for
instruction tuning in tasks requiring the process and prediction of complex structures.

Pre-training is vital for improving generalization, and JsonTuning appears to be more beneficial
for models with limited capabilities. The table shows that Falcon considerably underperforms
LLaMA and LLaMA?2 across all tasks, indicating the impact of advanced pre-training on gen-
eralization. Interestingly, Falcon-7B with JsonTuning exhibits a substantial improvement over

>We use the development set for Spider since its test set is not publicly available.
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Table 2: Generalization results.

Model Method MMLU BBH NER RE EE TQA NL2SQL Average
Text  24.64 20.64 1692 4.58 0.16/0.00 3.00 2.00 10.27

Falcon-7B 0 3413 3261 21.92 694 000/031 3.60 140  14.39
Llavaog  Text 4311 3248 3647 1360 1.08/0.00 1820 860  21.86
- Json  44.69 37.08 41.80 1556 3.09/8.24 1640 1640 2537
LLaMasg  Text 4949 3907 3645 2019 159/000 1480 17.80 2551
Json  48.98 4047 42.81 22.61 3.98/11.09 1440 2140  28.22

Text 4636 37.89 38.82 2042 042/000 1660 1080 2444

LLaMA2-TB 0 4705 3923 43.68 2471 4.00/4.16 2000 1120  27.26
Text 5230 4191 3945 22.65 1.40/0.00 2380 2320  29.14

LLaMAZ-13B (0 5188 42.85 46.70 22.76 6.82 /1040 27.40 2640  32.37
Text 4318 3440 33.62 1629 093/0.00 1528 1248 2224

Average

Json  45.53 38.50 39.38 18.52 3.58/6.84 16.36 15.36 25.54

TextTuning on tasks such as MMLU and BBH, emphasizing the importance of JsonTuning, espe-
cially when working with less capable models. This suggests that JsonTuning enables the model
to more effectively utilize its capabilities and knowledge in responding to human instructions.

3.3 ROBUSTNESS RESULTS

The robustness of instruction-tuned language models is of paramount importance for their successful
deployment across a diverse range of tasks. In this section, we assess the model’s resilience against
varying prompts and unseen labels, which have been identified as challenging aspects for instruction-
tuned models in prior research (Sanh et al., 2022} [Sun et al.,[2023} [Ye et al., [2023).

MMLU NER NL2SQL
. ° LLaMA-7B-Text
2 1s LLaMA-7B-Json
Y 40 40 e LLaMA2-7B-Text
s LLaMA2-7B-Json
€ 10
.g 30 35
(0]
o

5

Figure 2: Performance of JsonTuning and TextTuing models with different prompts.

To evaluate prompt robustness, we employ 10 distinct prompts for the MMLU benchmark, the NER
task, and the NL2SQL task. Detailed information can be found in Appendix [E] Figure [2illustrates
the performance of JsonTuning and TextTuning models on these tasks when subjected to differ-
ent prompts. Our findings reveal that JsonTuning models exhibit greater robustness compared to
TextTuning models, as evidenced by higher mean performance and reduced variance. This can be
attributed to JsonTuning’s ability to effectively differentiate between instructions and task elements,
thereby minimizing ambiguity and enhancing robustness.

In terms of label robustness, we substitute the MMLU label space with previously unseen label
spaces. The original label space for MMLU is {(A), (B), (C), (D)}, with these option letters
frequently encountered in the training dataset. We replace this label space with two alternatives:
{W, X, ), @} and {($), €), (£), (¥}, denoted by Unseen-1 and Unseen-2,
respectively. These label spaces were not present during instruction tuning. As shown in Figure [3]
JsonTuning models exhibit a smaller performance decline and consistently outperform TextTuning
models in all scenarios. This can be ascribed to JsonTuning’s enhanced consistency for tasks with
constrained label spaces and its diminished ambiguity, which facilitates easier understanding.
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Table 3: Case studies focusing on controllability. Each example displays its input along with the
model’s prediction.

Method Input Prediction
Task: Language detection with probability scores
Text  Text: Bonjour, comment ¢a va? Identify the language of the text and French .7
provide probability scores for the candidate languages: French, En-
glish, Spanish. The sum of all probability scores should be 1. Lan-
guage and probability scores:
Json { “input™: { “text”: “Bonjour, comment ¢a va?”, “candidate lan- {“language™ “French”,
guages™: [“French”, “English”, “Spanish”], “instruction” “Text: “probability scores™ {
{text}. Identify the language of the text and provide probability scores ~ “French”: 0.98,
for the candidate languages: {candidate languages}. The sum of “English”: 0.01,
all probability scores should be 1. Language and probability scores:  “Spanish™: 0.01} }
{language} {probability scores}” }, “output control”: { “language”:
{“type”: “string”}, “probability scores™: { “type”: “object”, “proper-
ties”: { “French”™: {“type™: “string” }, “English™: {“type™: “string” },
“Spanish”™: {“type™: “string” } } } } }
Task: Joke generation with humor style
Text Generate the joke with a specific humor style (e.g., pun, sarcasm): What do you call a deer
with no eyes? No idea.
Json { “input”: { “instruction”: “Generate the joke with a specific humor {“humor style”: “pun”,
style (e.g., pun, sarcasm): {humor style} {joke}” }, “output control”:  “joke™: “What did the
{ “humor style”: {“type”: “string”}, “joke™: {“type”: “string”} } } pirate say when he was
given a piece of paper?”’}
Task: Intent detection and slot filling
Text Text: Set an alarm for 7 AM tomorrow. Detect the intent of the text Set an alarm for 7 AM to-
and extract time and date slots from the text: MOITow
Json { “input”: { “text”: “Set an alarm for 7 AM tomorrow.”, “instruction”:  {“intent™  “setAlarm”,

“Text: {text}. Detect the intent or purpose of the text and extract time
and date slots from the text:” }, “output control”: { “intent™: {“type”:
“string”}, “slots™: { “type”: “object”, “properties”™: { “time”: {“type”:

“string”}, “date”: {“type”: “string”} } } } }

“slots™: {“time”: “7:00”,
“date”: “tomorrow”} }

3.4 CASE STUDIES ON CONTROLLABILITY

LLaMA-7b-Text mmm LLaMA-7b-Json mmm [LaMA2-7b-Text LLaMA2-7b-Json

50
In previous sections, we have demonstrated that i 4795 a9
JsonTuning models possess the capacity to con- 4636
trol the output and generalize across complex
structures. In this section, we present case stud-
ies to qualitatively illustrate the controllability
of JsonTuning models. For this purpose, we uti-
lize LLaMA2-13B trained with both JsonTun-

ing and TextTuning approaches.

As evidenced by Table [3] JsonTuning effec-
tively enables the model to identify the desired
output, generating results in a well-structured
format. In contrast, the TextTuning model fails
to adequately adhere to the provided instruc-
tions. For example, in the language detection
task, the TextTuning model struggles to provide
clear probability scores. The output, such as “.7”, is ambiguous and difficult to interpret. By com-
parison, JsonTuning successfully follows the instruction, delivering scores that meet the specified
requirements. Additional case studies can be found in Appendix [B] It is crucial to emphasize that
controllability is a vital aspect when deploying language models for real-world applications. Json-
Tuning, in comparison to TextTuning, offers a significantly improved method for achieving this.

45.63
24.69) 44.89

IS
)

IS
i

43,60}

42.16,

IS
s}

40.91

Performance (%)
B
&

38.92

w
©

36.43

w
o

Original Unseen-1 Unseen-2
Figure 3: Performance of JsonTuning and Text-
Tuing models with different label spaces on

MMLU.



Under review as a conference paper at ICLR 2024

Table 4: Ablation results for LLaMA-7B concerning label space and control information. Tasks
marked with { are seen during training and evaluated with unseen datasets.

Method MMLU BBH NER7} REf EE TQA NL2SQL Average

JsonTuning 44.69 37.08 41.80 15.56 3.09/8.24 1640 16.40 25.37

w/o label space 43.04 3493 4225 18.66 4.27/1.99 17.80 12.40 24.60
w/o control information 43.94 3542 46.77 16.70 1.04/0.26 14.40 12.40 24.33
w/o both 42.66 36.23 47.65 16.23 0.99/0.29 1040 12.80 23.80

4 ANALYSIS

In this section, we investigate the performance of LLaMA-7B employing JsonTuning and Text-
Tuning under various conditions, including different method designs, data sizes, and numbers of
structured task examples.

Are label space and control information critical for JsonTuning? From Table[d] we can make
the following observations: (1) Generally, eliminating label space or control information does not
negatively impact the model’s performance on seen tasks such as NER and RE; in fact, the perfor-
mance on these tasks may even improve. However, doing so does hinder performance on unseen
tasks, resulting in a lower average performance. Removing both elements further diminishes the per-
formance, indicating that they aid the model in generalizing to unseen tasks rather than overfitting
to seen tasks. (2) Excluding label space has a more pronounced effect on the model’s performance
on MMLU, as all tasks within it have a limited label space. This finding suggests that incorporating
label space during training and evaluation is beneficial for tasks with restricted label spaces. (3) The
model’s ability to generalize to more complex structures is substantially reduced without control
information. This is evident by the considerable performance drop on the EE task, demonstrating
that control information is essential for the model to generalize effectively to complicated structures.

What are the effects of different data sizes on generalization? In the primary experiments, we
utilize a total of 60K data points, comprising SOK from the Flan 2022 collection and 10K from struc-
tured tasks for tuning. In this analysis, we alter the data size while maintaining their relative ratio
to examine the effects of different data sizes on generalization. Specifically, we train LLaMA-7B
with four different data sizes: 12K, 36K, 60K, and 120K, and evaluate the models on the MMLU
benchmark, the NER task, and the NL2SQL task. Figure [4| reveals the following observations: (1)
LLaMA-7b-Json consistently outperforms LLaMA-7b-Text across all tasks and data sizes, indicat-
ing the superior generalization capabilities of the JsonTuning model. (2) Increasing the data size for
instruction tuning does not necessarily result in performance improvement, suggesting that enlarging
the data size may not be an effective approach to enhance the model’s generalization abilities.
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Figure 4: Performance of LLaMA-7B trained using JsonTuning and TextTuning across varying data
sizes.

Are structured tasks essential for instruction tuning? To investigate this, we keep the number of
examples from the Flan 2022 collection constant and vary the number of examples from structured
tasks. Specifically, we use 50K data points from the Flan 2022 collection and OK, 2K, 6K, 10K,
and 20K data points from IE tasks for the experiments. Figure [5 reveals the following insights:
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(1) Incorporating structured tasks for training may not enhance the model’s generalization ability
on tasks without complex structures. Introducing structured tasks for tuning does not improve the
model’s performance on MMLU, a benchmark without intricate input and output structures. (2)
Structured tasks significantly impact the model’s generalization performance on tasks with complex
output structures. Without structured tasks for training, the model’s performance on the NER task
is O for both JsonTuning and TextTuning. However, the performance significantly improves when
introducing only 2K data points from structured tasks for training. This highlights the importance of
structured tasks for instruction-tuned models to generalize to tasks with complex output structures.
(3) Structured tasks have a milder impact on the model’s generalization performance on tasks with
complex input structures. Introducing an appropriate number of structured tasks can enhance the
model’s performance on the NL2SQL task, which requires processing a structured database schema.
This suggests that training the model with structured tasks aids in processing and understanding
complex structures. In summary, the decision to use structured tasks for instruction tuning depends
on the application scenarios. However, regardless of the scenario, JsonTuning consistently appears
to be a superior method for instruction tuning compared to TextTuning.
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Figure 5: Performance of LLaMA-7B trained using JsonTuning and TextTuning with different num-
bers of examples of structured tasks.

5 RELATED WORK

The development of large language models (LLMs) has had a profound impact on the Al community,
with models such as ChatGPT (OpenAl, 2023a) and GPT-4 (OpenAll [2023b) driving discussions
on the potential of artificial general intelligence (AGI) and redefining the boundaries of what Al
systems can achieve. These advancements have also led to a surge in the development and release of
open-source LLMs (Zhang et al.| [2022; [Team, [2023}; Penedo et al., 2023} [Touvron et al., [ 2023azb)),
fostering innovation and collaboration within the research community.

Instruction tuning (Wei et al.| [2022; Mishra et al.| 2022} Sanh et al.| 2022} |Chung et al.| [2022; Wang
et al.,[2023b; Taori et al.l2023; [Liu et al., [2023)) has emerged as a promising research direction that
leverages LLM capabilities to enhance responsiveness to human instructions. Collections such as
Super-Naturallnstructions (Wang et al., 2022b), OPT-IML Bench (Iyer et al., [2022), and the Flan
2022 collection (Chung et al., 2022) have accelerated the development of instruction-tuned models.
To advance instruction tuning, researchers have explored learning from human feedback (Stiennon
et al., 2020; |Ouyang et al.| 2022} |Bai et al., [2022; |Scheurer et al., [2023)), automatic data generation
(Wang et al.| [2023b; |Peng et al., 2023} Xu et al., [2023)), and data selection (Zhou et al., [2023}; |Cao
et al.| [2023;|Lu et al.|, |2023)). Our JsonTuning approach offers an alternative perspective on data rep-
resentation to enhance instruction tuning in terms of generalization, robustness, and controllability.

6 CONCLUSION

This paper introduces JsonTuning, a novel approach designed to overcome the limitations of conven-
tional text-to-text instruction tuning methods for language models. By utilizing the structured data
format of JSON for explicit task representation, JsonTuning significantly improves the model’s gen-
eralization, robustness, and controllability. Our experimental results and case studies highlight the
benefits of JsonTuning in generalizing to unseen tasks and datasets, maintaining robustness against
varying prompts and label spaces, and demonstrating controllability in diverse scenarios.
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A DATASETS OF INFORMATION EXTRACTION TASKS
Table 5] reports the training and evaluation datasets of information extraction tasks.

Table 5: Information Extraction (IE) datasets utilized for training and evaluation. |Schema| repre-
sents the number of entity categories in the named entity recognition (NER) task, the number of
relations in the relation extraction (RE) task, and the number of event categories (outside the paren-
thesis) along with the number of argument categories (inside the parenthesis) in the event extraction
(EE) task.

Task Dataset |Schema|

Training

ACE2004 (Walker et al., 2006

ACE2005 (Walker et al., 2006
broad_twitter_corpus (Derczynski et al., 2016
CoNLL2003 (Tjong Kim Sang & De Meulder, 2003
multiNERD (Tedeschi & Navigli, [2022
OntonoS(ﬂHovy et al.,|2006
polyglot-NER (Al-Rfou et al.,[2015
tweetNER7 (Ushio et al.| |20

NER wikiann (Pan et al.; 2017
wikineural (Tedeschi et al.,[2021

AnatEM (Pyysalo & Ananiadou, [2013)

bc2gm (Kocaman & Talbyl [2021
bc4chemd (Krallinger et al. ?() I %)
bCSCEII (Lietall2016)
FabNER (Kumar & Starly, 2021)

FindVehicle (Guan et al.,|2023

HarveyNER (Chen et al., 2022
ncbi-disease (Dogan et al.,[2014)

GIDS (Nayak et al.,[2021
kbp37 (]_Zhang & WangF 2015)

RE NYT (Riedel et al.,|201
NYT11 HRL (Takanobu et al., 2019)

SciERC (Luan et al., 2018)
semeval RE (Hendrickx et al.|[2010)

— —_ DD = N — —
o\'t\).poo'“ »—\L_NI\J'—’—‘»—MUJ\]UJOOO\AUJ\]\]

Evaluation
CrossNER_AI (Liu et al., 2021) 14
CrossNER literature (Liu et al.,[2021) 12
NER CrossNER _music (]ZI_{u et al.|[2021 13
CrossNER _politics (Liu et al.,[202 9
CrossNER _science (Liu et al., 2021 17
RE CoNLL2004 (Roth & Yih, [2004) 5
FewRel (Han et al.|[2018) 5
ACE2005 (Walker et al., 2006 33(22)

EE CASIE (Satyapanich et al., 2020 5(26)
PHEE (Sun et al. 2(16)

B ADDITIONAL CASE STUDIES ON CONTROLLABILITY
Table[6] presents additional case studies on controllability.
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Table 6: Case studies focusing on controllability. Each example displays its input along with the
model’s prediction.

Method Input Prediction
Task: Translate a sentence to multiple languages

Text Sentence: How are you? Translate the sentence to multiple languages: ~Comment allez-vous?
French and Spanish. Translations:

Json {“input™: { “sentence” “How are you?”, “instruction”: “Sentence: {“translations”:

{sentence}. Translate the sentence to two languages: French and {“French”™  “Comment
Spanish. Translations: {translations}” }, “output control”: { “trans- allez-vous?”, “Spanish”:
lations™: { “type”: “object”, “properties”: { “French™: { “type”: “Cémo estis?”} }

(LI

“string”, “description”: “The French translation of the sentence.” },
“Spanish™: { “type™ “string”, “description”: “The Spanish transla-
tion of the sentence.” } } } } }

Task: Sentiment analysis with emotion

Text Given the sentiment labels: positive, negative, and neutral, and text: I  positive
just won a lottery! Life is amazing!, provide the sentiment label and
emotion associated with the text. Sentiment label and emotion:

Json  { “input”: { “text™ “I just won a lottery! Life is amazing!”, {“sentiment label”: “pos-
“sentiment labels™: [“positive”, “negative”, “neutral”], “instruction™ itive”, “emotion: “joy”}
“Given the sentiment labels: {sentiment labels} and text: {text}, pro-
vide the sentiment label and emotion associated with the text. Sen-
timent label and emotion: {sentiment label} {emotion}” }, “out-
put control”: { “sentiment label”: {“type”: “string”}, “emotion”:

{“type”: “string”} } }

C INTRODUCTION TO JSON AND ITS UTILIZATION

C.1 JSON DATA TYPES AND SYNTAX
JSON data is represented using a combination of the following data types:

» Object: An unordered collection of key-value pairs, enclosed in curly braces {}. The keys are
strings, and the values can be any of the JSON data types.

* Array: An ordered list of values, enclosed in square brackets []. The values can be any of the
JSON data types.

 String: A sequence of Unicode characters, enclosed in double quotes.

* Number: A numeric value, which can be an integer or a floating-point number.
* Boolean: A value that is either true or false.

* Null: A special keyword denoting a null value.

In this paper, we focus on the object, array, and string types, as the number and boolean types
can be represented as the string type for simplicity. By combining these simple data types, JSON
can represent various structured data. This flexibility allows language models that understand basic
data types to potentially generalize to more complex structures.

C.2 JSON SCHEMA

JSON Schema employs a JSON-based format for defining the structure of JSON data, specifying
properties like data types, required fields, and permissible values for JSON objects. It uses many
keywords to define and validate JSON data. In this paper, we use the following keywords to construct
the control information C":

* type: Specifies the data type of a JSON value, such as object, array, and string.

* description: Provides explanations and clarifications about the purpose and constraints of a spe-
cific element or property.
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* items: Defines the elements of an array and their data types.

* properties: Describes the properties of an object, including their data types and constraints.

We may introduce more keywords to further improve the model’s controllability in the future.

C.3 JSON EXAMPLE

{
"type"”: "object”,
"properties”: {
"first name”: { "type": "string" 3},
"last name”: { "type"”: "string" 3},
"phone numbers”: {
"type": "array”,
"items": { "type": "string" }
"address": {
"type": "object”,
"properties”: {
"city": { "type”: "string" 3},
"state”: { "type": "string" 3},
"country": { "type": "string" }
3
3
3
3

The example provided above employs JSON Schema to define a person object. This object com-
prises multiple properties, each with its own type. JSON’s ability to handle nested structures allows
it to support a wide range of complex and diverse structures. An instance of the person object can
be seen below:

{
"first name”: "John",
"last name”: "Doe",
"phone numbers”: ["12345", "678910"],
"address": {
"city": "AnyCity",
"state"”: "AnyState",
"country": "AnyCountry”
}
3

D NAMED ENTITY RECOGNITION AND RELATION EXTRACTION PROMPTS

We create prompts for both the named entity recognition (NER) and relation extraction (RE) tasks.
For the RE task, we develop two sets of prompts: one for datasets with entity categories and another
for datasets without entity categories. Each prompt comprises an input template and an output
template, which are highlighted in blue and , respectively.
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* NER

Prompt 1: [definition: {definition}\ntext: {text}\nentity categories: {entity cate-
gories }\nentities:,

Prompt 2: [definition: {definition}\nentity categories: {entity categories}\ntext:
{text}\nentities:,

Prompt 3: [text: {text}\ndefinition: {definition}\nentity categories: {entity cate-
gories } \nentities:,

Prompt 4: [text:  {text}\nentity categories: {entity categories}\ndefinition:
{definition }\nentities:,

Prompt 5: [entity categories: {entity categories}\ntext:  {text}\ndefinition:
{definition}\nentities:,

Prompt 6: [entity categories: {entity categories}\ndefinition: {definition}\ntext:
{text}\nentities:,

Prompt 7: [{definition}\ntext: {text}\nentity categories: {entity categories}\nentities:,

Prompt 8: [{definition}\nentity categories: {entity categories}\ntext: {text}\nentities:,
Prompt 9: [text: {text}\nentity categories: {entity categories}\n{definition}\nentities:,
1

Prompt 10: [entity categories: {entity categories } \ntext: {text}\n{definition}\nentities:,
]

* RE (with entity categories)

~

Prompt 1: [definition: {definition}\ntext: {text}\nentity categories: {entity cate-
gories }\nrelations: {relations}\nrelational triplets:,

Prompt 2: [definition: {definition}\nentity categories: {entity categories}\nrelations:
{relations }\ntext: {text}\nrelational triplets:,

Prompt 3: [definition: {definition}\ntext: {text}\nrelations: {relations}\nentity cate-
gories: {entity categories}\nrelational triplets:,

Prompt 4: [definition: {definition}\nrelations: {relations}\nentity categories: {entity
categories }\ntext: {text}\nrelational triplets:,

Prompt 5: [text: {text}\ndefinition: {definition}\nentity categories: {entity cate-
gories}\nrelations: {relations}\nrelational triplets:, ]

Prompt 6: [text:  {text}\nentity categories:  {entity categories}\nrelations:
{relations}\ndefinition: {definition}\nrelational triplets:, ]

Prompt 7: [text: {text}\ndefinition: {definition}\nrelations: {relations} \nentity
categories: {entity categories }\nrelational triplets:,

Prompt 8: [text: {text}\nrelations: {relations}\nentity categories: {entity cate-
gories } \ndefinition: {definition}\nrelational triplets:,

Prompt 9: [entity categories: {entity categories}\nrelations: {relations}\ntext:
{text}\ndefinition: {definition}\nrelational triplets:,

Prompt 10: [relations: {relations}\nentity categories: {entity categories}\ndefinition:
{definition}\ntext: {text}\nrelational triplets:,
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» RE (without entity categories)

Prompt 1: [definition: {definition}\ntext: {text}\nrelations: {relations}\nrelational
g;gilelt;t:’Z: [definition: {definition}\nrelations: {relations}\ntext: {text}\nrelational
g;(gfl:;t:,.?: [text: {text}\ndefinition: {definition}\nrelations: {relations}\nrelational
g;giit;t:’# [text: {text}\nrelations: {relations}\ndefinition: {definition}\nrelational
g;gilelt;t:’& [relations: {relations}\ntext: {text}\ndefinition: {definition}\nrelational
g;gfl;;t:,& [relations: {relations}\ndefinition: {definition}\ntext: {text}\nrelational
g;gflt;t:’% [{definition}\ntext: {text}\nrelations: {relations}\nrelational triplets:,
Prompt 8: [{definition}\nrelations: {relations}\ntext: {text}\nrelational triplets:,
Prompt 9: [text: ]{text}\nrelations: {relations}\n{definition}\nrelational triplets:,
Prompt 10: [relations: {relations}\ntext: {text}\n{definition}\nrelational triplets:,
]

E EVALUATION PROMPTS AND EXAMPLES

For MMLU and BBH, we utilize the prompts from the Flan2022 collection designed for question
answerinéﬂ For other evaluation tasks, we create prompts based on their respective task components
and definitions. Each prompt includes an input template and an output template, highlighted in blue
and , respectively. Further details can be found in the subsequent sections.

E.1 GENERALIZATION

All tasks employ
prompts: one for

a single prompt for evaluation, except for the RE task. The RE task utilizes two
datasets with entity categories and another for datasets without entity categories.

The prompts and examples are presented below:

For more
templates.py.

details, see https://github.com/google-research/FLAN/blob/main/flan/v2/
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« MMLU

.

Prompt: [{question}\n{options_}\nAnswer:, ]

TextTuning Example:

[nput: The following is a multiple choice question about global facts.\nControlling for
inflation and PPP-adjustment, about how much did GDP per capita increase from 1950
to 2016 in Japan? Options:\n(A) by 5 fold\n(B) by 10 fold\n(C) by 15 fold\n(D) by 20
fold\nAnswer:

Output: (C)

JsonTuning Example:

Input: {“input”: { “question”: “The following is a multiple choice question about
global facts.\nControlling for inflation and PPP-adjustment, about how much did GDP
per capita increase from 1950 to 2016 in Japan?”, “options_”: “Options:\n(A) by 5
fold\n(B) by 10 fold\n(C) by 15 fold\n(D) by 20 fold”, “candidate answers”: [“(A)”,
“B)”, “(C)”, “(D)”], “instruction”: “{question}\n{options_}\nAnswer: {answer}” },
“output control”: { “answer”: { “type”: “string”, “description”: “The answer should be
one of the candidate answers in the input.” } } }

Output: {“answer”: “(C)”}

* BBH

Prompt: [Q: {question}\nA:, ]

TextTuning Example:
Input: Q: (-1 +2+9*5)-(-2+-4+-4%*-7)) =\nA:
Output: 24

JsonTuning Example:

Input: {“input”: { “question”: “((-1 +2 +9 *5) - (-2 + -4 + -4 * -7)) =7, “instruction”:
“Q: {question}\nA: {answer}” }, “output control”: { “answer”: { “type”: “string” } } }
Output: {“answer”: “24”}
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* NER

Prompt: [definition: {definition}\ntext: {text}\nentity categories: {entity cate-
gories }\nentities:,

TextTuning Example:

Input: definition: Given a text and entity categories, your task is to scan the text and
identify a list of named entities in it. Each entity contains an entity category and an entity
span. An entity span refers to the specific portion of the text that represents an entity.
An entity category refers to the category to which an entity belongs.\ntext: He also
co-wrote Posible, which has been used as a theme song for the 2005 Southeast Asian
Games. \nentity categories: location, event, country, band, person, song, musical artist,
music genre, else, album, organization, award, musical instrument\nentities:

Output: [[“song”, “Posible”], [“event”, “2005 Southeast Asian Games”]]

JsonTuning Example:

[nput: {“input”: { “definition”: “Given a text and entity categories, your task is to scan
the text and identify a list of named entities in it. Each entity contains an entity category
and an entity span. An entity span refers to the specific portion of the text that represents
an entity. An entity category refers to the category to which an entity belongs.”, “text”:
“He also co-wrote Posible, which has been used as a theme song for the 2005 Southeast
Asian Games.”, “‘entity categories”: [ “location”, “event”, “country”, “band”, “person”,
“song”, “musical artist”, “music genre”’, “else”, “album”, “organization”, ‘“‘award”,
“musical instrument” ], “instruction”: “definition: {definition}\ntext: {text}\nentity
categories: {entity categories}\nentities: {entities}”, }, “output control”: { “entities”: {
“type”: “array”, “items”: { “type”: “object”, “properties”: { “entity category”: { “type”:
“string”, “description”: “The entity category should be one of the entity categories
provided in the input.” }, “entity span”: { “type”: “string”, “description”: “The entity
span should be a continuous span in the text provided in the input” } } } } } }

Output: { “entities”: [ { “entity category”: “song”, “entity span”: “Posible” }, { “entity

99, ¢

category”: “event”, “entity span”: “2005 Southeast Asian Games” } ] }
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* RE (with entity categories)

Prompt: [definition: {definition}\ntext: {text}\nentity categories: {entity cate-
gories }\nrelations: {relations}\nrelational triplets:,

TextTuning Example:

Input: definition: Given a text, entity categories, and relations, your goal is to scan the
text and identify a list of relational triplets in it. Each relational triplet contains a head
entity category, a head entity span, a relation, a tail entity category, and a tail entity
span. The head entity is the subject from which the relation originates. The relation
represents the specific relation between the head entity and the tail entity. The tail entity
is the object which the relation points. An entity span refers to the specific portion of
the text that represents an entity. An entity category refers to the category to which
an entity belongs.\ntext: In 1822, the 19th president of the United States, Rutherford
B. Hayes, was born in Delaware, Ohio. \nentity categories: Organization, Location,
People\nrelations: Kill, Work for, Located in, Live in, Organization based in\nrelational
triplets:

Output: [[“People”, “Rutherford B. Hayes”, “Live in”, “Location”, “Delaware, Ohio”]]

JsonTuning Example:

Input: {“input”: { “definition™: “Given a text, entity categories, and relations, your goal
is to scan the text and identify a list of relational triplets in it. Each relational triplet
contains a head entity category, a head entity span, a relation, a tail entity category, and
a tail entity span. The head entity is the subject from which the relation originates. The
relation represents the specific relation between the head entity and the tail entity. The tail
entity is the object which the relation points. An entity span refers to the specific portion
of the text that represents an entity. An entity category refers to the category to which an
entity belongs.”, “text”: “In 1822, the 19th president of the United States, Rutherford B.
Hayes, was born in Delaware, Ohio.”, “entity categories”: [ “Organization”, “Location”,
“People” ], “relations”: [ “Kill”, “Work for”, “Located in”, “Live in”, “Organization
based in” ], “instruction”: “definition: {definition}\ntext: {text}\nentity categories:
{entity categories}\nrelations: {relations}\nrelational triplets: {relational triplets}” },
“output control”: { “relational triplets”™: “type”: “array”, “items”™: { “type”: “object”,
“properties”: { “head entity category”: { “type”: “string”, “description”: “The head
entity category should be one of the entity categories provided in the input.” }, “head
entity span”: { “type”: “string”, “description”: “The head entity span should be a
continuous span in the text provided in the input” }, “relation”: { “type”: “string”,
“description”: “The relation should be one of the relations provided in the input.” },
“tail entity category™: { “type”: “string”, “description”: “The tail entity category should
be one of the entity categories provided in the input.” }, “tail entity span™: { “type”:
“string”, “description”: “The tail entity span should be a continuous span in the text
provided in the input.” } } } } }

Output: { “relational triplets”: [ { “head entity category”: “People”, “head entity span”:

“Rutherford B. Hayes”, “relation”: “Live in”, “tail entity category”: “Location”, “tail
entity span”: “Delaware, Ohio” } ] }
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» RE (without entity categories)

Prompt: [definition: {definition}\ntext: {text}\nrelations: {relations}\nrelational
triplets:,

TextTuning Example:

Input: definition: Given a text and relations, you are required to scan the text and identify
a list of relational triplets in it. Each relational triplet contains a head entity span, a
relation, and a tail entity span. The head entity is the subject from which the relation
originates. The relation represents the specific relation between the head entity and the
tail entity. The tail entity is the object which the relation points. An entity span refers to
the specific portion of the text that represents an entity.\ntext: The Peasants is a novel
written by Nobel Prize-winning Polish author Wadysaw Reymont in four parts between
1904 and 1909.\nrelations: place served by transport hub, winner, field of work, location
of formation, occupant\nrelational triplets:

Output: [[“Nobel Prize”, “winner”, “Wadysaw Reymont”]]

JsonTuning Example:

[nput: {“input”: { “definition”: “Given a text and relations, you are required to scan
the text and identify a list of relational triplets in it. Each relational triplet contains a
head entity span, a relation, and a tail entity span. The head entity is the subject from
which the relation originates. The relation represents the specific relation between the
head entity and the tail entity. The tail entity is the object which the relation points.
An entity span refers to the specific portion of the text that represents an entity.”,
“text”: “The Peasants is a novel written by Nobel Prize-winning Polish author Wadysaw
Reymont in four parts between 1904 and 1909.”, “relations”: [ “place served by transport
hub”, “winner”, “field of work”, “location of formation”, “occupant” ], “instruction’:
“{definition}\ntext: {text}\nrelations: {relations}\nrelational triplets: {relational
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triplets}” }, “output control”: { “relational triplets”: “type”: “array”, “items”: { “type”:
“object”, “properties”: { “head entity span”: { “type”: “string”, “description”: “The head
entity span should be a continuous span in the text provided in the input.” }, “relation”:

ELINNT3

{ “type”: “string”, “description”: “The relation should be one of the relations provided

in the input.” }, “tail entity span”: { “type”: “string”, “description”: “The tail entity span
should be a continuous span in the text provided in the input.” } } } } }
Output: { “relational triplets”: [ { “head entity span”: ‘“Nobel Prize”, “relation”:

CLIYS

“winner”, “tail entity span”: “Wadysaw Reymont” } ] }

* EE
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Prompt: [definition: {definition}\ntext: {text}\nevent categories: {event cate-
gories }\nargument categories: {argument categories } \nevents:, ]

TextTuning Example:

definition: Given a text, event categories, and argument categories, you are
expected to scan the text and identify a list of events in it. Each event contains an event
category, an event trigger, and a list of arguments. Each argument contains an argument
category and an argument span. An event category represents the type of an event. An
event trigger is the word or phrase in the text that explicitly denotes the occurrence of
an event. Arguments are entities associated with an event and play specific roles or
functions in relation to the event. An argument span refers to the specific portion of
the text that represents an argument. An argument category refers to the category to
which an argument belongs.\ntext: Until Basra, U.S. and British troops had encountered
little resistance, even when they seized nearby Umm Qasr, and moved to secure key
oil fields.\nevent categories: transfer money, start organization, extradite, meet, appeal,
attack, convict, born, execute, transport, release parole, merge organization, sentence,
divorce, end position, end organization, transfer ownership, start position, injure, sue,
die, trial hearing, marry, nominate, charge indict, elect, declare bankruptcy, phone
write, acquit, arrest jail, pardon, demonstrate, fine\nargument categories: instrument,
vehicle, agent, seller, place, beneficiary, organization, destination, plaintiff, person, giver,
recipient, victim, target, defendant, origin, prosecutor, entity, attacker, artifact, buyer,
adjudicator\nevents:”,

: [[“attack”, “seized”, [[“attacker”, “troops”], [“place”, “Umm Qasr’]]]]

JsonTuning Example:

: {“input”: { “definition”: “Given a text, event categories, and argument categories,
you are expected to scan the text and identify a list of events in it. Each event contains an
event category, an event trigger, and a list of arguments. Each argument contains an argu-
ment category and an argument span. An event category represents the type of an event.
An event trigger is the word or phrase in the text that explicitly denotes the occurrence
of an event. Arguments are entities associated with an event and play specific roles or
functions in relation to the event. An argument span refers to the specific portion of the
text that represents an argument. An argument category refers to the category to which

LLIYS

an argument belongs.”, “text”: “Until Basra, U.S. and British troops had encountered
little resistance, even when they seized nearby Umm Qasr, and moved to secure key oil

LI LEINT3 CEINT3

fields.”, “event categories™: [ “transfer money”, “start organization”, “‘extradite”, “meet”,
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“appeal”, “attack”, “convict”, “born”, “execute”, “transport”, “release parole”, “merge
organization”, “sentence”, “divorce”, “end position”, “end organization”, “transfer
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ownership”, “start position”, “injure”, “sue”, “die”, “trial hearing”, “marry”, “nominate”,
“charge indict”, “elect”, “declare bankruptcy”, “phone write”, “acquit”, “arrest jail”,
“pardon”, “demonstrate”, “fine” ], “argument categories”: [ “instrument”, “vehicle”,
“agent”, “seller”, “place”, “beneficiary”, “organization”, “destination”, “plaintiff”,
“person”, “giver”, “recipient”’, “victim”, “target”, “defendant”, “origin”, “prosecutor”,
“entity”, “attacker”, “artifact”, “buyer”, “adjudicator” ], “instruction”: ‘“definition:
{definition}\ntext: {text}\nevent categories: {event categories}\nargument categories:
{argument categories}\nevents: events}” }, “output control”: { “events”: { “type’:
“array”, “items”: { “type”: “object”, “properties”: { “event category”: { “type”:
“string”, “description”: “The event category should be one of the event categories

99

provided in the input.” }, “event trigger”: { “type”: “string”, “description”: “The event
trigger should be a continuous span in the text provided in the input.” }, “arguments”:

{ “type”™: “array”, “items™: { “type”: “object”, “properties”: { “argument category”: {
“type”: “string”, “description”: “The argument category should be one of the argument
categories provided in the input.” }, “argument span”: { “type”: “string”, “description”:
“The argument span should be a continuous span in the text provided in the input.” } } }

ISEERS:

: { “events”: [ { “event category”: “attack”, “‘event trigger”: “seized”, “argu-
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ments™: [ { “argument category”: “attacker”, “argument span”: “troops” }, { “argument
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category”: “place”, “argument span”: “Umm Qasr” } ]} ]}
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« TQA

Prompt: [definition: {definition}\nquestion: {question}\ntable: {table}\nanswer:,
I

TextTuning Example:

Input: definition: Given a question and a table, the task aims to output a list of values in
the table to answer the question.\nquestion: which is the busiest domestic route out of
houston intercontinental airport that does not have an american flight?\ntable: header :
Rank — City — Passengers — Top Carriers row 1 : 1 — Los Angeles, CA — 700,000
— American, Spirit, United row 2 : 2 — Chicago, IL. — 673,000 — American, Spirit,
United row 3 : 3 — Denver, CO — 654,000 — Frontier, Spirit, United row 4 : 4 — San
Francisco, CA — 492,000 — United row 5 : 5 — Dallas/Fort Worth, TX — 488,000 —
American, United row 6 : 6 — Newark, NJ — 480,000 — United row 7 : 7 — Las Vegas,
NV — 442,000 — Spirit, United row 8 : 8 — Charlotte, NC — 441,000 — United, US
Airways row 9 : 9 — Atlanta, GA — 400,000 — Delta, United row 10 : 10 — Phoenix,
AZ — 393,000 — United, US Airways\nanswer:

Output: Denver, CO

JsonTuning Example:

Input: {“input”: { “definition”: “Given a ‘question‘ and a ‘table, the task aims to
output a list of values in the table to answer the question.”, “question”: “which is the
busiest domestic route out of houston intercontinental airport that does not have an
american flight?”, “table”: { “header”: [ “Rank”, “City”, “Passengers”, “Top Carriers”
1, “rows”: [ [ “1”, “Los Angeles, CA”, “700,000”, “American, Spirit, United” ], [ “2”,
“Chicago, IL”, “673,000”, “American, Spirit, United” ], [ “3”, “Denver, CO”, “654,000”,
“Frontier, Spirit, United” ], [ “4”, “San Francisco, CA”, “492,000”, “United” ], [ “5”,
“Dallas/Fort Worth, TX”, “488,000”, “American, United” ], [ “6”, “Newark, NJ”,
“480,000”, “United” ], [ “7”, “Las Vegas, NV”, “442,000”, “Spirit, United” ], [ “8”,
“Charlotte, NC”, “441,000”, “United, US Airways” ], [ “9”, “Atlanta, GA”, “400,000”,
“Delta, United” ], [ “10”, “Phoenix, AZ”, “393,000”, “United, US Airways” 1]} },
“output control”: { “answer”: { “type”: “string” } } }

Output: { “answer”: “Denver, CO” }
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« NL2SQL

Prompt: [definition: {definition}\nquestion: {question}\ndatabase schema: {database
schema}\nSQL query:,

TextTuning Example:

[nput: definition: Given a question and database schema that consists of table names
and column names in the database, the text-to-SQL parsing task aims to translate the
natural language question to a sql query that can be executed on the database to produce
answers.\nquestion: List the title of all cartoons in alphabetical order.\ndatabase
schema: Table: tv_channel; Columns: id, series_name, country, language, content,
pixel_aspect_ratio_par, hight_definition_tv, pay_per_view_ppv, package option. Table:
tv_series; Columns: id, episode, air_date, rating, share, 18_49 rating_share, viewers_m,
weekly rank, channel. Table: cartoon; Columns: id, title, directed_by, written_by,
original_air_date, production_code, channel\nSQL query:

Output: select title from cartoon order by title

JsonTuning Example:

Input: {“input”: { “definition”: “Given a ‘question‘ and ‘database schema‘ that consists
of table names and column names in the database, the text-to-SQL parsing task aims
to translate the natural language question to a sql query that can be executed on the
database to produce answers.”, “question”: “List the title of all cartoons in alphabet-
ical order.”, “database schema”: [ { “table name”: “tv_channel”, “column names”:
[ “id”, “series_name”, “country”, “language”, “content”, ‘“pixel_aspect_ratio_par”,
“hight_definition_tv”, “pay_per_view_ppv”, “package_option” ] }, { “table name”:
“tv_series”, ‘“column names”: [ “id”, “episode”, ‘“air_date”, ‘rating”, “share”,
“18_49 rating_share”, “viewers_m”, “weekly_rank”, “channel” ] }, { “table name”:
“cartoon”, “column names”: [ “id”, “title”, “directed_by”, “written_by”, ‘“origi-

CLINNTS

nal_air_date”, “production_code”, “channel” ] } ] }, “output control”: { “SQL query”: {

“type”: “string” } } }
Output: { “SQL query”: “select title from cartoon order by title” }

E.2 ROBUSTNESS

For evaluation, we employ 10 prompts for the MMLU benchmark, the NER task, and the NL2SQL
task. Prompts are as follows:

* MMLU
Prompt 1: [{question}\n{options_}\nAnswer:, ]
Prompt 2: [{question}\n\n{options_}\nAnswer:, ]
Prompt 3: [{question}\n{options_},
Prompt 4: [Q: {question}\n\n{options_}\nA:,
Prompt 5: [Answer the following question: {question}\n\n{options_}\nAnswer:,

]

Prompt 6: [{options_}\n\n{question}\nAnswer:, ]
Prompt 7: [{options_}\nQ: {question}\nA:, 1
Prompt 8: [{question}\n\n{options_}\nThe answer is:, ]
Prompt 9:  [{options_}\nGiven those answer options, answer the question:
{question}\nAnswer:,
Prompt 10: [Q: {question}\n\n{options_}\nThe answer is:, ]

* NER

See Appendix
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« NL2SQL

Prompt 1: [definition: {definition}\nquestion: {question}\ndatabase schema: {database
schema}\nSQL query:,

Prompt 2: [definition: {definition}\ndatabase schema: {database schema}\nquestion:
{question}\nSQL query:,

Prompt 3: [question: {question}\ndefinition: {definition}\ndatabase schema: {database
schema}\nSQL query:,

Prompt 4: [question: {question}\ndatabase schema: {database schema}\ndefinition:
{definition}\nSQL query:,

Prompt 5: [database schema: {database schema}\nquestion: {question}\ndefinition:
{definition}\nSQL query:,

Prompt 6: [database schema: {database schema}\ndefinition: {definition}\nquestion:

{question}\nSQL query:,

Prompt 7: [{definition}\nquestion:  {question}\ndatabase schema: {database
schema}\nSQL query:,

Prompt 8: [{definition}\ndatabase schema: {database schema}\nquestion:
{question}\nSQL query:,

Prompt 9: [question: {question}\ndatabase  schema: {database
schema}\n{definition}\nSQL query:,

Prompt  10: [database  schema: {database  schema}\nquestion:
{question}\n{definition}\nSQL query:, ]
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