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ABSTRACT

Deep reinforcement learning algorithms that learn policies by trial-and-error must
learn from limited amounts of data collected by actively interacting with the en-
vironment. While many prior works have shown that proper regularization tech-
niques are crucial for enabling data-efficient RL, a general understanding of the
bottlenecks in data-efficient RL has remained unclear. Consequently, it has been
difficult to devise a universal technique that works well across all domains. In this
paper, we attempt to understand the primary bottleneck in sample-efficient deep
RL by examining several potential hypotheses such as non-stationarity, excessive
action distribution shift, and overfitting. We perform thorough empirical analysis
on state-based DeepMind control suite (DMC) tasks in a controlled and system-
atic way to show that statistical overfitting on the temporal-difference (TD) error
is the main culprit that severely affects the performance of deep RL algorithms,
and prior methods that lead to good performance do in fact, control the amount
of statistical overfitting. This observation gives us a robust principle for making
deep RL efficient: we can hill-climb on a notion of validation temporal-difference
error by utilizing any form of regularization techniques from supervised learning.
We show that a simple online model selection method that targets the statistical
overfitting issue is effective across state-based DMC and Gym tasks.

1 INTRODUCTION

Reinforcement learning (RL) methods, when combined with high-capacity deep neural net function
approximators, have shown promise in domains such as robot manipulation (Andrychowicz et al.,
2020), chip placement (Mirhoseini et al., 2020), games (Silver et al., 2016), and data-center cool-
ing (Lazic et al., 2018). Since every unit of active online data collection comes at an expense (e.g.,
running real robots, chip evaluation using simulation), it is important to develop sample-efficient
deep RL algorithms, that can learn efficiently even with limited amount of experience, and devising
such efficient RL algorithm has been a important thread of research in recent years (Janner et al.,
2019b; Chen et al., 2021; Hiraoka et al., 2021).

In principle, off-policy RL methods (e.g., SAC (Haarnoja et al., 2018b), TD3 (Fujimoto et al., 2018),
Rainbow (Hessel et al., 2018)) should provide for good sample efficiency, because they make it
possible to improve the policy and value functions for many gradient steps per each step of data
collection. However, this benefit does not appear to be realized in practice, as taking too many
training steps per each collected transition actually harms performance in many environments. Sev-
eral hypotheses, such as overestimation (Thrun & Schwartz, 1993; Fujimoto et al., 2018), non-
stationarities (Lyle et al., 2022), high variance (Bjorck et al., 2021a), or overfitting (Nikishin et al.,
2022) have been proposed as the underlying cause with comprehensive analyses, and several miti-
gation strategies, such as model-based data augmentation (Janner et al., 2019a), the use of ensem-
bles (Chen et al., 2021), network regularizations (Hiraoka et al., 2021), and periodically reseting the
RL agent from scratch while keeping the replay buffer (Nikishin et al., 2022), have been proposed
as methods for enabling off-policy RL algorithms to effectively use more gradient steps. While each
of these methods significantly improves sample efficiency, the efficacy of these fixes can be highly
task-dependent (as we will show in our experiments), and understanding what the true underlying
issue that these methods address is still an important on-going research question.

In this paper, we attempt to understand why taking more gradient steps can lead to worse perfor-
mance with deep RL algorithms, why heuristic strategies can help in some cases, and how this
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challenge can be mitigated in a more principled and direct way. Through empirical analysis with
the recently proposed tandem learning paradigm (Ostrovski et al., 2021), we show that in the early
stages of training, TD-learning algorithms tend to quickly overfit on temporal-difference (TD) error
(i.e., the error between the Q-network and the bootstrapping targets), reflected as a gap between
the TD errors computed on the training set and a held-out validation set, and give rise to a worse
final solution. We further show that many existing methods devised for the data-efficient RL setting
are effective insofar as they mitigate this statistical overfitting problem. This insight gives a robust
principle for making deep RL efficient: in order to improve data-efficiency, we can simply select the
most suitable regularization for any given problem by hill-climbing on the validation TD error.

We realize this principle in the form of a simple active model selection method, that attempts to
automatically discover the best regularization strategy for a given task during the course of online
RL training. Concretely, our method, AVTD, trains several off-policy RL agents on a shared replay
buffer where each agent applies a different overfitting regularizer. Then, AVTD dynamically selects
the agent with the smallest validation TD error for acting in the environment. We show that this sim-
ple strategy alone often results in performance that matches or outperforms individual regularization
schemes across a wide array of Gym and DMC tasks. Critically, note that unlike prior regularization
methods, whose performance can vary drastically across domains, our approach provides a simple
and robust method to automatically attain good performance.

To summarize, our first contribution is an empirical analysis of the bottlenecks in sample-efficient
deep RL. We rigorously evaluate several potential explanations behind these challenges, and ob-
serve that statistical overfitting on the TD-error in the early stages of training is one of the biggest
culprits that inhibits performance of data-efficient deep RL. Our second contribution, is a simple ac-
tive model selection method (AVTD) that attempts to counteract automatically select regularization
schemes by hill-climbing on validation TD-error. Our method often matches or outperforms the best
individual regularization scheme across a wide range of Gym and DMC tasks.

2 PRELIMINARIES AND PROBLEM STATEMENT

The objective of reinforcement learning is to maximize the long-term discounted return in a
Markov decision process (MDP) (Puterman, 1994), (S,A, R, P, γ), consisting of a state space
S, an action space A, a reward function r(s,a), a transition dynamics model P (s′|s,a), and a
discount factor γ ∈ [0, 1). The Q-function Qπ(s,a) for a policy π(a|s) is the expected long-
term discounted reward obtained by executing action a at state s and following π(a|s) thereafter,
Qπ(s,a) := Eπ [

∑∞
t=0 γ

tr(st,at)]. The optimal Q-function is achieved when it satisfies the Bell-
man equation: Q⋆(s,a) = Es′∼P (s′|s,a) [r(s,a) + γmaxa′ Q⋆(s′,a′)].

Practical off-policy methods (e.g., Mnih et al., 2015; Hessel et al., 2018; Haarnoja et al., 2018a)
train a Q-network, Qθ, to minimize the temporal difference (TD) error:

L(θ) = E(s,a,s′)∼D

[(
r(s,a) + γQ̄(s′,a′)−Qθ(s,a)

)2]
, (1)

where D is the replay buffer consisting of the transitions (s,a, s′) collected so far, Q̄ is the target Q-
network that is often updated to follow the Q-network Qθ with delay or smoothing (Fujimoto et al.,
2018) so that the target does not move too quickly, and a′ is usually drawn from a policy π(a|s) that
can maximize or approximately maximize Qθ(s,a).

In theory, these off-policy algorithms can be made very sample efficient by making sure the Q-
network fits the current replay buffer well, which in practice translates to taking more update steps
of the Q-networks per environment step, or higher update-to-data ratio (UTD) (Chen et al., 2021).
However, naı̈vely doing this can lead to worse performance (e.g., on DMC tasks (Nikishin et al.,
2022) and on MuJoCo gym tasks (Janner et al., 2019b)).

There have been many prior methods proposed for the high UTD regime (e.g., DroQ (Hiraoka et al.,
2021), REDQ (Chen et al., 2021), resets (Nikishin et al., 2022)). However, if we pick out the best
methods out of these prior methods and some simple baseline regularization schemes that we study
in this work (e.g., weight decay (Loshchilov & Hutter, 2017), dropout (Gal & Ghahramani, 2016),
spectral normalization (Miyato et al., 2018)), none of them seems to work well across the different
tasks (see Appendix A, Figure 10). What is the primary culprit that can explain the high UTD
challenge? Can we address it in a more direct and principled way?
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3 THE PRIMARY CULPRIT BEHIND FAILURE OF HIGH UTD DEEP RL

In this section, we attempt to understand the underlying causes behind the failure of off-policy RL
algorithms in the high UTD deep RL and whether prior sample-efficient RL algorithms have ad-
dressed these problems appropriately. We examine several plausible hypotheses that prior works
posit: Q-value overestimation due to distribution shift (Fujimoto et al., 2019a; Kumar et al., 2020),
non-stationarity due to changing data distributions (Lyle et al., 2022), as well as early overfitting
to the replay buffer (Nikishin et al., 2022). We first describe the setup for our empirical analysis.
Then, in the subsequent section, we demonstrate through a controlled study that the aforementioned
hypothesized reasons are not sufficient to explain the challenges with high UTD. Then, by demon-
strating that high UTD deep RL usually results in high generalization gap in the TD error, we argue
that the main culprit behind the failure mode of high UTD learning is likely statistical overfitting.
We validate this hypothesis by evaluating some recently proposed regularizers, and show that these
regularizers are effective insofar as they address statistical overfitting.

Experimental setup. We first describe the setup for our analysis. Many of the experiments in
our empirical study utilize passive sources of data (i.e., operate in an “offline” regime) obtained
from previous online RL runs. We replay this data in different ways to control for and examine
various hypotheses. For generating this logged data, we utilize one run of a resetting SAC agent
from Nikishin et al. (2022), which has been trained with a UTD value of 9. Our analysis analyzes
a standard SAC agent in the high UTD regime. Since our analysis operates in the offline setting, to
stabilize TD learning, we additionally normalize the features of the last layer (such normalization
has also been used previously stabilize TD learning (Bjorck et al., 2021a; Kumar et al., 2021a)). We
refer this as feature normalization (FN). We added FN in the last layer of the Q-network in all our
analysis experiments except DroQ, as it already utilizes LayerNorm. For fair comparisons, we use
feature normalization in all the experiments including the online setting in this section. While we
keep most of the hyperparameters the same, there are still some small differences between the online
and offline settings. In the online setting, we use the standard SAC which uses entropy backup in the
bellman update. In the offline setting, we remove the entropy term in the bellman backup and use
deterministic backup (the mean of the action from the Gaussian actor is used). Our analysis focuses
on the fish-swim environment from DMC suite since high UTD training results in the largest gap
in this domain (see the online column in Appendix B.1, Figure 11). We obtain similar trends for
many other experiments; a complete set of our analysis results are in Appendix B.1. The confidence
interval in our performance curves refers to the standard error computed over 8 random seeds. See
implementation details about different regularizers in Appendix B.

3.1 CAN POOR DATA COLLECTION, DISTRIBUTION SHIFT OR NON-STATIONARITY EXPLAIN
THE FAILURE OF HIGH UTD LEARNING?

First observe that, as expected, the performance of a standard SAC agent degrades as the UTD in-
creases (Figure 1-top). In this section, we attempt to understand if this performance degradation can
be attributed to (a) poor data collection, (b) excessive action distribution shift and overestimatioon
in the value function or (c) non-stationarity of the replay buffer.

(a) Quality of data used for training. One might speculate that SAC is expected to behave poorly
in the high UTD regime due to its inability to effectively collect exploratory data. To understand if
this might be the primary culprit behind the poor performance from high UTD training, we analyze
the behaviors of RL methods with high UTD in an offline setting that removes the influence of
data collection strategies. If indeed the negative effects of higher UTD ratios are entirely due to
exploration, we would expect this change to greatly mitigate the bottlenecks with higher UTD ratios.
In this study, we trained SAC with different UTD values on the aforementioned logged dataset, but
replayed the data sequentially (following the tandem learning protocol (Ostrovski et al., 2021)). This
approach mimics the way a typical online RL agent would gradually observe data as it explores, but
here, the dataset itself is independent of the SAC agent being trained. We refer this setting as the
offline streaming and it still preserves the challenges pertaining to learning from data, including
the effect of the training data distribution and data quantity. As shown in Figure 1-middle, the
performance of SAC still degrades as UTD increases, even though it is being trained on data from a
well-trained agent. This suggests that the poor data collection alone does not explain the failure of
high UTD learning.

3



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

Re
tu

rn

Online

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

Re
tu

rn

Offline Streaming

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

Re
tu

rn

Offline Shuffled Streaming

UTD=20
UTD=9

UTD=3
UTD=1

Figure 1: The effects of varying
UTD ratios on the performance of
SAC agents augmented with feature
normalization on fish-swim task
under online (top), offline stream-
ing (middle), and offline shuffled
streaming (bottom) settings.

(b) Non-stationarity in replay buffer data distributions. An-
other potential explanation for the challenges in learning with
higher UTD values is non-stationarity: with higher UTD, the
algorithm makes more gradient updates on the learned policy,
such that the distribution of data collected by the policy would
change more drastically between iterations of learning. Sudden
changes in the data distribution and non-stationary target val-
ues have been regarded as challenges in online RL (Igl et al.,
2020a). As before, we construct an experiment that removes
non-stationarity of data. To do so, we rerun SAC with different
UTDs in the offline streaming setting discussed above, but now
also reshuffle the buffer before training SAC. That is, while the
streaming setting replays the data in the order it was collected
by the online RL agent that was used for collecting the logged
dataset, this new setting presents data sequentially, but not in the
order that it was collected. This ensures that the data distribution
of samples used for training is stationary and does not change
over the course of training. We refer this as the offline shuffled
streaming setting. Note however that the underlying RL algo-
rithm still observes new data points as it trains for longer. Figure
1-bottom shows that a similar performance trend still holds in
this shuffled streaming setting, indicating that non-stationarity
of the data distribution alone also does not explain the failure of
high UTD learning.

(c) Distribution shift and out-of-distribution (OOD) actions.
Our analysis so far suggests that the challenges in learning with
high UTD are related to being able to effectively learn from data:
even when the data quality and non-stationarity are accounted
for, the performance with high UTDs is worse. One might spec-
ulate that an obvious challenge for learning from data is action
distribution shift or OOD actions (Fujimoto et al., 2019b; Levine
et al., 2020; Kumar et al., 2019): higher UTDs require more
off-policy Bellman backups, resulting in backups from OOD ac-
tions, and Q-value overestimation (Thrun & Schwartz, 1993; Van Hasselt et al., 2016; Fujimoto
et al., 2018). To investigate this, we plot the gap in Q-values at actions chosen by the policy and the
actions in the dataset: ∆Q = Es∼D,aπ∼π(a|s)[Qθ(s,a

π)]− Es,aβ∼D[Qθ(s,a
β)] which provides an

upper-bound on the overestimation, and find that this value is roughly identical for all UTD values
we consider (Figure 2).
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Figure 2: (Shuffled Streaming):
The ∆Q on fish-swim with vary-
ing UTD ratios. Typical offline
RL issue of being over-optimistic on
OOD actions does not appear in the
regime we study.

This suggests that higher UTDs do not lead to any more overes-
timation than the smaller UTD values that work well, and hence
the performance degradation from ramping up the UTD cannot
be explained by overestimation due to action distribution shift.
Note that we are not claiming that action distribution shift is
not a problem in general, or that in will not happen at all, but
that our evidence shows that in the online RL settings with high
UTD that we study, overestimation due to distributional shifts is
not the primary culprit.

3.2 CAN STATISTICAL OVERFITTING
EXPLAIN THE FAILURE OF HIGH UTD LEARNING?

Even after using data of high quality obtained from the run of
periodically resetting SAC, correcting for non-stationarity and
distribution shift, we find that the challenges with high UTD RL
still remain. This hints at the possibility that the actual underlying issue is statistical in nature, such
as some form of overfitting to the data points that were used for training. This sort of statistical
overfitting should be identifiable by measuring errors on a held-out validation dataset. In particular,
we plot the training and validation TD errors as well as the standardized TD gap (STD gap), defined
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as: ∆STD = Ltrain−Lvalid

Lvalid
. We observe in Figure 3, that the STD gap tends to be correlated with

failure cases with high UTD. Note that both validation TD error and the STD gap correlate well with
the increase of UTD ratio, demonstrating that the degrade in performance is likely due to statistical
overfitting in this environment. We also remark that our hypothesis of statistical overfitting is distinct
from prior works: while Nikishin et al. (2022) utilizes the term “overfitting” to collectively refer to
the challenges in high UTD learning, this prior work does not use a held-out validation set for their
analysis, which makes it impossible to conclude if the challenges are due to statistical overfitting on
the samples in the training dataset.
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Figure 3: (Shuffled Streaming) Statistical overfitting appears on fish-swim. Higher UTD leads to
heavier overfitting which is reflected on lower training TD error (second plot), higher validation error (third
plot), and lower performance degrades (first plot). The generalization gap (right) quantifies the amount of
overfitting each UTD setting experiences. Higher UTDs (UTD=9/20) tend to have higher generalization gaps.
All agents use feature normalization in the last layer to stabilize TD learning. The evaluation of the TD error
is done on the growing training/heldout replay buffer (originally collected by the online SAC agent that resets
periodically during training).

Analysis on other DMC environments. We have shown empirical evidence that statistical over-
fitting is the most plausible explanation for the failure case of high UTD learning on fish-swim,
but how about other environments? It turns out that most other DMC tasks that suffer from the high
UTD learning issue also has the same trend (see Figure 14 in Appendix B.1). This suggests that the
biggest challenge that needs to be handled in such data-efficient deep RL settings is that of statistical
overfitting on the TD error.
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Figure 4: Offline Shuffled Streaming Diagnostic analysis on fish-swim. Regularization approaches
achieve similar effects (to different degrees), alleviating overfitting and leading to lower generalization gap
(right). All agents use feature normalization in the last layer to stabilize TD learning.
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Figure 5: The effect of regularization approaches on the online performance on TD validation error.
On quadruped-run, hopper-hop, humanoid-run, and fish-swim the performance improvements
correlate well with the validation TD error in the offline setting. We include a more complete set of results and
more discussions for some failure cases in Appendix B.1, Figure 12).
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3.3 IS MITIGATING STATISTICAL OVERFITTING ABLE TO EXPLAIN THE GOOD
PERFORMANCE OF PRIOR REGULARIZERS?

We provided empirical evidence in the previous section that statistical overfitting is the most plau-
sible explanation for the failure of naı̈ve RL methods with high UTD ratios, compared to a number
of other previously hypothesized explanations. In this section, we attempt to understand if the per-
formance improvements from a variety of previously-proposed regularizers in high UTD RL can be
attributed to their effectivness in mitigating statistical overfitting. We note that none of the methods
we study enable high UTD learning across all tasks (as we have previously discussed), so our study
instead focuses on understanding whether methods that work well in each setting also overfit less
statistically. These regularizers include dropout (Gal & Ghahramani, 2016) (DO, used by Hiraoka
et al. (2021)), weight decay (Loshchilov & Hutter, 2017) (WD, used by Lillicrap et al. (2015)), spec-
tral normalization (Miyato et al., 2018) (SN, used by Gogianu et al. (2021); Bjorck et al. (2021b)),
periodic resets (Nikishin et al., 2022), and a combination of LayerNorm (Ba et al., 2016) and dropout
(DroQ (Hiraoka et al., 2021)). All of these regularizers operate differently: dropout injects stochas-
ticity into the Q-network, weight decay controls the parameter norm; Spectral normalization controls
the maximum singular value of the weight matrix. We observe that SAC exhibits lower validation
TD errors when trained with these regularizers in the high UTD regime (as shown in Figure 4 for
fish-swim and Appendix B.1, Figure 16 for other environments). This further highlights that a
reduction in statistical overfitting on the TD-error does correspond to better performance. We would
also highlight that the regularizers that achieve the lowest validation TD error offline are usually
one of the top performing methods online (Figure 5), hinting that the issues that these regularizers
addressed could be mostly statistical overfitting.

4 DYNAMIC MODEL SELECTION BASED ON VALIDATION TD ERROR (AVTD)

The performance of various regularization methods indicates that no single regularization approach
performs well on all the tasks possible, and more so, it is unreasonable to expect that a single
regularizer would perform well on every deep RL problem. However, if we can devise a general
principle that allows us to select from among regularization approaches, we would expect such an
approach to perform well given a broad set of regularization methods it choose from. In the previous
section, we observed that the validation TD error of different regularization approaches correlates
well with performance in the offline setting. Can we somehow use this correlation to our advantage
and select the best regularization approach automatically?

Algorithm 1 AVTD

1: Input: A collection of off-policy RL agents {(Q1
θ, π

1
θ), · · · , (QK

θ , πK
θ )}, greedy exploration

coefficient ε.
2: D ← ∅
3: for each environment step do
4: With probability ε, j ← argmaxi L(θi;Dheldout). Otherwise, j ← Unif({K})
5: Sample action a from πj

θ and use it to act in the environment
6: Add the new transition in the replay buffer: D ← D ∪ {(s, a, s′, r}
7: for i = 1 · · · k do
8: Update Qi

θ and πi
θ using the replay buffer D

9: end for
10: After every nepisode episodes, collect a heldout trajectory and add to Dheldout with the same

action selection strategy above for D.
11: end for

A naı̈ve approach that directly follows from our analysis would train multiple independent agents
with different regularizers in parallel, for a small number of initial steps, then select the one with the
smallest validation TD error and use it for the rest of training. While intuitive, this approach may not
necessarily work: TD error depends on the scale of the reward function, and typically as an online
RL agent makes progress towards maximizing reward and observes higher reward value, TD-error
increases. This means that this naı̈ve approach will select the agent that has made the least progress
towards maximizing reward as it is likely to be the one that attains the smallest TD-error, which
is not desirable. To address this shortcoming, we consider a simple modification of this idea: we
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instead train multiple agents with different regularizers on a shared replay buffer, such that the data
collection does not confound the evaluation of TD error. At each environment step, we pick the agent
with the lowest validation TD error to take actions in the environment. Essentially, all the agents are
learning on the same buffer, similar to the offline streaming setting, except that the active agent (the
agent that is taking action currently) collects the data that goes into the replay buffer. As we will
show in our experiment, this does not reduce the correlation between the validation TD error and the
performance, and this selection strategy can reliably select the best performing algorithm without
incurring the additional sample complexity that might result from, for example, running multiple
learners in sequence to pick the best one. An overview of the algorithm is shown in Algorithm 1.

5 EXPERIMENTAL EVALUATION OF AVTD
The goal of our experiments is to validate the principle that hill-climbing on validation TD error to
mitigate statistical overfitting can improve performance in data-effcient deep RL. To this end, we
evaluate our active model selection method, AVTD along with previously-proposed regularization
strategies for comparisons. Through experiments, we will establish that automatically selecting the
regularization strategy (or strength) via AVTD is able to match or outperform the best individual
stratgy. Concretely, we will answer the following questions: (1) Is AVTD able to select the best reg-
ularization coefficient online?, (2) Does AVTD still work if it were to select based on the training
TD error?, and (3) Does AVTD match or improve the performance of the best performing regular-
ization approach across a wide range of tasks? We first present answers to questions (1) and (2) and
then present our final results in (3). Implementation details are in Appendix B.
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Figure 6: Is AVTD able to select the best regularization strength in the ensemble? We plot the evaluation
return of AVTD against the evaluation return of each of the five agents trained independently. The five agents
we are considering are DroQ (Hiraoka et al., 2021) with different dropout rate: 0.1, 0.03, 0.01, 0.003 and
0.0 (denoted as LN). AVTD consistently matches the top performing regularizer, suggesting that AVTD can
indeed select the best regularization strength. AVTD use a greedy exploration coefficient of ε = 0.1.

(1) Is AVTD able to select the best regularization strength online? To answer this question, we
use five DroQ agents with different dropout rates (0.003, 0.01, 0.03, 0.1, 0.0) and see if AVTD is
able to select the best dropout rate for each Gym task. We show in Figure 6 that AVTD can reliably
match the performance of the best regularizer on the four Gym tasks we train on. One might argue
that simply training an ensemble of these agents could achieve a similar effect. We show that this is
not the case in Figure 7 by comparing to the uniform selection strategy where a randomly selected
agent is used to act in the environment for any given rollout.

(2) Is there any benefit to specifically using validation TD error in AVTD? To answer this
question, we performed a study where we automatically adjust the regularization strategy by hill-
climbing on the training TD-error instead of the validation TD error. On fish-swim, we observe
that utilizing validation TD error is critical, and training TD error leads to worse performance (Fig-
ure 8). Qualitatively, we observe that the regularization strategy selected by the hill-climbing on
training TD error is the one that does not add any regularization, resulting in worse performance.
This demonstrates that the principle of hill-climbing on the validation TD error is more robust than
hill-climbing on the training TD error, further corroborating the insights from our empirical analysis.

(3) Can AVTD match or exceed the performance of individual regularization strategies, aggre-
gated across a wide range of tasks? To evaluate overall performance of AVTD in comparison with
each individual regularizer, we evaluate AVTD and all prior methods on 9 DMC tasks and 4 Mu-
JoCo Gym tasks. The comparative evaluation of AVTD, prior works, and our weight decay baseline
is shown in Figure 9. For AVTD, we use a combination of five regularization strategies: Layer-
Norm, LayerNorm + WD with a weight of 0.01, WD with a weight of 0.01 alone, and LayerNorm
+ Dropout with fractions of 0.03 or 0.01. Including agents with the DroQ setup allows AVTD to
work well on Gym tasks. Including agents with weight decay allows AVTD to work well on DMC
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Figure 7: Is the benefit of AVTD purely explained by training an ensemble of agents and not the use of
validation error for model selection? In this experiment, we experiment with ε = 1.0, which corresponds
to randomly selecting agents with 100% probability. This is denoted as Random and the evaluation return of
each agent in the ensemble is shown separately. The five agents we are considering are DroQ (Hiraoka et al.,
2021) with different dropout rate: 0.1, 0.03, 0.01, 0.003 and 0.0. Ours shows the evaluation return of the agent
that achieves the lowest validation TD error. We see that AVTD can consistently outperform uniform selection,
suggesting that the benefit of AVTD is not purely coming from training an ensemble. AVTD uses ε = 0.1.
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Figure 8: Comparison of AVTD with the model selection based on training TD error on fish-swim.
Left: evaluation return. Right: validation TD error of each agent in AVTD (right) and training TD error of
each agent in AVTD (train) (mid). AVTD consistently picks the agent that achieves the best performance
(WD=0.01) whereas AVTD (train) consistently picks the agent that overfits the most. As a result, AVTD
(train) achieves a lower evaluation return compared to AVTD. AVTD uses ε = 0.1.

tasks. The results show that for each of the tasks, there exists some prior regularization strategy
that works well. However, no single strategy performs well across all the tasks. AVTD frequently
matches the best performing method (with the exception of the DMC acrobot-swingup task)
and, in the case of the hardest task (humanoid-run), exceeds the performance of prior methods,
indicating that selecting the regularizer based on validation error is effective single approach that
consistently attains good performance. In our experiments, we also include a simple, but strong
baseline (WD=0.01) and find it to work well in general, but worse than AVTD.

6 RELATED WORK

Overfitting in deep RL. In image-based RL domains, many prior works (Song et al., 2019) have
identified the overfitting issues where proper data augmentation techniques can improve perfor-
mance greatly (Kostrikov et al., 2020; Laskin et al., 2020; Yarats et al., 2021; Raileanu et al., 2021).
Cetin et al. (2022) identified a specific self-overfitting issue that is caused by TD learning with a
convolutional encoder and low magnitude rewards. This is different from our work as we mainly
focus on state-based environments with mostly dense rewards whereas Cetin et al. (2022) studies
the image-input environments that have low-magnitude sparse rewards. Overfitting is also heavily
studied in the offline RL setting (Kumar et al., 2021b; Arnob et al., 2021; Lee et al., 2022), and
while we do run some analysis experiments in the offline setting, we follow the tandem learning
protocol (Ostrovski et al., 2021), where the offline dataset is generated via an active RL agent and
does not come from an arbitrary distribution. In the sample-efficient deep RL setting that we study in
this paper, Nikishin et al. (2022) observed that forcing the TD learning to fit on a small initial replay
buffer with a large number of gradient steps can significantly hinder the learning progress later on in
the training. This prior work speculates that this observation could be due to some “overfitting-like”
phenomenon, however, it does not characterize what this overfitting precisely means in this context
and shows no evidence of statistical overfitting. Note that that this prior work does not utilize any
notion of a held-out validation set, which we believe is essential for quantifying any form of sta-
tistical overfitting. Finally, our analysis also examines the feasibility of various other hypotheses
(e.g., non-stationarities of the replay buffer (Lyle et al., 2022; Igl et al., 2020b), action distribution
shift (Fujimoto et al., 2019a; Kumar et al., 2020), value under/over-estimation (Fujimoto et al., 2018;
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Figure 9: AVTD comparing to the Performance of various sample-efficient RL methods based on SAC
on Gym (top row) and DMC tasks (bottom two rows). SAC: the standard SAC agent trained with UTD
ratio of 1; Reset: the standard SAC agent trained with high UTD ratios (9 on DMC and 20 on Gym) and resets
periodically (after every 200K/100K steps on DMC/Gym tasks); WD=0.01: the standard SAC agent trained
with the high ratios and regularized with weight decay in the Q-network; DroQ (Hiraoka et al., 2021). AVTD
performs more reliably across the board, often matching the top performing method on each environment. We
use representative baselines in this plot; See Appendix B.2, Figure 18 for the full results with all baselines and
the aggregated normalized score computation protocol.

Chen et al., 2021; Wang et al., 2021)) towards explaining the challenges of data-efficient deep RL,
but we find that statistical overfitting is the primary culprit.

Regularization in Deep RL.Regularization schemes, such as Dropout (Gal & Ghahramani, 2016),
LayerNorm (Ba et al., 2016), or BatchNorm (Cheng et al., 2016) have been effective in improving
the sample efficiency of deep RL algorithms. For example, Hiraoka et al. (2021) uses Dropout
and LayerNorm on top of SAC to attain near state-of-the-art performance on MuJoCo gym Liu
et al. (2019) found that L2 weight regularization on actors can improve both on-policy and off-
policy RL algorithms. The solution of (Nikishin et al., 2022) which proposes periodic resets of
critic weights can also be interpreted as a form of regularization. Despite the empirical successes
of these regularization approaches, the understanding of the principle behind these regularization
approaches is lacking. Our analysis sheds light on the connection of these regularization approaches
to statistical overfitting. We also observe that the efficacy of these regularizers is quite domain
dependent: not all regularizers work in all domains (see Figure 10). On the other hand, our active
model selection approach, which attempts to automatically adjust the regularization scheme by hill-
climbing on validation error provides a simple scheme to attain match or outperform the individual
best regularizer, for all domains. To clarify, our approach does not propose yet another regularizer,
but a model selection to select from among regularizers. Our method is also related to theoretical
algorithms that attempt to do online model selection (Foster et al., 2019; Lee et al., 2021; Cutkosky
et al., 2021), that study this problem from a theoretical perspective. (Khadka et al., 2019) also
utilizes multiple learners and actively selects from them based on a statistical estimate of return,
which is distinct from validation TD-error AVTD utilizes.

7 DISCUSSION

In this work, we attempted to understand the primary bottlenecks in data-efficient deep RL. Through
a rigorous empirical analysis, we showed that poor performance in high UTD deep RL is often corre-
lated with statistical overfitting, and the effectiveness of many existing regularizers can be explained
by their ability to address overfitting. We use this experimental design to devise a principle for
obtaining sample-efficient deep RL: by targeting this overfitting issue by an active model selec-
tion strategy, that automatically adjusts regularization based on validation TD-error, we can often
match or outperform existing regularizers on each task, achieving better overall performance. While
AVTD can work well across a number of domains, several important questions remain. For in-
stance, it is not clear why and when certain regularization strategies work better than others. If we
can answer this question, we can optimize for validation TD error in a more straightforward fash-
ion without requiring multiple parallel agents. This likely would require understanding the learning
dynamics of TD-learning, which is an interesting topic for future work.

9



Under review as a conference paper at ICLR 2023

REFERENCES

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Samin Yeasar Arnob, Riashat Islam, and Doina Precup. Importance of empirical sample complexity
analysis for offline reinforcement learning. arXiv preprint arXiv:2112.15578, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Is high variance unavoidable in rl? a case
study in continuous control. arXiv preprint arXiv:2110.11222, 2021a.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learn-
ing. arXiv preprint arXiv:2106.01151, 2021b.

Edoardo Cetin, Philip J Ball, Steve Roberts, and Oya Celiktutan. Stabilizing off-policy deep rein-
forcement learning from pixels. arXiv preprint arXiv:2207.00986, 2022.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-
learning: Learning fast without a model. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=AY8zfZm0tDd.

L Cheng, LY Lo, NLS Tang, et al. Crossnorm: a novel normalization strategy for microarray data
in cancers. sci rep 6: 18898, 2016.

Ashok Cutkosky, Christoph Dann, Abhimanyu Das, Claudio Gentile, Aldo Pacchiano, and Manish
Purohit. Dynamic balancing for model selection in bandits and rl. In International Conference on
Machine Learning, pp. 2276–2285. PMLR, 2021.

Dylan J Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection for contextual bandits.
Advances in Neural Information Processing Systems, 32, 2019.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning (ICML), pp. 1587–1596,
2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019b.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059,
2016.

Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective. In
International Conference on Machine Learning, pp. 3734–3744. PMLR, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018a. URL http://arxiv.org/abs/1801.01290.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018b.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

10

https://openreview.net/forum?id=AY8zfZm0tDd
http://arxiv.org/abs/1801.01290


Under review as a conference paper at ICLR 2023

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsu-
ruoka. Dropout q-functions for doubly efficient reinforcement learning. arXiv preprint
arXiv:2110.02034, 2021.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
The impact of non-stationarity on generalisation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826, 2020a.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826, 2020b.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Processing Systems, 32, 2019a.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems, pp. 12498–
12509, 2019b.

Shauharda Khadka, Somdeb Majumdar, Tarek Nassar, Zach Dwiel, Evren Tumer, Santiago Miret,
Yinyin Liu, and Kagan Tumer. Collaborative evolutionary reinforcement learning. In Interna-
tional conference on machine learning, pp. 3341–3350. PMLR, 2019.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11761–11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization. arXiv
preprint arXiv:2112.04716, 2021a.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for
offline model-free robotic reinforcement learning. In 5th Annual Conference on Robot Learning,
2021b. URL https://openreview.net/forum?id=fy4ZBWxYbIo.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
19884–19895, 2020.

Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and Greg Imwalle.
Data center cooling using model-predictive control. Advances in Neural Information Processing
Systems, 31, 2018.

Jonathan Lee, Aldo Pacchiano, Vidya Muthukumar, Weihao Kong, and Emma Brunskill. Online
model selection for reinforcement learning with function approximation. In International Con-
ference on Artificial Intelligence and Statistics, pp. 3340–3348. PMLR, 2021.

Jonathan Lee, George Tucker, Ofir Nachum, and Bo Dai. Model selection in batch policy optimiza-
tion. In International Conference on Machine Learning, pp. 12542–12569. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations (ICLR), 2015.

11

https://openreview.net/forum?id=fy4ZBWxYbIo


Under review as a conference paper at ICLR 2023

Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in policy
optimization–an empirical study on continuous control. arXiv preprint arXiv:1910.09191, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in rein-
forcement learning. arXiv preprint arXiv:2204.09560, 2022.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al. Chip placement with deep
reinforcement learning. arXiv preprint arXiv:2004.10746, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, feb 2015. ISSN 0028-0836.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International Conference on Machine Learning,
pp. 16828–16847. PMLR, 2022.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283–23295,
2021.

Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., 1994.

Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic
data augmentation for generalization in reinforcement learning. Advances in Neural Information
Processing Systems, 34:5402–5415, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational over-
fitting in reinforcement learning. arXiv preprint arXiv:1912.02975, 2019.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 Connectionist Models Summer School Hillsdale, NJ.
Lawrence Erlbaum, volume 6, pp. 1–9, 1993.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Hang Wang, Sen Lin, and Junshan Zhang. Adaptive ensemble q-learning: Minimizing estimation
bias via error feedback. Advances in Neural Information Processing Systems, 34:24778–24790,
2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

12



Under review as a conference paper at ICLR 2023

Appendices
A FAILURE CASE OF EXISTING REGULARIZERS
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Figure 10: Failure cases for commmon sample-efficient RL methods across DMC and MuJoCo gym
benchmark. DroQ is the state-of-the-art method on gym tasks, Reset is one of the top performing algorithm
on DMC from Nikishin et al. (2022) that utilizes resets, and WD=0.01 is a simple regularization baseline that
we studied in our work that utilizes weight decay on the Q-network. While DroQ and Resets attain good
performance on the Gym tasks, they perform poorly on the other set of tasks from the DMC suite. In contrast,
weight decay performs well on the DMC tasks attains poor performance on Gym.

B IMPLEMENTATION DETAILS

AVTD In all our experiments, we use ε = 0.1 unless specified otherwise. This means that at each
environment step, there is a 10% chance that a random agent is picked and the action is sampled
from that random agent.

Weight decay (WD). For all our experiments with weight decay, we apply AdamW (Loshchilov
& Hutter, 2017) on the weight matrices of the Q-network (not on bias) except the last layer of the
network (that maps the last layer feature to a scalar). When LayerNorm and weight decay are used
together, weight decay is not applied on the bias and the scale learned in the LayerNorm.

Spectral normalization (SN). For spectral normalization, we follow the implementation of

LayerNorm (LN). For all our experiments with LayerNorm (Ba et al., 2016), we use it right
before each ReLU activation in the Q-network and learns additional per-feature-element scales and
biases.

Feature Normalization (FN). For all our experiments with feature normalization, we use it right
before the last layer of the Q-network where it is parameterized as

Qθ(s,a) =
w⊤fθ(s,a)

∥fθ(s,a)∥2
where w is the last layer weight of the Q-network and fθ(s,a) gives the post-activation feature right
before the last layer. This trick has been applied in many prior works to improve the stability of TD
learning (e.g., (Bjorck et al., 2021a; Kumar et al., 2021a)).

Dropout (DO). For all our experiments with dropout, we apply it in the Q-network before the
ReLU activation (before LayerNorm when combined together, e.g., DroQ (Hiraoka et al., 2021)).

Reset. For our experiments with Reset (Nikishin et al., 2022), we use the same strategy as the
original paper where we re-initialize the agent from scratch periodically while keeping the replay
buffer. For DMC tasks, we use a reset frequency of 200K steps (same as the original paper). For
gym tasks, we use a reset frequency of 100K steps. To our surprise, resetting every 100K could
already match the performance of DroQ (Hiraoka et al., 2021).
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Gym experimental setup. For all the experiments on Gym tasks, we follow DroQ (Hiraoka et al.,
2021) where we update the actor once per every 20 critic update steps and run 300K environment
steps. We use a warmup period of 5000 steps where random actions are taken before updating the
agents.

DMC experimental setup. For all the experiments on DMC tasks, we use a UTD ratio of 9,
warmup period of 10000 steps where random actions are taken before updating the agents, and run
1M environment steps.

SAC. For the SAC implementation used in this paper, we build our code on top of the jaxrl
codebase: https://github.com/ikostrikov/jaxrl. The hyperparameter used for SAC
is attached as follows (see Table 1):

Initial Temperature 1.0

Target Update Rate update rate of target networks 0.005

Learning Rate learning rate for the Adam optimizer 0.0003

Discount Factor 0.99

Batch Size 256

Network Size (256, 256)

Warmup Period # of initial random exploration steps 10000 for DMC, 5000 for gym MuJoCo

Table 1: Hyperparameters used for the SAC algorithm (Haarnoja et al., 2018b)
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B.1 DMC ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

Re
tu

rn

hopper-hop (Online)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

Re
tu

rn

hopper-hop (Streaming)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300

Re
tu

rn

hopper-hop (Shuffled)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

Re
tu

rn

hopper-stand (Online)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

Re
tu

rn

hopper-stand (Streaming)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

Re
tu

rn

hopper-stand (Shuffled)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

Re
tu

rn

humanoid-stand (Online)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

Re
tu

rn

humanoid-stand (Streaming)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

Re
tu

rn

humanoid-stand (Shuffled)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

Re
tu

rn

humanoid-run (Online)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

Re
tu

rn

humanoid-run (Streaming)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200
Re

tu
rn

humanoid-run (Shuffled)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

Re
tu

rn

fish-swim (Online)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

Re
tu

rn

fish-swim (Streaming)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

Re
tu

rn

fish-swim (Shuffled)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

250

500

750

Re
tu

rn

quadruped-run (Online)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

250

500

750

Re
tu

rn

quadruped-run (Streaming)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

250

500

750

Re
tu

rn

quadruped-run (Shuffled)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

1000

Re
tu

rn

finger-turn_hard (Online)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

1000

Re
tu

rn

finger-turn_hard (Streaming)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

1000

Re
tu

rn

finger-turn_hard (Shuffled)

UTD=20 UTD=9 UTD=3 UTD=1

Figure 11: The effects of UTD ratios on 7 DMC tasks. All agents use feature normalization in
the last layer feature to stabilize TD learning. Among all the tasks considered, almost all tasks
exhibit the failure mode of high UTD in the online setting except on hopper-hop where UTD=20
performs the best. In the offline setting, the performance degrade trend is cleaner where the agents
trained with UTD=1 performs the best across the board (except on hopper-hop on the streaming
setting, humanoid-run on the shuffled streaming setting, and finger-turn hard on both
offline settings.) and the agents trained with UTD=20 performs the worst across the board (except
on quadruped-run on shuffled streaming setting and finger-turn hard on both offline
settings).
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Figure 12: The effects of various regularization approaches on 7 DMC tasks. Among all the
tasks considered, fish-swim, humanoid-run and hopper-hop have the most similar relative
performance ordering. On humanoid-stand, all the other methods except the base SAC + FN
correlates have similar performance ordering across online/offline settings. On quadruped-run,
we observe that the performance gap is much bigger in the offline settings, but the relative ordering
of DO, WD, Reset and DroQ is roughly preserved (FN and FN + SN are much worse in the shuffled
streaming setting). The ordering is the most ambiguous in hopper-stand.
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Figure 13: The effects of UTD ratio on 7 DMC tasks in the offline streaming setting. All
agents use feature normalization in the last layer to stabilize TD learning. For all tasks except
quadruped-run (where the agent trained with UTD=1 is doing a bit worse than other agents with
UTD=3 and UTD=9 but achieving lower validation TD error) and finger-turn hard (where
performance does not seem to matter among different UTD ratios), the TD validation error correlated
well with performance.
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Figure 14: The effects of UTD ratio on 7 DMC tasks in the offline shuffled streaming setting.
All agents use feature normalization in the last layer to stabilize TD learning. For all tasks except
finger-turn hard (where the performance of the agents trained with UTD=1,3,9 are indistin-
guishable while the validation TD errors are) and hopper-hop (where the performance of the
agents train with UTD=1,3 are indistinguishable while the validation TD errors are), the TD valida-
tion error correlated well with performance.
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Figure 15: The effects of different regularizations on 7 DMC tasks in the offline streaming set-
ting. All agents use feature normalization in the last layer to stabilize TD learning. On fish-swim,
humanoid-run and humanoid-stand, the evaluation returns of different regularization ap-
proaches generally correlates well with their TD errors. On hopper-hop, finger-turn hard
and hopper-stand, no obvious correlation can be seen as all of approaches perform quite simi-
larly. Specifically, on fish-swim, the top performing method correlates better with the validation
TD error compared to the training TD error.

19



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

100

200

300
Re

tu
rn

hopper-hop

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Tr
ai

ni
ng

 T
D 

Er
ro

r, 
L(

) hopper-hop

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Va
lid

at
io

n 
TD

 E
rro

r, 
L v

al
id

(
)

hopper-hop

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.5

1.0

St
d.

 T
D 

Ga
p,

 
ST

D

hopper-hop

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

Re
tu

rn

hopper-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Tr
ai

ni
ng

 T
D 

Er
ro

r, 
L(

) hopper-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Va
lid

at
io

n 
TD

 E
rro

r, 
L v

al
id

(
)

hopper-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.5

1.0

St
d.

 T
D 

Ga
p,

 
ST

D

hopper-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

Re
tu

rn

humanoid-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Tr
ai

ni
ng

 T
D 

Er
ro

r, 
L(

) humanoid-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Va
lid

at
io

n 
TD

 E
rro

r, 
L v

al
id

(
)

humanoid-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.5

1.0

St
d.

 T
D 

Ga
p,

 
ST

D

humanoid-stand

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

50

100

150

Re
tu

rn

humanoid-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Tr
ai

ni
ng

 T
D 

Er
ro

r, 
L(

) humanoid-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102
Va

lid
at

io
n 

TD
 E

rro
r, 

L v
al

id
(

)
humanoid-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.5

1.0

St
d.

 T
D 

Ga
p,

 
ST

D

humanoid-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

200

400

600

Re
tu

rn

fish-swim

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Tr
ai

ni
ng

 T
D 

Er
ro

r, 
L(

) fish-swim

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Va
lid

at
io

n 
TD

 E
rro

r, 
L v

al
id

(
)

fish-swim

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.5

1.0

St
d.

 T
D 

Ga
p,

 
ST

D

fish-swim

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

250

500

750

Re
tu

rn

quadruped-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Tr
ai

ni
ng

 T
D 

Er
ro

r, 
L(

) quadruped-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Va
lid

at
io

n 
TD

 E
rro

r, 
L v

al
id

(
)

quadruped-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.5

1.0

St
d.

 T
D 

Ga
p,

 
ST

D

quadruped-run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

500

1000

Re
tu

rn

finger-turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Tr
ai

ni
ng

 T
D 

Er
ro

r, 
L(

) finger-turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

10 2

100

102

Va
lid

at
io

n 
TD

 E
rro

r, 
L v

al
id

(
)

finger-turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.0

0.5

1.0

St
d.

 T
D 

Ga
p,

 
ST

D

finger-turn_hard

FN FN + DO FN + WD FN + SN FN + Reset DroQ

Figure 16: The effects of different regularizations on 7 DMC tasks in the offline shuffled
streaming setting. All agents use feature normalization in the last layer to stabilize TD learning. On
humanoid-stand, humanoid-run, quadruped-run and fish-swim, the top performing
methods tend to have lower TD error. Specifically, on fish-swim, the top performing method
correlates better with the validation TD error compared to the training TD error.
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Figure 17: The data collecting policy for the offline analysis. The online training RL agent is a
standard SAC with UTD ratio of 9 and gets periodically reset after every 200K steps.

B.2 FULL RESULTS FOR AVTD

Aggregated performance computation To compute the aggregated performance for each
method, we use the following protocol. For each environment, we normalize the return by the
best average return achieved on each task (taking the maximum over all agent and all environment
steps and the average over all eight seeds). After obtaining the normalized return for each environ-
ment, method and seed, we aggregate them over nine DMC tasks and four Gym tasks to obtain the
aggregated normalized score.
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Figure 18: AVTD compared to different regularizers and the standard SAC baseline with UTD=1.
For Gym tasks, UTD=20 is used and the actor is updated once per 20 critic updates. For DMC tasks,
UTD=9 is used and the actor is updated with every critic update.
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